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Abstract

During inflation quantum fluctuations of the field driving inflation, known as the inflaton, were

stretched by inflationary expansion to galactic size scales or even larger. A possible implica-

tion of inflation – if it is correct – is that our observable universe was once of sub-Planckian

size. Thus inflation could act as a magnifier to probe the short distance structure of space-

time. General arguments about the quantum theory of gravity suggest that the short distance

structure of space-time can be modeled as arising from some corrections to the well-known

uncertainty relation between the position and momentum operators. Such modifications have

been predicted by more fundamental theories such as string theory. This modified commutation

relation has been implemented at the first quantized level to the theory of cosmological per-

turbations. In this thesis, we will show that the aforementioned scenario of implementing the

minimal length to the action has an ambiguity: total time derivatives that in continuous space-

time could be neglected and do not contribute to the equations of motion, cease to remain total

time derivatives as we implement minimal length. Such an ambiguity opens up the possibility

for trans-Planckian physics to leave an imprint on the ratio of tensor to scalar fluctuations. In

near de-Sitter space, we obtain the explicit dependence of the tensor/scalar on the minimal

length. Also the first consistency relation is examined in a power-law background, where it is

found that despite the ambiguity that exists in choosing the action, Planck scale physics mod-

ifies the consistency relation considerably as it leads to large oscillations in the scalar spectral

index in the observable range of scales. In the second part of the thesis, I demonstrate how

the assumption of existence of invariant minimal length can assist us to explain the origin of

cosmic magnetic fields. The third part of the thesis is dedicated to the study of signatures of

M-theory Cascade inflation.
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Chapter 1

Introduction

It has been understood that the answer to some of the fundamental questions in cosmology

involve events that took place during the first 10−2 sec of the history of the universe. These

questions include the origin of nucleons, the origin of matter-antimatter asymmetry, the nature

of the dark matter, the origin of smoothness and flatness of the universe, the origin of the

density inhomogeneities of the cosmic microwave background radiation (CMBR) that initiated

structure formation, the origin of the expansion, and even the ultimate fate of the universe.

Mingling ideas borrowed from particle physics, which are valid up to the weak scale, with

cosmology, has led to a few successes in explaining some of these cosmological events. People

hope that they can test more speculative ideas of particle physics that are relevant at higher

energies with cosmological probes. The urge for such investigations has become pressing

when it is observed that such exciting and fundamental ideas in particle physics involve energy

scales well beyond reach of terrestrial accelerators. Current accelerators can hardly achieve

the Tev scale, whereas the energy scale needed to test the grand unification ideas is in excess

of 1014 Gev, and the unification that involves gravity is 1019 Gev. Such usage of astrophysical

and cosmological observations to confine theoretical speculations has ensued in an explosion

of activities and progress in theoretical cosmology.

During the past two decades we have witnessed a flurry of activity in observational cosmol-

ogy too: First COBE [1] and then WMAP I & II [2–6] measured precisely the spectrum and

1



1.1. Deficiencies of Hot Big Bang model 2

anisotropies of the CMBR and revealed important information about the nature of primordial

inhomogeneities as well as the constituents of our universe. Red shift surveys such as 2dFGRS

[7–9], 2dFQSO [10–12] and Canada-France redshift survey [13–16] have revealed the nature

of the large scale structure of the universe and shed light upon the distribution of matter. The

high-Z supernovae exposed us to the fact that our universe has gone through a recent phase of

acceleration [17–19]. New experiments, such as Planck [20], are going to probe the cosmos in

further detail and discover other signatures that might be left from the first second of the his-

tory of universe. There is a hope that observation will be able to test the high energy physicists

speculations that seem to be unverifiable at ground-based accelerators.

Our understanding of the universe from t ∼ 10−2 second to t ∼ 15 Gyr is based on hot big

bang cosmology, which is the Friedmann-Robertson-Walker (FRW) cosmological model. The

model is quite robust and there are no observational data that clashes with the model. It can ex-

plain the current expansion of the universe, the primordial abundance of the light elements and

the origin of the CMBR. However this simple elegant model suffers from some shortcomings

that point to some grander theory. This model cannot explain the origin of structures in the

universe. It cannot get rid of unwanted relics that are produced in the context of grand unified

theories. It cannot also explain why the universe is flat, homogeneous and isotropic. The latter

problem is basically an initial data problem and is related to the fact that entropy in the universe

is so large, S ≈ 1088. One expects this number to be of order unity as it is a dimensionless

number. Below we will explain these problems in more quantitative way.

1.1 Deficiencies of Hot Big Bang model

The dynamics of an FRW universe containing matter with density ρ and pressure p is deter-

mined by the Einstein acceleration equation

ä

a
= − 4π

3m2
Pl

(ρ + 3p), (1.1)

the Friedmann equation

H2 =
8π

3m2
Pl

ρ− k

a2
, (1.2)
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and the continuity equation

ρ̇ + 3H(ρ + p) = 0 (1.3)

where a(t) is the scale factor of the universe, H ≡ ȧ
a

is the Hubble expansion parameter, a dot

denotes differentiation with respect to the cosmic time t, mPl is the Planck mass, defined as

mPl ≡ (~c/G)1/2 in terms of fundamental constants, and k = 0,−1, +1 for spatially flat, open

or closed cosmologies respectively. Units are chosen such that c = ~ = 1. One can express

the Friedmann equation 1.2 in terms of Ω ≡ ρ/ρc, which is the ratio of energy density of the

universe to the critical density, ρc defined as:

ρc ≡ 3m2
PlH

2
0

8π
. (1.4)

The current observational value of ρc is 1.88h2 × 10−29gcm−3, where the Hubble parameter

is parameterized such that H0 = 100hkms−1Mpc−1 and 0.4 ≤ h ≤ 1. h parameterizes the

experimental uncertainty in the value of Hubble parameter today. Now the Friedmann equation

takes the following form:

Ω− 1 =
k

a2H2
, (1.5)

or equivalently
Ω− 1

Ω
=

3m2
Plk

8πρa2
(1.6)

For a radiation dominated universe ρ = 3p where ρ = π2g∗T 4/30 where g∗ = O(102) is the

number of relativistic degrees of freedom during that time, see [21] and T is the temperature

of the universe. For a spatially flat radiation dominated universe a(t) ∝ t1/2 and so the Hubble

parameter is given by

H = 1.66g∗

(
T 2

mPl

)
=

1

2t
. (1.7)

The above equation yields a simple relation between time and temperature during the radiation

dominated phase: (
t

sec

)
≈

(
T

Mev

)−2

. (1.8)

The above relation with eqs. 1.7 and 1.6
∣∣∣∣
Ω− 1

Ω

∣∣∣∣ ≈
1043

S2/3

(
t

sec

)
≈ 1037

S2/3

(
GeV

T

)2

, (1.9)
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where S ≈ 1088 is the entropy contained with the present Hubble radius. The large amount of

entropy in the current horizon patch implies that Ω = 1± 10−60 at the Planck time, t = 10−43

second. In addition, it implies that the radius of curvature of the universe was huge at the

Planck time:

Rcurv ≥ 1030H−1. (1.10)

