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Abstract

The risk-based life-cycle management of engineering systems in a nuclear power plant
is intended to ensure safe and economically efficient operation of energy generation in-
frastructure over its entire service life. An important element of life-cycle management is
to understand, model and forecast the effect of various degradation mechanisms affecting
the performance of engineering systems, structures and components.

The modeling of degradation in nuclear plant components is confounded by large
sampling and temporal uncertainties. The reason is that nuclear systems are not readily
accessible for inspections due to high level of radiation and large costs associated with
remote data collection methods. The models of degradation used by industry are largely
derived from ordinary linear regression methods.

The main objective of this thesis is to develop more advanced techniques based on
stochastic process theory to model deterioration in engineering components with the
purpose of providing more scientific basis to life-cycle management of aging nuclear power
plants. This thesis proposes a stochastic gamma process (GP) model for deterioration
and develops a suite of statistical techniques for calibrating the model parameters. The
gamma process is a versatile and mathematically tractable stochastic model for a wide
variety of degradation phenomena, and another desirable property is its nonnegative,
monotonically increasing sample paths. In the thesis, the GP model is extended by
including additional covariates and also modeling for random effects. The optimization
of age-based replacement and condition-based maintenance strategies is also presented.

The thesis also investigates improved regression techniques for modeling deterioration.
A linear mixed-effects (LME) regression model is presented to resolve an inconsistency
of the traditional regression models. The proposed LME model assumes that the ran-
domness in deterioration is decomposed into two parts: the unobserved heterogeneity of
individual units and additive measurement errors.

Another common way to model deterioration in civil engineering is to treat the rate
of deterioration as a random variable. In the context of condition-based maintenance,
the thesis shows that the random variable rate (RV) model is inadequate to incorporate
temporal variability, because the deterioration along a specific sample path becomes de-
terministic. This distinction between the RV and GP models has profound implications
to the optimization of maintenance strategies.

The thesis presents detailed practical applications of the proposed models to feeder
pipe systems and fuel channels in CANDU nuclear reactors.

In summary, a careful consideration of the nature of uncertainties associated with
deterioration is important for credible life-cycle management of engineering systems. If
the deterioration process is affected by temporal uncertainty, it is important to model it
as a stochastic process.
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Chapter 1

Introduction

1.1 Background

The success and progress of human society depend on reliable physical infrastructure

— roads, bridges, hospitals, fire stations, dams, sewage, gas pipelines, nuclear power

plants, transmission lines, etc. — for distributing resources and essential services to

the public. A common problem of the infrastructure is that, as service time progresses,

the infrastructure ages, its performance deteriorates and its reliability declines. The

deteriorating infrastructure can have an adverse impact on a utility’s profit and sometimes

even on a whole nation’s economy (Choate and Walter 1983). Consider an example of the

nuclear power generation industry. According to the International Atomic Energy Agency

(IAEA), as of January 12, 2007, there were 114 out of 435, or 26% of operational nuclear

reactors around the world that had been working over 30 years (International Atomic

Energy Agency 2007). For a nuclear reactor with design life of 30-40 years, this implies

that large investments are needed to maintain the generation infrastructure to meet the

increasing energy needs in the next 10 to 20 years. In Canada particularly, nuclear utilities

are planning several big refurbishment programs to replace or upgrade the aging systems,

structures and components of the nuclear power plants. These programs involve billions

1



of dollars (Atomic Energy of Canada Limited 2007).

To ensure safety and reliability throughout the service life, including any extended

life, aging in the infrastructure must be effectively managed. In nuclear generation in-

dustry, aging management programs that integrate equipment qualification, in-service

inspection, deterioration modeling and preventive maintenance have been implemented

(Pachner 2002). Aging management deals with problems such as when and where an

inspection should be undertaken, what specific maintenance actions and when these ac-

tions should be taken. A characteristic feature of the aging management is that decisions

often must be made under uncertainty. One of the most important uncertainties is the

uncertainty in the deterioration rate and the time to failure, or the lifetime. Traditionally,

the uncertainty in aging and deterioration is characterized by a lifetime distribution, in

which aging is described by its failure rate function. But the lifetime distribution model

is suitable only to time-based maintenance (e.g., age-based replacement) as it only quan-

tifies whether a component is functioning or not. It cannot be used for condition-based

maintenance optimization, which is at the core of an aging management program. The

need for an advanced stochastic model of deterioration to support condition assessment,

life prediction and efficient life-cycle management program of the aging infrastructure is

compelling.

A nuclear power plant (NPP) is a complex technical system consisting of a vast number

and variety of engineered subsystems, structures and components (SSCs) that experience

uncertain aging and degradation. As sketched in Figure 1.1, a CANDUTM1 nuclear power

plant consists of a reactor core, heat transport system (e.g. feeder pipes and steam gen-

erators), secondary side (e.g. turbine and generator), and safety systems. Among the

many SSCs, fuel channels inside the reactor core, steam generators, and feeders con-

necting them are the three key, potentially life-limiting systems (Figure 1.2). Working in

high-temperature and high-pressure environment, the zirconium alloy pressure tubes may
1CANDU, abbreviated for CANadian Duterium Uranium, is a trademark for Atomic Energy of Canada

Limited.
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Figure 1.1: Layout of a CANDU nuclear power plant

experience different kinds of degradation phenomena such as delayed hydride cracking,

sag, elongation, diametral expansion, and even a break before leak, due to irradiation

enhanced deformation and embrittlement (IAEA 1998). Similarly, the heat exchanger

tubes in the steam generators are susceptible to different types of degradation such as

pitting, denting, fretting, stress corrosion cracking, high-cycle fatigue, and wastage (IAEA

1997). For the other CANDU reactor assemblies (e.g., calandria vessels, end shields, feed-

ers), the following potential degradation mechanisms have been identified (IAEA 2001) :

neutron irradiation embrittlement, stress corrosion cracking, corrosion (pitting, denting,

flow-accelerated), erosion, fatigue, stress relaxation, creep, and mechanical wear.

In general, the deterioration data from field inspections during previous outages ex-

hibits considerable variability. The data suffers from both sampling uncertainty and

temporal uncertainty. The sampling uncertainty arises from the fact that the inspected

components are generally a small portion of the overall population over a limited time

horizon. Due to the small sample size, the determination of a representative distribution

type becomes difficult, resulting in modeling error. Another consequence of the small

sample size is that it hinders an accurate estimation of the distribution parameters. In-

ference of the population parameters from the finite samples therefore suffers from afore-

mentioned uncertainties. The uncertainty inherent in the progression of deterioration
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over time is referred to as temporal uncertainty.

Traditional regression-based models assume a deterministic functional relationship

between the response and the independent variables. The choice of the functional form

is usually guided by certain empirical relationship from existing scientific investigations.

The randomness of the response is characterized by adding an extra “error” term. The

parameters of the model are usually estimated by the ordinary or generalized least square

technique, depending on the assumption of the error structure (Rao 1973; Weisberg 2005).

Although the regression models are probably one of the most sophisticated statisti-

cal techniques known to engineers, its limitation in reliability prediction was reported

recently (Pandey, Yuan, and van Noortwijk 2006). In addition to some common mod-

eling difficulties such as error diagnostics and normality check, an important limitation

is that the repeated measurements, although from the same component and therefore

dependent, are treated as independent observations in the linear or nonlinear regression

models. Mixed-effects models (Crowder and Hand 1990) can be used to model the co-

variance structure for the repeated measurements, but the random-variable nature of the

regression models prevent a proper consideration of the effects of temporal uncertainties

in prediction of the remaining lifetime. This motivates the exploration of stochastic pro-

cess based models to take into account the temporal uncertainty in aging management of

nuclear power plant systems.

1.2 Objectives

The thesis aims to develop a stochastic process model for generic deterioration phenomena

in nuclear power plant components. In particular, the thesis attempts to answer the

following questions:

• What is the need for a stochastic process based model of deterioration? A common

practice in deterioration modeling is to use random variable models via regression
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techniques. The stochastic process model differs from the random variable model

in that the former takes into account time-varying uncertainty inherent in the de-

terioration. To answer this question, we examine the significance of the temporal

uncertainty on preventive maintenance decision-making by comparing the results

from the random variable model with those from the stochastic process model.

• Which stochastic process model shall be used? There are a large inventory of

stochastic process models, for example, discrete-state Markov chain models, Wiener

processes, compound Poisson processes, renewal processes, etc. In the thesis, a

gamma process model is investigated. We examine the mathematical characteris-

tics of the gamma process and their implications in modeling physical degradation

mechanisms.

• How does one estimate model parameters from available deterioration data? As

the main body of the modeling procedure, the question includes model verification

(i.e., parameter estimation) and model validation.

• Applications. An important objective of the thesis is to show that stochastic models

are useful in practical life-cycle management of NPPs. For illustration purposes,

two case studies are presented, one for the creep deformation of pressure tubes in

the CANDU reactor core and the other at more details for the wall thinning of

feeder pipes due to flow-accelerated corrosion.

1.3 Model, Modeling and Proposed Methodology

1.3.1 Models and Modeling

What do we mean by a model and a stochastic model in particular of a system or a

phenomenon? Simply speaking, a model is a physical, mathematical, or computational
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representation of a system that can be used to predict the system’s behavior. A small-

scaled beam in a structural laboratory can be treated as a physical model of some highway

bridge. An artificial neural network is an example of computer models for some complex

system of which the input and output have complex nonlinear relationship. Here we

focus on stochastic model of deterioration that are used to predict the deterioration in

the future and the time at which the deterioration reaches a critical level.

A mathematical model consists of a set of structural assumptions and embedded

parameters and it can be expressed conceptually as M = (S, θ), in which S denotes

the model structure and θ the model parameters (Draper 1995). Depending on the

model structure S, mathematical models can be categorized as deterministic models and

stochastic models. A stochastic model includes certain random or chance elements in

its structural assumptions whereas a deterministic model assumes the system behavior is

predictable with certainty. Deterioration usually evolves randomly with time. Failing to

include inherent uncertainties in the deterioration model would make the understanding

of the systems unrealistic. Therefore, a stochastic deterioration model is necessary.

By modeling we mean an iteratively refining process of identifying important pa-

rameters, making reasonable assumptions, specifying model structure, estimating model

parameters, assessing model performance, and modifying assumptions and model struc-

ture. In the case of deterioration modeling, the deterioration process X (t), or X for

brevity, is the important parameter that we want to know its value in the future time

for the purpose of maintenance decision. Sometimes other variables may also be helpful

for the prediction of X. They are called explanatory variables or covariates and labeled

as Y in general although they may be random processes as well. For modeling deterio-

ration that exhibits obvious variability, assumptions are made as the first step about the

mean deterioration curve (e.g., linear or quadratic with time) and about the dependence

structure of the deterioration process (e.g., Markov assumptions, or more strongly, in-

dependent increments). Then the model parameters are estimated from observations of

both X and Y that are possibly contaminated by measurement errors. So far the induc-
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Figure 1.3: Procedure of modeling uncertainties in deterioration

tion stage of the modeling is completed. Next, we compare the deduction results X̃ from

the constructed models with (usually new) observations. According to certain prescribed

acceptance criterion, say
∥∥∥X − X̃

∥∥∥ ≤ ε, the model is either accepted or rejected for its

inadequacy. If accepted, it can then be used for supporting our decision-making (e.g.

risk-informed in-service inspection), which may be based on some utility criteria U that

is a function of X̃. If the model is rejected, we shall then modify the model assumptions,

re-estimate the parameters, and so on, until it is accepted. The whole modeling procedure

is shown in Figure 1.3.

Since no model is correct in the sense that there is no model that can consistently rep-

resent all aspects of the system under study, we should be alert to distinguish important

errors in the model. Keeping this in mind can help build a model that is no more refined

than necessary for the application. That said, however, it does not mean that we do not

need to consider the uncertainty the model has brought to the information, represented

by X̃, upon which the decision making is based. As a matter of fact, how to deal with

the model uncertainty has become an important topic in modeling (Ferson et al. 2004;

Oberkampf et al. 2004), and in particular, in stochastic deterioration modeling (Ang

and De Leon 2005) in which the situation is compounded by the inherent uncertainty of
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deterioration. We elaborate this matter in detail in the next.

1.3.2 Uncertainty Modeling and Model Uncertainties

Uncertainties are generally categorized as aleatory uncertainty and epistemic uncertainty

(Bedford and Cooke 2001; Aven 2003). Also known as irreducible uncertainty, the

aleatory uncertainty refers to the inherent indeterminacy or unpredictability of a sys-

tem or a phenomenon. The epistemic uncertainty relates to the phenomenon that the

decision maker does not have the information which is quantitatively and qualitatively

appropriate to describe or predict the system’s behavior. While aleatory uncertainty is a

property of the system, the epistemic uncertainty is a situational property of the inter-

actions among the system, the modeler and the decision maker (Zimmermann 2000). As

shown in Figure 1.3, causes of epistemic uncertainty in deterioration include measurement

error of data, lack of knowledge of the deterioration mechanism, inappropriateness of the

model structure, parameter uncertainty due to scarce data, and conflict information of

the system from different models.

Aleatory uncertainties in deterioration can be further classified into unit-varying un-

certainty and time-varying uncertainty. Although both uncertainties can be characterized

by probability, the specific probabilistic models for these two uncertainties are different.

For the unit-varying uncertainty, or random effect across units, a random variable model

may be adequate. But for the time-varying uncertainty, or temporal uncertainty, a model

considering the stochastic time dependence is essential.

Many researchers have studied the epistemic uncertainty in different applications (e.g.,

statistical inference (Box 1976; Draper 1995; Laskey 1996), probabilistic risk analysis

(Hora 1996; Parry 1996; Bedford and Cooke 2001; Aven 2003), expert systems (Zimmer-

mann 2000), system identification (Moon and Aktan 2006), etc.). According to the cause

of the epistemic uncertainty and the form of data (e.g., numerical, interval or linguis-

tic), different theories may be applied, for example, probability theory, possibility theory,
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fuzzy logic, evidence theory, expert judgement, interval arithmetic, and convex modeling.

For details of those theories, refer to Zimmermann (2000) and the references therein.

Most of existing research, however, focused on parameter uncertainty in the Bayesian

framework. Draper (1995) attempted to attack the uncertainty in the model structure

using the so-called standard Bayesian solution. The entire model M = (S, θ) was treated

as a nuisance parameter and the conditional predictive distributions p (x̃ |y, z ) is expressed

as

p (x̃ |y, z ) =
∫

M
p (x̃ |y, z, M ) p (M |y, z ) dM

=
∫ ∫

p (x̃ |y, z, θ, S ) p (θ |y, z, S ) p (S |y, z ) dθdS, (1.1)

in which p (M |y, z ) is written as p (θ, S |y, z ) = p (θ |y, z, S ) p (S |y, z ) and denotes the

posterior distribution of the model M , and x, y, z denotes the deterioration, covariates,

and noise-contaminated measurements, respectively, as in Figure 1.3. When p (S |y, z ) is

concentrated on S∗, a specifically chosen model, (1.1) is reduced to

p (x̃ |y, z ) =
∫

p (x̃ |y, z, θ ) p (θ |y, z ) dθ, (1.2)

which assesses the parameter uncertainty only, as done in Ang and De Leon (2005).

Working backwards from p (θ, S |y, z ) to the prior distribution upon which the posterior

model probabilities are based gives

p (θ, S |y, z ) = cp (S) p (θ |S ) p (y, z |θ, S ) , (1.3)

where c denotes a normalization constant, p (S) the prior distribution of the model struc-

ture, p (θ|S) the prior conditional distribution of the model parameter given a model

structure, and p (y, z |θ, S ) the likelihood function. The standard Bayesian solution hopes

an automatic updating process from p (S) to p (S |y, z ) via Bayesian formula. But the
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difficult part of the Bayesian updating is the specification of p (S), because, as Draper

argued, the space of all possible models is either “too big to support a diffuse p (S)” or

“too small to be well calibrated”. This difficulty makes the standard Bayesian solution

inapplicable in practice.

A less-ambitious but very pragmatic solution is the model expansion approach. This

approach starts with a single structural choice S∗ and then it is expanded in directions

suggested by context, by model calibrations, or by other considerations. One special

case of this approach is the conventional sensitivity analysis in which the assumptions

in S∗ are challenged by qualitatively exploring how much the conclusions would change

if an alternative set of plausible assumptions were made. This thesis adopts the model

expansion approach for modeling updating. This is detailed in the next subsection.

1.3.3 Proposed Deterioration Modeling Strategy

It would be extremely satisfying if a theory could be formulated in such a way that all

of the physical and chemical processes can be dealt with on a microscopic scale and the

observed characteristics of the deterioration process can be portrayed. Such theory, also

known as mechanistic model — truly rooted in the physics of the deterioration — does

not seem to be available at present. While existing physical theories (e.g., thermodynam-

ics, statistical physics) are helpful in providing important insights into and qualitative

explanation for the deterioration process, they cannot yet give a basis for the micro-

macro modeling of the deterioration and for obtaining results of interest in engineering.

In light of these difficulties, it is rational and important to construct a phenomenological

or empirical model in order to provide a reasonable basis for prediction of deterioration.

Thus, the thesis adopts an empirical, data-driven methodology for deterioration mod-

eling. A model that has a simple structure and captures important uncertainties and

other sample path characteristics of the deterioration is preferable. If the model is meant

to be applicable in practice, its parameters should also be easily estimated, especially
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when data is relatively scarce. This thesis proposes a gamma process model. We will

show that this model is mathematically simple but it is also easy to expand to more

advanced models if necessary.

As far as validating the model assumptions is concerned, we use the above mentioned

model expansion approach. We start with a simple gamma process model, its stationarity

and relationship with covariates depending on context and subject matter knowledge of

deterioration. The model parameters are estimated by using maximum likelihood method.

After that, we expand the gamma process model into a mixed-scale gamma process of

which the scale parameter is a random variable. This new model considers the random

effects across the units. Likelihood-based procedures are used to test whether the gamma

process is a good model.

1.4 Organization

The thesis is divided into eight chapters, including this first introductory chapter. Chap-

ter 2 provides a literature review of the deterioration modeling from both probabilistic

and statistical points of view. Chapter 3 starts with traditional linear regression models,

followed by a linear mixed-effects model that is proposed to solve a logical inconsistency

of the traditional regression model in lifetime prediction. Chapter 4 focuses on theoretical

aspects of gamma processes and other related processes. In particular, the definition, dis-

tribution and sample path properties, first passage time, simulation, and generalizations

of gamma processes are discussed in details. Chapter 5 deals with statistical aspects

of gamma processes. Methods of parameter estimation in cases of single sample path

records, covariates, measurement errors and random effects, are developed in this chap-

ter. Likelihood ratio test and score test are also discussed for model validation. Creep

deformation of pressure tubes in fuel channels of CANDU reactor is modeled by both a

linear mixed-effects model and a stationary gamma process model. This case study is

reported in Chapter 3 and 5, respectively. Another case study of feeder piping system in
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which the wall thickness gets thinning due to flow-accelerated corrosion is performed in

Chapter 6. This particular degradation is modeled by a gamma process model. Chap-

ter 7 examines the significance of temporal uncertainty on deterioration modeling and

preventive maintenance decision-making. Finally Chapter 8 describes conclusions of the

thesis and highlights other interesting topics for the future research.

Commonly used abbreviations and notations are listed in Appendix A and References

are documented at the end of the thesis.

13



Chapter 2

Literature Review

2.1 Advances in Engineering Reliability Theory

Reliability, to simply put, is the ability of a physical object (e.g., an electronic device,

a bridge, a product line, etc.) to perform its required function under stated conditions

for a specified period of time. Opposite to reliability is failure, referring to the event of

failing to perform the required function or failing to conform to performance standards.

Probabilistic reliability theory define reliability as the probability that the object per-

forms its required function throughout its service life under specified conditions. Clearly,

reliability and probability of failure sum up to 1.

Since any physical object deteriorates over time and the environment in which the

object works always changes, reliability is also a time-related concept. The time at

which the object fails to perform the required function is called the failure time, or

lifetime. The probability distribution of lifetime characterizes the object’s reliability over

time and can be expressed by probability density function (pdf), cumulative distribution

function (CDF), survival function (SF), or failure rate function (also known as hazard

rate function). The relationship among these functions can be found in many textbooks

of reliability theory, for example, in Gertsbakh (2000). The SF denotes the reliability at
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any given time and is thus also called reliability function.

Reliability theory evolved apart from the mainstream of probability and statistics. It

was originally a tool to help nineteenth-century maritime insurance and life insurance

companies compute profitable rates to charge their customers. The reliability theory did

not join engineering until the end of the second world war. But once engineers found out

the utility of reliability theory, they advanced the theory in two different approaches at an

almost isolated manner. Safety being their major concern in design, civil and structural

engineers defined the reliability as the probability of the structural strength being greater

than the stress applied from loads on the structure (Freudenthal 1947). They expressed

the reliability as the following mathematical form:

pr =
∫

R≥L
f (r, l) drdl, (2.1)

in which pr denotes the reliability, R and L denotes the random strength and stress,

respectively; f (r, l) denotes their joint probability distribution. The lower case of R and

L represents a realization of the corresponding random variable. To calculate the relia-

bility, one first establishes probabilistic models for the strength and the stress separately.

Depending on the nature of randomness, the strength and the stress may be modeled by

either a random variable or a stochastic process. For time-variant variables such as wind

load and deteriorating strength, extreme value analysis is usually employed to find the

statistical distributions of their maximum or minimum values during the nominal design

life, assuming that the stochastic processes are stationary. The strength and stress may

be further modeled if necessary as functions of some basic random variables. The reliabil-

ity is then calculated using first-order or second-order reliability methods, or simulation

techniques. This is called the Stress-Strength Interference (SSI) approach. Details on the

methods for reliability analysis based on the SSI approach can be found in, e.g., Ang

and Tang (1975), Thoft-Christensen and Baker (1982), Madsen, Krenk, and Lind (1986),

Ditlevsen and Madsen (1996), and Melchers (1999). A recent thorough investigation of
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this approach in a statistical inference fashion can be found in Kotz, Lumelskii, and Pen-

sky (2003). Although the SSI approach is traditionally used in structural engineering,

strength and stress should be better understood as the capacity and demands accordingly.

Knowing this one would not be puzzled that nowadays many other engineering disciplines

and even social sciences such as psychology also employ the SSI approach to reliability

analysis.

Engineers in other disciplines such as electrical and electronic engineering and plant

engineering concerns mainly the system availability and maintainability. To ensure system

availability, the component lifetimes are essential information. Life testing and statistical

inference from the lifetime data are their approach. This is called the Lifetime approach.

How to deal with incomplete information such as censored or missed failure time data

is one of the main themes in the research of lifetime data analysis. For more details on

these topics, refer to, for example, Barlow and Proschan (1981), Gertsbakh (1989), Nelson

(1990), Crowder et al. (1991), Meeker and Escobar (1998), Kalbfleisch and Prentice

(2002), and Lawless (2003).

Although both approaches give a probabilistic measure of reliability, they have their

own advantages and disadvantages. One of the advantages of the SSI approach is that

it provides the sensitivity information during the reliability analysis. This is important

because from the sensitivity information engineers would know the direction of optimizing

their designs in order to achieve the reliability and cost target. Its drawback is that it

usually gives only the reliability at one point of time and fails to provide an explicit

interpretation of the reliability profile along time. Although many research efforts have

been made in the last two decades to accommodate the stochastic process into the SSI

approach via outcrossing theory, the present time-dependent reliability analysis still needs

many unrealistic assumptions and simplifications.

The advantage of the Lifetime approach is that one can easily see from the failure rate

function the deterioration of the system performance as the time elapses, which enables
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one to specify the maintenance policies as early as the design stage. But this approach

does not directly consider the physical mechanism of failures. As a result, condition-based

maintenance decisions can hardly be made from this approach.

The last two decades have witnessed the trend of merging the two isolatedly developed

approaches into a stochastic process approach. As systems become more and more reli-

able, collecting enough data for confident statistical inferences is more and more difficult

because of prohibitive cost and tight time constraint in the competitive market environ-

ment. Even if enough data can be collected from accelerated life tests, the validation of

underlying failure mechanisms is difficult. Furthermore, a lifetime distribution is argued

to be static in the sense that it is not suitable for describing the lifetime of items that

operate in dynamic environments and hence not applicable for condition-based mainte-

nance decision making. From the viewpoint of modern civil engineers, on the other hand,

their major concern has been shifted from designing and building new structures and fa-

cilities to maintaining the existing but aging ones with safety and satisfying performance.