While no law of physics precludes such initial data, this suggests that our FRW model was

very special indeed. If the above quantity was of order unity at the above time, we would have

recollapsed after a few Planck times for Ω > 1 or would have reached a temperature 3K at

the ripe age of 10−11 second for Ω < 1. This problem is called the flatness problem. This

problem is closely related to the entropy problem which is as follows: The CMBR, the relic

radiation from Big Bang, has a uniform temperature across the sky, on angular scales from 10′′

to 180◦, to about one part in 104. The universe could have reached such smoothness if the entire

universe was in causal contact at the time of last scattering, tls. The particle horizon after the

matter-radiation equality can be expressed in terms of entropy within the horizon volume [21]:

Shor = 3× 1087(Ωh2)−3/2(1 + z)−3/2, (1.11)

where 1 + z ≡ a(t0)/a(t) is the redshift and for t = tls, z ≈ 1100. The entropy within the

horizon at the last scattering surface is Shor ' 1083. In another words, within the Big Bang

scenario, the particle horizon at the last scattering epoch was roughly about 10−5 of horizon

today and would subtend an angle of only about 0.8◦ in the sky. This is also referred to as

horizon problem. Equivalently, the flatness problem arises because the entropy in a comoving

volume is conserved. It seems that it would be possible to solve this problem if the cosmic

expansion was non-adiabatic for some finite interval of time:

Sf = Z3Si, (1.12)

where Z is a numerical factor. Misner and others advocated [22] the chaotic cosmological

model, in which more generic, anisotropic and inhomogeneous initial space-time would smooth

itself out through dissipative processes, producing the enormous entropy of our universe. How-

ever a more compelling scenario of entropy production was put forward by Guth [23] and others

[24, 25, 27, 28] who called it inflation. We will come back to this scenario in detail later.
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The other problem that standard cosmology is faced with is its inability to explain the

origin of primordial inhomogeneities. The Big Bang scenario can explain the growth of struc-

tures from small-scale inhomogeneities in a matter-dominated universe via the Jeans instability.

Since non-linear structures exist today on scales from 1 Mpc to 10 Mpc or so, and as the fluctu-

ations grow linearly with the scale factor during the matter-dominated era, we can deduce that

perturbations of order 10−5 must have existed on these scales at the time of matter-radiation

equality. Following such scales during the radiation-dominated epoch, one would observe that,

at early times, these scales were outside the horizon. Therefore, in the context of Big Bang cos-

mology it is not possible to justify the origin of large scale structures with causal microphysical

processes. The other shortcoming that standard cosmology suffers from is the problem of un-

wanted relics. In the context of grand unified gauge theories, a variety of stable heavy particles

are produced that survive the annihilation and contribute to the energy of the universe such that

they may overclose the universe. Standard Big Bang cosmology does not have any mechanism

to obviate these problems.

1.2 Inflation

Inflation is a scenario suggested by Alan Guth in his original paper of 1981 [23]. In this

scenario the scale factor of the universe grows by a huge factor of Z in a finite interval of time,

from ti to tf . In Guth’s original paper, inflation happened at or below the GUT energy scale

which corresponds to a time-scale 10−40 second. From equation 1.9, the quantity (Ω−1−1)ρa2

is conserved and therefore we have:

(Ω−1
f − 1)ρfa

2
f = (Ω−1

i − 1)ρia
2
i (1.13)

On the other hand, in the standard model we have [29]:

(Ω−1
i − 1)ρia

2
i ≈ 10−56(Ω−1

0 − 1)ρfa
2
f (1.14)

In order to have
∣∣Ω−1

0 − 1
∣∣ ∼ O(1), as required from observation, and from 1.13 & 1.14 one

must have ρfa
2
f À ρia

2
i . From Friedmann equation 1.2, we also have

3ȧ2 − 8π

m2
pl

ρa2 = const. (1.15)
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Consequently, the above inequality is satisfied if ȧf > ȧi. Hence the necessary condition for

inflation to proceed is that the scale factor accelerates:

ä > 0 (1.16)

The previous inequality 1.16, could be written in terms of H and Ḣ as:

Ḣ + H2 > 0. (1.17)

Three categories of inflation can be singled out in 1.17: The case Ḣ < 0, which we call sub-

inflation, the usual de-Sitter inflation, Ḣ = 0, and the super-inflation which is designated by

Ḣ > 0. Defining w ≡ p/ρ, the three cases correspond to −1 < w < −1/3, w = −1 and

w < −1 respectively.

The next question is about the nature of the energy source that drives this accelerated expan-

sion. It follows from Einstein acceleration equation 1.1 and 1.16 that ρ+3p < 0 or equivalently

w < −1/3. Such an energy source violates the strong energy condition [30]. The simplest way

to realize inflation is by some homogeneous scalar field, φ, with positive potential, V (φ). Such

a scalar field is equivalent to a perfect fluid with the following energy density and pressure:

ρ =
1

2
φ̇2 + V (φ), (1.18)

and

p =
1

2
φ̇2 − V (φ). (1.19)

One can achieve the requirement ρ + 3p < 0, and equivalently ä > 0, if

φ̇2 < V (φ). (1.20)

Inflation is thus achieved if the potential energy of the scalar field is dominant over its kinetic

energy.

One should here note that there are alternative scenarios of inflation driven by the kinetic

energy of scalar field [31, 32]. Such models use a general class of non-quadratic kinetic terms

for the scalar field to obtain inflationary evolution. The non-standard kinetic term is motivated

by appealing to the existence of higher-order corrections to the effective action for φ in string



1.2. Inflation 7

theory. Such higher order corrections are produced as α′-corrections due to the massive modes

of string [33]. To show how this scenario works, let us consider a single scalar field interacting

with gravity through non-standard kinetic term,

S =

∫
d4x

√
g

(
− R

16πG
+ p(X)

)
, (1.21)

with X = 1
2
∂µφ∂µφ. The energy density for such fluid, only depends on X:

ε(X) = 2X
∂p

∂X
− p(X). (1.22)

If in the function p(X) = KX + 1
2
LX2 + · · · , all the coefficients K,L, · · · are positive, p &

ε are always positive. Then, it is easy to show that ε will monotonically decrease toward zero,

and the evolution will be driven to the ”attracting solution ”

ε = H2 ≈ 1

9t2
, a ≈ a0t

1/3, (1.23)

which corresponds to the asymptotic equation of state p ≈ ε valid near ε = 0 where the usual

kinetic term p = 1
2
KX dominates. On the other hand, if the expansion coefficients K,L, · · ·

may take negative values, the graph p = p(X) may look more complicated and can allow for

exponential-type inflationary behavior. From equation 1.22, one can see that the extrema of

the function p(X), i.e. ∂p
∂X

= 0, corresponds to values where p = −ε, and therefore allows

for de-Sitter expansion. One can show that all the intersection points with the p = −ε are

attractors of the (future) evolution. Models that exploit non-standard forms of kinetic terms

are called k-inflationary scenarios [31, 32]. However, hereafter, we shall restrict ourselves to

potential-driven models.

In this work, we will mainly focus on a chaotic inflationary scenario [34]. To illustrate the

main idea of this scenario, let us first consider a theory of a scalar field φ with a degenerate

effective potential V (φ) , minimized at φ = φ0. It is clear that in such a theory there are no

reasons to expect that the classical field φ is equal to φ0 in the whole universe. On the contrary,

one may expect that all values of φ may appear in different regions of space, sufficiently far

removed from each other, with equal probability. This means that in such a theory the field

displaced from its minimum, evolves to its true vacuum. Especially its equation of motion is
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classical and is governed by:

φ̈ + 3Hφ̇ + V ′(φ) = 0. (1.24)

This is similar to the equation of ball rolling down a hill with friction. The crucial aspect of

the evolution of φ is the time required for φ to roll to its minimum, ∆t. If the scalar potential

is sufficiently flat, i.e. ∣∣∣φ̈
∣∣∣ ¿ H

∣∣∣φ̇
∣∣∣ , (1.25)

this time can be long compared to the time-scale of expansion of the universe, i.e. ∆t À H−1.