The traditional time-dependent reliability theory using the SSI approach is clearly not

adequate as the Poisson assumption underlying in the outcrossing technique implies a

no-action-until-failure paradigm (Mori and Ellingwood 1993, 1994a, 1994b). One way to

overcome the above difficulties is by examining the underlying failure mechanisms using

appropriate stochastic processes and thus updating the lifetime distribution in a dynamic

fashion with the aids of inspection data (Singpurwalla 1995). It is in this context that

van Noortwijk and his co-workers advocate the use of stochastic process based models

in bridge maintenance decision making (van Noortwijk and Frangopol 2004; Frangopol,

Kallen, and van Noortwijk 2004; van Noortwijk and Klatter 2004). It is believed that

the merge in the framework of the stochastic process approach be the new direction of

reliability theory.
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2.2 Stochastic Modeling of Deterioration

Deterioration modeling is closely related to failure modeling in the context of risk and

reliability analysis. Deterioration-related failures can be classified into shock failures and

first passage failures. A shock failure, also called a traumatic or ‘hard’ failure in literature,

occurs when a traumatic event (e.g., severe earthquakes, tornadoes, tsunami, lightning,

etc.) happens , no matter how healthy the system was before the event happens. In

contrast, a first passage failure relates directly to the continuous deterioration process and

is thus also classified as a ‘soft’ failure. It occurs when the deterioration process reaches to

some threshold over which that the system no longer works. This literature review places

emphasis on the first passage type of failures except explicitly mentioned otherwise. For

a review of general stochastic failure models, see, for example, Singpurwalla (1995).

There are many different degradation mechanisms, brittle fracture, creep, fatigue,

wear and corrosion, just to name a few. We are not going to discuss physical modeling of

a specific deterioration phenomenon; rather we treat deterioration as a stochastic process

and review the inherent probabilistic structures in different models. For a general overview

of the physical and mechanical mechanisms of various deterioration phenomena, readers

may refer to the special tutorial series in IEEE Transactions on Reliability starting with

Dasgupta and Pecht (1991).

The literature review of stochastic deterioration models in the next is to be proceeded

in the order of model complexity. Starting from the simplest random variable models,

the discussion is followed by marginal distribution models, second-order process models,

and finally full distribution models. The full distribution models are further divided into

cumulative damage models, pure jump process models, and stochastic differential models.
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2.2.1 Random Variable Model

A random variable model describes the randomness of the deterioration process by a

finite-dimension random vector Θ as

X (t) = g (t; Θ) (2.2)

where g is a deterministic function with g (0, Θ) ≡ 0. Once the probability distribution of

Θ is determined, the distribution of X (t) is also known using, for example, transformation

techniques for functions of random variables (Soong 2004). The distribution of the first

passage time, defined as

Pr {T ≤ t} = Pr {X (t) ≥ ζ, X (s) < ζ, for 0 ≤ s < t} , (2.3)

where ζ is the predetermined failure threshold, can be computed in a straightforward

manner as well.

Usually the functional form of g in (2.2) is suggested from empirical studies. For

example, the well-known Paris-Erdogan law expresses the fatigue crack size at time t,

A (t), by the following nonlinear function (Sobczyk and Spencer 1992):

A (t) =
A0[

1− CβAβ
0 t

]1/β
, (2.4)

in which A0 denotes the initial crack size at t = 0; C and β are empirical material

constants that are functions of stress intensity factor. A simple stochastic Paris-Erdogan

law replaces the parameters (A0, C, β) with random variables in order to capture the

scatter in stress intensity, material properties and environmental factors.

Two special forms of random variable models were extensively used in time-dependent

structural reliability analysis. The first one relates to the deterioration modeling of struc-

tural resistance R (t) that assumes a random initial resistance R0 and a deterministic
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and possibly nonlinear deterioration curve g (t) (Kameda and Koike 1975; Oswald and

Schueller 1984; Ellingwood and Mori 1993; Mori and Ellingwood 1993a; Mori and Elling-

wood 1993b; Lewis and Chen 1994; Enright and Frangopol 1998; Melchers 1999; Huang

and Askin 2004), i.e.,

R (t) = R0 [1− g (t)] . (2.5)

The other special random variable model is the so-called random rate model, in which

the deterioration is assumed a linear function of time with a random deterioration rate,

i.e.,

X (t) = Bt, (2.6)

in which B denotes the deterioration rate. If there is another constant A added in the

linear model above and both the intercept A and the rate B are normally distributed,

then the distribution of the first passage time is called Bernstein’s distribution, a three-

parameter normal distribution with variance a function of time as (Gertsbakh and Kor-

donskiy 1969)

FT (t) = Pr {A + Bt ≥ ζ} = 1− Φ


ζ − µA − µBt√

σ2
A + σ2

Bt2


 = 1− Φ

[
t− α0√

α1 + α2t2

]
(2.7)

where Φ (·) denotes the cumulative distribution function of standard normal distribu-

tion, µA, µB, σ2
A andσ2

B are mean and variance of A and B, respectively, and α0 =

(ζ − µA) /µB, α1 = σ2
A/µ2

B and α2 = σ2
B/µ2

B.

Motivations of using random variable models are two-fold. First, the random variable

models are simple. Second, they are directly related to statistical analysis of deterioration

data. Given a set of deterioration data, an analyst’s first response may be using regression

techniques — fit the data with some kind of curves! That idea is exactly what appears

in (2.2) if some or all of the model parameters are randomized to model the random

effects across samples. In this context, the random variable models are also called general

degradation path models. Typical example of such is Lu and Meeker (1993). More detailed
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discussions on statistical methods and models for deterioration data are to be made in

Section 2.2.7.

2.2.2 Marginal Distribution Model

Instead of randomizing the parameters of general deterioration curves, a marginal dis-

tribution model specifies directly a probability distribution for the deterioration at any

time t as

X (t) ∼ D [θ1 (t) , · · · , θn (t)] , (2.8)

in which D denotes symbolically the distribution, and θ1, · · · , θn are the associated pa-

rameters of D, which are usually assumed to be functions of time to reflect the change

with time of moments of deterioration. The parameters can be estimated by moment

methods or by the least squares technique as proposed by Zuo, Jiang, and Yam (1999)

for Weibull distribution.

Extreme cautions should be exercised, however, when the distribution of first-passage

time is to be derived when using the marginal distribution models. Since the marginal

distribution model does not specify the correlation between values of deterioration at two

different times, the sample path behavior of X (t) is not specified. Therefore, Simply

applying the following equation

Pr {T ≤ t} = Pr {X (t) ≥ ζ} = 1− FX (ζ; θ1 (t) , · · · , θn (t)) , (2.9)

in which FX is the CDF of X (t), to find the first passage time distribution is not correct.

But this type of calculations has been observed not rarely in the literature (Li 1995;

Yang and Xue 1996; Xue and Yang 1997; Zuo, Jiang, and Yam 1999). In order to solve

the problem, additional assumptions are necessary for the dependence structure of the

deterioration path. One of the simplest assumptions for this is through auto-covariance

functions, which leads to second-order process models as discussed next.
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2.2.3 Second-Order Process Model

A second-order process model, as indicated by the name, specifies the first two moments

of deterioration, i.e., the mean and auto-covariance function. Since the deterioration must

be non-negative and nonstationary, direct specification of its auto-variance functions is

inconvenient. To bypass this difficulty, an auxiliary non-negative stationary process Y (t)

is multiplied, for example, with the mean deterioration curve g (t) as

X (t) = Y (t) g (t) . (2.10)

To further reflect the non-Gaussian property of X (t), Y (t) is assumed a translation

process that is generated from a stationary zero-mean Gaussian process G (t) with spe-

cific correlation structure by the memoryless transformation (Grigoriu 1984; Zheng and

Ellingwood 1998):

Y (t) = F−1 [Φ {G (t)}] , (2.11)

where F is the cumulative distribution function of Y (t).

An example of this kind is the log-normal process proposed by Yang and Manning

(1996) for fatigue crack growth as the following. Instead of a random variable model

such as (2.4), the authors introduced a stationary log-normal process to capture the

fluctuations in fatigue crack growth as

dA

dt
= X (t) g (t, Θ) , (2.12)

in which X(t) is the log-normal process with a unit median and a covariance function as

follows

cov [X (t1) , X (t2)] = σ2
Xe−|t2−t1|/τ , (2.13)

in which τ is the so-called correlation length. In order to get a simple closed-form ex-

pression for the crack exceedance probability and thus the distribution of service time to
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reach any crack size, they further proposed a second-order approximation for the quantity
∫ t
0 X (s) ds. With the correlation being considered, the analysis method was proved to

be flexible enough to cover a wide range of dispersion characteristics in predicting the

stochastic crack growth (McAllister and Ellingwood 2001; Wu and Ni 2003).

Note, however, it is not easy in the real world to collect sufficient data for an accurate

estimation of the correlation or covariance functions. Therefore, strong assumptions (e.g.,

a constant coefficient of correlation along time) may have to be made (Li and Melchers

2005a, b) , which jeopardizes the applications of the model in more general deterioration

modeling practices.

2.2.4 Cumulative Damage/Shock Model

In a cumulative damage (CD) model, deterioration is deemed to be caused by shocks and

accumulates additively. CD models are also called shock models in the literature. Let us

denote by Di the damage size caused by the ith shock and by N (t) the number of shocks

up to time t. Then the deterioration, X (t), is expressed by

X(t) =
N(t)∑

i=1

Di. (2.14)

Suppose the times between two successive shocks are modeled by W1, W2, . . .. We have

N (t) = min

{
n = 0, 1, 2, · · ·

∣∣∣∣∣
n+1∑

i=1

Wi > t

}
. (2.15)

That is, N (t) is a counting process that counts the number of shocks up to time t.

Therefore, the CD model specifies two probability laws: one for the counting process

N(t), or equivalently for the inter-occurrence time Wi, and the other for the damage

size Di each shock causes. The simplest example of the CD model is the compound

Poisson process in which N (t) follows a Poisson process, or Wi follows an exponential
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Figure 2.1: Typical cumulative damage models

distribution, whereas Di is a non-negative random variable. When the damage size Di is

fixed or follows a Dirac distribution, the compound Poisson process reduces to a simple

Poisson process scaled by the value of Di.

Figure 2.1 shows several typical cumulative damage models according to different

assumptions on Wi and Di. If Wi is fixed, say Wi = 1, and Di is discretely distributed,

X (t) is a discrete-time Markov chain model, as the discrete distribution of Di stipulates

a transition probability as

Pr {Xt+1 = j |Xt = i} = Pr {Di = j − i} . (2.16)

If Wi is not fixed but follows an exponential distribution, then the deterioration becomes

a continuous-time Markov chain model. Yet if Wi follows a general distribution, a semi-

Markov chain characterizes the deterioration. These correspond to the three models

in the middle row of the table in Figure 2.1. If both Wi and Di follow some general
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distributions, the deterioration is said, in the terminology of Morey (1966), to follow a

compound renewal model.

The survival function, S(t), or probability that a component will survive t units of

time in a CD model has the following general mathematical form:

S(t) =
∞∑

k=0

Pr {M > k}Pr {N (t) = k} , (2.17)

in which M denotes the random number of shocks survived. For the first passage type

of failures, Pr {M > k} equals the kth convolution of distribution function of Di, i.e.,

Pr {M > k} = F1 (ζ) ∗ F2 (ζ) ∗ · · · ∗ Fk (ζ), in which Fi (·) is the CDF of Di and ζ is the

failure threshold. For a shock-type failure, i.e., shocks either make the component fail

if Di ≥ ζ or have no influence otherwise, Pr {M > k} =
∏k

i=1 [1− Fi(ζ)]. This model is

also called an extreme shock model (Gut and Hüsler 1999).

Fatigue of metals and composite materials has provided the first stimulus from en-

gineering for the development of mathematical models of cumulative damage. The first

deterministic CD model was proposed, according to Saunders (1982), by Palmgren in

1924, who sought to calculate the lifetime of ball bearings due to high-cycle fatigue. This

result, now known as Palmgren-Miner rule (Miner 1945), was reinterpreted by Birnbaum

and Saunders (1958) in a renewal process framework. Later they proposed a new lifetime

distribution for fatigue, now bearing their names, based also on renewal theory (Birnbaum

and Saunders 1969). More recently, the Markov chain models were successfully applied to

model fatigue crack growth (Bogdanoff and Kozin 1985; Ganesan 2000a; Ganesan 2000b).

Largely owing to its nice “no after-effect” property and the ease of statistical infer-

ence, the Markov chain models have also been widely used for bridge deck deterioration

(Madanat and Ibrahim 1995a; Madanat and Ibrahim 1995b; DeStefano and Grivas 1998),

storm water pipe deterioration (Micevski, Kuczero, and Coombes 2002) and many other

deterioration phenomena.
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Compound Poisson processes were first proposed by Mercer and Smith (1959) for

modeling the wear of a conveyor belt. Later Morey (1966) generalized it to a compound

renewal process model. Gertsbakh and Kordonskiy (1969) used the Poisson process model

to explain when an exponential distribution or a gamma distribution is appropriate for

the lifetime.

Since semi-Markov process was presented by Lévy and Smith independently in 1954,

the semi-Markov chain model has been applied to various fields. Its applications be-

fore 1984 can be found in Janssen (1984). More recent applications on reliability are

summarized by Limnios and Oprişan (2001). The applications of SMC on deterioration

modeling for maintenance optimization can be found in, for example, Feldman (1976),

Gottlieb (1982), Posner and Zuckerman (1986),Osaki (1985), and Abdel-Hameed (1995).

Esary, Marshall, and Proschan (1973) first proposed the shock models in the general

form of (2.17) and assumed shocks are governed by a homogeneous Poisson process. These

shock models were later extended into the cases of nonhomogeneous Poisson processes

and pure birth processes by Abdel-Hameed and Proschan (1973, 1975).

There are three common assumptions underlying in the CD models: (1) W1, W2, · · ·
are independent and identically distributed (i.i.d.); (2) D1, D2, · · · are also i.i.d.; and (3)

Wi’s and Di’s are independent of each other. Relaxation of these assumptions leads to a

pure jump process model in general, which is to be discussed in the next subsection.

2.2.5 Pure Jump Process Model

A stochastic process X(t) is said to be an increasing pure jump process if X (0) = 0 and

for each t ≥ 0 we have (Abdel-Hameed 1984a; Drosen 1986)

X(t) =
∫

(0,t]×(0,∞)
c(X(s−), z)N(ds, dz), (2.18)
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in which X(s−) is the left limit of X(t) at time s; and N(ds, dz) is called random measure

or jump measure that is an integer-valued random variable characterizing the number

of shocks occurring in the time interval [s, s + ds) with magnitudes in [z, z + dz). A

simple example of the random measure is a Poisson random measure that is independent

and Poisson distributed for any disjoint subsets (sk, tk] × (uk, vk], (k = 1, 2, . . .). The

non-negative, deterministic function c(x, z) represents the damage caused by a shock of

magnitude z when the deterioration state is x. We often assume c(x, z) a non-decreasing

function of z in order to reflect the fact that greater shocks usually induce bigger damages.

This construction has several advantages. First of all, it describes explicitly the de-

pendence of damage size on both the shock magnitude and the present deterioration level

through function c (x, z). Moreover, unlike in the compound Poisson process, the occur-

rence intensity of shocks in the pure jump process can be related to the magnitude of

shock, z, as well. Furthermore, the pure jump process X(t) can have an infinite number

of shocks or jumps in a finite time interval. For example, suppose N(ds, dz) = dsdz/z2,

then N([s, t] × (0, ε)) =
∫ t
s ds

∫ ε
0 dz/z2 = +∞ for any ε > 0 and 0 ≤ s < t. The infinite-

ness of the number of jumps/shocks, when some conditions for boundedness of X (t) are

satisfied, allows one to model, in a unified way, different shocks that may be very big but

rare, or very small but frequent. For details on this discussion, see Drosen (1986).

Examples of pure jump processes include compound Poisson processes, pure-birth

processes, gamma processes, and Lévy processes, just name a few. When N (ds, dz)

is a Poisson random measure and c (x, z) is a function only of z, the pure jump process

becomes a Lévy process, of which the gamma process is a special case. When the function

c(x, z) is an arbitrary Borel function, X (t) is called a marked point process. More details

about random measure, Lévy processes and marked point processes can be found in Daley

and Vere-Jones (1988), Sato (1999), Sato (2001), and Cont and Tankov (2005).

Abdel-Hameed (1984a) gave a concise non-measure introduction of pure jump Markov

processes. He may be the first person who used the pure jump process to model the dete-
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rioration Abdel-Hammed (1984b, 1984c). Drosen (1986) also investigated the pure jump

shock models in reliability. Shaked and Shanthikumar (1988) gave a weaker condition

than that in Drosen (1986) on the parameters of the pure jump process under which the

first passage time has certain lifetime distribution properties such as increasing failure

rate. Abdel-Hameed (1987) studied the inspection and maintenance policies of devices

subject to pure jump shock damage.

As a special pure jump process, a gamma processes is a continuous-time stochastic

process with stationary and independent increments that are gamma distributed with

common scale parameter. Due to its mathematical tractability, gamma processes have

been used during the last three decades to model a vast variety of degradation phe-

nomena such as concrete creep (Çinlar, Bazǎnt, and Osman 1977), rock transport in

berm breakwaters (van Noortwijk and van Gelder 1996), rock rubble displacement (van

Noortwijk, Cooke, and Kok 1995), current-induced scour erosion in block mats of the

Eastern-Scheldt barrier in the Netherlands (van Noortwijk and Klatter 1999), sand ero-

sion in Dutch coastline (van Noortwijk and Peerbolte 2000), fatigue crack growth (Lawless

and Crowder 2004), steel corrosion of pressure vessel (Kallen and van Noortwijk 2005),

feeder wall thinning due to flow accelerated corrosion (Yuan, Pandey, and Bickel 2006),

and diametral expansion of fuel channels in nuclear power plants under neutron irradia-

tion and thermal stresses.

Relevant to the pure jump process models are Markov additive processes (MAP). The

MAP model, introduced by Çinlar (1972), provides a more flexible tool to model the

additive deterioration under a dynamic environment that is further modeled by a Markov

model. An important result of interest is that when the additive process is a gamma

process with its shape parameter varying as a function of a Brownian motion, the first

passage lifetime distribution is Weibull (Çinlar 1977). The optimal replacement policy

for systems governed by a MAP has been discussed by Feldman (1977).
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2.2.6 Stochastic Differential Equation Model

Both the CD models and the pure jump process models take a macroscopic approach

to modeling deterioration. Emphases have been placed on the probabilistic mechanisms

of deterioration growth with no explicit consideration of the effects of the external and

internal driving forces on the growth of deterioration. A stochastic differential model,

however, provides a microscopic description of the deterioration development.

Suppose a differential equation of the following form has been derived from empirical

investigations
dX(t)

dt
= m(X(t), t), (2.19)

in which m(·) is a deterministic function and represents the mean curve in the differential

relationship. To describe the variability over the mean trend, it is reasonable to add a

noise term in the right hand side as

dX(t)
dt

= m(X(t), t) + σ(X(t), t)ε(t), (2.20)

in which ε(t) denotes the noise term and σ(·) is another deterministic function to repre-

sent the interaction between the noise and the present deterioration state. The noise ε (t)

is usually assumed to be a Gaussian white noise, namely, for any two different times the

noises are independent and identically distributed normal variables. Under this assump-

tion, (2.20) can be rewritten as

dX(t) = m(X(t), t)dt + σ(X(t), t)dB(t) (2.21)

in the Itô’s sense, where B(t) represents the standard Wiener process.

The process X(t) satisfying (2.21) is known as a diffusion process. Its conditional

probability density function, p(x, t|x0, t0), at any time t given X (t0) = x0 satisfies the
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Fokker-Planck (FP) equation as

∂

∂t
p(x, t|x0, t0) +

∂

∂x
[m(x, t)p(x, t|x0, t0)]− 1

2
∂2

∂x2

[
σ2(x, t)p(x, t|x0, t0)

]
= 0, (2.22)

with certain initial and boundary conditions (Karlin and Taylor 1981). Theoretically,

the first passage time distribution can be found by solving the FP equation. However,

very few exact solutions exist in practice, and approximations and numerical methods

are usually used. For more details, see, for example, Lin and Cai (1995), and Soong and

Grigoriu (1993).

Stochastic differential models have been applied to random fatigue crack growth

(Sobczyk and Spencer 1992). Lemoine and Wenocur (1985) and Wenocur (1988) discussed

the stochastic differential models with extra Poisson killing due to traumatic failures and

they expressed the survival probability as a Feymann-Kac functional.

The assumption of Gaussian white noises may be too strong in some cases. Some

efforts have been made to relax this assumption into, say non-Gaussian white noise.

Grigoriu (2002) discussed in details stochastic calculus with Lévy and Poisson white

noises using advanced analysis tools such as martingale theory. Ciampoli (1998) presented

a reliability assessment methodology for deteriorating structural systems using stochastic

differential equations driven by Poisson noises. A case study of deteriorating shear walls

in a nuclear power plant due to expansive alkine-aggregate reactions of concrete was

reported by Ciampoli (1999).

2.3 Statistical Models and Methods for Deterioration Data

2.3.1 Nature of Deterioration Data

Deterioration data often show some sort of randomness. The randomness underlying in

the deterioration data can be decomposed into three parts: random effects, temporal un-
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certainty or serial correlation, and measurement errors (Verbeke and Molenberghs 2000).

Figure 2.2 illustrates the three stochastic components in deterioration data. Suppose the

units of the population under consideration work in the same environment; that is, the

fixed effects due to known covariates are assumed to have been considered. The thick

solid line represents the population average path. The two thick dot-dash lines represent

the individual average paths for unit i and j. The difference between the population and

individual average path is referred to as random effects, effects due to unit heterogeneity

that is not explained by observed covariates. The thin solid sinuous lines represent the

actual deterioration path of the units. The haphazard curves demonstrate the temporal

uncertainty meaning that knowing the present deterioration state does not necessarily

ensure a certain prediction in the future. Since the deterioration usually does not change

too abruptly, there exists some correlation between two neighboring time points. There-

fore the temporal uncertainty is sometimes referred to as serial correlation. The dotted

lines in the figure represent the actual observations of the deterioration of the units. The

difference between the solid and dotted lines is due to the measurement error. An ade-

quate statistical model for deterioration data should be able to consider all these three

parts of randomness.

Deterioration data are often highly unbalanced in the sense that not an equal number

of measurements is available for all units and/or that measurements are not taken at fixed

instants of time. Due to their unbalanced nature, many deterioration data sets cannot be

analyzed by using multivariate regression techniques Therefore, new statistical models

and methods are needed.
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Figure 2.2: Components of randomness in deterioration data: random effects, temporal
uncertainty and measurement errors

2.3.2 Mixed-Effects Regression Models

A general nonlinear mixed-effects (NLME) regression model for the ith unit with ni

measurements is expressed as (Pinheiro and Bates 2000)

yij = η (β, Θi, xij , zij) + εij , i = 1, . . . , n, j = 1, . . . , mi

Θi ∼ N (0, D) , εi = (εi1, . . . , εimi)
T ∼ N

(
0, σ2Λi

)



 (2.23)

where η(·) is a nonlinear function denoting the average deterioration path, β is a p-

dimensional vector of fixed effects; Θi is a q-dimensional random effects vector associated

with the ith unit and it is assumed Gaussian distributed with mean zero and covariance

matrix D; xij and zij are covariate vectors associated with fixed-effects parameters β

and random-effects vector Θi, respectively; and εij is a normally distributed within-unit

error term. For deterioration models, the time, tij , at which the jth measurement of

the ith unit is taken, is usually a natural covariate. In order to describe the temporal

dependence structure of deterioration within one unit, the error terms εij are assumed

32



to be correlated with covariance matrix σ2Λi. The random-effects variable Θi are often

assumed independent of each other and also independent of εi’s. To correspond to the

randomness decomposition as shown in Figure 2.2, the error terms can be factorized into

two parts, one representing the stationary and independent measure error and the other

representing the inherent serial correlation and/or heteroscedasticity (i.e., the changing

variance). Accordingly, the covariance matrix Λi is expressed as

Λi = In + Λ̃i, (2.24)

where In is a unit matrix and Λ̃i = Λi − In. When η(·) is a linear function of β and Θi,

yij = xijβ + zijΘi + εij , (2.25)

the NLME model becomes a linear mixed-effects (LME) regression model. When Θi’s are

identically zero, i.e., D = 0, the LME and NLME model degerate into the conventional

linear and nonlinear models, respectively.

Parameter estimation for both LME and NLME models can be performed by the

method of maximum likelihood in general. For LME models, the estimation is relatively

simple due to the Gaussian and linearity assumptions. Computational efforts are mild

and can be further reduced if the least squares (LS) technique, or the generalized LS

technique when serial correlation or changing variance is considered, is incorporated with

the profile likelihood maximization. In order to obtain unbiased estimate for σ2, the

restricted maximum likelihood method is usually used. In contrast, NLME models have

no closed-form likelihood function for most cases, as the likelihood functions include a

complicated high-dimensional integration. Numerical integration techniques are usually

used but the numerical integration introduces numerical stability problems during the

maximization procedure. More discussions on computing likelihood functions for NLME

models can be found in Pinheiro and Bates (2000).
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A computationally simple and intuitively appealing alternative to the maximum like-

lihood method is the so-called two-stage method (Lu and Meeker 1993). The two-stage

method is carried out as the following: First of all, the deterioration model is fitted to

each sample path separately and the Stage 1 estimates of the model parameters, say β, θi

and σ2, are obtained. Then, in the second stage, the Stage 1 estimates of the random-

effects variables θi are treated as realizations of random variable Θ so that its mean and

variance can be estimated accordingly. The Stage 1 estimates of fixed-effects parameter

β and error term parameter σ2 are usually pooled to obtain the population means. This

method has also been adopted by some other researchers, for example, Caregy and Koenig

(1991), and Crk (2000).