The above condition, with the condition 1.20, are known as slow-roll conditions. During this

slow-roll evolution, the universe is dominated by the vacuum of energy of the scalar field and

the universe expands quasi-exponentially:

a(t) = ai exp

(∫ t

ti

dt′H(t′)
)

(1.26)

The expansion is quasi-exponential since H(φ) ≈ 8πV (φ)/3m2
Pl is almost constant. During

the inflationary expansion, the curvature term, k/a2, rapidly redshifts away. As the field rolls

down the potential, gradually its kinetic energy increases. Eventually, its kinetic energy domi-

nates over its potential energy and inflation comes to an end when φ̇2 ≈ V (φ). The field then

rapidly oscillates about the minimum of the potential. The spatially coherent oscillations of the

field φ around its minimum corresponds to a condensate of zero-momentum φ particles of mass

m2
φ = V ′′(φ). At this stage the coupling of φ to other field becomes important. The condensate

of φ particles decay to other fields that couple to φ due to quantum particle creation. It is these

oscillations that result in particle production and a reheating of the universe [35–37].

During the slow-roll evolution, the equation of motion reduces to

3Hφ̇ = −V ′(φ). (1.27)

Thus, the number of e-foldings of growth in the scale factor could be calculated as

ln a2/a1 = Ne =

∫ t2

t1

Hdt = − 8π

m2
Pl

∫ φ2

φ1

V (φ)

V ′(φ)
dφ. (1.28)

For the simplest chaotic inflationary model with a quadratic potential, V (φ) = m2φ2/2, where

m is the mass of the field φ, hereafter called the inflaton, the number of e-foldings is given by:

Ne =
2π

m2
Pl

(φ2
i − φ2

f ). (1.29)



1.3. Fluctuations in standard inflation 9

Inflation starts at super-Planckian values of φi À mPl, where V (φi) ≈ m4
Pl and ends when

φf ≈ O(mPl). Thus Ne is approximately given by exp(4πm2
Pl/m

2). On the other hand, having

a perturbation amplitude consistent with the maximum anisotropy of the CMBR requires that

m ≈ 10−6mPl [80]. This implies that the scale factor of the universe increases by a factor of

101012 . Indeed, if the original domain is one Planck length in extent, its final size will be of order

101012 cm; for comparison the size of the observable universe is approximately 1028 cm. Here

lies the origin of the trans-Planckian problem of inflationary cosmology [38]. As we will see in

the next three chapters, the assumptions underlying calculation of perturbations are the validity

of quantum field theory (QFT) and general relativity. However, if such models of inflation

are correct, the modes that have contributed to structure formation in our observable universe

have been stretched from sub-Planckian scales where both of these two theories break down.

In some particular framework of short-distance physics, we investigate how the predictions of

standard cosmological perturbation theory get modified.

1.3 Fluctuations in standard inflation

In inflation, see [39, 40], we consider the action of the scalar inflaton field, minimally coupled

to gravity:

S =
1

2

∫
(∂µφ∂µφ− V (φ))

√−g d4x− 1

16πG

∫
R
√−g d4x (1.30)

One assumes the background to be a homogenous isotropic Friedmann universe with zero

spatial curvature. In comoving coordinates y and comoving time τ , the metric reads ds2 =

a2(τ)
(
dτ 2 − δijdyidyj

)
. The perturbations of the metric tensor can be decomposed into scalar,

vector and tensor modes according to their transformation properties under spatial coordinate

transformations on the constant-time hypersurfaces, namely ds2 = ds2
S + ds2

V + ds2
T , where:

ds2
S = a2(τ)

(
(1 + 2Φ)dτ 2 − 2∂iBdyidτ − [(1− 2Ψ)δij + 2∂i∂jE]dyidyj

)
(1.31)

ds2
V = a2(τ)

(
dτ 2 + 2Vidxidτ − [δij + Wi,j + Wj,i]dxidxj

)
(1.32)

ds2
T = a2(τ)

(
dτ 2 − [δij + hij]dxidxj

)
(1.33)

This generalizes the decomposition of vector fields into a curl and a gradient field. Here,

Φ, B, Ψ and E are scalar fields, Vi and Wi are 3-vector fields satisfying Vi,i = Wi,i = 0
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and hij is a symmetric three-tensor field satisfying hi
i = 0 = hij

,j . The repetition of indices

does not indicate summation. The inflaton field fluctuates about its spatially homogeneous

background φ(y, τ) = φ0(τ)+δφ(y, τ). Here, φ0(τ) is the homogenous part of the scalar field

which is driving the background expansion and the perturbation is assumed small: |δφ| ¿ φ0.

In standard inflation, vector fluctuations are not amplified by the expansion but it should be

interesting to reconsider if this still holds true in inflation with a minimum length. Here, we

will focus on scalar and tensor fluctuations.

1.3.1 Scalar perturbations

It is the quantum fluctuations of the intrinsic curvature perturbations of the comoving hyper-

surface < which are thought to have seeded what later became the dominant perturbations in

the CMBR. The intrinsic curvature <, which is gauge invariant, can be expressed as:

< = −a′

a

δφ

φ′0
−Ψ, (1.34)

The prime denotes differentiation with respect to conformal time, τ . Expanding the action to

second order yields for the action of <

S
(1)
S =

1

2

∫
dτ d3y z2

(
(∂τ<)2 − δij ∂i<∂j<

)
(1.35)

where:

z =
aφ′0
α

, α = a′/a (1.36)

In the vast literature on standard inflationary theory, however, a slight reformulation of the

action is usually preferred as the starting point for quantization. Namely, one often introduces

an auxiliary field variable, u, through

u = −z< = a

(
δφ +

φ′0Ψ
α

)
(1.37)

whose dynamics follows from the action:

S
(2)
S =

1

2

∫
dτd3y

(
(∂τu)2 − δij ∂iu ∂ju +

z′′

z
u2

)
(1.38)
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As long as we do not introduce a minimum length, the two actions S
(1)
S and S

(2)
S are equivalent.