Statistical inferences for the mixed-effects models are traditionally made using large-

sample theory (Lehmann 1999; Pinheiro and Bates 2000). Lu and Meeker (1993) proposed

a parametric bootstrap simulation to find the confidence intervals for the estimated quan-

tities. Liski and Nummi (1996) suggested an interative Expectation-Maximization (EM)

algorithm for predicting future measurements for a unit with repeated measurements. In

a Bayesian framework, Robinson and Crowder (2000) presented a Markov chain Monte

Carlo (MCMC) simulation technique for estimating model parameters and constructing

confidence bands of associated lifetime distributions. A similar MCMC technique was

used by Hamada (2005) for a set of laser degradation data.

Applications of the mixed-effects models to designs of accelerated degradation tests or

reliability improvement programs can be found at Meeker and Escobar (1998) and Chiao

and Hamada (2001).

2.3.3 Statistical Inference for Stochastic Process Models

Two basic stochastic processes have been used extensively to model deterioration for life-

time and reliability prediction. They are Wiener process (or Brownian motion) models

and gamma process models. Since the two processes have the common property of inde-

34



pendent increments, likelihood functions can be easily constructed and thus the maximum

likelihood method is frequently used for parameter estimation and inferences. Recently

a geometric Brownian motion was proposed for deterioration modeling in order to reflect

the fact that deterioration is usually positive (Park and Padgett 2006). But estimating

its parameters would not be more difficult than for the Wiener process, as a logarithm

transform makes the former back to a Wiener process.

It has long been recognized that the first passage time of a Wiener process is an inverse

Gaussian distribution. But the applications of Wiener processes on modeling degradation

for lifetime in engineering may be traced back to Doksum and Hoyland (1992). Whitmore

(1995) discussed the effect of measurement errors in degradation data when using a Wiener

process model. Whitmore and Schenkelberg (1997) proposed a time-scale transformation

of Wiener processes for accelerated degradation data. More acceleration models were

considered by Padgett and Tomlinson (2004).

A breakthrough of using Wiener process models is Whitmore, Crowder, and Lawless

(1998), in which they proposed a bivariate Wiener process model, one for the latent, un-

observable deterioration process and the other for the observable marker that is somehow

correlated with the deterioration. The term marker here is another name for a covariate

that is usually time-varying and it is used widely in biomedical applications. An example

of such a marker is the measurement of the deterioration contaminated by measure errors.

Extensions of their work include Lee, DeGruttola, and Schoenfeld (2000) in which they

considered static covariates and uncertain baseline information, and Hashemi, Jacqmin-

Gadda, and Commenges (2003) in which they further considered random effects in the

model.

Although the Wiener process has independent and Gaussian distributed increments,

the likelihood function for a set of sample path records of a failed or surviving unit is not

straightforward because of the diffusion property. Lu (1995) realized this fact and chose

to use the terminology of truncated Wiener process to indicate the version of Wiener
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process restricted by the predefined failure threshold ζ. Using four different methods, he

derived the joint probability density function of X (t) and the event A = {X (s) < ζ for

0 ≤ s ≤ t} as the following

f (x,A) =

{
1√

2πνt
exp

(
−(x− δt)2

2νt

)}[
1− exp

(
2ζ (x− ζ)

νt

)]
(2.26)

where δ and ν are the drift and diffusion coefficient, respectively. Note the term in the

brace bracket is the density function for a conventional Wiener process. This expression

can then be used for establishing the likelihood function (Lu 1995).

In contrast to Wiener processes, a gamma process has monotone increasing sample

paths. This property makes the likelihood construction simple and straightforward. We

are going to discuss the parameter estimation of gamma processes in detail in Chapter 5.

2.4 Concluding Remarks

Early studies on deterioration modeling adopted simple probabilistic models such as ran-

dom variable models or marginal distribution models that focused more on the statistics

of cross-sectional deterioration data. These methods provide ad hoc analyses and they do

not consider an important issue of temporal dependence in a clear cut manner. Later on,

more sophisticated stochastic models such as Markov pure jump models and stochastic

differential models emerged. However, the focus of these studies was to derive probabilis-

tic characteristics of lifetime and conditions for maintenance optimization. Statistical

model fitting and validation through practical data were rarely investigated in the early

literature. Some stochastic models are so complicated that the parameter estimation

becomes unpractical.

In recent years, stochastic models with a rich probabilistic structure and simple meth-

ods for statistical inference (e.g. gamma process models) are emerging due to modern

developments in computational technology and theory of stochastic processes. It is be-
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lieved that use of such advanced models will become more common in the analysis of

deterioration data.
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Chapter 3

Linear Mixed-Effects Model for

Deterioration

3.1 Introduction

Before discussing gamma process models, we would like to examine regression models at

first. The regression model has a simple mathematical structure and has been extensively

used for deterioration modeling in the engineering community. In this chapter we would

like to discuss the underlying assumptions about the randomness of deterioration in this

model and its limitation in predicting lifetime. To overcome the limitation, we propose

a mixed-effects model in which the heterogeneity of individual units is described by a

Gaussian random variable. A case study of creep deformation of pressure tubes in a

CANDU reactor is performed, in which both regression and mixed-effects models are

used.
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3.2 Linear Regression Models

3.2.1 Ordinary Least Squares Method

Consider n units that have been inspected for deterioration. Suppose for now that each

unit was inspected only once in a time interval [0, t]. Given the deterioration data

(yi, ti) , i = 1, . . . , n, where yi is the measured deterioration for the ith unit at time

ti, a linear regression (LR) model is expressed for each unit as

yi = β0 + β1ti + εi (3.1)

where εi is random noise, which is added to account for the deviation of the observed

deterioration from the expected linear relationship. Depending on the context, the ran-

dom noise can be interpreted as the measurement error or any other effect that cannot

be explained by the explanatory variables (here, the time only). The noises ε1, . . . , εn are

usually assumed to be independent and identically distributed (i.i.d.) Gaussian random

variables with mean zero and constant variance σ2. In matrix form, we have

y = Xβ + ε, ε ∼ N
(
0, σ2I

)
, (3.2)

in which

y =




y1

...

yn


 , X =




1 t1
...

...

1 tn


 , β =


 β0

β1


 , ε =




ε1

...

εn


 . (3.3)

and In denotes the n-dimensional unit diagonal matrix. Without loss of generality, we

assume that the time is the only explanatory variable of deterioration. But this assump-

tion can be easily relaxed by augmenting the matrix X. Clearly, E [y (t)] = β0 + β1t and

Var [y (t)] = Var (ε) = σ2.

The ordinary least squares (OLS) solution of the LR model minimizes the residual
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sum of squares (RSS) defined by

RSS = (y −Xβ)T (y −Xβ) (3.4)

where the superscript T denotes the tranpose of a vector or a matrix. Simple algebraic

operations lead to the OLS estimates

β̂ =
(
XTX

)−1
XTy (3.5)

and the unbiased estimate for the variance σ2

σ̂2 =

(
y −Xβ̂

)T (
y −Xβ̂

)

n− 2
, (3.6)

where the denominator n− 2 is the degree of freedom of the LR model which in general

case equals the number of observations minus the dimension of β.

It is well known that under the Gauss-Markov assumptions (i.e., E (ε) = 0, and

Var (ε) = σ2I) the OLS estimator β̂ is the best linear unbiased estimator (BLUE) for β,

i.e., among all estimates that are linear combinations of the y’s and unbiased, the OLS

estimator has the smallest variance (Rao 1973; Rawlings, Pantula, and Dickey 2001).

Under the extra assumption of Gaussian distribution for ε, the estimator β̂ follows a

multivariate Gaussian distribution and σ̂2 chi-square distribution. In particular, we have

β̂ ∼ N
(
β, σ2V

)
(3.7)

where V =
(
XTX

)−1, and
(n− 2) σ̂2

σ2
∼ χ2

(n−2). (3.8)

It has been proved that the estimators β̂ and σ̂2 are independent of each other (Rao 1973).

So if the estimated value is used for σ2 in (3.7), β̂ becomes a multivariate Student’s t
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distribution. Based on this fact, we can construct confidence intervals (or region) for β.

Note that equations (3.7) and (3.8) represent the probability measures for the sampling

uncertainty of the estimates. When the number of data points n approaches infinity, the

variance matrix V will go to zero and χ2/ (n− 2) will concentrate on 1, and therefore the

distribution of the estimators will degenerate to the true values, β and σ2, respectively.

The unbiased estimate for the mean deterioration µy = E [y] at a specified value of

time, say τ , is

µ̂y (τ) = x (τ) β̂ = β̂0 + β̂1τ, (3.9)

where x (τ) = (1 τ). As a linear combination of β̂, the estimator of the mean deteriora-

tion, ŷ (τ), is also normally distributed with mean x (τ) β and variance x (τ)VxT (τ) σ2.

Hence
µ̂y (τ)− µy (τ)

σ̂
√

x (τ)VxT (τ)
∼ t(n−2) (3.10)

the Student’s t distribution with n − 2 degrees of freedom. (3.9) is also an unbiased

estimate for the future random observation of deterioration at time τ , y (τ). But the

variance of the estimator includes an additional term for variance of the random noise ε,

i.e. Var [ŷ (τ)] = Var
(
x (τ) β̂

)
+ Var (ε) =

(
x (τ)VxT (τ) + 1

)
σ2. Similarly, we have

ŷ (τ)− y (τ)

σ̂
√

1 + x (τ)VxT (τ)
∼ t(n−2). (3.11)

(3.10) and (3.11) can be used for constructing the confidence intervals for the mean

deterioration and for the future observations of deterioration. The confidence interval

about the future observation is also called a prediction interval.

3.2.2 Weighted Least Squares Method

The basic assumption for OLS to validate is that the random noises εi’s are independent

and have the same variance. When this assumption does not hold true, the model (3.2)
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should be modified and the weighted least squares (WLS) method may be used to estimate

the model parameters. This situation happens when the deterioration in one unit is

measured several times in the inspection history or the variance of deterioration varying

with time t.

When the units were inspected several times and we have mi (> 1) repeated mea-

surements of deterioration for the ith unit, the measured deterioration yi1, yi2, . . . , yimi

should be reasonably assumed dependent, i.e., εi=(εi1, . . . , εimi)
T ∼ N

(
0, σ2Σ

)
where

Σ is a positive definite matrix. When Σ is given, the estimates for β and σ2, using the

weighted least squares, are

β̂ =
(
X′Σ−1X

)−1 X′Σ−1y (3.12)

and

σ̂2 =

(
y −Xβ̂

)T
Σ−1

(
y −Xβ̂

)

n− 2
. (3.13)

But when Σ is not known, parametric models for the correlation may be helpful although

validation of the correlation structure is difficult (Verbeke and Molenberghs 2000). An

ad hoc way is to ignore the dependence and to assume Σ is a diagonal matrix with mi

on the diagonal so that each unit has the same contribution to the RSS.

Quite often the variance of deterioration may not be constant, but be a function of

the mean value of deterioration, i.e., for the ith unit,

σ2
i = f (µyi) , (3.14)

in which µyi = β0 + β1ti. The function f is called variance function. In this case, the

traditional approach to fitting is to use an iteratively weighted least squares (IWLS)

technique (Sen 1990; Weisberg 2005). For each iteration, we use the WLS to estimate

β, and then evaluate the residuals from which the variance function is estimated. This

iteration procedure continues until convergence.
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The modern approach to fitting the variance function is to use a generalized linear

model (GLM) in which the distribution of the response (i.e., deterioration in our case)

belongs to the exponential dispersion family with the form (Dobson 2002; Lindsey 1997;

McCullagh and Nelder 1983)

f (y; θ, φ) = exp {(yθ − b (θ)) /a (φ) + c (y; φ)} ,

for some specific functions a (φ) , b (θ) and c (y; φ). Since µ = E [Y ] = b′ (θ) and

V ar [Y ] = b′′ (θ) a (φ) = V (µ) a (φ), the GLM has greater flexibility than the tradi-

tional LR model in modeling the relationship between the mean and variance. But the

dependence of deterioration is more difficult to model in GLM than in the traditional LR

model, because dependence in Gaussian distributions amounts to correlation whereas in

other distributions this relationship breaks down. Since the dependence structure is vital

in lifetime prediction, the limitation of LR in lifetime prediction to be discussed next may

also apply to the GLM. Therefore we are not going to discuss the GLM any further.

3.2.3 Limitation of Linear Regression Models in Lifetime Prediction

In the linear regression model in which the random noises are assumed i.i.d. Gaussian

random variables, the deterioration level y (τ) at a future time τ can be predicted from

the Student’s t distribution with n− 2 degrees of freedom, as shown in (3.11). One may

want to use this result to predict the lifetime of a unit, which is defined as the first time

that the deterioration y (τ) exceeds a prescribed failure threshold, ζ. This immediately

leads to

FT (τ) = Pr {y(τ) ≥ ζ} = 1− tcdf


 ζ − x (τ) β̂

σ̂
√

1 + x (τ)VxT (τ)
; n− 2


 , (3.15)

where tcdf (u; ν) denotes the cumulative distribution function of a Student’s t distribution

with ν degrees of freedom evaluated at u. However, this estimation of lifetime distribution
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is not correct. Recall that the lifetime is defined as the first time when the deterioration

path exceeds a threshold ζ, or symbolically,

T ≡ inf {y(t) ≥ ζ} = {t | y(t) ≥ ζ, Y (s) < ζ for 0 ≤ s < t} . (3.16)

Equation (3.15) used the fact of Y (t) ≥ ζ but missed the condition “Y (s) < ζ for

0 ≤ s < t”. In order for the condition to be included, the sample path behavior of the LR

model has to be considered carefully. But the assumption that random noises are i.i.d.

Gaussian in the LR models implies that the deterioration should be a Gaussian white

noise adding to the deterministic, mean curve µy (t) = β0 +β1t. Since the Gaussian white

noise is so erratic, no meaning can be attached to its first-passage time. Therefore, the

probability estimated by (3.15) should not be understood as the lifetime distribution in

the first passage sense.

When the random noises are assumed correlated Gaussian for repeated measurements,

the deterioration becomes a Gaussian process with linear mean function and some speci-

fied covariance function. In this case, the distribution of predicted deterioration in (3.11)

is only an approximation because β̂ and σ̂2 are no longer independent in this case. Even

worse, an exact expression for the distribution of the first passage time of second-order

Gaussian processes is still lacking to the author’s knowledge. Intensive research efforts

have been made to find the distribution of the first passage time in the last four to five

decades, but most of the results were based either on upcrossing theory with Poisson

assumptions for differentiable processes or on the Fokker-Planck equation for diffusion

processes (Lin and Cai 1995).

One way to solve the problem could be by interpreting the error term εi as an mea-

surement error. This interpretation implies a deterministic deterioration model because

the actual deterioration becomes a linear function, i.e., ȳ(τ) = β0 +β1τ . The randomness

in the observed deterioration comes from the measurement error. Since it is the actual
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but not the observed deterioration that defines the failure time, the lifetime is

T =
ζ − β0

β1
, (3.17)

in which no inherent randomness exists unless a Bayesian view is taken for β’s. When

the sampling uncertainty of β0 and β1 is considered, the probability distribution of the

lifetime can be derived. Recall that the joint distribution of β0 and β1 is a multivariate

t distribution, as indicated by (3.7), the lifetime distribution is similar to the Bernstein’s

distribution (Gertsbakh and Kordonskiy 1969) except that in the latter both the intercept

and slope are independent and normally distributed, c.f. (2.7). But keep in mind that the

lifetime distribution here is a measure of sampling uncertainty propagated to the lifetime.

Since the interpretation of the error term as measurement errors does not always make

sense, especially when a varying variance as (3.14) is seen from the regression. A linear

mixed-effects model discussed in the next may provide a logically consistent way to deal

with varying variance, correlation in deterioration and lifetime prediction.

3.3 Linear Mixed-Effects Models

It would be more adequate to interpret the random noise ε as a term that includes both

random effects and measurement errors. This is equivalent to assuming the regression

coefficients as random variables instead of fixed, though unknown, parameters. This

assumption leads to a linear mixed-effects (LME) model. Symbolically, we have, for unit

i (i = 1, . . . , n),

yi = Θ0i + Θ1iti + εi = xΘi + εi (3.18)
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where x = (1 ti); Θi = (Θ0i Θ1i)
T are assumed to be a bivariate Gaussian distribution

with mean vector β and covariance matrix D as

D =


 d11 d12

d21 d22


 . (3.19)

Assume Θ1, . . . ,Θn are i.i.d. Also assumed is that ε1, . . . , εn are i.i.d. Gaussian N
(
0, σ2

)
.

Then the deterioration yi is a linear function of three Gaussian random variables Θ0i, Θ1i

and εi. Hence, yi follows also a Gaussian distribution with mean E (Θ0i + Θ1iti + εi) =

β0 + β1ti and variance xDxT + Var (ε) = d11 + (d12 + d21) ti + d22t
2
i + σ2. Hence, by

introducing random effects into the linear model, the varying variance is explained and

the awkward iteratively weighted least squares procedure discussed earlier is avoided.

The LME model also fits well the cases of repeated measurements. Indeed, for unit i

that has mi repeated measurements, the LME model has the following general form:

yi = Xiβ + ZiΘi + εi, Θi ∼ N (0,D) , εi ∼ N
(
0, σ2Imi

)
, (3.20)

where

yi =




yi1

...

yimi


 , Xi =




xi1

...

ximi


 =




1 ti1
...

...

1 timi


 , β =


 β0

β1


 , εi =




εi1

...

εimi




(3.21)

and Θi is a q-dimensional random vector and Zi is a covariate associated with Θi. The

dimension q can be 1 or 2, depending on whether the randomness of the intercept and

slope is significant or not. Although the measurement errors εi1, . . . , εi,mi are still assumed

independent of each other, the observed values of deterioration at different times are no

longer independent, as the covariance of yij and yik equals zijDzT
ik > 0 for j 6= k. Hence,

the correlation between the repeated measurements of the same unit is considered while

different sample paths are kept independent of each other.

46



In the LME model, the estimation of lifetime distribution is much straightforward.

Since εi’s are measurement errors, the lifetime distribution can be easily derived based

on the actual deterioration ȳ (τ) = x (τ) β + z (τ)Θ in which Θ is a bivariate Gaussian

vector. Unlike in (3.17) where the uncertainty of lifetime comes only from the sampling

uncertainty, this estimation includes the inherent randomness of the deterioration through

the random coefficient Θ.

3.3.1 Parameter Estimation

Several methods of parameter estimation have been developed for linear mixed models.

Among them, maximum likelihood (ML) and restricted maximum likelihood (REML) are

the two most frequently used methods. For the model of (3.20), the likelihood function

of the parameters in β,D and σ2 is ready from the marginal distribution of yi, the

deterioration for unit i. It is clear that the marginal distribution of yi is N (Xiβ,Vi),

where

Vi = ZiDZT
i + σ2Imi . (3.22)

Hence the log likelihood for unit i is

li = −1
2

(yi −Xiβ)T V−1
i (yi −Xiβ)− 1

2
log |Vi| (3.23)

where |Vi| denotes the determinant of Vi. In fact, given the variance D and σ2, the

regression coefficients β can be found from the generalized least squares as

β̂ =

(
n∑

i=1

(
XT

i V−1
i Xi

)
)−1 (

n∑

i=1

(
XT

i V−1
i yi

)
)

. (3.24)

Substituting this estimate into the log likelihood function gives the profile log likelihood

function of variance components D and σ2. The variance components can then be ob-

tained by maximizing the profile log likelihood. Since ML estimates tend to underestimate
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the variance components, the REML method is usually adopted. But when the number

of parameters is not very big, the estimates from both methods shall not differ too much.

More technical details about ML and REML can be found in several contemporary text-

books about linear mixed models, for example, Pinheiro and Bates (2000).

Many numerical optimization routines can be used for the maximization purpose.

Quite a few of them (e.g. MATLAB optimization toolbox) implement optimizations

without the need of feeding explicitly gradient information. One further advantage of

these routines is that they also provide useful outputs such as the maximized log likelihood

and the Hessian matrix. The latter is used to derive the observed information matrix

and standard errors of the maximum likelihood estimates (m.l.e.).

Estimation of the random coefficient Θ for a specific unit is required when one wants

to predict the future deterioration of the unit. Using the fact that (yi |Θ = θi) ∼
N

(
Xiβ + Ziθi, σ

2I
)

and Θi ∼ N (0,D), the estimate for θi is

θ̂i = DZT
i

(
ZiDZT

i + σ2Imi

)−1
(yi −Xiβ) . (3.25)

This estimator is an empirical Bayes estimator as it can be regarded as the posterior

mean of Θi given observation yi. By ‘empirical Bayes’ we mean the fact that the (hy-

per)parameters in the prior distribution β and D are estimated from data but not from a

prior assumption (Carlin and Louis 2000). More discussion on the relationship of mixed

models and Bayesian analysis can be found in Demidenko (2004).
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3.4 Case Study — Creep Deformation of Pressure Tubes

in Nuclear Reactors

3.4.1 Background

Creep deformation of pressure tubes in fuel channels of a nuclear reactor due to irradiation

damage induced by fast neutrons is an important degradation phenomenon, which must be

considered for management of an aging reactor. The creep-induced diametral expansion

of the pressure tubes causes flow by-pass of primary heat transport coolant around the

fuel bundles and this may result in lower critical heat flux values. Safety margins to

prevent fuel from overheating during operation must be maintained. The current design

limit for pressure tube diametral strain, defined by the relative increase in the inner tube

diameter at a chosen operating time from its original value, varies from station to station

but the safety margins up to 5.1% have been validated. A challenging problem for plant

engineers is to predict the end-of-life, the time when the pressure tubes exceeds the 5.1%

diametral strain, based on the diametral expansion data collected from the inspection

and surveillance program.

The objective of the case study is to estimate the creep strain rate and the lifetime of

a pressure tube, with lifetime defined as the time when the diametral creep strain reaches

the substandard threshold 5.1%. We also hope that the ideas introduced in the previous

sections can be illustrated in the case study.

3.4.2 Exploratory Data Analysis

In this study, diametral expansion data from 61 out of the total 380 pressure tubes in a

CANDU 6 reactor are analyzed. The 61 tubes were inspected at five different points in

time, giving in total 76 measurements of the creep strain. The associated average flux

and cumulative irradiation fluence are also recorded for every tube in the reactor. The

measurements are highly unbalanced in the sense that most of the tubes were measured
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Table 3.1: Number of repeated measurements of creep diametral strains in pressure tubes
Number of repeated measurements 1 2 3 4 5 Total
Number of tubes 51 7 2 0 1 61
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Figure 3.1: Typical sample paths of diametral strain with average fluence

only once and one tube five times (Table 3.1). To get some idea of the growth trend of

the creep deformation, we plot in Figure 3.1 the sample paths of three tubes that were

measured 3 or more times. They all show a fairly linear trend, which implies that a linear

model can be used.

Note in this study we use as the time index the average fluence which is the product

of average flux with operating time (measured by effective full power year or EFPY).

Since different tubes have different average flux, the average fluences are different for the

tubes even though they might be inspected at the same time.
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Figure 3.2: Standardized residuals from WLS

3.4.3 Linear Regression Models

Denote by y the creep strain in percentage and by Ψ the tube’s average fluence at time

t. As mentioned above, Ψ = φt, where φ is the average flux in unit of n/(m2 · s). As a

simple attempt, we first assume a linear regression model

yi = a0 + a1Ψ + εi, (3.26)

for i = 1, 2, . . . , 76, in which εi’s are assumed to be independent of each other and

εi ∼ N
(
0,miσ

2
)

where mi is the number of repeated measurements. Using the WLS

technique, the estimates are â0 = 0.1234 and â1 = 0.2010. But the residuals plot in

Figure (3.2) shows that the residuals increases with the predicted diametral strain µy,

indicating a varying variance of y. This is against the underlying assumptions of the WLS

that σ2 is a constant.

A quadratic variance function, σ2
i = cµ2

yi where µyi = a0 +a1Ψi, is chosen to stabilize

the variance. The corresponding IWLS estimates are â0 = 0.0564, â1 = 0.2083 and
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Figure 3.3: Standardized residuals from IWLS

ĉ = 0.0127. Now the standardized residuals shown in Figure (3.3) look more or less

homogeneous. The fitted versus measured diametral strain is plotted in Figure 3.4. It is

found that most of the observed data are within the 95% confidence bounds except tube

C2 which are systematically outside of the bounds.

3.4.4 Linear Mixed-Effect Model

Although the variance function σ2
i = cȳ2

i succeeded to stabilize the variance of error, the

linear regression model is not appropriate for lifetime prediction, as we discussed earlier.

This variance function, however, suggests a linear mixed-effects model as

Model I: yij = β0 + β1Ψij + Θ0i + Θ1iΨij + εij , (3.27)
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Figure 3.4: Predicted versus observed diametral strains from IWLS. The circled crosses
represent data from Tube C2
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for i = 1, . . . , n = 61 and j = 1, . . . , mi where most of mi equals 1 as shown in Table 3.1.

In the form of (3.20), we have Xi = Zi and

Xi =




xi1

...

xi,mi


 =




1 Ψi1

...
...

1 Ψi,mi


 (3.28)

There are 6 parameters in total to be estimated: β0, β1, d11, d12 = d21, d22 and σ2.

Since the covariance matrix of b, D, should be nonnegative definite, this gives an implicit

constraint for the parameter space of all the d’s. To avoid the nuisance, we reparameterize

D by using the Cholesky factorization, i.e.,

D = UTU (3.29)

where U is an upper triangle matrix including entities u11, u12 and u22 which can be any

real number in theory. If the noise variance is also reparameterized as σ2 = exp (s), then

the log likelihood function can be maximized with respect to θ = (β0, β1, u11, u12, u12, s)T

in an unconstrained fashion.

The maximum likelihood estimates for the parameters are β̂0 = 0.0503, β̂1 = 0.2090,

σ̂ε = 0.0831, σ̂Θ0 = 0.0353, σ̂Θ1 = 0.0197 and ρ̂(Θ0, Θ1) = 0.9999 where ρ̂(Θ0, Θ1) repre-

sents the coefficient of correlation of the intercept Θ0 and slope Θ1. The corresponding

maximized log likelihood is −82.53.

Since the coefficient of correlation of Θ0 and Θ1 (both have been assumed to be random

variables) is very close to 1, we can thus assume only Θ1 is random and Θ0 = αΘ1 where

α is a constant. Therefore we have Zi = (α + Ψi1, . . . , α + Ψimi)
T , or

Model II: yij = β0 + β1Ψij + (α + Ψij)Θ1i + εij . (3.30)

Under this new assumption, we have β̂0 = 0.0503, β̂1 = 0.2090, σ̂ε = 0.0831, σ̂Θ1 = 0.0197
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which are the same as before and α̂ = 1.7916 which equals σ̂Θ0/σ̂Θ1 = 0.0353/0.0197.

Alternatively, we choose the slope, denoted as Θ for brevity, as the only random

coefficient and let the intercept fixed for all units. This amounts to assuming Zi =

(Ψi1, . . . ,Ψi,mi)
T or

Model III: yij = β0 + β1Ψij + ΨijΘi + εij (3.31)

Under this assumption, we obtain β̂0 = 0.0637, β̂1 = 0.2077, σ̂ε = 0.0864, σ̂Θ = 0.0232

with maximized log likelihood of −83.08. It is clear from the likelihood ratio test that it

is plausible to assume a fixed intercept. We adopt Model III for the next discussion.

In order to validate the assumptions of (1) normal within-unit measurement errors

and (2) normal random slope in the model, the normal quantile plots for the within-unit

residuals εij (i = 1, . . . , n = 61; j = 1, . . . , mi) and for the random slope Θ are shown in

Figure 3.5 and 3.6, respectively. Both plots are close to a straight line and symmetrical

about zero except one data point from Tube C1 in Figure 3.5 which may be considered

as an outlier. Hence no obvious evidence is shown against the assumptions.

Figure 3.7 plots the fitted versus observed diametral strain in both populational and

individual levels. Comparing to Figure 3.4, the populational mean path is very close to

that from IWLS. Recall that in the LR model, measurements of Tube C2 are out of the

predictive bound. In the LME model, however, we can estimate the random slope Θ

for the tube. For Tube C2, we have Xi = (1 Ψi1; . . . ; 1 Ψi5), Zi = (Ψi1, . . . ,Ψi5)
T and

D = σ2
Θ. So from (3.25) we get θ̂i = 0.0594. That is, the total deterioration rate for

Tube C2 equals β1+ θ̂i = 0.2671. The individual mean path for Tube C2 is shown as

a thick solid line in Figure 3.7 A conservative (without considering the uncertainty in

β’s) prediction bound for the diametral strain of Tube C2 is plotted as well. In the LME

model, the five measurements all lie within the 95% bound.
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Figure 3.5: Normal quantile plot for within-unit residuals εij

The lifetime distribution can then be calculated from the following expression:

FT (τ) = Pr (β0 + β1τ + Θτ ≥ ζ) = Pr
(

Θ ≥ ζ − β0

τ
− β1

)
= 1− Φ

(
ζ − β0

τσΘ
− β1

σΘ

)
.

(3.32)

Figure 3.8 shows the lifetime distribution of a typical pressure tube with failure threshold

ζ = 5.1%. For an illustration, the lifetime density function for a typical tube with average

flux 2.4× 1017 n/(m2·s) is plotted in Figure 3.8.

3.5 Concluding Remarks

Traditional regression models consist of a parameterized mean function and an error

term that quantifies the deviation of the observations from the mean function. The

errors are usually assumed independent of each other. While the data analysis becomes
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Figure 3.6: Normal quantile plot for the random slope Θ

straightforward under this assumption, it compromises the lifetime prediction. Although

the independence assumption can be relaxed and replaced with some correlation structure,

exact solutions for the lifetime under such assumptions are not yet available, unless further

unrealistic approximations or assumptions are introduced.

This chapter presents a linear mixed-effects model to solve the problem. The feature

of an LME model is that the inherent randomness of deterioration is decomposed into

unobserved heterogeneity of individual units, or random effects, and additive measure-

ment errors. By introducing the random effects into the model, the varying variance of

deterioration and correlation in deterioration are characterized, which leads to a logical

method for lifetime estimation.

The case study of creep deformation of pressure tubes starts with a simple linear re-

gression model with variance of error weighted by the number of repeated measurements.

The LR model is improved by an iteratively weighted least squares technique to stabilize
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Figure 3.7: Populational (dashed line) and individual (solid line) mean deterioration path
of Tube C2. The circled crosses represent diametral strain measured from Tube C2
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Figure 3.8: Probability density function of the lifetime of a typical pressure tube with
flux 2.4× 1017 n/(m2·s)

the variance of residuals. The LME model is a better alternative with a random slope.

As a result the tubes with high deterioration rate, which were classified as outliers in the

LR model, are now fitted quite well in the LME model.

Despite a success in fitting the data in pressure tube example, the LME model is

essentially a random variable model. For this reason, LME or LR models are inadequate

to quantify the temporal variability and not well suited for condition-based maintenance

optimization, as discussed in Chapter 7.
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Chapter 4

Gamma and Related Processes

This chapter discusses basic concepts and properties of gamma and other related pro-

cesses. We start with a stationary gamma process. Its characteristics are discussed from

distribution, sample paths, lifetime and simulation perspectives. The discussion is then

extended to nonstationary gamma processes, local gamma processes, mixed-scale gamma

processes and finally Hougaard processes. The relationship among these stochastic pro-

cesses is investigated.

4.1 Stationary Gamma Processes

A gamma distributed random variable X with shape parameter a > 0 and scale parameter

b > 0 has probability density function

fZ(z) =
(z/b)a−1

bΓ (a)
exp (−z/b) (4.1)

for z ≥ 0, where Γ(u) =
∫∞
0 su−1e−sds is the gamma function. We write Z ∼ Ga (a, b)

to mean a random variable Z follows gamma distribution with shape a and scale b.

Depending on the value of shape parameter a, the probability density function of Z can
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Figure 4.1: Probability density functions of gamma random variables with unit scale
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be monotonically decreasing or nearly of a bell shape (Figure 4.1). The mean and variance

of Z are ab and ab2, respectively.

A continuous-time stochastic process {X(t), t ≥ 0} is called a stationary gamma pro-

cess with shape parameter α > 0 and scale parameter β > 0 if it has the following

properties (Singpurwalla 1997):

(i) X (0) = 0 with probability one;

(ii) ∆X(t) = X (t + ∆t)−X(t) ∼ Ga (α∆t, β) for any t ≥ 0 and ∆t > 0; and

(iii) For any choices of n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn < ∞, the random variables

X(t0), X(t1)−X(t0), . . . , X(tn)−X(tn−1) are independent.

In short, a stationary gamma processes is a continuous-time stochastic processes with

stationary, independent and gamma distributed increments.

4.1.1 Distribution and Sample Path Properties

The gamma distribution is infinitely divisible in the sense that if Z is a gamma r.v.,

then for every positive integer n there exist n i.i.d. r.v. Z1, Z2, . . . , Zn that sum to
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Z (Sato 1999). In the other direction we have that the sum of n independent gamma

random variables, each having shape ai (i = 1, . . . , n) and the same scale b, is still gamma

distributed with shape
∑

ai and scale b. Therefore, at any time t > 0, X (t) is a gamma

random variable, i.e., X (t) ∼ Ga (αt, β). As t gets large, the probability density function

of X (t) changes from a monotonically decreasing function to a bell shape as shown in

Figure 4.1.

Another important characteristic of gamma distribution is the so-called “gamma-

bridge” property. That is, for two independent gamma r.v. U ∼ Ga(α1, β) and V ∼
Ga(α2, β) the ratio U/(U +V ) is beta distributed and independent of U (Johnson, Kotz,

and Balakrishnan 1994). This implies that the ratio of X (u) to X (t) for 0 < u < t < ∞
follows a beta distribution with parameter αu and α (t− u). This property can be used

for simulating gamma processes. We will discuss this in detail later on.

As far as the sample path properties of gamma process are concerned, we first note

that gamma process is Markovian because of its independent increments and that its

sample path is non-negative and monotonically increasing. Note also that the mean and

variance of X(t) are

E [X(t)] = αβt and Var [X (t)] = αβ2t, (4.2)

both linear functions of time. The coefficient of variation (COV), defined by the ratio of

the standard deviation to the mean, is thus

COV [X(t)] = 1/
√

αt. (4.3)

The decreasing COV suggests that the sample paths get closer and closer to the mean

path over time in the relative sense. Figure 4.2 plots two sample paths of the same gamma

process with α = 3 and β = 2 at two different time scale. The solid line represents the

path at a small scale with time t1 ranging from 0 to 2 and the dashed line corresponds

to time frame t2 from 0 to 20. The dashed line looks very close to a straight line — the
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Figure 4.2: Time-scale effect of sample paths of a gamma process

mean path, whereas the solid line has a more haphazard behavior. As a matter of fact the

solid line can also be thought of as a magnification of the dashed line in the dotted area.

Therefore, concluding by visual inspection of one sample path of deterioration that the

deterioration has very little temporal uncertainty may be incorrect. We must be careful

for this time-scale effect when modeling deterioration in practice.

Another important feature of gamma process is that it is a pure jump process. That

is, the sample path is not continuous as one may perceive. This needs a little elaboration.

Although this can be shown by the Lévy-Khintchine decomposition theorem (Sato 1999),

we want to show this in a way that is not so technical but more intuitive to engineers.

The basic idea is to relate the gamma process directly with a compound Poisson

process (CPP). Recall from Section 2.2.4 that a compound Poisson process is a continuous-

time stochastic process {Y (t) , t ≥ 0} given by

Y (t) =
N(t)∑

i=1

Di (4.4)
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where {N (t) , t ≥ 0} is a homogeneous Poisson process with rate λ, and Di (i = 1, 2, . . .)

are i.i.d. random variables with CDF G, which are also independent of {N (t) , t ≥ 0}.
Suppose Di are positive random variables, i.e., G (0) = 0. Suppose also the CDF G is

differentiable and has pdf g. Then the Laplace transform of Y (t) is

E
[
e−sY (t)

]
= exp

{
λt

∫ ∞

0

(
e−su − 1

)
G (du)

}
= exp

{
t

∫ ∞

0

(
e−su − 1

)
νP (du)

}
, (4.5)

in which

νP (du) = λG (du) = λg(u)du (4.6)

is called the Lévy measure of Y (t).

Consider now a gamma process {X (t) , t ≥ 0} with shape α and scale β. The Laplace

transform of X (t) is

E
{

e−sX(t)
}

=
(

1
1 + βs

)αt

= exp {−αt log (1 + βs)} = exp
{

t

∫ ∞

0

(
e−su − 1

)
νΓ (du)

}
,

(4.7)

in which

νΓ (du) = (α/u) e−u/βdu. (4.8)

Comparing (4.7) to (4.5) we can find that the gamma process is closely related to a

CPP if λ and G in the CPP is appropriately chosen the limit of a compound Poisson

process. Indeed, according to Dufresne, Gerber, and Shiu (1991), we may assume the

Poisson rate λ = αβcΓ (c) and G as a gamma distribution, i.e., Di ∼ Ga (c, β). Then

νP (du) = λg(u)du = αβcΓ (c)
uc−1

βcΓ (c)
e−u/βdu =

α

u1−c
e−u/βdu. (4.9)

As c tends to zero from above, the Poisson rate λ goes to infinity, the random jumps Di

gets more and more concentrated at zero (Figure 4.1), and the Lévy measure νP of the

CPP tends to νΓ of the gamma process.
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The Lévy measure ν (y) ≡ ν ([y,∞)) represents the mean number of jumps of sizes

greater than y in a unit interval of time. In particular, ν (0) is the mean number of all

jumps. For a CPP, νP (0) = λ
∫∞
0 G (du) = λ is finite. For a gamma process, however,

νΓ(0) = α
∫∞
0 u−1e−u/βdu = ∞. But it is easily checked that the mean number of jumps

of sizes larger than any positive number ε is finite, or νΓ(ε) = α
∫∞
ε u−1e−u/βdu < ∞

for any ε > 0. Therefore, within any finite time interval there are infinitely many small

jumps of size less than ε for any ε > 0 but only a finite number of big jumps. However,

the cumulative sum of all these jumps in a finite time interval [t, t + ∆t) is always finite,

no matter how infinitely many jumps there are. That is

E [X (t, t + ∆t)] =
N(t,t+∆t)∑

i=1

Di =
∫ t+∆t

t

∫ ∞

0
u νΓ (du) ds = αβ∆t. (4.10)

Adding these facts altogether explains why the gamma process is a pure jump process

while its sample path looks continuous.

The sample paths and associated jump sizes of two CPPs and one gamma process

are plotted in Figure 4.3. The gamma process has a shape parameter α = 1 and scale

parameter β = 1/
√

2. Its sample path is shown in Figure 4.3(e). The two CPPs have

a intensity rate λ = αβcΓ (c) and a gamma distribution Ga (c, β) for the jumps. Figure

4.3(a) shows a sample path of the CPP with c = 2. Only 8 jumps occur. The jump sizes

and associated occurrence times are shown in Figure 4.3(b). In contrast, Figure 4.3(c)

shows a sample path of the CPP with c = 0.01, which is very similar to the sample path

of the gamma process, the limiting case when c = 0. The jumps shown in Figure 4.3(d)

have a skewer distribution, for most of them are small jumps. Figure 4.3(f) shows the

magnified plot of (d) for the jumps with size less than 0.03. It is not difficult to imagine

that, when c is sufficiently close to zero, a similar plot to (f) can be obtained even a

smaller truncation than 0.03 is chosen.

To summarize, the sample path of a gamma process embraces both minute invisible

jumps and big traumatic jumps. This feature makes the gamma process a very good
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Figure 4.3: A compound Poisson process goes to a gamma process when c goes to zero
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candidate for deterioration models, as the deterioration may develop in a very slow,

invisible fashion due to daily usage and in some points of time it may grow very quickly

when some traumatic events (e.g., earthquakes, forced outages) happen. The gamma

process fits both types of damage modes.

4.1.2 Distribution of Lifetime

Many physical failures and performance failures (that is the system performance no longer

conforms to a standard) are of first passage type. That is, once the deterioration process

X (t) of an item reaches a certain critical level ζ, the item fails. The failure time T is

then defined as the first time when the sample path of X (t) exceeds ζ. Symbolically, we

have

T ≡ inf {X(t) ≥ ζ} = {t |X(t) ≥ ζ, X (s) < ζ for 0 ≤ s < t} . (4.11)

When X (t) is a stationary gamma process, the distribution of the first passage time is,

according to the monotonicity of its sample paths,

FT (t) = Pr(T ≤ t) = Pr(X(t) ≥ ζ) =
Γ(ζ/β, αt)

Γ(αt)
(4.12)

where Γ(w, z) denotes the incomplete gamma function, defined as

Γ(w, z) =
∫ ∞

w
uz−1e−udu. (4.13)

The first two moments of the lifetime are expressed as

E [T ] =
∫ ∞

0
(1− FT (t)) dt, and (4.14a)

E
[
T 2

]
= 2

∫ ∞

0
t (1− FT (t)) dt, (4.14b)

which should be evaluated numerically.

A discrete-time approximation of (4.12) can be made by choosing tn = n/α, n =
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Figure 4.4: Distribution of first passage time of a gamma process and its Poisson approx-
imation

0, 1, . . .. Let qn = Pr {tn < Tξ ≤ tn+1}. Then one has

qn =
Γ(ζ/β, n + 1)

Γ(n + 1)
− Γ(ζ/β, n)

Γ(n)
=

(ζ/β)n

n!
e−ζ/β , (4.15)

which is a Poisson distribution. That is, the probability of first passage time being the

time interval (n/α, (n + 1) /α] follows a Poisson distribution with parameter ζ/β. This

result was first observed by van Noortwijk et al. (1995). From the property of Poisson

distribution, the mean and variance of the lifetime equals ζ/ (βα) and ζ/
(
βα2

)
, which is

remarkable as if they were derived directly from (4.2).

Figure 4.4 shows an example for the pdf of the first passage time and its Poisson

approximation for the gamma process with unit shape and scale and failure threshold of

10. The exact values of the mean and variance are 10.495 and 10.022, respectively while

the Poisson approximation gives both of 10.
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4.1.3 Distribution of Remaining Lifetime

The distribution of remaining lifetime, the remaining time to the first passage level ζ,

of the stationary gamma process, given its value at time s, X (s) = xs < ζ, is readily

established using the independent increments property as

FT (t | s) = Pr(T ≤ t |X (s) = xs)

= Pr(X(t)−X (s) ≥ ζ − xs)

=
Γ [(ζ − xs) /β, α (t− s)]

Γ [α (t− s)]
(4.16)

for t ≥ s, which is the same as (4.12) with ζ and t replaced by ζ−xs and t−s, respectively.

If more recent values of the gamma process is known, the remaining lifetime distribution

can be updated in the same way.

This update scheme of remaining lifetime is different from the way based on known

surviving time. In the traditional lifetime approach to reliability modeling, the remaining

lifetime distribution, given the item has survived up to the present time s, is given as

FT (t | s) = Pr (T ≤ t |T > s) =
FT (t)− FT (s)

1− FT (s)
(4.17)

for t > s.

Figure 4.5 shows three different distributions of the remaining lifetime after the item

has survived 8 units of time for the gamma process in Figure 4.4. The distribution of

the time-based remaining lifetime (with the only information of s = 8) is the truncated

version of the original distribution at s = 8. But the real remaining lifetime can differ a

lot from this truncated lifetime, depending on the actual level of state x (s) at time s = 8.
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Figure 4.5: Distributions of the remaining lifetime of a gamma process based on different
information

4.1.4 Simulation

A natural approach to simulating the gamma process makes use of the property of the

independent increments. To generate a sample path from time 0 to t, we partition the

time into n small subintervals: 0 = t0 < t1 < t2 < · · · < tn = t. Then, we draw random

independent increments one by one directly from the gamma density Ga (α∆ti, β) where

∆ti = ti − ti−1. A sample path of the gamma process is then formed by taking the

successive summation of the increments up to time t. When n is large enough, we can

approximate very well the sample paths of gamma processes.

The second approach uses the gamma-bridge property mentioned in subsection 4.1.1.

Particularly, the conditional distribution of the ratio X (t/2) /X (t), given X (t), is sym-

metric beta with parameter αt/2. Thus, we first simulate a value for X (t) from gamma

density Ga (αt, β). Then we obtain X (t/2) by simulating a value for the ratio X (t/2) /X (t),

which has a symmetric beta distribution with parameters αt/2. Given the value of X (t/2)

and X (t), we obtain further X (t/4) and X (3t/4), respectively. Similarly, we can sample
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X (t/8), X (3t/8), X (5t/8), X (7t/8), and so on (Dufresne, Gerber, and Shiu 1991).

The approach to simulation applies the functional representation theory of stochastic

processes. Sometimes it is possible to represent a stochastic process as a countable sum

of some deterministic functions with random variable coefficients. If so, then we can

generate a finite number of random coefficients and approximate the sample path by

the finite summation. The well-known Karhunen-Loeve expansion is an example of this

application to stationary second-order Gaussian processes (Ghanem and Spanos 2003).

Another example is the Wiener process, for which we have

W (t) = Y0t +
√

2
∞∑

m=1

Ym
sin (mt)

m
, (4.18)

where W (t) denotes the Wiener process and Y0, Y1, . . . are independent normal random

variables with zero means and unit variance. We wish a similar representation for gamma

processes.

Indeed, it has been found (Ferguson and Klass 1972) that an independent increment

process without Gaussian components can be represented as a countable sum of step

functions each with a random point of discontinuity at a random height. For a stationary

gamma process {X (t) , 0 ≤ t ≤ 1} with shape α and scale β in specific, it can be expanded

as a compound Poisson process with the ordered random heights J1 ≥ J2 ≥ · · ·having

the following distributions:

Pr (J1 ≤ x1) = exp {−νΓ (x1,∞)} = exp
{
−α

∫ ∞

x1

y−1e−y/βdy

}
(4.19)

and

Pr (Jj ≤ xj | Jj−1 = xj−1, . . . , J1 = x1) = exp {−νΓ (xj , xj−1)} . (4.20)
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Under this representation, the gamma process is expressed as

X (t) =
∞∑

j=1

JjI[0,t] (Uj) , (4.21)

where U1, U2, . . . are independent and identically uniformly distributed on [0, 1] and inde-

pendent of J1, J2, . . .; and I[0,t] (·) is indicator function. One advantage of this simulation

is that the fineness of the sample path can be controlled by the number of jumps, n.

The disadvantage is also obvious: more computational efforts are needed to generate the

sequence of random jump heights.

4.2 Nonstationary Gamma Processes

A nonstationary gamma process {X (t) , t ≥ 0} is a continuous-time stochastic process

with increments ∆X (t) that are independent and have gamma distribution Ga (∆α (t) , β),

in which α (t) ≥ 0, is a nondecreasing continuous function with α (0) = 0 and ∆α (t) =

α (t + ∆t) − α (t). α (t) is called the shape function and β > 0 is again the scale pa-

rameter. Clearly, when the shape function is linear of time, i.e., α (t) = αt, the process

becomes a stationary gamma process with shape parameter α and scale parameter β.

Since the nonstationary gamma process can be obtained by a deterministic nonlinear

time transformation from the stationary gamma process, many results for stationary

gamma processes are readily extended to the nonstationary case. For example, for any

fixed t, X (t) is still gamma distributed; its mean and variance are E [X(t)] = α (t) β and

Var [X (t)] = α (t)β2; and X (t) is also a pure jump process. We are not going to give

further details for the nonstationary gamma process.
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4.3 Local Gamma Processes

A local gamma process is a continuous-time stochastic process X (t) with shape function

α(t) and scale function β(t), satisfying the following properties (Çinlar 1980):

(i) Almost surely, the sample path is right-continuous and increasing and starts from

0.

(ii) The shape function α(t) is increasing and right-continuous, and scale function β(t)

is strictly positive and finite.

(iii) For every 0 < t < ∞,
∫ t
0 dα(u)/β(u) < ∞.

(iv) For every t ≥ 0, ∆t > 0 and s ≥ 0, the Laplace transform of the increments,

∆X (t) = X (t + ∆t)−X (t), is

E
{

e−s∆X(t)
}

= exp
{∫ t+∆t

t
dα (u)

∫ ∞

0
x−1

(
e−sx − 1

)
e−x/β(u)dx

}

= exp
{
−

∫ t+∆t

t
log(1 + sβ(u))dα(u)

}
. (4.22)

In essence, the local gamma process has the property that increments within infinites-

imal time interval are gamma distributed, i.e.,

∆X(t) = X(t + ∆t)−X(t)∼̇Ga(α(t + ∆t)− a(t), β(t∗)), for ∆t → 0 (4.23)

where ∼̇ denotes “approximately distributed as” and t∗ is anytime between t and t + ∆t.