More precisely, they differ by a boundary term:

S
(1)
S − S

(2)
S =

∫
dτ d3y

d

dτ

(
z′

z
u2

)
(1.39)

The reason why one often prefers to quantize starting from the action S
(2)
S rather than from

the action S
(1)
S is that S

(2)
S possesses no overall time-dependent factor, and this gives it the

appearance of an action of a free field theory on flat space. Its only nontrivial aspect is that

the field u(y, τ) has a time-varying “mass” z′′/z. The similarity to a Minkowski space theory

suggests that in this formulation the field can be quantized in the same way that one would

quantize a field on flat space. This suggests that one can identify the vacuum state in the same

way as one does in the case of Minkowski space theories. Concretely, the Euler Lagrange field

equation reads:

û′′ −∇2û− z′′

z
û = 0. (1.40)

The momentum conjugate to u(y, τ) is given by π(y, τ) = ∂Ls

∂u′ = u′(y, τ). To quantize, one

promotes u and π to operators, û and π̂, which satisfy canonical commutation relations on

hypersurfaces of constant τ :

[û(τ,y), û(τ,y′)] = [π̂(τ,y), π̂(τ,y′)] = 0 (1.41)

[û(τ,y), π̂(τ,y′)] = iδ3(y − y′) (1.42)

Employing the plane wave expansion

û(τ,y) =

∫
d3k

(2π)3/2

[
uk(τ)âke

ik·y + u∗k(τ)â†ke
−ik·y

]
(1.43)

the fields will obey the commutation relations Eqs.1.41,1.42 if the operators âk obey the Fock

commutation relations [âk, âk′ ] = [â†k, â
†
k′ ] = 0, [âk, â

†
k′ ] = iδ3(k − k′) and if the mode func-

tions uk obey the Wronskian condition:

u∗k
duk

dτ
− uk

du∗k
dτ

= −i. (1.44)

Further, the field equation will be obeyed if the number-valued functions uk(τ) obey the mode

equation:

u′′k +

(
k2 − z′′

z

)
uk = 0. (1.45)
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At this point, initial conditions must be chosen for the solution of Eq.1.45. This choice is

crucial because it implies the identification of the vacuum state and this affects all predictions

of the theory. Intuitively, one expects that if a mode can be followed back to when its proper

wavelength was infinitesimally short then one sees the mode when it was virtually unaffected

by curvature, i.e. here by the expansion. One should therefore be able to identify the correct

solution of the mode equation at those early times, which then sets the initial conditions of the

mode for all time. Indeed, in Eq.1.45, one observes that z′′/z → 0 at early times, τ → −∞, i.e.

when the mode’s proper wavelength was arbitrarily short. In this limit, Eq.1.45 formally turns

into u′′k + k2uk = 0 which is the zero mass wave equation for a Minkowski space theory. For

such a theory the correct solution of the wave equation is known and one proceeds, therefore,

to impose as the initial condition for Eq.1.45:

uk(τ) → 1√
2k

e−ikτ for τ → −∞ (1.46)

This identifies the initial vacuum of each mode as the incoming lowest energy vacuum. The

mathematical problem for calculating u is now well-posed. Finding u then yields the mode

function for the intrinsic curvature < = −u/z and from it we finally obtain the observation-

ally relevant power spectrum P
1/2
S (k), of the intrinsic curvature’s quantum fluctuations after

horizon crossing:

P 1/2
s (k) =

√
k3

2π2
|<k|

∣∣∣
k

aH
¿1

(1.47)

To conclude: before introducing a minimum length the actions S
(1)
S and S

(2)
S differ merely by

a boundary term. Thus, re-expressing the mode equation Eq.1.45 that followed from S
(2)
S in

terms of the intrinsic curvature yields

<′′
k̃
+

2z′

z
<′

k̃
+ k2<k̃ = 0 (1.48)

which is of course the same mode equation that one obtains as Euler Lagrange equation directly

from the action S
(1)
S . The rationale for taking the detour via the action S

(2)
S is that this route

exhibits a similarity with QFT on Minkowski space which suggest a particular choice of initial

condition and thus of the vacuum.
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1.3.2 Tensor perturbations

The situation for the tensor modes h is similar. Their dynamics is determined by expanding the

Einstein-Hilbert action to second order:

S
(1)
T =

m2
Pl

64π

∫
dτd3y a2(τ) ∂µh

i
j ∂µhi

j (1.49)

The aim is to calculate the spectrum of the quantum fluctuations of h after horizon crossing.

This spectrum is hoped to become testable through measurements of the CMB’s B-polarization

spectrum, the first measurements of which may come from the upcoming PLANCK satellite

telescope [20].

It is clear that the action S
(1)
T is of precisely the same form as S

(1)
S , up to constants and

the replacement of z(τ) by a(τ). This means that it is possible to reformulate also the tensor

action to give it the appearance of a Minkowski space theory with variable mass term, thereby

obtaining a criterion for picking the initial conditions. Therefore, instead of quantizing directly

from S
(1)
T , one often prefers to introduce the re-scaled variable, P i

j

P i
j(y) =

√
m2

Pl

32π
a(τ)hi

j(y) (1.50)

whose dynamics follows from the action:

S
(2)
T =

1

2

∫
dτd3y

(
∂τPi

j∂τP i
j − δrs∂rPi

j∂sP
i
j +

a′′

a
Pi

jP i
j

)
(1.51)

Analogously to the case of scalar fluctuations, the two actions S
(1)
T , S

(2)
T merely differ by a term

which is a total time derivative

4ST = S
(2)
T − S

(1)
T =

32π

m2
Pl

∫
dτd3y

(
αPi

j P i
j

)′ (1.52)

and therefore lead to the same equation of motion.

One proceeds by decomposing P i
j into its Fourier components

P i
j =

∑

λ=+,×

∫
d3k

(2π)3/2
pk,λ(τ) εi

j(k; λ) eik·y (1.53)



1.4. Some other models of inflation 14

where εi
j(k; λ) is the polarization tensor, satisfying the conditions: εij = εji, εi

i = 0, kiεij =

0 and εi
j(k; λ)εj∗

i(k; λ′) = δλλ′ . There are two independent polarization states, usually

denoted λ = +,×. It is convenient to choose εij(−k; λ) = ε∗ij(k; λ) which implies that

pk,λ = p∗−k,λ. The action for tensor perturbations then takes the form:

S
(2)
T =

∑

λ=+,×

∫
dτd3k

(
(∂τ |pk,λ|)2 −

(
k2 − a′′

a

)
|pk,λ|2

)
(1.54)

To quantize, one promotes pk,λ to an operator p̂k,λ and expands it in terms of creation and

annihilation operators, p̂k,λ = pk(τ)âk,λ + p∗k(τ)â†k,λ to obtain for the mode functions pk(τ)

(omitting the index λ) the wave equation:

p′′k +

(
k2 − a′′

a

)
pk = 0, (1.55)

Analogously to scalar fluctuations, also the pk(τ) must obey the Wronskian condition (1.44).

As for scalar modes, the similarity with the zero mass Minkowski space wave equation at early

times suggests to impose the initial condition that the field takes the form given in Eq.1.46 for

k/aH → ∞. The mathematical problem is then well defined and p can be calculated. From

p one obtains the tensor mode hi
j =

√
32π

m2
Pla

2 p
i
j and finally the spectrum of tensor quantum

fluctuations hk after horizon crossing:

P
1/2
T =

√
k3

2π2
|hk|

∣∣∣
k

aH
¿1

(1.56)

To summarize, as in the case of scalar fluctuations, one starts quantization from the action S
(2)
T

so as to exploit the similarity with Minkowski space QFT for identifying the initial conditions

and thus the vacuum state for tensor modes.