Note that for any fixed t, X(t) does not necessarily follow a gamma distribution unless

the scale function β (t) is constant.
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A simple example of the local gamma process is the case where β(t) = bt and α(t) = at,

both linear function of time t. Then

− log E
{

e−sXt)
}

=
∫ t

0
a log(1 + sbu)du

= a [(1/sb + t) log(1 + sbt)− t] , (4.24)

Or

E
{

e−sXt)
}

= eat(1 + sbt)−
a(1+sbt)

sb . (4.25)

However, no simple analytical form exists for the distribution of which the characteristic

function is as such. Saddlepoint approximation (Daniels 1954; Goutis and Casella 1999)

may be helpful for evaluating the probability density function.

Çinlar (1980) has shown that any local gamma process can be transformed into sta-

tionary gamma process by a change of scale using β (t) and a change of time using α, or

formally we write

X (t) =
∫ α(t)

0

1
β (s)

dY (s) , (4.26)

where the integration is with respect to the sample paths of Y (t), a stationary gamma

process with unit shape and scale parameter. With this construction, the local gamma

process is also known as extended gamma process (Dykstra and Laud 1981), or weighted

gamma process (Ishwaran and James 2004).

4.4 Mixed-Scale Gamma Processes

A mixed-scale gamma process X (t) is a nonstationary gamma process with a shape

function α (t) ≥ 0 and a random scale parameter B that follows an inverse gamma

distribution, i.e. W = B−1 ∼ Ga
(
δ, γ−1

)
. It is first proposed by Lawless and Crowder

(2004) to model the random effects in degradation growth data. The scaled X (t) follows
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an F distribution. In particular,

δX (t)
γα (t)

∼ F (2α (t) , 2δ) , (4.27)

which follows from

fX(t)(x) =
∫ ∞

0
ga

(
x; α (t) , w−1

)
ga

(
w; δ, γ−1

)
dw

=
∫ ∞

0

wα(t)xα(t)−1

Γ (α (t))
e−xw γηwδ−1

Γ (δ)
e−γwdw

=
Γ (δ + α (t))
Γ (α (t)) Γ (δ)

γδxα(t)−1

(γ + x)δ+α(t)
. (4.28)

Figure 4.6 shows the probability density function of a mixed-scale gamma random variable

with α (t) = 2, γ = 10 and δ = 10 in comparison with an equivalent gamma density

function with shape parameter 2 and scale parameter 1. It is found that the mixed-scale

gamma density has a heavier tail.

It is clear that the increments are only conditionally independent. The joint probabil-

ity density function of ∆Xi = X (ti)−X (ti−1) for i = 1, . . . , n and 0 = t0 < t1 < · · · < tn

is

f(∆x1, · · · , ∆xn) =
∫ ∞

0
ga

(
w; δ, γ−1

) n∏

i=1

ga
(
∆xi;∆αi, w

−1
)
dw

=
Γ (δ + αn)

Γ (δ)
n∏

i=1
Γ (∆αi)

γδ
n∏

i=1
(∆xi)

∆αi−1

(γ + xn)δ+αn
, (4.29)

where xn = x(tn), αn = α (tn), ∆αi = α (ti)−α (ti−1) and ∆ti = ti−ti−1. The coefficient

of correlation between two increments at two disjoint time intervals is

ρ (∆Xi, ∆Xj) =

√
∆αi∆αj

(∆αi + δ − 1) (∆αj + δ − 1)
(4.30)
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Figure 4.6: Comparison of a mixed-scale gamma distribution with its equivalent gamma
distribution

for δ > 1. From (4.29) we can also derive the conditional distribution of ∆X (t) =

X (t + s)−X (s) conditional on X (s) = xs as

f (∆x |xs) =
Γ (δ + αt+s)

Γ (αs) Γ (δ + ∆α)
(γ + xs)

δ+αs ∆x∆α−1

(γ + xs + ∆x)δ+αs+t
, (4.31)

or
δ + αs

γ + xs

∆X (t)
∆α

∼ F (2∆α, 2δ + 2αs) (4.32)

where ∆α = α (t + s)− α (s) and αs = α (s).

Similar to (4.12), the first passage time of the mixed-scale gamma process has a

distribution function as

Pr(Tζ ≤ t) = Pr(X(t) ≥ ζ) = 1− F

(
δζ

γα (t)
; 2α (t) , 2δ

)
. (4.33)
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The remaining lifetime distribution given X (s) = xs is, following from (4.32),

Pr(Tζ ≤ t |X (s) = xs) = 1− F

(
δ + αs

γ + xs

(ζ − xs)
∆α

; 2∆α, 2δ + 2αs

)
. (4.34)

4.5 Hougaard Processes

Hougaard processes include compound Poisson processes, gamma processes, inverse Gaus-

sian processes, positive stable processes, and deterministic paths as special cases, and

hence are very flexible for deterioration modeling. This section discusses basic proper-

ties of Hougaard processes. But before doing so, let us first introduce a three-parameter

family of distribution, named Hougaard distribution.

4.5.1 Hougaard Distributions

A non-negative random variable X is said to follow a Hougaard distribution if its Laplace

transform, ϕ (s) = E
[
e−sX

]
, has the following differential form:

d log ϕ (s)
ds

= −δ (θ + s)α−1 , (4.35)

with log ϕ(0) = 0, where α ≤ 1, δ > 0, θ ≥ 0. For α 6= 0,

ϕ (s) = exp {− (δ/α) [(θ + s)α − θα]} . (4.36)

For α = 0, ϕ (s) = [θ/(θ + s)]−δ is the Laplace transform of gamma distribution with

shape parameter δ and scale parameter 1/θ. We denote the Hougaard distribution by

X ∼ H (α, δ, θ) where α, δ, θ are called index, shape and scale parameter, respectively.

Clearly, the family of Hougaard distributions includes gamma distribution as a special

case. Some other special cases are

• Dirac distribution. For α = 1, X is concentrated on δ.
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• Inverse Gaussian distribution when α = 1/2.

• Positive stable distribution. For θ = 0 and 0 < α < 1, ϕ (s) = exp {− (δ/α) sα},
which is the Laplace transform of positive stable distribution with characteristic

exponent α.

• Poisson-Gamma distribution. For α < 0, ϕ (s) = exp {− (δ/α) [(θ + s)α − θα]},
which is the Laplace transform of Y = X1 + · · · + XN where N is a Poisson dis-

tribution with mean −δθα/α and Xi (i = 1, 2, . . .) are independent gamma random

variable with as shape −α and scale parameter 1/θ, respectively.

Although Hougaard distribution has a very simple expression for its Laplace trans-

form, it does not have explicit expression for its density function. It is known that the

Hougaard density function, denoted by h(x; α, δ, θ), has an infinite series representation

based on positive stable distribution. For 0 < α < 1, δ > 0, θ ≥ 0 is

h(x;α, δ, θ) = exp (δθα/α− θx) g(x;α, δ), (4.37)

where

g(x; α, δ) = − 1
πx

∞∑

k=1

Γ (kα + 1)
k!

(−δx−α/α
)k sin (αkπ) (4.38)

is the probability density of positive stable distribution with index α and parameter

δ. This series may converge very slowly especially near the origin in which the terms

x−αk become unmanageable for large k and α. For that reason, Hougaard (1986) gave a

saddlepoint approximation for the Hougaard density function

f∗(x) =

√
q (δ/x)q

2πx
exp

[
δθα/α− θx− x (δ/x)q

q − 1

]
, (4.39)

where q = 1/ (1− α). The approximation is exact only for α = 1/2, which corresponds

to the inverse Gaussian distribution. It can be shown that the mode of the pdf is located

at x = δ1/α
[

2(1−α)
2−α

](1−α)/α
.
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Hougaard (1986) is the first person who introduced the new three-parameter family of

distributions and applied it as a frailty distribution in survival models for heterogeneous

populations. He derived the new distribution by using a technique called “exponential

tilting” from the positive stable distribution. Later, he named it power variance function

(PVF) distribution to reflect the fact that the variance of the distribution is a power

function of its mean (Hougaard 2000). Fook Chong (1992) documented basic properties

and methods of parameter estimation of Hougaard distributions and Hougaard processes.

4.5.2 Hougaard Processes

A Hougaard process {H (t) ,≥ 0} is a continuous-time stochastic process that has sta-

tionary independent increments and its Laplace transform, ϕ (s) = E
[
e−sH(t)

]
, has the

following differential form

d log ϕ (s)
ds

= −δt (θ + s)α−1 , (4.40)

with log ϕ(0) = 0, where α ≤ 1, δ > 0, θ ≥ 0. The Lévy measure of the Hougaard process

is

νH (du) =
δ

Γ (1− α) uα+1
e−θudu. (4.41)

When α = 0, νH (du) = νΓ (du) as shown in (4.8). When α < 0, νH (du) is the Lévy

measure for a compound Poisson process, as shown in (4.9). Therefore, the Hougaard pro-

cesses include as special cases gamma processes (α = 0, δ > 0, θ > 0), inverse Gaussian

processes (α = 1/2, δ > 0, θ > 0), positive stable processes (0 < α < 1, δ > 0, θ = 0),

compound Poisson processes with gamma increments(α < 0, δ > 0, θ > 0) and determin-

istic paths (α = 1).
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4.6 Summary

This chapter discusses basic properties of gamma processes and several other closely

related processes. A stationary gamma process has stationary, independent and gamma

distributed increments. It has linear mean and variance functions. It is Markovian and

its sample paths are non-negative and monotonically increasing. The relation of the

gamma process with a compound Poisson process is illustrated. It has been shown that

the gamma process can be easily adapted to both minute damages and traumatic ones,

which is an important property for deterioration modeling.

Nonstationary gamma process, local gamma process, mixed-scaled gamma process and

Hougaard process are also discussed in this chapter. A common feature among them is

that they all have positive and independent (or conditionally independent) increments and

are pure jump processes. Nonstationary gamma process can be regarded as a deterministic

time transform of the stationary process. The mixed-scale gamma process has a random

scale parameter but for a given sample path, it is a deterministic constant. In contrast,

the local gamma process has a time-varying scale parameter. Hougaard process includes

many known stochastic processes as its special cases. However, it does not have an explicit

expression for the probability density function, which makes it less amenable to practical

applications.

80



Chapter 5

Statistical Inference for Gamma

Process Models

5.1 Introduction

Consider the general case in which n units are inspected for deterioration. Suppose

each unit is inspected at different instants of time and for the ith unit we have mi (≥ 1)

measurements of the deterioration at different points of time. Suppose also each unit is

associated with a vector of covariate variables zi. Then the observed data of each unit

have the following form: (xij , tij , zi) in which xij denotes the deterioration at time tij

where i = 1, . . . , n and j = 1, . . . , mi. The numbers of repeated measurements mi’s are

not necessarily the same for different units.

This chapter discusses techniques for parameter estimation and hypothesis tests of

gamma process models of deterioration. Section 5.2 discusses the simplest cases in which

there exists no covariate in the deterioration data and the n units are modeled by a

stationary gamma process with the same shape and scale parameters. Two schemes

of method of moments and the maximum likelihood method are developed. The three
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methods are then compared in a simulation study. To study the effects of sample size on

estimation accuracy, asymptotic variances of the maximum likelihood estimates are also

derived. Section 5.3 presents likelihood-based techniques for modeling the fixed-effects of

covariates. Section 5.4 discusses parameter estimation when the deterioration data are

contaminated with measurement errors. The effects of measurement errors are studied

through Monte Carlo simulations. Statistical inferences for mixed-effects gamma process

models are discussed in Section 5.5, with emphasis on a score test for random effects.

Section 5.6 revisits the diametral expansion data in Section 3.4 using a gamma process

model. Section 5.7 concludes the chapter.

5.2 Estimating Parameters of Gamma Process Models

Recall a gamma process has stationary and independent increments. When no covariate

presents in the deterioration data, the increments from the n records of sample paths of

the gamma process (xij , tij) can be pooled without change of information together as if

they are from one sample path with total time length Σn
i=1ti,mi . For ease of presentation,

we assume for this section that the data has the form of (xi, ti), i = 0, 1, . . . , n with

x0 = t0 = 0. We want to estimate the shape parameter α and the scale parameter β from

the given data. Method of moments and maximum likelihood method can be used.

Since nonstationary gamma process can be thought of as a time transformation from

a stationary gamma process, the techniques discussed in this section can also be used for

the nonstationary cases once the shape function is well parameterized.

5.2.1 Methods of Moments

The basic idea behind the method of moments is to match the moments of a certain

random variable with its corresponding statistics. For example, given n independent

observations u1, . . . , un of a Gaussian random variable U with mean µ and variance σ2,
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the sample mean and sample variance are

Ū =
1
n

n∑

i=1

ui and S2
U =

1
n− 1

n∑

i=1

(
ui − Ū

)2 (5.1)

Since E
[
Ū

]
= µ and E

[
S2

U

]
= σ2, the estimates for µ and σ2 are Ū and S2

U , respectively.

As far as the gamma process is concerned, let ∆xi = xi − xi−1, ∆ti = ti − ti−1.

The deterioration rate Ri, defined by ∆Xi/∆ti, are independent and gamma distributed.

Therefore, similar to the Gaussian case in the above, we can calculate the sample mean

and sample variance of the rate as

R̄ =
1
n

n∑

i=1

∆xi

∆ti
and S2

R =
1

n− 1

n∑

i=1

(
∆xi

∆ti
− R̄

)2

. (5.2)

It is clear that E
[
R̄

]
= αβ and Var

[
R̄

]
= 1

n2 αβ2
∑n

i=1 (1/∆ti). Hence

E
[
S2

R

]
=

1
n− 1

n∑

i=1

E
(

∆Xi

∆ti
− R̄

)2

=
1

n− 1

n∑

i=1

E
[(

∆Xi

∆ti
− αβ

)
− (

R̄− αβ
)]2

=
1

n− 1

n∑

i=1

{
Var

[
∆Xi

∆ti

]
− 2

n
Var

[
∆Xi

∆ti

]
+ Var

[
R̄

]}

=
1
n

αβ2
n∑

i=1

(
1

∆ti

)
. (5.3)

Relating the sample moments to the expected values, we have

αβ = R̄, (5.4a)

αβ2 =
nS2

R∑n
i=1 (1/∆ti)

. (5.4b)

Solving them gives the estimates for the parameters.

Çinlar et al. (1977) proposed another scheme of method of moments. Instead of find-
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ing the moments of the deterioration rate, they calculated the moments of the increments

as

Ȳ =
∑n

i=1 ∆xi∑n
i=1 ∆ti

=
xn

tn
, (5.5a)

S2
Y =

n∑

i=1

(
∆xi − Ȳ ∆ti

)2
. (5.5b)

Since

E
[
Ȳ

]
= E

[∑n
i=1 ∆xi∑n
i=1 ∆ti

]
=

E [X (tn)]
tn

= αβ (5.6)

and

E

[
n∑

i=1

(
∆Xi − Ȳ ∆ti

)2

]
= E

[
n∑

i=1

{
(∆Xi − αβ∆ti)−

(
Ȳ − αβ

)
∆ti

}2

]

=
n∑

i=1

Var (∆Xi) +
n∑

i=1

∆tiVar
(
Ȳ

)

= αβ2tn

[
1−

n∑

i=1

(
∆ti
tn

)2
]

, (5.7)

we match the expected values with the estimations and get

αβ = Ȳ =
xn

tn
, (5.8a)

αβ2 =
S2

Y

tn

[
1−∑n

i=1 (∆ti/tn)2
] , (5.8b)

from which the estimates for parameters α and β are obtained as

α̂ =
x2

n

[
1−∑n

i=1 (∆ti/tn)2
]

tnS2
Y

, (5.9a)

β̂ =
S2

Y

xn

[
1−∑n

i=1 (∆ti/tn)2
] . (5.9b)
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We can think of the bracketed terms as a correction factor in the same way as (n− 1) for

S2
U in (5.1) so that the estimates are unbiased. It is clear that when ∆ti (i = 1, . . . , n)

are equal, the estimates from both schemes are the same.

5.2.2 Maximum Likelihood Method

Given the increments (∆xi, ∆ti) , i = 1, . . . , n, of a gamma process {X (t) , t ≥ 0} with

shape α and scale β, the likelihood function for α and β can be easily established. Recall

from the definition of the gamma process,

∆Xi ∼ Ga(α∆ti, β) =
(∆xi/β)α∆ti−1

βΓ (α∆ti)
e−∆xi/β. (5.10)

The log likelihood function is

l (α, β) =
n∑

i=1

(α∆ti − 1) log ∆xi − αtn log β −
n∑

i=1

log Γ (α∆ti)− xn

β
. (5.11)

Differentiating l (α, β) with respect to α and β, respectively, we have the following max-

imum likelihood equations:

∂l

∂α
=

n∑

i=1

∆ti (log xi − ψ (α∆ti)− ln β) = 0, (5.12a)

∂l

∂β
=

xn

β2
− αtn

β
= 0, (5.12b)

in which ψ (u) denotes the digamma function, the derivative of log gamma function

log Γ(u). Solutions of the two simultaneous equations are the maximum likelihood esti-

mates for the parameters. In particular, from the last equation we have

β =
xn

αtn
, (5.13)
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which is a natural result from the fact that E [X (tn)] = αβtn. Substituting it back into

the first maximum likelihood equation leads to

n∑

i=1

∆ti log ∆xi − tn log
xn

αtn
−

n∑

i=1

∆tiψ (α∆ti) = 0. (5.14)

This is a transcendental equation and hence numerical techniques are usually called for.

5.2.3 Effects of Sample Size

Next we discuss the effects of sample size on statistical errors of parameters of gamma

processes in terms of asymptotic variances of the maximum likelihood estimates. The

asymptotic variances are derived from the observed Fisher’s information matrix, I, which

is defined as the negative Hessian matrix of log likelihood or the second derivatives of

l (α, β). From (5.11), we have

I =




∑n
i=1 ∆t2i ψ

′ (α∆ti) tn/β

tn/β αtn/β2


 (5.15)

where ψ′ (u) = dψ (u) /du. The entity I22 follows from the fact that ∂2l/∂β2 = αtn/β2 −
2xn/β3 and xn = αβtn. Taking the inverse of I we obtain the asymptotic covariance

matrix for α and β.

Suppose ∆ti = ∆t = tn/n for i = 1, 2, . . . , n. Then

I =
tn
β


 β∆tψ′ (α∆t) 1

1 α/β


 . (5.16)

Hence, the asymptotic covariance matrix is

I−1 =
β

tn [α∆tψ′ (α∆t)− 1]


 α/β −1

−1 β∆tψ′ (α∆t)


 . (5.17)
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From Bleistein and Handelsman (1975) we have

ψ′ (u) ∼ 1
u

+
1

2u2
+

1
6u3

− · · · , (5.18)

and thus

uψ′ (u)− 1 ∼ 1
2u

+
1

6u2
− · · · . (5.19)

Using the first term of the asymptotic expansion, we have

V̂ar(α̂) =
α

tn [α∆tψ′ (α∆t)− 1]
∼ 2α2∆t

tn
=

2α2

n
, (5.20a)

V̂ar
(
α̂, β̂

)
= − β

tn [α∆tψ′ (α∆t)− 1]
∼ −2αβ

n
, and (5.20b)

V̂ar
(
β̂
)

=
β2/α

tn (1− 1/ [α∆tψ′ (α∆t)])
∼ β2

(
2
n

+
1

αtn

)
. (5.20c)

The asymptotic variance of α and covariance of α and β are dependent on the size of

sample, n: the greater is the sample size, the smaller the standard error will be. However,

the asymptotic variance of β, the scale parameter, depends not only the sample size but

also on the total time length of the sample path. As the maximum likelihood estimates

are asymptotically unbiased, the coefficient of variation (COV) of the estimate for the

shape parameter is
√

2/n and the COV for the scale parameter is
√

2/n + 1/(αtn).

To verify the above observations, a Monte Carlo simulation is performed. With fixed

shape parameter α and scale parameter β, a sample path of the gamma process is gener-

ated with a number n of measurements from the time interval [0, tn]. Using the simulated

data, the parameters are estimated and the associated standard errors are computed as

well. Figure 5.1 demonstrates the trend of the COV of the estimated shape and scale

parameter with increasing n at three different length of sample path tn. Both plots agree

well to the analytical results.
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Figure 5.1: Coefficient of variation of the estimated (a) shape and (b) scale parameters
from different numbers of measurements. Dotted lines represent the analytical results,
and solid lines the simulation results
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5.2.4 Comparison of Maximum Likelihood Method and Methods of Mo-

ments

A simulation study is undertaken to compare the effectiveness and efficiency of the three

methods of parameter estimation. For brevity, we use MLE for maximum likelihood

estimates, MoMR for estimates from (5.4) based on the method of moments of rate, and

MoMX for estimates from (5.8) based on the method of moments of increments. Table

5.1 lists the mean and standard error of estimated shape and scale parameters for the

gamma process with the true shape and scale of 3 and 2, respectively. When the sample

size N is greater than 50, three methods all provide reasonable results. But the standard

errors of the MLEs are slightly smaller than those from the two methods of moments.

The maximum likelihood method needs a little more computational efforts than the

methods of moments does. But the former provides an asymptotic variance of the es-

timates without much more efforts as discussed above. To get the confidence intervals

of the estimates of the methods of moments, however, bootstrap simulation (Efron and

Tibshirant 1993), a very computationally intensive tool, is usually called for. Another

reason of preferring maximum likelihood method is that this method is adapted to models

with more complicated structures, as discussed next.
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5.3 Modeling Fixed-Effects of Covariates in Deterioration

We now consider to estimate the parameters of a gamma process X (t) of which, for

general purpose, both the shape and scale parameters are functions of some covariates.

Denote the covariates by a vector zi for unit i, i = 1, . . . , n. Suppose the shape and scale

parameters are linked with the covariates by the following parametric forms

αi = α (zi; δ) and βi = β (zi; γ) (5.21)

where both δ and γ are parameter vectors to be estimated. Suppose we observed one

sample path of length mi for ith unit . Given deterioration data as (xij , tij , zi), j =

0, 1, . . . , mi, we cannot pool the data as one sample path as we did in the last section,

because each unit here has different shape and scale parameters.

When the sample path record of each unit is long enough, we can use the methods

proposed in the last section to estimate the shape and scale parameters separately for each

unit at first. The parameters δ and γ can then be estimated using regression techniques

based on the parametric relationship of (5.21). This is equivalent to the two-stage method

used for growth curve models (Meeker and Escobar 1998). Clearly, the effectiveness and

efficiency of this method depends on both large n and large mi. For practical deterioration

data of which mi is usually very small, this method is not applicable.

Maximum likelihood method is suitable for this case. As a matter of fact, only a

small modification of the likelihood function in (5.11) is needed for the method to fit

the situation. Instead of pooling all the data into one sample path, we write the log

likelihood function of each unit as (5.11) with α and β replaced by αi and βi from (5.21).

The sum of all the individual log likelihoods gives the log likelihood function for δ and γ.

The parameters can then be estimated by maximizing the total log likelihood function.

The standard error of the estimates can also be computed from the observed information

matrix. Numerical procedures for the maximization have been discussed in Section 3.3.1.
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5.3.1 Likelihood Ratio Test

When modeling the effects of covariates, we often want to know the significance of certain

covariates. This can be done by a hypothesis test. For example, to check the significance

of a covariate, we can check whether the parameter associated with this covariate is zero.

Likelihood ratio test is an effective procedure for this purpose.

Denote by θ the parameter vector including both δ and γ. Suppose we want to

test the null hypothesis H0 : θ = θ0 against its alternate H1 : θ 6= θ0 for a known θ0.

The likelihood ratio test statistic is defined to be twice the difference between the two

maximum log-likelihoods (Lawless 2003),

Λ(θ0) = 2l
(
θ̂
)
− 2l (θ0) (5.22)

where l
(
θ̂
)

is the maximized log likelihood and l (θ0) is the log likelihood associated

with θ0. If θ is k dimensional, then Λ(θ0) is asymptotically chi-square distributed with

k degrees of freedom, i.e., Λ(θ0) ∼ χ2
(k). When the observed value of the likelihood ratio

statistic is large enough, we have significant evidence against the null hypothesis. As to

how large the observed value is enough, it depends on the degrees of freedom and the

significance level.

Quite often, we want to test only part of the parameters. This corresponds to a

composite hypothetical test. Suppose the parameters are partitioned as θ =
(
θT
1 , θT

2

)T

and H0 : θ1 = θ10, the likelihood ratio statistic is

Λ(θ01) = 2l
(
θ̂
)
− 2l

(
θ̃
)

(5.23)

where l
(
θ̃
)

is the profile log likelihood with θ1 = θ10. In this case, Λ(θ01) ∼ χ2
(p), where

p is the dimension of θ10.
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5.4 Effects of Measurement Errors

When the measurement error is significant, it cannot be ignored in the data analysis.

In this case, inspection data are noise-contaminated sample paths of gamma process.

Denote the measured deterioration at time tij by yij = xij + εij where xij is the actual

deterioration and εij ’s are assumed to be normally and independently distributed random

variables with mean zero and variance σ2
ε . Note ∆yij = ∆xij + εij − εi,j−1. So although

∆xij are independent by definition, the observed increments ∆yij are not independent.

This complicates the construction of likelihood function. In a matrix form,




∆yi1

∆yi2

...

∆yimi




=




∆xi1

∆xi2

...

∆ximi




+




1

−1 1
. . . . . .

−1 1







εi1

εi2

...

εimi




(5.24)

or ∆yi = ∆xi + Cεi = ∆xi + ηi, where ηi ∼ N
(
0, σ2Σ

)
and

Σ = CC′ =




1 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 2




. (5.25)
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Although εi1, . . . , εimi are independent each other, ηi1, . . . , ηimi are clearly not. The

marginal distribution of ∆yi is

f (∆yi1, . . . ,∆yimi)

=
∫
· · ·

∫

{ηij≤∆yij}




mi∏

j=1

f∆Xij (∆yij − ηij)


 f (ηi1, · · · , ηimi) dηi1 · · ·dηimi

=
∫
· · ·

∫

{ηij≤∆yij}

mi∏

i=1

[
(∆yij − ηij)

αi∆ti−1

β
αi∆tij−1
i Γ (αi∆tij)

e−(∆yij−ηij)/βi

]
f (ηi) dηi (5.26)

where f (ηi) = f (ηi1, · · · , ηimi) denotes the multivariate normal density function with

mean zero and covariance σ2Σ. When the number of repeated measurements mi is greater

than 3, Monte Carlo simulation may be helpful for evaluating the above integration.

The marginal distribution of ∆yi in (5.26) can serve as the likelihood function of the

parameters (α (δ) , β (γ) and σ2
ε) for unit i. Usually, the noise variance σ2

ε is known from

the characteristic curve of the inspection device. If it is not known, we can also estimate

the variance and use likelihood ratio test to check whether the effects of measurement

error is statistically significant.

In order to see the significance of measurement error on the parameter estimation, a

simulation study is conducted for a stationary gamma process with shape parameter α = 5

and scale parameter β = 2. Two cases are considered. For the first case, 1000 sample

paths are generated and each sample path has only one record at time t = 0.25. The

second case considers 50 sample paths, each having 5 records at time interval ∆t = 0.25.

For both cases, each observation of the sample path is contaminated by a measurement

error with standard deviation σε = 0.5. For both cases, the estimations with and without

consideration of the measurement errors are carried out. When the measurement errors

are ignored, the parameters are estimated using the method introduced in Section 5.1.2

and the estimates are denoted by α0 and β0. The estimates when measurement errors

are considered are denoted by αe, βe and σe for α, β and σε, respectively. To get the
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statistics of the estimates, 200 simulations are run for each case.

The histograms of the maximum likelihood estimates with or without consideration

of measurement errors are plotted in Figure 5.2 and 5.3. It is clear from the first case

that ignoring the measurement errors would lead to biased estimation with misreported

standard errors (se) from observed information matrices. For the second case where more

repeated measurements are used, however, the differences of results with and without

consideration of measurement errors are not so obvious. The reason may be that the

measurement error is getting relatively smaller when the deterioration gets larger. Note

that less total amount of data are used,in the second case than in the first one. This

observation implies that repeated measurement along the time is preferable in the context

of compensating the effects of measurement errors.

5.5 Modeling Random Effects in Deterioration

We have discussed how to estimate the parameters of a gamma process model when

there are covariates associated the deterioration. But there still are situations where the

covariates do not explain all of the differences across the units. The effect due to the

unobserved heterogeneity is called a random effect. The random effect in deterioration

can be modeled by the mixed-scale gamma process introduced in Section 4.4.

Recall that a mixed-scale gamma process X (t) is a nonstationary gamma process

with scale parameter B being an inverted gamma random variable. That is, W = B−1 ∼
Ga

(
δ, γ−1

)
and given B = 1/w, X (t) is a nonstationary gamma process with shape

function α (t) and scale parameter 1/w. When there are covariates attached to the units,

the fixed-effects due to the covariates can be incorporated as we did in the Section 5.3.

For ease of presentation, we assume the covaiates are integrated in the scale parameter

so that the scale parameter B is replaced by Bξ (z), where z denotes the covariates and

ξ (z) represents the effect of covariates. Under these assumptions, the joint distribution
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Figure 5.2: Histograms of maximum likelihood estimates for stationary gamma process
with or without consideration of measurement errors. Parameters are estimated based on
1000 sample paths of one record. True values of the parameters are α = 5, β = 2, σε = 0.5
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of disjoint increments ∆X1, . . . ,∆Xn, according to (4.29), is expressed as

f (∆x1, . . . , ∆xn) =
Γ (δ + αn)

Γ (δ)
n∏

i=1

Γ (∆αi)

(γξz)
δ

n∏

i=1

(∆xi)
∆αi−1

(γξz + xn)δ+αn
, (5.27)

where xn = Σn
i=1∆xi, αn = Σn

i=1∆αi and ξz = ξ (z) for brevity. Using this joint den-

sity as the likelihood function, we can use the maximum likelihood method to estimate

parameters δ, γ, and those in α (t) and ξz.

5.5.1 Test of Random Effects

We are certainly interested in testing the significance of the random effects. When γ →∞
and δ = γν with ν fixed and finite, the inverted gamma random variable B will concen-

trate around 1/ν and the mixed-scale gamma process will tend to the simple gamma

process with shape function α (t) and the common scale parameter ξz/ν. Therefor, to

test the random effects, we test whether γ is small enough. In this case, the null hypoth-

esis is expressed as H0 : γ = ∞.

Lawless and Crowder (2004) proposed a score statistic but made a small mistake on

the variance of the statistic. Following them, we want to rederive the score statistic in

detail. First note that under the null hypothesis, we have

E0 [Xt − αt ξz/ν] = 0 (5.28a)

E0

[
(Xt − αt ξz/ν)2

]
= αt ξ2

z/ν2 (5.28b)

E0

[
(Xt − αt ξz/ν)4

]
= 3 (1 + 2/αt) α2

t ξ
4
z/ν4 (5.28c)

The subscript “0” is put to emphasize the expectations under the null assumption.
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From (5.27), the log likelihood function for a single unit is

l = log Γ (δ + αn)− log Γ (δ)−
n∑

i=1

log Γ (∆αi)

+ δ log (γξz) +
n∑

i=1

(∆αi − 1) log (∆xi)− (δ + αn) log (γξz + xn) . (5.29)

Let δ = γν. Then

∂l

∂γ
= ν {1 + log (γξz) + ψ (γν + αn)− ψ (γν)− log (γξz + xn)}

− ξz (γν + αn) (γξz + xn)−1 (5.30)

where ψ (·) denotes the first derivative of logarithm gamma function. As γ →∞, ∂l/∂γ →
0, so a more detailed calculation is called for. From Bleistein and Handelsman (1975) we

have

ψ (u) = log u− 1
2u

− 1
12u2

+ O
(
u−3

)
. (5.31)

Thus,

∂l

∂γ
= ν

{
log

(
1− xn

γξz + xn

)
+ log

(
1 +

αn

γν

)
+

αn

2γν (γν + αn)
+

αnξz/ν − xn

γξz + xn
+ O

(
γ−3

)}

(5.32)

Note that for small u, log (1 + u) can be approximated as u−u2/2+u3/3−· · · . Applying

this approximation to the above expression and simplifying those terms, we have ∂l/∂γ =

Aγ−2 + O
(
γ−3

)
where

A = −1
2
νξ−2

z

{
(xn − αnξz/ν)2 − αnξ2

z/ν2
}

. (5.33)

A is the statistic for testing the random effects. Although it is not the raw score statistic

as defined by the first derivative of the log likelihood, it is nevertheless the leading term

of the derivative. Therefore, it is also called a score statistic.
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Note from (5.28) that the quantity inside the bracket of (5.33) represents the difference

of sample variance of X (tn) from its population variance. Therefore, from (5.28) we have

E0 [A] = −1
2
νξ−2

z

{
E0

[
(Xn − αnξz/ν)2

]
− αnξ2

z/ν2
}

= 0 (5.34)

and

Var0 [A] = E0

[
A2

]
=

1
4
ν2ξ−4

z

{
E0

[
(Xn − αnξz/ν)4 − α2

nξ4
z/ν4

]}
=

αn (αn + 3)
2ν2

. (5.35)

According to the large-sample theory (Lehmann 1999), the score statistic defined as

U =
A√

Var0 (A)
(5.36)

follows the standard normal distribution. Therefore, given a dataset, one can estimate

the parameters of a gamma process and use the estimates to calculate the score statistic

U . If |U | is greater than a normal quantile zα/2 where α is the significance level, we have

significant evidence against the null hypothesis. If so, we may want to further model the

data with a mixed-scale gamma process.

A Monte Carlo simulation study is performed to verify the proposed score statistic.

Figure 5.4 and 5.5 show the histograms of the score statistic U for a stationary gamma

process with shape parameter α = 3 and scale parameter β = 2. For a relatively small

dataset, the distribution of the score statistic is biased and skewed as shown in Figure

5.4. In case of a large dataset with 500 units, each having 30 records, the simulated

distribution is very close to the standard normal distribution (Figure 5.5). These verify

our derivation of the score statistic.
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Figure 5.4: Histogram of the score statistic for 20 sample paths of 30 equally sampled
records

−4 −3 −2 −1 0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Score statistic U

F
re

qu
en

cy

Mean = 0.0017
Standard error = 0.9775
Skewness = −0.0793
Kurtosis = 2.9949
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5.6 Case Study — Creep Deformation

We now re-investigate the dataset of creep deformation of pressure tubes in Chapter 3

where the diametral expansion data was fitted to a linear mixed-effects model. Here we

want to explore the possibility of a gamma process model.

Define also the time as the average fluence as did in Chapter 3. Assume the strain

increase follows a homogeneous, stationary gamma process with shape parameter α and

scale parameter β. The maximum likelihood estimates are

α̂ = 7.3462 (1.1420) , β̂ = 0.0291 (0.0045) (5.37)

with maximized log likelihood l
(
α̂, β̂

)
= 9.572. For the score test for random effects,

we get Â = −2.78, se
(
Â

)
= 12.41. Hence Â/se

(
Â

)
= −0.2243, which indicates no

significant evidence of random effects in the data. Considering the measurement errors,

the estimates are α̂ = 8.3636 (1.5230), β̂ = 0.0256 (0.0047) and σ̂ε = 0.0575 (0.0271)

with maximized log likelihood l
(
α̂, β̂, σ̂ε

)
= 10.373. The Likelihood ratio test shows

no significant measurement error. Therefore, the random effects and measurement errors

are not considered in the subsequent analyses. Figure 5.6 shows the measured versus the

fitted creep strain increments with 95% confidence bound.

For an illustration, the lifetime distribution of a typical pressure tube with average flux

2.4× 1017 n/(m2· s) is shown in Figure 5.7. Comparing to the lifetime from LME model,

the lifetime from the GP model has similar mean but smaller standard deviation. The

smaller standard deviation seems counter-intuitive as, after all, the GP model includes the

temporal uncertainty of the diametral expansion whereas the LME model, as a random

variable model in essence, does not. But recall that in the LME model the diametral

strain has a quadratic variance function of time, as mentioned in Chapter 3, whereas the

GP model implies only a linear variance function. The more scattered deterioration leads

to a larger standard deviation of lifetime, of course.
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pressure tube with average flux 2.4× 1017 n/(m2·s)

5.7 Summary

A suite of statistical techniques are developed in this chapter for estimating parameters of

gamma process models. In particular, both the method of moments and maximum likeli-

hood method are developed for estimating parameters of gamma process models without

covariates. An asymptotic covariance matrix of the maximum likelihood estimates for

the stationary gamma process is derived and validated by numerical simulation. The

maximum likelihood method is further extended for cases with covariates, measurement

errors and random effects.

The influence of measurement error on the parameter estimation is studied via a

simulation study. The results show that when there are few repeated measurements and

the measurement error relative to the deterioration is not small, the inclusion of the

measurement error in parameter estimation is important.
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In order to test the significance of random effects in a mixed-effects model, a new

score statistic is rederived based on the original work of Lawless and Crowder (2004).

Monte Carlo simulation results are used to validate the derivation.

The diametral expansion data of pressure tubes discussed in Chapter 3 is re-investigated

using a stationary gamma process model. Hypothesis tests show no significant evidence of

measurement errors and cross-unit heterogeneity. Although the estimated lifetime from

the gamma process has similar mean value to that from the linear mixed-effects model,

the former is less dispersed, because the gamma process model assumes the deteriora-

tion a linear variance function of time whereas the linear mixed-effects model implies a

quadratic function.
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Chapter 6

Case Study — Flow Accelerated

Corrosion in Feeder Pipes in

CANDU Plants

6.1 Background

Feeder pipes are important parts of the primary heat transport system of a CANDU

reactor (Figure 1.2). Considerable wall thinning of feeder pipes was observed for the

first time at the Point Lepreau reactor in 1995. The degradation mechanism is identi-

fied as flow-accelerated corrosion (FAC). Excessive thinning occurs on the inside of the

feeder pipes, especially on the outlet elbows close to the exit of the pressure tubes. This

prompted generating stations to implement an inspection program to assess the extent

of the problem. It is important for a CANDU life extension program to predict the wall

thickness and lifetime of feeders based on inspection data.

Flow accelerated corrosion is a process whereby the normally protective oxide layer

on carbon steel dissolves into a stream of flowing water or wet steam (Dooley and Chexal
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Figure 6.1: Subsequent processes of flow-accelerated corrosion (Burrill and Cheluget 1998)

2000). Although several different physical-chemical mechanisms of the FAC process have

been proposed (Berge, Ducreux, and Saint-Paul 1980; Burrill 1995; Burrill and Cheluget

1999; Lang 2000), it is generally agreed that the FAC is an electrochemical corrosion

enhanced by mass transfer in flowing water and it can be generally divided into two

subsequent processes (Figure 6.1). The first stage is the production of soluble ferrous

ions at the oxide-water interface, which involves three simultaneous actions: a) metal

oxidation, b) diffusion of ferrous species from the iron surface to the boundary fluid layer

through the porous oxide layer, and c) dissolution of magnetite oxide layer. The second

stage involves the transfer of the ferrous ions into the bulk water across the diffusion

boundary layer.

Feeder pipes connect fuel channels and headers. High-temperature (about 310-312 ◦C)

heavy water flows out of individual fuel channels via the feeder pipes into outlet headers

and then goes together to steam generators. After heat exchange in the steam generators,
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Figure 6.2: Illustration of end-fitting and outlet feeder pipe (Burrill and Cheluget 1999)

the lower-temperature (typically 266◦C) heavy water flows back to inlet header and is then

distributed to fuel channels through inlet feeders (Burrill and Cheluget 1999). Made of

SA 106 Grade B carbon steel, the outlet feeder pipes have typical nominal outer diameter

of either 2.0 or 2.5 inches at the reactor face. The flow leaves the end-fitting annulus via a

right-angle turn and enters a Grayloc hub (SA 105 carbon steel), resulting in a turbulent

flow at the entrance to the outlet feeder pipe, which triggers the flow-accelerated corrosion

at the downstream of the hub especially at the first bend (Figure 6.2). The operating

flow velocity in individual pipes varies with channel power from 8 to 18 m/s (Burrill and

Cheluget 1999). The water is mildly alkaline (10.2 < pHa < 10.8) and contains dissolved

deuterium.

The bending process during pipe fabrication causes initial thinning at the extrados

and thickening at the intrados (Figure 6.3). Depending upon the bending process and

radius of the bend (bending angles), the difference in thickness between intrados and

extrados can be up to 25% (Kumar 2004). Therefore, it is presumed that the extrados is
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Figure 6.3: Ovality of the feeder cross section and initial wall thinning during fabrication
(Kumar 2004)

most vulnerable to FAC because of the lower wall thinning allowance.

Factors affecting the rate of FAC include the fluid flow velocity, pipe geometry (e.g.

bend configuration and bend angle), water temperature, water chemistry (e.g. pH value)

and metallurgical variables such as chromium content in the steel ((Slade and Gendron

2005)). As far as the FAC in feeder pipes is concerned, however, the effective factors

reduce to the flow velocity and geometry configuration of bends, as the other variables

are simply constant across the feeders of the reactor. Since there are only a few different

geometries used in the pipes, we will discuss in detail the effects of geometry configuration

in the data analysis.

For the influence of flow velocity on the FAC rate, Berge, Ducreux, and Saint-Paul

(1980) expressed the FAC rate or mass loss of metal per unit time, R, as

R =
1

1
2kd

+ 1
km

(Ceq − C0) (6.1)

where kd is the magnetite dissolution coefficient, km the mass transfer coefficient, Ceq

and C0 the concentration of ferrous ions in the metal surface and bulk water, respec-

tively. When mass transfer controls the FAC, which is common for CANDU systems, the
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following linear relationship was proposed by Ducreaux (1983):

R ≈ km (Ceq − C0) . (6.2)

Since the mass transfer coefficient km is usually expressed as a power function of the flow

velocity (Berger and Hau 1977), the FAC rate is a power function of the flow velocity,

i.e., R ∝ V δ where V stands for the flow velocity and δ > 0.

However, a sophisticated mechanistic FAC model for predicting the wall thinning and

end of life has not yet been available, largely because of the complexity of the problem

and of the varying working environment. The observed FAC rate varies considerably

both across the feeders and over the service life. A probabilistic model that models both

the across-feeder uncertainty and the within-feeder uncertainty in the FAC process is

essential, as an effective and efficient life-cycle management of the feeders requires an

adequate consideration of these uncertainties.

This case study aims to develop a stochastic process model for the feeder thinning

and attempts to answer the following questions:

(i) What is the mean lifetime of a feeder, with lifetime defined as the time when the

remaining wall thickness falls below a specific substandard threshold wth?

(ii) Given the observed data, what is the remaining lifetime of an inspected feeder?

(iii) How many substandard feeders will there be before the next outage period? and

(iv) When will the first substandard feeder appear?

6.2 Wall Thickness Data and Exploratory Analysis

In this case study a set of wall thickness data from feeder pipes in a CANDU 6 NPP is

analyzed. The data consists of 637 measurements of minimum wall thickness near the

110



Table 6.1: Ratio of repeated measurements of Feeder wall thickness data
Number of
Repeated
Measure-
ments

Number
of Pipes

Percentage
(%)

1 232 61.1
2 94 24.7
3 24 6.3
4 16 4.2
5 6 1.6
6 5 1.3
7 3 0.8
Total 380 100.0

bend extrados of the first outlet bend taken from all of the 380 feeders at 8 inspection

outages. As shown in Table 6.1, about 61% of the inspected bends were measured only

once, and only about 15% were measured three or more times. For each feeder, the flow

velocity and bend geometry configuration, characterized by its bend type (BT), nomi-

nal outer diameter (OD) and bend angle (BA), were recorded. Upon thermohydraulic

considerations, two sizes of OD were used in the feeders; 320 feeders (BT1 to BT6) are

2.5” and the other 60 feeders (BT7 to BT12) are 2”. Table 6.2 presents the geometry

parameters of the first bend of outlet feeders in detail. The flow velocity at the first bend

of the outlet feeder was obtained from thermohydraulic analysis and the time-averaged

flow velocity from both one- and two-phase flow is used. Different for each feeder, the

flow velocity of 2” feeders ranges from 7.72 to 12.63 m/s while that of 2.5” feeders from

6.49 to 14.54 m/s.

The initial wall thickness of the feeders is not known. However, measurements of the

wall thickness from two groups of spare bends ( 16 of 2.5” and 12 of 2”) that had not been

installed provide the baseline information. The coefficients of variation of the initial wall

thickness of the two groups are 1.4% and 1.9%, respectively, both very small. Therefore

the mean values, 6.223 mm for 2.5” bends and 4.913 mm for 2” bends, are used as the

initial thickness in the subsequent analysis.
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Table 6.2: Geometry parameters of the 1st bends of outlet feeders in a CANDU 6 Plant
BT n OD BA d D Group
1 2 2.5 32.7 3.90 Out I
2 8 2.5 42.8 5.14 In II
3 12 2.5 42.8 5.14 In II

4A 20 2.5 73.1 3.85 In III
4B 18 2.5 73.1 3.85 Out IV
4C 16 2.5 73.1 3.85 Out IV
5A 12 2.5 73.1 3.85 In III
5B 16 2.5 73.1 3.85 Out IV
5C 22 2.5 73.1 3.85 Out IV
6 194 2.5 73.1 3.85 Out IV
7 20 2 32.7 4.13 Out V
8 8 2 42.8 5.44 In VI
9 6 2 42.8 5.44 In VI

10A 4 2 73.1 4.40 In VII
10B 4 2 73.1 4.40 Out VII
10C 2 2 73.1 4.40 Out VII
11A 4 2 73.1 4.40 In VII
11B 2 2 73.1 4.40 Out VII
11C 2 2 73.1 4.40 Out VII
12 8 2 73.1 4.40 Out VII

BT — Bend type
n — Number of feeders per reactor
OD — Outer diameter of bends (inches)
BA — Bend angle (degrees)
d — Distance between end fitting joint and the first bend (inches)
D — Direction that extrados of the first bend faces
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Figure 6.4: Typical wall thinning paths. Left: 2” feeders; right: 2.5” feeders

Figure 6.4 shows typical wall thinning paths with five or more repeated measurements.

The loss of wall thickness of the bends appear a nearly linear trend over time. This

observation justifies the stationarity of the gamma process that is used in the subsequent

analyses.

As discussed in the last subsection, the flow velocity has the most significant impact

on the wall thinning rate in comparison to other factors such as bend geometry, coolant

temperature and pH values. To illustrate the effect of flow velocity on FAC, the wall

thinning rate is calculated as (wi − w0) /ti, where wi is the minimum wall thickness

measured at the ith inspection time ti, and w0 is the initial wall thickness. The inspection

time is measured in effective full power year (EFPY). Figure 6.5 demonstrates great

variability in thinning rate and positive correlation between the thinning rate and the

flow velocity.

The bend geometry parameters including bend angle, bend direction and distance

between end fitting joint and the first bend may be important explanatory variables as
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Figure 6.5: Dependence of wall thinning rate on flow velocity. Left: 2” feeders; right:
2.5” feeders

they affect the turbulence structure of the flow at the neighboring area of the bends and

thus change the wall thinning rate. According to Table 6.2, we can divide the 2.5” feeders

into four groups:

Group I including 2 Type 1 feeders,

Group II including 20 Type 2 and 3 feeders,

Group III including 32 Type 4A and 5A feeders, and

Group IV including 266 Type 4B, 4C, 5B, 5C and 6 feeders.

Similarly, the 2” feeders can be divided into three groups:

Group V including 20 Type 7 feeders,

Group VI including 14 Type 8 and 9 feeders, and

Group VII including 26 Type 10 (A, B, C), 11 (A, B, C) and 12 feeders.
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Each group has the same geometry characteristics, except that in Group VII Type

10A and 11A bend into the reactor face whereas the other in the group bend outward.

Preliminary study indicated that the bend direction has no significant effect for the 2”

feeders, although it does for the 2.5” feeders.

Other FAC factors such as coolant temperature, pH value, metallurgical characteris-

tics are not considered because they are deemed to be the same for all feeders.

6.3 Gamma Process Model and Statistical Inference

6.3.1 Model Structures

The loss of feeder wall thickness due to FAC is a slow, incremental process of mass loss by

electrochemical and diffusion reactions, which can be modeled by a gamma process. Since

the mean thinning paths appear linear as shown in Figure 6.4, we propose a stationary

gamma process with shape parameter α and scale parameter β. To account for the

dependence of FAC rate on the flow velocity, the scale parameter is further modeled as a

power function as suggested from empirical studies mentioned in Section 6.1:

β = ηV δ. (6.3)

Furthermore, both corrosion theory and field experiences of plant engineers indicate

that there is an incubation period before any wall thinning can be observed. In other

words, the wall thinning due to FAC starts a few years after the system was put in service.

Thus it is reasonable to assume that the wall thickness keeps the initial value until some

time t0, the corrosion incubation period. Denote the wall thickness at time t by W (t), the

thickness loss by X (t), and its initial value by w0. Then the wall thickness is expressed

as

W (t) =





w0, 0 ≤ t ≤ t0

w0 −X (t; α, β) , t > t,
(6.4)
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in which X (t) is assumed as a stationary gamma process. In summary, the model consists

of four parameters: α (shape), η, δ (related to scale) and t0 (incubation time).