1.4 Some other models of inflation

1.4.1 Old inflation

The first potential-driven inflationary model was not based on slow-rolling, but on false vac-

uum decay [23, 41]. This model was formulated in the context of a scalar field with potential
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V (φ) that undergoes a first order phase transition. At temperatures well below the critical tem-

perature, T ¿ Tc, the potential has a false vacuum at φ = 0 with V (0) = V0 > 0, whereas

the true vacuum is at φ = φ0 with V (φ0) = 0. At temperatures above the critical temperature,

T À Tc, the potential gets some finite temperature corrections that are proportional to φ2T 2

[42–45] and the only true vacuum state is at φ = 0. As the universe cools below the critical

temperature, φ gets trapped in the false vacuum, φ = 0 and the universe starts expanding with

the energy of the false vacuum. After a period of Γ−1, where Γ is the tunneling rate, bubbles

of φ = φ0 begin to nucleate [46, 47] in the sea of false vacuum φ = 0. It was immediately

realized that this inflationary scenario suffers from the graceful exit problem [48]. Achieving

successful inflation required that the tunneling transition rate be small, implying that the nu-

cleation of the true vacuum bubbles was rare. Also, the latent heat needed for reheating was

stored in the kinetic energy of the bubble walls, so that reheating had to be provided via bubble

collisions. The small tunneling rate required for sufficient inflation precludes bubble collisions

from reheating the universe. At the end, the phase transition is never complete and most of the

universe continues to inflate forever [49]. Some ways to get around these problems have been

suggested in [50–52], in the context of Brans-Dicke gravity and in [53] using a spectator scalar

field coupled non-minimally to gravity. The variant of old inflation suggested in the context of

Brans-Dicke theory is called ”extended inflation”. It is known, however, that extended inflation

suffers from some problems too [54]. In this model, bubbles that nucleate very early, for ex-

ample 60-efoldings before the end of inflation can be swept up to very large sizes, comparable

to our observable universe. Such bubbles are unable to thermalize properly and can lead to

substantial inhomogeneities that are observable in the CMBR.

1.4.2 New inflation

Soon after the seminal paper of Guth, Linde [27] and Albrecht and Steinhardt [28] indepen-

dently put forward a modified scenario called ”New inflation”. The starting point is a scalar

field with a double well potential that undergoes a second order phase transition. For tempera-

tures greater than the critical temperature, VT (φ) is minimized at φ = 0 and therefore φ(x) is

confined at φ = 0. At zero temperature, T ¿ Tc, the potential has a local maximum at φ = 0.
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The potential V (φ) is very flat near the false vacuum at φ = 0. Therefore, when temperature

drops below the critical temperature, thermal fluctuations trigger the instability of φ = 0 and φ

slowly rolls toward the global minima of potential at φ0. There is no graceful exit problem in

the new inflationary universe, since the fluctuation domains are established at the beginning of

inflation, i.e. any boundary walls will be inflated away outside the present horizon.

1.4.3 Hybrid inflation

In this model, which was originally suggested by Linde [55], the slowly rolling field, φ, is not

the one responsible for the energy density of the universe during inflation. It is coupled to

another field, ψ, which is held in its place by interacting with the inflaton. The slow-roll infla-

tion continues until the φ falls below a critical value φc. When that happens, ψ is destabilized,

rolling to its true vacuum and inflation ends. The potential for the original model of hybrid

inflation is:

V (φ, ψ) =
1

2
m2φ2 +

1

4
λ(ψ2 −M2)2 +

1

2
λ′ψ2φ2. (1.57)

The field ψ is fixed at the origin if φ2 > φ2
c , where

φ2
c =

m2
ψ

λ′
=

λ

λ′
M2, (1.58)

whereas at smaller values of φ, the ground state of ψ tends to±M . The idea of hybrid inflation

is that φ is slowly rolling, like the inflaton field in slow-roll inflation, but that the energy density

of the universe is dominated by ψ, V0 = 1
4
λM4, to the potential. In hybrid inflation, φc

can be made smaller than mPl and thus inflation without super-Planck values for the inflaton.

As hybrid inflation ends with a phase transition, there is always the possibility formation of

topological defects [56].

1.4.4 Multi-Component Inflation

So far we have considered only one possible inflationary trajectory in the space of scalar fields.

This is automatically true, if we have a single scalar field. However, in general there will be
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a whole family of possible inflationary trajectories. There are trivial examples when, in addi-

tion to the inflaton, there are massless fields that do not make any contribution to the potential

during the inflation. Unless the fields survive and become important after inflation, all infinite

number of trajectories are equivalent. Another trivial case happens when a symmetry ensures

the equivalence of trajectories. Then the transition from inflation to matter and radiation dom-

inated universe is the same for each trajectory.

Here, we are mainly interested in models in which the trajectories that are not equivalent.

In such models, the inflaton field is a multi-component object with components φa. Mainly in

these models, it is assumed that while cosmological scales are leaving the horizon, all compo-

nent fields roll slowly:

3Hφ̇a = − ∂V

∂φz

. (1.59)

Differentiating this and comparing it with the exact equation φ̈a + 3Hφ̇a = ∂V/∂φa, gives:

M2
Pl

(
∂V/∂φa

V

)2

¿ 1 M2
Pl

∣∣∣∣
∂V/∂φa∂φb

V

∣∣∣∣ ¿ 1 (1.60)

One calculate the adiabatic density perturbations generated by multi-component inflaton using

the δN formalism developed by Stewart and Sasaki [57]. In general, one can show that:

δN = <, (1.61)

where δN is the difference between the number of e-foldings in the presence and absence of

curvature perturbations. We have chosen a foliation such that the initial hypersurface is flat and

the final one is comoving. Assuming slow-roll, one can write δN as

δN =
∂N

∂φa

δφa (1.62)

where repeated indices are summed over. The perturbations δφa are Gaussian random fields

generated by the vacuum fluctuations and thus we have:

Ps(k) ≡ k3

2π2
〈<k<l〉δ3(k− l) =

V

75π2M2
Pl

∂N

∂φa

∂N

∂φa

. (1.63)

Although we have so far assumed that the potential for each of these components are flat

enough to sustain slow-roll inflation, in inflationary scenarios with more than one scalar field,
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inflation may proceed even if each of the individual fields has a potential too steep for that field

to sustain inflation on its own. This is the idea of assisted inflation [26, 58]. The original idea

was proposed using steep exponential potentials. For simplicity, we begin by considering m

scalar fields, φi, which each have an identical potential

V (φi) = V0 exp

(
−

√
2

pi

φi

mPl

)
. (1.64)

These fields only affect each other via expansion and do not have any direct interaction with

each other. The equations of motion are:

H2 =
8π

m2
Pl

i=m∑
i=1

[
V (φi) +

1

2
φ̇2

i

]
, (1.65)

φ̈i = −3Hφ̇i − dV (φi)

dφi

, (1.66)

One can show that a particular solution where all scalars are equal is a unique late-time attractor

for the system

φ1 = φ2 = · · · = φm (1.67)

The above equations of motion then can be mapped to a single scalar field φ̃ defined as

φ̃1
2

= mφ2
1, (1.68)

with the following potential:

Ṽ (φ̃) = Ṽ0 exp

(
−

√
2

p̃

φ̃

mPl

)
, Ṽ0 = mV0, p̃ = mp. (1.69)

For an exponential potential, above one can show that scale factor behaves as a(t) ∼ tp̃, if

p̃ > 1/3 [59]. The expansion becomes quicker as the number of scalar fields increase. In

particular, potentials with p < 1, which for a single field are unable to support inflation, can do

so as long as there are enough scalar fields to make mp > 1. We will use this scenario in the

last chapter to construct an inflationary model in the context of M-theory.
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1.5 Building inflationary models in string theory

Inflation is likely to be associated with physics at energies considerably higher than the weak

scale, for which string theory is arguably our most promising candidate. Due to the proximity

of the energy scale of inflation to the string scale, inflation can play the role of a bridge between

string theory and observation. This provides motivation for looking for stringy setups that give

rise to inflation.

So far we had focused our attention on phenomenological models that can realize the idea

and goals of inflation. However, we have not mentioned what inflaton might be in the context of

a fundamental theory such as string theory. The search for inflation in string theory has not been

easy due to two problems. The first problem is due to moduli. Supersymmetric vacua of string

theory have many massless scalar fields with strictly tree level flat potentials. These scalar fields

are known as moduli. Basically one of these fields could play the role of inflaton, if one could

manage to give it a small slope by invoking SUSY breaking. However, once the supersymmetry

is broken, the moduli usually acquire a mass. Since the inflaton potential is – by design – very

shallow, its slope can be dominated by small contributions to the potential. Especially, when

supersymmetry is broken, moduli find masses proportional to Hubble parameter, which spoils

the slow-roll inflation. Further studying had revealed that this supersymmetry breaking would

not occur within a perturbative regime and required non-perturbative string theory. The second

obstacle in building inflation within string theory was the belief that the string scale is mPl.

This made it difficult to achieve inflationary potentials which produce the right amplitude for

fluctuations.

The advent of D-branes [60] opened up news way for the semi-classical study of supersym-

metry breaking which produces potential for the moduli. The most actively pursued direction

along this line has been to have supersymmetry break due to the presence of both branes and

anti-branes. Also the existence of D-branes opens up the possibility to bring the string scale

to scales much below the Planck scale. This could happen in a brane-world scenario where all

low-energy particles except for the graviton are trapped on the brane [61]. Gravitons can prop-

agate in the extra dimensions and make the string scale well below the Planck scale. The other

way to lower the string scale is by using warped compactifications [62]. These two methods
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allow the scale of inflation to become right for the generation of density perturbations.

The first idea for obtaining inflation from string theory is based on the relative motion of

branes and anti-branes, which plays the role of inflaton, through a background geometry under

their mutual attraction [63]. This scenario is based on the long-range interactions that occur

due to the mediation of massless fields like gravity in the bulk. In the first glance, the potential

seems to be sufficiently flat to sustain slow-roll inflation [64]. However, as it is not possible

to separate the branes more than the size of the compact space, this expectation seems to be

incorrect [65]. For d⊥ = k + 2 transverse dimensions to the brane, the potential behaves as

V (r) = A + B/rk [64]. Thus the second slow-roll parameter, η, is:

η =
m2

PlV
′′

V
≈ ck(k + 1)B

A

(
R

r

)k+2

(1.70)

where, A, B and c are set by the appropriate powers of the string scales, `s. The constant,

c, and the volume of transverse dimensions, Rk+2,enters through their appearance in the 4D

Planck mass, m2
Pl = cRk+2. As the inter-brane separation cannot exceed the size of extra-

dimension, r ≤ R, η is not generically small. The best approach to solve this problem is

proposed in [66] which uses the stabilization construction of [67]. The fluxes are adjusted in

the Calabi-Yau sector to assure the presence of a long warped throat, whose tip is a smoothed-

off singularity. According to [67] one or more anti-D3 branes is imagined to reside at the tip

of the throat. The five dimensional space-time consisting of large four dimensional space-time

and the radial dimension of the throat is anti-de Sitter. The presence of the anti D3 brane

breaks the 4D N = 1 supersymmetry. Finally a D3 brane is imagined to slide down the throat

toward the D̄3 brane. The relative motion of D-branes toward the anti-branes plays the role

of the inflaton. Due to the interplay between the moduli-stabilizing potential and the inflaton

potential, inflation can be obtained in this picture at the price of adjusting the parameters to

the level of (0.1− 1)% level. The spectral index obtained in this sort of inflationary models is

slightly blue, with ns ∼ 1.03− 1.08 [68]. It is possible to embed the low-energy world in this

scenario by locating the standard model sector onto a system of intersecting D3 and D7 branes

somewhere within the six internal dimension. One would be able then to pose post-inflationary

questions, like the nature of reheating. Another exciting possibility which emerges with the

brane-antibrane inflationary scenarios is the production of cosmic strings at the end of inflation
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[69]. Such cosmic strings are long-lived [70] and have a considerable energy density which is

detectable through its effect on the CMB configuration.

The last chapter of this thesis has been allocated to the study of an alternative M-theory

scenario in which the cumulative effect of so many of the moduli can cause inflation, although

an individual moduli potential is too steep to sustain inflation. The scenario uses the assisted

inflationary model to realize inflation within M-theory.

1.6 Outline of the thesis

1.6.1 Fingerprints of Planck Scale Physics in the CMB

The first three chapters of this thesis investigate possible Planck scale signatures that might be

left on the CMB. As mentioned earlier, some chaotic inflationary models suggest that quan-

tum fluctuations of the inflaton were stretched from Planck scale by inflationary expansion to

galactic-size scales or even larger. Vacuum fluctuations of the inflaton produce both scalar

and tensor perturbations, both of which contribute to the anisotropy of the cosmic microwave

background radiation. For any inflationary model one can calculate the ratio of tensor to scalar

fluctuations, r, which multiplies the upper bound on the scalar density perturbations by a fac-

tor of (1 + r)1/2. By knowing it one can tighten the bounds on the scalar spectral index. It is

therefore important to know r in as much detail as possible in order to extract cosmological

parameters with more precision. Also since scalar and tensor perturbations originate from a

single inflaton potential they are not independent. A hierarchy of consistency conditions links

them together. It has been argued that such conditions – if empirically verified – would offer

strong support for the idea of inflation. Observational difficulties will probably render only the

first consistency condition useful. The first of the consistency relations states that the ratio of

the amplitude of tensor to scalar perturbations is a constant known as the tensor spectral index.

General arguments about the quantum theory of gravity and some studies in string the-

ory suggest that the short distance structure of space-time at Planck-scale can be modelled

as arising from some corrections to the well-known uncertainty relation between the position
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and momentum operators. This modified commutation relation was implemented at the first

quantized level to the theory of cosmological perturbations [71]. In the second chapter, I dis-

cuss a property of this approach that total time derivatives, which in continuous space-time

could be neglected and do not contribute to the equations of motion, cease to remain total time

derivatives as minimal length is implemented [72]. Since in the Lagrangian formulation of

quantum field theory, the initial conditions are introduced as boundary terms, this discovery

indicates that the choice of initial conditions affects our estimate of the contribution of Quan-

tum Gravity to the total spectrum of CMBR. This finding was similar in spirit to the finding of

Prof. Veneziano’s group at CERN who, around the same time but using different techniques,

discovered that trans-Planckian effects depend crucially on the definition of the vacuum state,

in particular on which Hamiltonian is minimized on the new physics hypersurface in order to

select such a state [73]. In the third chapter, I study the consequences of this discovery for

the tensor/scalar ratio [74]. I find the dependence of the ratio on the minimal length for the

near-de-Sitter background and showed that r can acquire an oscillatory behavior if the choice

of boundary term in the action is non-minimal [74].

In the fourth chapter, I examine the first consistency relation in a power-law background,

where I find that – despite the ambiguity that exists in choosing the action – Planck scale

physics modifies the consistency relation considerably. It also leads to the running of the

spectral index. For modes that are larger than our current horizon, the tensor spectral index

is positive. For a window of k values with amplitudes of the same order of the modes which

are the precursor to structure formation, the behavior of the tensor spectral index is oscillatory

about the standard Quantum Field theory result, taking both positive and negative values, [75].