6.3.2 Parameter Estimation

Recall that increments of a stationary gamma process are independent and the gamma

distributed with probability density function as

g(∆x; α, β) =
xα∆t−1

βα∆tΓ (α∆t)
e−x/β. (6.5)

Given the inspection data we can estimate the process parameters by using the method

of maximum likelihood. Suppose we inspect a number n of components, each being

inspected at mi different points of time. Then we have the deterioration data in the form

of (wij , tij , Vi) (i = 1, . . . , n, j = 1, . . . , mi), in which wij stands for the wall thickness

at time tij and Vi for the flow velocity associated with the ith pipe. From (6.5) and the

independent-increments assumption of gamma process, the likelihood function for the ith

feeder with flow velocity Vi is expressed as

Li(α, η, δ, t0) =
ni∏

j=1

(∆wij)
α∆tij−1

β
α∆tij
i Γ (α∆tij)

e−∆wij/βi , (6.6)

in which ∆wj = wi(ti,j−1) − wi(tij), ∆tij = tij − ti,j−1, βi = ηV δ
i , wi(ti0) = w0 and

ti0 = t0. Then the complete log likelihood for is expressed as the following:

l(α, η, δ, t0) =
n∑

i=1

mi∑

j=1

[(α∆tij − 1) ln∆wij − ln Γ(α∆tij)

− α∆tij(ln η + δ ln Vi)−∆wijV
−δ
i /η. (6.7)

The parameters are estimated by maximizing the log likelihood function in (6.7). The

results from the maximum likelihood estimation are summarized in Table 6.3, in which the
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Table 6.3: Maximum likelihood estimates and the score statistics for different groups
Group η δ α t0 l U

II 0.0177 (0.0052) 1.6295 (0.3052) 4.7589 (1.4952) 6.0525 (1.0361) 18.75 0.05
III 0.0158 (0.0038) 1.8334 (0.2224) 4.5921 (1.3484) 3.6872 (1.7469) 22.43 0.47
IV 0.0106 (0.007) 1.5227 (0.0460) 6.6894 (0.4555) 1.3425 (0.2512) 365.17 1.70
V 0.0125 (0.0033) 2.8550 (0.8817) 4.2826 (1.1297) 4.2974 (0.7840) 35.03 0.64
VI 0.0152 (0.0043) 2.1462 (0.2397) 2.9809 (0.8321) 0.0000 (0.0031) 27.31 -0.52
VII 0.0132 (0.0019) 1.6909 (0.1810) 4.9092 (0.6794) 0.5885 (0.5767) 159.82 0.94

Note: Since Group I has only 2 feeders, no meaningful statistical analysis can be done separately.
It is pooled into Group V as they have the most similar geometry except OD.

m.l.e., standard errors, and the corresponding maximized log likelihoods are presented.

It is interesting to note that the estimated exponent of the flow velocity is about 1.75

whereas previous FAC studies on secondary side pipes suggested an exponent less than 1

(Burrill and Cheluget, 1999)

6.3.3 Model Checks

To check the fitness of the proposed gamma process model for the wall thickness data,

the scatter plots with predicted values and 95% confidence bounds are shown in Figure

6.6 to 6.11 for different groups. The gamma process model appears to fit the data fairly

well for all the groups.

Besides the qualitative model check, there are three hypotheses to be tested. First, as

we mentioned in Chapter 5, the heterogeneity in each group should be checked. Second,

we want to test whether a corrosion dormant period does exist, i.e., t0 = 0. Third,

we have modeled the effects for each group separately, that is, we used different sets of

parameters (α, β, η, t0) for different groups of feeders. In order to check the effects of

the size of OD and of the geometry configuration, we want to test whether two different

groups have the same.set of parameters. If they do, it means no significant effects on the

wall thinning. For the first hypothesis we use the score test whereas likelihood ratio tests

are used for the last two hypotheses.
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Figure 6.6: Measured versus fitted values with 95% bounds: Group II
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Figure 6.7: Measured versus fitted values with 95% bounds: Group III
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Figure 6.8: Measured versus fitted values with 95% bounds: Group IV
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Figure 6.9: Measured versus fitted values with 95% bounds: Group V
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Figure 6.10: Measured versus fitted values with 95% bounds: Group VI
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Figure 6.11: Measured versus fitted values with 95% bounds: Group VII
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Table 6.4: Likelihood ratio tests for the corrosion incubation period t0
Group t0 l η0 δ0 α0 l0 Λ p

II 6.0525 18.75 0.0269 1.6844 1.8256 13.52 10.5 0.0012
III 3.6872 22.43 0.0169 1.8609 3.1305 21.20 2.46 0.1168
IV 1.3425 365.2 0.0109 1.5345 5.8854 353.1 24.2 0
V 4.2974 35.03 0.0181 2.6262 2.0547 28.32 13.4 0.0003
VI 0.0000 27.31 0.0152 2.1462 2.9809 27.31 0 1
VII 0.5885 159.8 0.0130 1.7035 4.8000 159.3 1.0 0.3173

Let us first look at the test of heterogeneity. For each group, we calculate the score

statistics U and they are listed in the last column of Table 6.3. It is clear no group

shows strong evidence against the null hypothesis which assumes homogeneity across the

feeders in the same group, except for Group IV for which U = 1.7, only a mild suggestion

of possible heterogeneity. Hence we keep the gamma process model and do not fit a

mixed-scale gamma process.

Table 6.4 lists the new maximum likelihood estimates for each group with t0 = 0.

The likelihood ratios Λ = 2 (l − l0) and the corresponding p-values are shown also in

the last two columns. Group II, IV and V have shown significant evidence against the

null hypothesis while the other three groups have not. Note that no significant evidence

against the null hypothesis is not equivalent to accepting the null hypothesis. We may

or may not accept the null hypothesis. We choose not to accept the null hypothesis here

just for model consistency purpose.

To check the effects of OD and of the geometry configuration, we notice that Group

III (Type 4A and 5A) and IV (Type 4B, 4C, 5B, 5C and 6) differ only by the direction

that extrados of the first bend faces (see Table 6.2). Both groups have 2.5” OD, the same

bend angle of 73.1o and the same distance between the end fitting joint and the first bend.

But Group III feeders bend into the reactor face and Group IV feeders bend outward.

If we treat the two groups as one and fit them with a gamma process model, we get

results shown in Table 6.5 with maximized log likelihood l = 360.3. The corresponding

likelihood ratio statistic Λ = 2× (22.43 + 365.17− 360.3) = 54.6. The degree of freedom
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Table 6.5: Likelihood ratio test of effects of bend direction
Group η δ α t0 l Λ p

III 0.0158 1.8334 4.5921 3.6872 22.43
IV 0.0106 1.5227 6.6894 1.3425 365.17

III+IV 0.0121 1.6347 5.7211 1.5006 360.3 54.6 ≈ 0
VII-1 0.0129 1.7601 4.8551 0.1098 54.11
VII-2 0.0132 1.6726 4.9612 0.7998 105.89
VII 0.0132 1.6909 4.9092 0.5885 159.8 0.4 0.98

is (4 + 4)− 4 = 4. Therefore the p-value is 4× 10−11 ≈ 0, a very significance level.

Similarly, Group VII includes Type 10A and 11A feeders that bend inward, and

other feeders that bend outward. We label Type 10A and 11A as Group VII-1 and the

other feeders in the group as Group VII-2. In this case, no significant improvement of

maximized log likelihood has been found. Hence we can treat them altogether.

Similar exercise can be done for Group II and Group VI, as the two groups differs

only by their outer diameters. The results are not shown here to save the space, but

the conclusion is that the OD has significant effects on the thinning behavior, at least in

terms of parameter estimation.

In summary, the model checks do not show obvious conflict against the assumptions

we made in Section 6.3.1 and therefore we use the results in Table 6.3 in the subsequent

analyses.

6.4 Prediction of the Lifetime and Remaining Lifetime

When the wall thickness of a feeder reduces to a certain threshold, the feeder is no longer

conformed to the standard requirements and becomes a substandard pipe even though

it may not break immediately. The time when the feeder reaches the threshold is then

called the lifetime of the feeder. Current industrial practice for thinning feeders defines

the substandard criteria based on the thinning region and extent and the remaining
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wall thickness (Gerber et al. 1992; Deardorff et al. 1999; Hasegawa et al. 2004). For

illustration purpose, we consider only the remaining wall thickness as the criterion and

the substandard threshold, wth, is chosen as 60% of the nominal thickness, w0.

Due to the monotone nature of the sample path of the gamma process, the lifetime

of the feeder has a cumulative distribution function as

FT (t) = Pr {W (t) < wth} = Pr {X(t) > w0 − wth}

=





0, t ≤ t̂0

1−GA(0.4w0; η̂(t− t̂0), δ̂), t > t̂0
(6.8)

in which wth = 0.6w0, δ̂ = α̂V β̂, and α̂, β̂, η̂, t̂0 are the m.l.e. of the parameters, as

shown in Table 6.3.

Different feeders have different lifetime distributions, as their flow velocity and geom-

etry configuration differ. The probability density functions of lifetime of the feeders are

plotted in Figure 6.12. Each subpanel of the figures shows two density functions associ-

ated with maximum and minimum flow velocities of the group. For other feeders in the

group, depending on their flow velocity, the lifetime distribution should locate somewhere

between the two densities. Table 6.6 lists the maximum and minimum mean lifetimes of

each group and their corresponding standard deviations. Figure 6.13 demonstrates the

trend of the mean lifetime along the flow velocity. At the same flow velocity, feeders

in Group VII (or Type 10, 11 and 12) deteriorate faster than those in the other groups

and feeders in Group VI (Type 8 and 9) appear to deteriorate slowliest. At the same

flow velocity, the 2.5” feeders (Group II, III and IV) have very close values of lifetime.

In contrast, the lifetime of 2” feeders at the same flow velocity has large range across

different configurations of bend geometry.

The remaining lifetime, given that the remaining wall thickness of the feeder is known,
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Figure 6.12: Probability density functions of feeder lifetime due to FAC

Table 6.6: Maximum and minimum mean lifetimes and associated standard deviations
for different groups

Group Minimum mean (st. dev.) Maximum mean (st. dev.)
II 24.64 (2.40) 46.80 (3.55)
III 25.80 (2.65) 52.91 (3.95)
IV 21.23 (2.23) 69.20 (4.11)
V 29.76 (2.91) 40.96 (3.49)
VI 26.41 (3.38) 75.68 (5.74)
VII 21.14 (2.50) 40.65 (3.49)
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Figure 6.13: Mean lifetime of feeders against flow velocity

say W (s) = ws, is expressed as

FT (t|ws) = Pr {W (t) < wth|W (s) = ws}

= Pr {X(t) > w0 − wth|X(s) = w0 − ws}

= Pr {X(t)−X(s) > ws − wth}

= 1−GA(ws − wth; η̂(t− s), δ̂) (6.9)

for t > s ≥ t̂0. The second equation holds because of the independent increments.

Figure 6.14 shows the remaining wall thickness measured at the latest inspection

times. The substandard threshold is also drawn to shown how close the feeders are to the

threshold. The latest measured wall thickness can be used to update the estimation of

the lifetime of feeders. For illustration purpose, for each group, one feeder with the least

remaining wall thickness is chosen and its remaining lifetime distribution is compared
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Figure 6.14: The latest measured wall thickness. Left: 2” feeders; right: 2.5” feeders

with the original lifetime distribution, as shown in Figure 6.15 The updated lifetime

distributions have less standard deviation than the original ones. This is also true for

other feeders that are not displayed here, because the remaining thickness introduces new

useful information for the lifetime prediction. But the mean lifetime from the updated

distributions should not always be less than the original mean lifetime as shown in the

figure, because shown here are only those feeders with the least remaining thickness. For

the comparison of the mean lifetime of other feeders, see Figure 6.16. The updated values

are evenly scattered around the mean values predicted from the original distribution, as

witnessed by the variation of the latest measurements in Figure 6.14. The difference of

the predicted mean lifetimes based on the original and updated distribution can be as

large as 3 EFPYs.
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Figure 6.15: Comparision of original (solid lines) and updated (dotted lines) lifetime
distributions of the feeders with the least remaining thickness
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6.5 Probability Distribution of the Number of Substandard

Feeders

The lifetime distribution and its associated moments give information of a specific feeder

pipe. In order to help decision-making regarding to in-service inspection and outage

scheduling, it is also desirable to know the system behavior of the whole core, that is, we

want to know the probability distribution of the number of substandard feeders in the

next inspection period, or alternatively, the probability distribution of the time when the

first substandard feeder appears.

We use combinatorial analysis to find the probability of the number of feeders whose

minimum wall thickness would fall below the substandard threshold during the next

inspection interval. To do that, we need first to compute the probability of failure for

each feeders at time t, denoted by pi(t) (i = 1, · · · , n = 380), using (6.9) based on the

latest measured wall thickness. Then the probability of the number of failed feeders is

evaluated by the following equations:

P (0; t) = Pr {N(t) = 0} =
380∏

i=1

[1− pi (t)] , (6.10a)

P (1; t) = Pr {N(t) = 1} = P (0; t)
380∑

i=1

pi (t)
1− pi (t)

, (6.10b)

P (2; t) = Pr {N(t) = 2} = P (0; t)
380∑

1=i<j

(
pi (t)

1− pi (t)

)(
pj (t)

1− pj (t)

)
, (6.10c)

P (3; t) = Pr {N(t) = 3} = P (0; t)
380∑

1=i<j<k

(
pi (t)

1− pi (t)

)(
pj (t)

1− pj (t)

) (
pk (t)

1− pk (t)

)
,

(6.10d)

...

Since the computation increases geometrically with the total number, n, of feeders, a
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Monte Carlo simulation algorithm is developed to carry out the combinatorial analysis.

For each time t, we first compute pi (t) for each feeder. Then generate n 0-1 random

variates, U1, U2, . . . , Un, where the Ui follows the following distribution: Pr (Ui = 0) =

pi (t) = 1−Pr (Ui = 1). The number of substandard feeders is just the number of zeros in

the generated variates. To get the probability distribution of N (t) = j, (j = 1, . . . , n), we

count the number of times when the number of substandard feeders equals j and divide

this number by the total number of simulations.

Instead of displaying individual probabilities, we plot histograms of the individual

failure probability at three different times in Figure 6.17 for sake of conciseness and clar-

ity. Figure 6.17 also compares the histograms from the original lifetime distributions and

from the updated distributions using the latest inspection information. At the time of 18

and 19 EFPY, the updated lifetime distributions predict no feeders of which the substan-

dard probability is greater than 0.02 while the original distributions predict several such

feeders. At 20 EFPY, however, the updated distributions can tell two feeders of which

the substandard probability has already reach over 0.5 whereas the original distributions

predict none of such feeders.

This trend is reflected in the plots of probability of the number of substandard feeders

in the whole reactor core, as shown in Figure 6.18: The original lifetime distributions

predict the probability of no substandard feeder at 18 EFPY is about 0.4 and drops below

0.1 one EFPY later. But the updated lifetime distributions predict the probability of no

substandard feeder is above 0.9 at 18 EFPY and just around 0.4 at 19 EFPY. As a result

of this difference, the system behavior differs significantly, as demonstrated in Figure

6.19. The original lifetime distributions predict the mean time to the first appearance

of a substandard feeder being 17.75 EFPY with standard deviation 0.61 EFPY and the

updated distributions predict the mean time of 18.85 EFPY and associated standard

deviation of 0.43 EFPY, again smaller than the previous standard deviation.
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Figure 6.17: Histograms of probability of feeders reaching substandard state based on
original (left panels) and on updated (right panels) lifetime distributions
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Figure 6.19: Survival functions of the time to the first appearance of a substandard feeder

6.6 Summary

Wall thinning due to the flow accelerated corrosion is a pervasive degradation in the

outlet feeder pipes of the CANDU nuclear power plants. This chapter undertakes a

comprehensive analysis of the wall thickness data from the outage inspections and fits

them with the gamma process model proposed in Chapter 4 and 5. Taking into account

the empirical knowledge of FAC, the model integrates both temporal variation and fixed

effects of flow velocity and of geometry configuration of the bends. The parameters are

estimated by using the maximum likelihood method and the model is carefully checked

using both qualitative and quantitative techniques.

Based on the stochastic thinning process, the lifetime of every feeder pipe is estimated.

The reliability of the feeder piping system is then computed by a combinatorial analysis,

which can be easily implemented by a simple Monte Carlo simulation. An advantage of

the gamma process model is that when new inspection data is available, the remaining
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lifetime can be updated in a simple way. The value of inspection is seen from the change

of mean number of substandard feeders and the system survival curve.
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Chapter 7

Effects of Temporal Uncertainty

in Planning Maintenance

7.1 Introduction

Maintenance decisions regarding the time and frequency of inspection, repair and re-

placement are complicated by temporal uncertainty associated with the deterioration of

systems. Although many stochastic models of deterioration with applications have been

reported (see Chapter 2), the impact of temporal uncertainty on maintenance optimiza-

tion problem has been lacking in the engineering literature. To address this issue, this

chapter chooses a random variable (RV) model as the benchmark and evaluates the ef-

fects of temporal uncertainty in planning maintenance through comparisons of optimized

maintenance strategies of a gamma process (GP) model and the RV model.

The chapter is organized as follows. First of all, the RV model is reviewed and basic

results about it are given for easy reference. Then the maintenance optimization problems

including both age-based replacement (ABR) and condition-based maintenance (CBM)

are formulated. For each policy, we use as a case study the diametral expansion data
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of pressure tubes discussed in the earlier chapters to compare the two models. To get a

better insight into the effects of temporal uncertainty, a sensitivity analysis is carried out,

in which the deteriorate rate is assumed as a gamma random variable for the RV model

and the two models are calibrated in terms of the first two moments of lifetime. The two

versions of the deterioration models are then compared in terms of the life-cycle cost of

both ABR and CBM policies. The last section concludes the chapter with summaries.

7.2 Random Variable Model

The random variable model characterizes the randomness of deterioration by a finite-

dimension vector of random variables Θ as X (t; Θ). Consider here a simple random

deterioration rate model as

X (t) = At (7.1)

where A is the random deterioration rate that reflects the uncertain nature of deterioration

in a population of similar components. Given the probability distribution of the random

rate, FA(a), the probability distribution of the amount of the deterioration, X(t), is

derived as FX(t)(x) = FA(x/t). The mean, variance and coefficient of variation (COV) of

X(t) are expressed, respectively, as

µX(t) = µAt, σ2
X(t) = σ2

At2 and νX(t) =
σX(t)

µX(t)
= νA. (7.2)

The lifetime, defined as the first passage time over a threshold ζ and denoted by T ,

has the probability distribution function as

FT (t) = Pr (T ≤ t) = Pr (At ≥ ζ) = 1− FA (ζ/t) . (7.3)

Depending on the distribution of A, the lifetime distribution can be derived analytically

or computed numerically.
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7.3 Age-Based Replacement

Age-based replacement (ABR) is the simplest policy for the renewal of deteriorating fleets

of components. Under this policy, a component is replaced when it reaches a specific age

regardless of its condition. The specific age is called replacement age and denoted by ta.

The component is of course also replaced if failure occurs before the replacement age.

Denote by CF the total cost associated with all the consequences of a failure, and by

CP the cost of a preventive replacement. According to the renewal theory, the average

cost per unit time in long term, also known as the mean cost rate Ka, can be computed

as the ratio of mean cycle cost to mean cycle length. A renewal cycle refers to the period

from the instant when the unit is put in service to the instant when the unit is replaced

upon failure or upon the replacement age. Therefore the renewal cycle length, denoted

by L, has the probability distribution as

FL (s) = Pr {L ≤ s} =





FT (s) , for s < ta, or a premature failure

1, for s ≥ ta, or a preventive replacement,
(7.4)

Since for a positive random variable with survival function G, its mean value equals
∫∞
0 G (s) ds, the mean cycle length is evaluated by E [L (ta)] =

∫ ta
0 [1− FT (s)] ds. The

cycle cost is the cost incurs during a renewal cycle. This includes a possible failure cost CF

with FT (ta) as the probability of failure before ta and a possible preventive maintenance

cost CP with 1− FT (ta) as the probability of no failure by ta. Therefore the mean cycle

cost is E [C (ta)] = FT (ta) CF + [1− FT (ta)]CP . Hence the mean cost rate is expressed

as (Barlow and Proschan 1965):

Ka (ta) =
FT (ta) CF + [1− FT (ta)]CP∫ ta

0 [1− FT (s)] ds
. (7.5)

It is easy to check that Ka → CF /µT as ta → ∞, where µT is the mean lifetime. Using

(7.5), an optimal age of preventive replacement (ta) can be found that would minimize
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the mean cost rate.

Since the calculation of the mean cost rate is sensitive to the lifetime distribution

FT (t), it would be of interest to examine the impact of RV and GP models on the

replacement policy. For an illustration, the ABR of pressure tubes due to irradiation

creep is discussed in the next.

7.3.1 Example: Age-Based Replacement of Pressure Tubes for Creep

Deformation

Section 3.4 and 5.6 fitted a linear mixed-effects (LME) model and a GP model, respec-

tively. In Section 3.4, the diametral strain due to creep expansion, is modeled by an LME

model: Y (t) = β0 + β1t + Θt + ε, where β0 = 0.0637 and β1 = 0.2077 are regression

constants and Θ is a normal random variable N
(
0, σ2

Θ

)
with σΘ = 0.0232 to account for

the random effects. Note here t stands for the total fluence experienced on the pressure

tubes, which is the product of average flux and working time. Since ε represents measure-

ment error, the true deterioration X (t) is the remaining value of Y (t) without ε. That

is, X (t) = β0 +Bt where B ∼ N
(
β1, σ

2
Θ

)
. β0 is a fixed number and can be absorbed into

the failure threshold ζ. So the LME model is in effect a RV model discussed in Section

7.2. The growth of the diametral strain is also modeled in Section 5.6 by a gamma process

with shape parameter 7.3462 and scale parameter 0.0291.

Let again the substandard threshold ζ = 5.1. The lifetime distributions in Figure 5.7

are used for finding the optimal ABR policy. Recall that these two lifetime distributions

correspond to a typical pressure tube with average flux 2.4×1017 n/(m2·s). The coefficient

of variation of the lifetime is around 0.1 in the RV model whereas it is 0.08 in the GP

model.

Suppose CP = 10 and CF = 50. The mean cost rates for the RV and GP model

are plotted against the replacement age in Figure 7.1. Interestingly, although the limited

mean cost rate in the GP model is less than that in the RV model, the minimal mean
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Figure 7.1: Optimal age-based replacement policies for a pressure tube due to diametral
expansion

cost in the GP model is higher than the minimal value in the RV model. Nevertheless,

the difference of the ABR policies from the two models is slight.

7.4 Condition-Based Maintenance

The deterioration along a specific sample path is deterministic in the RV model, whereas

it varies probabilistically in the GP model. In the linear RV model, one inspection

determines the deterioration rate and it fixes the future deterioration path. An inspection

in GP model, however, reveals only the current state of deterioration from which we

can infer only the probability distribution of future deterioration. This distinction has

profound implications to the optimization of condition-based maintenance strategies.
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7.4.1 The Strategies

The condition-based maintenance (CBM) strategy involves the periodic inspection of a

deteriorating component at a fixed time interval tI and cost CI . We assume that the

inspection is accurate such that the deterioration X(t) can be measured with negligible

error. The threshold for the preventive maintenance (PM), ζP = cζ (0 < c < 1) is a

fraction of the failure threshold. c is called PM ratio. The PM results in a complete

renewal (as good as new) of the component. If X(tI) < cζ, no action is taken until the

next inspection. A component is renewed with PM cost CP when cζ ≤ X (tI) < ζ. If

the structure fails between two successive inspections, i.e., X (t) ≥ ζ, failure is detected

immediately and a corrective maintenance (CM) would renew the structure immediately,

incurring a total failure cost, CF . Typically PM cost is much lower than the failure cost,

i.e., CP < CF .

The optimization of the condition-based maintenance means finding the inspection

interval (tI) and the PM ratio (c) that would minimize the long-run mean cost rate. This

in principle involves a two-dimensional optimization problem. When, however, the PM

threshold cζ is known from experience or prescribed by industry standards or regulations,

the inspection interval is the only optimization variable.

7.4.2 Formulation for Random Variable Model

For the RV model, the three possibilities that arise at the time of first inspection (tI) are:

do nothing, PM or CM followed by a failure, as shown in the decision tree in Figure 7.2.

When X (tI) < cζ, no action is taken, but the time of preventive maintenance in future

can be predicted as tPM = cζtI/X (tI), since one inspection is sufficient to determine the

linear sample path. The other two situations are straightforward. The PM is immediately

conducted when cζ < X (tI) < ζ, and it is correctively replaced when X (tI) > ζ.

The most important point is that under the assumption of the linear RV deterioration
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Figure 7.2: CBM decision tree for the RV model
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model, only one inspection is required for the implementation of CBM strategy. In

a general RV model with n random variables, only n inspections are required for the

implementation of CBM.

From the decision tree and associated costs shown in Figure 7.2, the mean value of

renewal cycle cost (C) is simply evaluated as

E [C (tI , c)] = (CI + CP ) Pr {X (tI) ≤ ζ}+ CF Pr {X (tI) > ζ}

= (CI + CP − CF ) FA (ζ/tI) + CF . (7.6)

Similarly, we have the mean cycle length is evaluated as

E [L (tI , c)] =
∫ tI

0
Pr {X (t) < ζ} dt +

∫ ∞

tI

Pr {X (t) < cζ} dt

=
∫ tI

0
FA (ζ/t) dt +

∫ ∞

tI

FA (cζ/t) dt. (7.7)

Equations (7.6) and (7.7) can be easily evaluated given the parameter of the distribu-

tion of the deterioration rate. According to renewal theory, the mean cost rate is given

as

Ki (tI , c) =
E [C (tI , c)]
E [L (tI , c)]

. (7.8)

As tI → 0, the mean cycle cost approach to CI + CP and the mean cycle length ap-

proaches the mean time to the PM threshold that equals to
∫∞
0 F (cζ/t) dt. As tI →∞,

the mean cycle cost approaches to CF and the CBM policy becomes equivalent to the cor-

rective replacement policy. When c = 1, the mean cycle length equals the mean lifetime

irrespective of the inspection interval.

The cumulative probability of failure up to time is simple to obtain as

Pf (t) = Pr {X (t) > ζ} =





1− FA (ζ; t) , 0 ≤ t < tI

0, t ≥ tI
(7.9)
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Note that Pf (t) becomes zero for t > tI , because one inspection reveals the actual sample

value of the deterioration rate and removes the uncertainty about the time of failure after

the first inspection.

7.4.3 Formulation for Gamma Process Model

The inspection and replacement scenarios in the GP model are more involved due to

temporal uncertainty. The three possible situations arise at every inspection, namely,

safe state and do nothing, PM, or failure and subsequent corrective maintenance, as

shown in Figure 7.3.

According to the decision tree, a PM renewal happens at L = ntI when Xn−1 < cζ

and cζ < Xn < ζ, where Xn = X (ntI) with PM cost nCI + CP . When Xn−1 < cζ but

Xn > ζ, a CM renewal is called for with cost (n− 1)CI + CF for n ≥ 2 and CF for

n = 1. In this case, the renewal is done at a point of time interval from (n− 1) tI to ntI .

Accordingly, the mean cost associated with a renewal cycle is derived as

E [C (tI , c)] =
∞∑

n=1

[(nCI + CP ) Pm (n) + ((n− 1)CI + CF ) Pf (n)] (7.10)

where

Pm (n) = Pr {PM at ntI} = Pr {Xn−1 < cζ, cζ < Xn < ζ} (7.11)

and

Pf (n) = Pr {Failed in ((n− 1) tI , ntI ]} = Pr {Xn−1 < cζ, Xn > ζ} . (7.12)

From the property of independent increments of gamma process, we have, for n ≥ 2,

Pm (n) = Pr {Xn−1 < cζ, cζ −Xn−1 < Xn −Xn−1 < ζ −Xn−1}

=
∫ cζ

0
gan−1 (x) [GA1 (ζ − x)−GA1 (cζ − x)] dx, (7.13)
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in which gan (·) and GAn (·) denotes the pdf and CDF of a gamma distribution Ga (nαtI , β),

respectively. It is clear that Pm (1) = GA1 (ζ)−GA1 (cζ). Similarly,

Pf (n) = Pr {Xn−1 < cζ, Xn −Xn−1 > ζ −Xn−1}

=
∫ cζ

0
gan−1 (x) [1−GA1 (ζ − x)] dx (7.14)

for n = 2, 3, . . ., and Pf (1) = 1 − GA1 (ζ). Substituting these probabilities into (7.10)

and simplifying them, we have

E [C (tI , c)] = CP + (CF − CI) [1 + S (cζ)]

− (CF − CI − CP )
[
GA1 (ζ) +

∫ cζ

0
s (x) GA1 (ζ − x) dx

]
(7.15)

where S (x) =
∑∞

n=1 GAn (x) and s (x) =
∑∞

n=1 gan (x).

The mean cycle length can be obtained as

E [L (tI , c)] =
∞∑

n=1

[ntIPm (n) + En (TF )] (7.16)

where En (TF ) represents the mean failure time between (n− 1) tI and ntI and is ex-

pressed as

En (TF ) =
∫ cζ

0
gan−1 (x)

∫ tI

0
[(n− 1) tI + s] fT (s; ζ − x) dsdx, (7.17)

in which fT (s; ζ − x) is the pdf of the first passage time of the gamma process with a

threshold ζ − x. Using integration by parts and rearranging all the terms, we obtain

E [L (tI , c)] =
∫ tI

0
GA (ζ; αt, β) dt +

∫ cζ

0

∫ tI

0
s (x) GA (ζ − x; αt, β) dtdx (7.18)

where GA (x; a, b) denotes the CDF of the gamma distribution with shape a and scale b.

Equations (7.15) and (7.18) are derived by Park (1988a, 1988b). An alternative
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way to compute the mean cycle cost and the mean cycle length is by using the Poisson

approximation for the lifetime distribution of the gamma process, as suggested by van

Noortwijk et al. (1995). When the inspection interval is n times of the reciprocal of

the shape parameter α, the Poisson approximation gives an exact solution to the mean

cycle cost. But this approach gives only an approximation to the mean cycle length and

therefore it is not used in the subsequent computations.

There are two limiting cases of the CBM policy. As the inspection interval tI becomes

large, the mean cost rate tends to CF /µT where µT is the mean lifetime. As the PM

ratio c → 1, tI converges to the optimal replacement interval obtained from the age-based

replacement policy.

The probability of failure over time within any inspection interval is given by the

following expression:

Pf (t) = Pr {X (t) ≥ ζ, X ((n− 1) tI) < cζ} , for (n− 1) tI ≤ t < ntI . (7.19)

In particular, for n = 1, i.e., the first inspection interval,

Pf (t) = 1−GA (ζ; αt, β) (7.20)

and for n ≥ 2,

Pf (t) =
∫ cζ

0
gan−1 (x) {1−GA (ζ − x; α [t− (n− 1) tI ] , β)} dx. (7.21)

Note that the probability of failure at the time of inspection reduces to zero, since the

inspection is perfect in the sense that it reveals the actual situation without any uncer-

tainty.

For a GP model dealing with imperfect inspection, we refer to Kallen and van Noortwijk

(2005). More recently, Crowder and Lawless (2007) discussed a simplified CBM policy

for a mixed-scale gamma process model.
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Figure 7.4: Comparison of condition-based maintenance policy based on different deteri-
oration models for a pressure tube due to diametral expansion

7.4.4 Example: Condition-Based Maintenance of Pressure Tubes for

Creep Deformation

The diametral expansion data are used again for illustration purpose. Suppose CI = 1,

CP = 10 and CF = 50. Figure 7.4 shows the mean cost rate versus the inspection interval

for the RV and GP model. The minimal mean cost rate for the GP model is greater than

that for the RV model, as the GP model takes into consideration the temporal uncertainty

even though it predicts the same mean value and smaller variance of lifetime. Figure 7.5

and 7.6 show the cost decomposition for the RV and GP model, respectively.

At the optimal inspection interval of 5 EFPY, the probability of the pressure tube

reaching substandard performance (i.e. the diametral strain exceeding 5.1%) has been

controlled within 0.08, as illustrated in Figure 7.7. This shows the indirect benefit of the

inspection and preventive maintenance.
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Figure 7.5: Decomposition of mean cost rate for the RV model

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2

2.5

Inspection Interval

M
ea

n 
C

os
t 

R
at

e

 

 

Insp

PM

Fail

Total

Figure 7.6: Decomposition of mean cost rate for the GP model
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Figure 7.7: Probability of the pressure tube being substandard over time under the
optimal CBM policy based on the GP model

7.5 Sensitivity Analysis

The case studies of pressure tubes in the previous examples give interesting but never-

theless very limited comparisons of the RV and GP models in maintenance optimization.

To get a better insight, we proceed next with a comprehensive sensitivity analysis for

the two deterioration models, considering different degree of variation of deterioration.

In this analysis, the variation of deterioration is described by the coefficient of variation

(COV) of the lifetime. By fixing the mean lifetime and varying the lifetime COV, we

compares the impacts of temporal uncertainty in both ABR and CBM policies.

In order to have a consistent comparison between the RV and GP models, a careful

scheme is required for the calibration of the model parameters. In this study, we assume

the mean and COV of the lifetime are given. Calibration of the models is based on the

two moments of the lifetime.
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7.5.1 Calibration of the Models

Suppose the deterioration rate A in the RV model is a gamma distributed random variable

with shape parameter η and scale parameter δ, i.e., A ∼ Ga (η, δ). Then the deterioration

at any time t also follows a gamma distribution Ga (η, δt). The lifetime T , defined as

T = ζ/A, however follows an inverted gamma distribution. Its pdf is expressed

fT (t) =
(δ/ζ)
Γ (η)

(
ζ

δt

)η+1

exp
(
− ζ

δt

)
(7.22)

and the CDF as

FT (t) = 1−GA (ζ/t; η, δ) = 1−GA (ζ; η, δt) (7.23)

The moments of the lifetime distribution can be derived as

µT =
ζ

δ (η − 1)
, σ2

T =
ζ2

δ2 (η − 1)2 (η − 2)
and νT =

1√
η − 2

(7.24)

for η > 2. Therefore, given the values of µT and νT , the parameters of deterioration rate

A can be easily calculated by the following expressions:

η = 2 + 1/ν2
T and δ =

ζν2
T

µT

(
1 + ν2

T

) . (7.25)

Recall that the CDF of the lifetime in a GP model with shape parameter α and scale

parameter β is expressed as the following:

FT (t) = 1−GA (ζ; αt, β) (7.26)

Although (7.26) differs from (7.23) only at whether the time t is associated with the shape

parameter or scale parameter in the gamma distribution, the lifetime in the GP model

has no explicit expression for its moments. Therefore in the case of GP model, given µT

and νT , the shape and scale parameters can be only obtained by numerically solving the
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Table 7.1: Parameters used in the model calibration
Mean lifetime µT COV of lifetime νT Failure threshold ζ

50 units of time (fixed) Varied from 0.1 to 0.9 100 units of deterioration (fixed)

Table 7.2: Example parameters in the RV and GP models
Parameters νT = 0.3 νT = 0.6 νT = 0.9
RV model Shape (η) 13.1111 4.7778 3.2346

Scale (δ) 0.1651 0.5294 0.8950
GP model Shape (α) 0.2099 0.0408 0.0078

Scale (β) 10.01 64.63 1453.6

following equations of the first and second moments (c.f. (4.14)):

µT =
∫ ∞

0
GA (ζ; αt, β) dt (7.27a)

µT 2 = µ2
T

(
1 + ν2

T

)
= 2

∫ ∞

0
tGA (ζ; αt, β) dt (7.27b)

The parameters of the two models are given in Tables 7.1 and 7.2. The two models

are equivalent in the sense that they have identical mean and variance of the lifetime.

7.5.2 Age-Based Replacement

Although the RV and GP models are calibrated so that they have the same mean and

variance of the lifetime, the lifetime distributions in the two models are nevertheless

different. As an example, Figure 7.8 compares the probability density functions and

survival functions for νT = 0.3. The survival function shows that the tails of the lifetime

distribution in the RV and GP models can be remarkably different and the RV model

overestimates the reliability of the component.

A comprehensive comparison of ABR results about the minimum cost rate and optimal

replacement age for different coefficients of variation of lifetime, νT , in the RV and GP

models are shown in Figure 7.9. CP = 10 and CF = 50 are assumed in the analysis.

The results of optimal replacement age obtained from the two models are qualitatively
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Figure 7.8: Comparison of lifetime distributions of the equivalent RV and GP models for
νT = 0.3: (a) probability density function, and (b) survival function

different. In the RV model, the optimal replacement age decreases continuously as the

lifetime COV νT increases. This observation is somewhat intuitive in the sense that when

faced with increased uncertainty about lifetime, it is prudent to reduce the replacement

age. The results of GP model exhibit two distinct trends. Initially, with increase in

lifetime COV the replacement age decreases. However, as νT increases beyond 0.5, the

trend reverses and the replacement age begins to increase. It suggests that in case of

highly uncertain lifetime, the life-cycle cost could not be optimized by manipulating

the replacement age. Note that a similar reasoning can be applied for an exponentially

distributed lifetime – having a constant failure rate and a COV of 1 – for which it is

optimal to never schedule a preventive replacement (Barlow and Proschan 1965).

Figure 7.9(b) shows that mean cost rate obtained from GP model is always higher

than that of the RV model as a result of additional temporal uncertainty associated with

it. The difference between the optimum cost rates increases with increase in lifetime

uncertainty. This explains the very small difference of the ABR in Figure 7.1 because

relatively small variation exhibits in the growth of diametral strain.
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Figure 7.9: Comparison of age-based replacement policies in equivalent RV and GP
mdoels: (a) optimal replacement age, and (b) minimal mean cost rate

7.5.3 Condition-Based Maintenance

Assume CI = 1, CP = 10 and CF = 50. The optimization results of CBM for RV and

GP models for different values of the lifetime COV are compared in Figure 7.10. It is

remarkable that in the RV model both the optimum cost rate and inspection interval

are insensitive to the variability of the lifetime distribution, which is due to the lack of

consideration of temporal uncertainty. In contrast, the minimum cost rate in the GP

model increases with lifetime uncertainty. The cost rate increases from 0.38 to 0.97 as

the COV of lifetime is increased from 0.1 to 0.8. In general, the GP cost rate is higher

than that for the RV model due to the effect of temporal uncertainty.

7.5.4 Comparison of Age-Based and Condition-Based Policies

Although the CBM policy is generally considered as a more advanced approach to the

life-cycle management, an age-based strategy is easier to implement than the condition-

based one after all. In light of this, we would like to compare the cost rates of ABR and

CBM policies. In this Section, the results are presented for the GP model only because
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Figure 7.10: Comparison of CBM results for equivalent RV and GP models: (a) optimal
inspection interval, and (b) minimal mean cost rate

we have concluded that the RV model is too unrealistic for a CBM policy.

The results for minimum mean cost rate shown in Figures 7.9(b) and 7.10(b) are

plotted together in Figure 7.11. It is remarkable that the cost rate of CBM is higher

than age-based replacement policy, especially when the lifetime COV is relatively small

(νT < 0.5).

Although the above comparison is dependent on the specific cost structure (CI = 1,

CP = 10 and CF = 50), it is clear that CBM is not universally superior to the age-based

policy. In fact, an optimum domain of application of CBM policy in terms of the lifetime

COV and costs can be explicitly derived to develop the life-cycle management strategies.

We next illustrate this point in details.

Two-Dimensional CBM Optimization

It has been argued that the one-dimensional optimization of inspection interval leads

to suboptimal results (Grall et al. 2002; Jia and Christer 2002; Dieulle et al. 2003).

The mean cost rate can be further optimized by allowing the PM ratio, c, be another
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Figure 7.11: Comparison of the CBM policies with the ABR in the GP model

optimization variable. This leads to a two-dimension (2D) CBM optimization.

Taking νT = 0.3 for an example, the surface of minimum cost rate for various combi-

nations of inspection interval (tI) and PM ratio is plotted in Figure 7.12. On this surface,

the optimal point corresponds to tI = 13, c = 0.54 and the associated minimum mean

cost rate is 0.44. This cost rate is much less than that obtained from either the corre-

sponding one-dimensional CBM optimization (0.54 at tI = 7 and c = 0.8) or the ABR

policy (0.45 at tI = 29 and c = 1).

Now, a more fair comparison of ABR and CBM can be taken. Figure 7.13 compares

the minimal mean cost rate from the 2D CBM optimization with that of the ABR policy.

It shows that an age-based policy is better than CBM when νT < 0.25. In other words,

the benefit of a condition-based policy gained from the value of deterioration information

through inspection outweighs the cost of inspection only when the uncertainty associated

with deterioration is large (νT > 0.25). Given a fixed νT , the CBM policy is preferable

only if the inspection cost is below a certain value. This motivates us to find out the
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Figure 7.12: A two-dimensional CBM optimization for the GP model (νT = 0.3)

maximum allowable inspection cost to justify the CBM policy. This threshold value

of inspection cost provides an answer to a question such as, how much money can be

justifiably spent for inspections given the probabilistic characteristics of a deterioration

process. For example, Figure 7.13 shows that maximum allowable inspection cost is 1

(20% of the PM cost) when νT = 0.25 and CP /CF = 5/50 = 10%. Next we investigate

the maximum allowable inspection cost for more general cases.

Maximum Allowable Inspection Cost to Justify the CBM Policy

By definition, the maximum allowable inspection cost can be calculated from the following

equality:

Ka (ta,opt; νT , CP , CF ) = Ki (ta,opt, copt; νT , CI , CP , CF ) (7.28)

where Ka and Ki are the optimal cost rates for the ABR policy and two-dimensional

CBM polices that are calculated from (7.5) and from (7.15) and (7.18), respectively. The
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Figure 7.13: Comparison of two-dimensional CBM policies with ABR policies

maximum allowable inspection cost is obtained by solving (7.28) with fixed and while

ta,opt, tI,opt and copt are the optimization results depending on CI .

In Figure 7.14, the optimal inspection cost is expressed as a percentage of the PM

cost. The increasing trend shows that the higher inspection cost is justified with increase

in uncertainty associated with the lifetime distribution and the deterioration process.

On the other hand, inspection cost proportionately decreases with increasing PM cost,

though the cost still increases in an absolute sense. The optimal inspection cost curves

provide guidance about the optimal cost structure of a maintenance program.

7.6 Summary

The chapter emphasizes an important fact that the random variable rate (RV) model

cannot capture temporal variability associated with evolution of deterioration. As a con-

sequence, the deterioration along a specific sample path is deterministic in the RV model,
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Figure 7.14: Maximum allowable inspection cost with COV of lifetime and PM to CM
cost ratio

whereas it varies probabilistically in the GP model. This distinction has profound impli-

cations to the maintenance optimization of both age-based and condition-based strategies.

The results presented in the chapter show that the optimum cost and inspection

interval obtained from the GP model are qualitatively different than those obtained from

the RV model. The RV model tends to underestimate the life-cycle cost due to lack of

consideration of temporal uncertainty.

The age-based replacement policy is easier to implement than the condition-based

maintenance. The chapter determines a domain of inspection, preventive maintenance

and corrective costs in which the condition-based policy is always superior to the age-

based policy. A general observation is that condition-based maintenance strategy is justi-

fied when the uncertainty associated with deterioration is large. In other words, under a

given cost structure the tradeoff between the cost of inspection and value of information

gained is beneficial only when the uncertainty of deterioration exceeds a critical limit.
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Chapter 8

Conclusions and

Recommendations

8.1 Conclusions

The thesis presents a versatile stochastic gamma process model for modeling deterioration

in engineering systems, structures and components. Questions relevant to stochastic

modeling of deterioration, such as why and which stochastic process model should be used

and how to calibrate and validate the model using practical data, have been addressed.

Detailed practical applications of the proposed models to feeder pipe systems and fuel

channels in CANDU reactors are presented. The thesis also formulated the maintenance

optimization problems for both age-based replacement and condition-based maintenance

strategies.

Traditional regression models consist of a parameterized mean function and an error

term that quantifies the deviation of the observations from the mean function. The errors

are usually assumed independent of each other. Under this assumption data analysis

and modeling of deterioration becomes a straightforward task, though it confounds the
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estimation of the lifetime distribution. The thesis proposes a linear mixed-effects model

to resolve the inconsistency of interpretation associated with ordinary regression model.

By introducing the random effects into the model, the varying variance of deterioration

and correlation with time are characterized, which leads to a logical method for lifetime

estimation.

A gamma process is a continuous-time stochastic process with stationary and inde-

pendent, gamma-distributed increments. Comparing to other deterioration models, the

gamma process is a versatile stochastic process model for a wide variety of degradation

phenomena. As a pure jump process, it includes both tiny and big jumps, making the

model flexible for deterioration that develops either gradually or abruptly. The gamma

process has nonnegative, monotonically increasing sample paths, which is suitable to

model an irreversible degradation process.

The gamma process model is statistically tractable. Using its property of independent

and gamma-distributed increments, the likelihood function can be easily constructed for

parameter estimation purposes. Two algorithms based on the method of moments are

also developed in the thesis and they are as effective as maximum likelihood method when

a reasonable long record of deterioration is available. Asymptotic analysis of maximum

likelihood estimates showed that the asymptotic variance of the shape parameter is in-

versely proportional with the sample size, whereas the asymptotic variance of the scale

parameter depends not only on the sample size but also on the total time length of the

recorded sample paths.

The gamma process model is also flexible for modeling both fixed and random ef-

fects. Fixed effects of observed covariates can be modeled by the scale parameter with a

parametric form that depends on the mechanistic knowledge about degradation process.

The underlying heterogeneity that is not explained by the observed covariates is termed

random effect and it can be modeled by a random scale parameter in the gamma pro-

cess. Estimating the parameters in the mixed-scale gamma process model is similar to
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the gamma process, but testing the existence of random effects is challenging. The thesis

proposed a score test for this purpose and verified its effectiveness by simulations.

Another common way to model deterioration in civil engineering is to treat the rate

of deterioration as a random variable. In the context of condition-based maintenance,

the thesis shows that the random variable rate model (RV) is inadequate to incorporate

temporal variability, because the deterioration along a specific sample path becomes de-

terministic. In the gamma process model however, the deterioration along a sample path

varies probabilistically. This distinction has profound implications to the maintenance

optimization of both age-based and condition-based strategies. The results presented in

the thesis show that the optimal cost and inspection interval obtained from the gamma

process model are qualitatively different than those obtained from the RV model. The RV

model tends to underestimate the life-cycle cost due to lack of consideration of temporal

uncertainty. Although the linear mixed-effects model is found to be effective in fitting

given data, it is essentially a random variable model in nature.

The age-based replacement policy is easier to implement than the condition-based

maintenance. The thesis determined a domain of inspection, preventive maintenance and

corrective costs in which the condition-based policy is always superior to the age-based

policy. A general observation is that condition-based maintenance is justified when the

uncertainty associated with deterioration is large. In other words, under a given cost

structure the tradeoff between the cost of inspection and value of information gained is

beneficial only when the uncertainty of deterioration exceeds a critical limit.

In summary, a careful consideration of the nature of uncertainties associated with

deterioration is important for a credible model of deterioration and its effective applica-

tion to the life-cycle management of engineering systems. If the deterioration process is

affected by temporal uncertainty, it is important to model it as a stochastic process.
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8.2 Recommendations for Future Research

Likelihood ratio test and score test have been proposed to check the significance of fixed

effects and random effects. But the assumption of independent increments is still an

important assumption in the gamma process model left unchecked. More research work

should be done to address this issue.

Another promising work is about the Hougaard process mentioned in Chapter 4. As

pointed out there, when the index parameter goes to zero, the Hougaard process reduces

to a gamma process. Following the model expansion approach, estimation of the index

parameters can validate whether or not the choice of gamma process model is legitimate.

The parameter estimation is not easy, because the Hougaard process has no explicit

expression for the probability density function. This needs further studies.

This thesis focuses on deterioration modeling from the temporal uncertainty perspec-

tive. However, the spatial uncertainty can be an important aspect of the deterioration.

For example, the wall thickness data of feeders were actually the minimum thickness

found at the inspection time along a finite inspection area. The reported thickness of the

same feeder at different times may not come from the same position. A more sophisticated

stochastic field model of deterioration may be an area of future investigation.
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Appendix A

Abbreviations And Notations

ABR Age-based replacement

CBM Condition-based maintenance

CD Cumulative damage model

CDF Cumulative distribution function

COV Coefficient of variation

CPP Compound Poisson process

EFPH Effective full-power hour

EFPY Effective full-power year

GLM Generalized linear model

GP Gamma process

i.i.d. Independent and identically distributed

IWLS Iteratively weighted least squares

LME Linear mixed-effects model

LR Linear regression

LS Least squares

MAP Markov additive process

MCMC Markov chain Monte Carlo simulation method
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NLME Nonlinear mixed-effects model

NPP Nuclear power plants

OLS Ordinary least squares

pdf Probability density function for continuous random variable

pmf Probability mass function for discrete random variable

SF Survival function

SMC Semi-Markov chain

SSI Strength-Stress Interference

r.v. random variable(s)

RV Random variable model

WLS Weighted least squares

E(X) Expectation of a random variable

cov Covariance function

fX (x) pdf of a random variable X

FX (x) CDF of a random variable X

ga (x; a, b) pdf of a gamma random variable with shape parameter a and scale parameter b

Ga (a, b) Gamma distribution with shape parameter a and scale parameter b

GA (x; a, b) CDF of a gamma random variable with shape parameter a and scale parameter b

N
(
µ, σ2

)
Normal (Gaussian) distribution with mean µ and variance σ2

Var(X) Variance of a random variable

Φ (z) CDF of standard normal distribution

Γ (z) Gamma function defined by Γ (z) =
∫∞
0 uz−1e−udu

Γ (w, z) Incomplete gamma function, defined by Γ (w, z) =
∫∞
w uz−1e−udu

ψ (z) digamma function, the derivative of log gamma function, i.e., d log Γ(z)/dz

ζ Threshold for a first passage failure
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