1.6.2 Cosmological Magnetic Fields

Magnetic fields are present throughout the universe and play an important role in many as-

trophysical situations. It has been suggested that inflation can be a prime candidate for the

production of primeval magnetic fields. Quantum fluctuations of the massless scalar and tensor

(gravitational) fields are very much amplified at the inflationary epoch. This is closely related

to the fact that these fields are not conformally invariant. However, electromagnetic waves are
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not produced in such conditions since classical electrodynamics is conformally invariant in the

limit of vanishing masses of fermions. As the existence of a preferred minimal length breaks

the conformal invariance of the background geometry, it is plausible that this effect could gen-

erate some electromagnetic field amplification. In the fifth chapter, I show that this scenario

is equivalent to endowing the photon with a large negative mass during inflation. The effec-

tive mass vanishes in a radiation and matter dominated universe. Tuning the free parameter of

the theory, I show that the seed required by the dynamo mechanism can be generated. I also

showed that this mechanism can produce the requisite galactic magnetic field without resorting

to a dynamo mechanism [76].

1.6.3 M-theory Signatures in the CMB

In the context of M-theory, K. Becker et. al. have realized assisted inflation [77]. Assisted

inflation is a multi-scalar version of power-law inflation where cooperative behavior of several

scalar fields with exponential potentials give rise to power-law inflation, a ∝ tp, even though

the individual single-field potential is too steep to sustain inflation on its own. In this model the

non-perturbative dynamics of N M5-branes on S1/Z2 produces assisted inflation. The open

membrane instanton interactions between the M5-branes each give rise to an exponential po-

tential that is too steep to produce inflation but leads to inflation if they are combined together.

During inflation the distance between the M5-branes grow until they reach the size of the orb-

ifold. At this stage the two outermost M5-branes coalesce with the boundaries through small

instanton transitions. Hence the number of M5-branes and also the effective potential for the

inflaton jumps instantaneously. Since parameter p in the scale factor depends on the number

of M5-branes, p also jumps to a lower value. At the end, we have a cascade of power-law

inflations where power decreases stepwise.

In the sixth chapter, I calculate the density perturbations in this model and show that it

possesses three distinctive signatures [78]: a decisive power suppression at small scales, oscil-

lations around the scales that cross the horizon when the inflaton potential jumps and stepwise

decrease in the scalar spectral index. All three properties result from features in the inflaton

potential. The features in the inflaton potential are generated whenever two M5-branes collide
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with the boundaries. The derived small-scale power suppression serves as a possible expla-

nation for the dearth of observed dwarf galaxies in the Milky Way halo. The oscillations,

furthermore, allow to directly probe M-theory by measurements of the spectral index and to

distinguish cascade inflation observationally from other string inflation models.



Chapter 2

Minimum Length Cutoff in Inflation and Uniqueness of the

Action

Some of the predictions of fundamental theories of physics can only be observed on energy

scales as high as the Planck scale. The availability of such high energies in the early uni-

verse and the huge separation between conventional accelerator experiments and the Planck

scale has led many to turn from accelerator-based experiments to cosmological observations

in order to test such theories. Inflationary cosmology [23, 24, 27, 28, 39, 40, 79] is one of the

paradigms that may serve this purpose. There, it is assumed that quantum fluctuations of the

inflaton are stretched by inflationary expansion to cosmological scales. About 60 e-folds of

inflationary expansion are necessary to solve many of the puzzles of big bang cosmology but

in most inflationary models the expansion is much larger. In models proposed by Linde [80]

the universe has expanded by a factor of 101012 . An implication of these models is, therefore,

that our observable universe was of sub-Planckian size at the beginning of the (last) inflation-

ary period. This suggests that inflation could act as a magnifying glass for probing the short

distance structure of space-time.

A similar question had arisen concerning a possible sensitivity of black hole radiation to

trans-Planckian physics. There, it has been found that Hawking radiation is largely immune

to trans-Planckian effects, see e.g. [81]. In the case of inflation, however, it has been found

25
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that the inflationary predictions for the cosmic microwave background (CMB) do possess a

small and possibly even observable sensitivity to modifications of quantum field theory in the

ultraviolet. To this end, various examples of ultraviolet-modified dispersion relations, some

motivated by solid state analogs, have been tested for their effects on inflation, see [83–88]. In

particular, and this will be our interest here, the ultraviolet cutoff described by a lower bound in

the formal uncertainty in position, ∆xmin, has been investigated for its implications in inflation,

see [71, 89, 91, 92].

To model the small scale structure of space through a finite minimum position uncertainty

∆xmin is of interest because the corresponding modified uncertainty principle has been moti-

vated to arise from quite general quantum gravity arguments as well as from string theory, see

e.g. [93–100]. In fact, any theory with this type of ultraviolet cutoff can be written, equiva-

lently, as a continuum theory and as a lattice theory, see [101, 102]. While in the continuum

formulation the theory displays unbroken external symmetries, the theory’s ultraviolet regular-

ity is displayed in its lattice formulation.

Indeed, it has been found that inflationary predictions for the CMB are sensitive to the natu-

ral ultraviolet cutoff if the cutoff is modelled through a finite minimum uncertainty in position,

∆xmin. The magnitude by which the cutoff affects the predicted scalar and tensor spectra in the

CMB was found to depend crucially on the initial conditions when a mode’s evolution begins,

which is when its proper wavelength is the minimum length. These initial conditions determine

how close the modes’ state is to the adiabatic vacuum during the period of adiabatic evolution

before the mode crosses the Hubble horizon. If the modes are in the adiabatic vacuum dur-

ing the phase of adiabatic evolution then the effects of Planck scale physics on inflationary

predictions should be no bigger than of the order of σ2, see [89, 90], where:

σ =
∆xmin

LHubble

(2.1)

Here, LHubble is the Hubble length during inflation. Thus, for GUT scale inflation, we have

approximately σ ≈ 10−3 if the cutoff length, ∆xmin, is at the string scale and σ ≈ 10−5 if

the cutoff length is at the Planck scale. In principle, however, the cutoff can lead to arbitrarily

large effects, for example if the modes’ state during the adiabatic phase differs strongly from

the adiabatic vacuum (see also [103]). In this case, the modulus of the mode functions oscillates
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at horizon crossing and these oscillations translate into characteristic oscillations in the CMB

spectra. This possibility is restricted, however, by the need to keep the back-reaction small,

see [104, 105]. Interestingly, it was found that this constraint still allows nontrivial vacua with

effects as large as of order σ, see Easther et.al. [91, 92]. Effects of this magnitude might reach

the threshold of observability.

So far, initial conditions have been proposed based on analyticity arguments [89] and based

on similarity to the Bunch Davies vacuum [91, 92]. A further suggestion is to minimize the

field uncertainties [106, 107]. Still, however, the crucial question of how to determine initial

conditions for the new comoving modes that are continually being created during an expansion

has not been conclusively answered. The problem is of course equivalent to identifying the

vacuum state.

Here, we address this problem by reconsidering how the vacuum state is usually identified

within inflationary QFT without a minimum length. Namely, the usual strategy is to make

use of the fact that the action can be rewritten so as to resemble the familiar action of a field

on Minkowski space with time-variable mass term. When quantizing, one then chooses the

vacuum as one does for Minkowski space theories. We will find that this method is no longer

reliable when there is a minimum length. The reason is that the reformulation of the action

requires the neglect of a boundary term and we will see that this terms ceases to be a boundary

term when the the minimum length is introduced. We find that the differences are small but

noticeable both in the initial conditions and in the evolution equations. This shows that in any

approach to introducing a minimum length into inflation will have to take into account that

reformulations of an action that appear to be harmless because requiring merely the neglect of

a boundary term can lead to an unintended modification of the theory.

To see how this phenomenon can arise, let us recall that the particular model of a natu-

ral ultraviolet cutoff that we are considering is described by quantum mechanical uncertainty

relations with correction terms in the ultraviolet, of the form

∆x∆p ≥ ~
2

(
1 + β (∆p)2 + ...

)
(2.2)

where β > 0 is a positive constant. In the simplest case, such an uncertainty relation arises
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from the modified commutation relation:

[X,P] = i~(1 + β P2) (2.3)

It is not difficult to show that the uncertainty relation then implies a finite lower bound to the

position uncertainty ∆x:

∆xmin = ~
√

β (2.4)

By choosing β appropriately we obtain a cutoff at the string or at the Planck scale. This type of

ultraviolet cutoff was introduced into quantum field theory in [108] and then into inflationary

cosmology in [71].

It is clear that similar to quantization, which changes the commutativity properties and

therefore comes with a well-known ordering ambiguity, the introduction of a minimum length

through an equation such as Eq.2.3 changes the commutativity properties and therefore comes

with an ordering ambiguity. In principle, of course, ordering ambiguities can be of arbi-

trary magnitude. For example, a classical system is unchanged by adding terms of the form

(xp− px)f(x, p) to its Hamiltonian H . When promoting the x and p to operators the resulting

terms become proportional to ~ and could be arbitrarily large and significant to the evolution.

Similarly here, normally vanishing terms of the form (xp − px − i~)g(x, p) become nonzero

when β 6= 0. Here, the new Hamiltonian is determined only up to terms that vanish when

setting the minimum length to zero. Those terms can be arbitrarily large and, in principle, only

experiments could decide which choice is correct. This is to be expected in any approach to

introducing some form of a natural minimum length.

Of course, in the case of quantization it has proven to be a very reliable strategy to adopt

the minimalist approach to resolving the ordering ambiguity: write the Hamiltonian in its most

simple and symmetric form and leave it unchanged when introducing ~, i.e. do not introduce

terms by hand. The same minimalist approach has tacitly been applied in the literature when

the minimum length uncertainty relation has been used in inflationary quantum field theory.

We will now review this procedure, thereby uncovering potential pitfalls with implications for

the determination of the vacuum.
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2.1 Inflation with the minimum length uncertainty relation

The minimum length uncertainty principle was first introduced into inflation in [71]. One

starts by implementing the uncertainty relations in first quantization through modifications of

the canonical x, p commutation relations, as in Eq.2.3. The first quantization commutation re-

lations then carry over to quantum field theory. Note that since momentum space is unaffected

by the minimum length uncertainty relations the field commutators in momentum space remain

unchanged by the procedure.

In [71], this program was carried out explicitly for an action of the form of the tensor action

S
(1)
T . This showed how β > 0 generalizes the action S

(1)
T to a new action S

(1)
T,β and how the

tensor fluctuations’ equation of motion changes correspondingly. Those results immediately

also translate to the case of the scalar action S
(1)
S since this action differs merely by overall

constants and by suitably replacing a(τ) with z(τ). These equations of motion have been

further investigated in [91, 92]. We will explicitly list those equations of motion below.

Our aim now is to carry out the same program for introducing the minimum length, starting,

however, from the often-used actions S
(2)
S and S

(2)
T to derive the generalized actions S

(2)
S,β and

S
(2)
T,β and the correspondingly generalized equations of motion for scalar and tensor fluctuations.

We will find that the generalized actions S
(1)
S,β and S

(2)
S,β as well as the generalized actions S

(1)
T,β

and S
(2)
T,β no longer differ merely by boundary terms, are therefore not equivalent and lead to

slightly different equations of motion.

2.1.1 Scalar fluctuations with minimum length

The minimum length is to be introduced as a minimum proper length in the CMB rest frame.

To this end, we transform the action S
(2)
S as given in Eq.1.38 from comoving coordinates yi

and time τ to proper coordinates xi and time τ , where xi = a(τ)yi. Since the transformation is

time-dependent, the chain rule leads to a nontrivial transformation of the derivative ∂τ on fields

and we obtain:

S
(2)
S =

∫
dτ

d3x

2a3

{[(
∂τ +

a′

a

3∑
i=1

∂xixi − 3a′

a

)
u

]2

− a2

3∑
i=1

(∂xiu)2 +
z′′

z
u2

}
(2.5)
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We identify −i∂xi as the momentum operator, Pi, and xi as the position operator Xi. These

operators are defined on a Hilbert space of fields (not states) with:

(u1, u2) =

∫
d3x u∗1(x)u2(x)

Xiu(x) = xiu(x)

Piu(x) = −i∂xiu(x). (2.6)

The fields thus form a Hilbert space representation of the commutation relations:

[Xi,Pj] = iδij, [Xi,Xj] = 0, [Pi,Pj] = 0 (2.7)

This merely expresses that the canonical commutation relations of first quantization are present

also in second quantization. For example, in quantum field theory the ~ of the Fourier factor

eixp/~ directly derives from the ~ in the commutation relations of first quantization. Of course,

the operators Xi and Pj no longer possess a simple interpretation as observables. We see from

Eqs.1.38 and 2.5 that under the time-dependent mapping from comoving to proper positions

the chain rule makes the action of ∂τ on fields in comoving coordinates transform into a new

action on fields in proper coordinates, namely ∂τ → A(τ), where:

A(τ) =

(
∂τ + i

a′

a

3∑
i=1

PiXi − 3
a′

a

)
(2.8)

Using the operators X and P we can write the action (2.5) in representation-independent form

S
(2)
S =

∫
dτ

2a3

((
u, A†(τ)A(τ)u

)− a2
(
u,P2u

)
+

z′′

z
(u, u)

)
, (2.9)

meaning that Eq.2.9 is true without referring to the position representation, momentum rep-

resentation or any other representation of the fields. Following [71], our strategy now is to

maintain this representation-independent form of the action while introducing a cutoff by mod-

ifying the underlying position-momentum commutation relations Eqs.2.7. The modified com-

mutation relations should break neither translation nor rotation invariance and should introduce

a finite minimum position uncertainty ∆xmin in all three position variables. This breaks the

Lorentz Invariance. One should note that it is not clear that a complete theory of quantum
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gravity violates the Lorentz invariance or not. Several studies in Loop Quantum Gravity have

claimed possible violations of Lorentz symmetry in some semi-classical models of extended

matter dynamics [109, 110]. On the other hand, string theory does not break the Lorentz in-

variance, however see [111] for a different point of view. It has been shown [112] that all such

commutation relations must have the following form

[Xi,Pj] = i

(
2βp2

√
1 + 4βp2 − 1

δij + 2β PiPj

)
, [Xi,Xj] = 0, [Pi,Pj] = 0 (2.10)

to first order in the parameter β, which is chosen positive, see [112]. The minimum position

uncertainty ∆xmin in every coordinate is given by

∆xmin =

√
β

2
(1 + d/2)1/4

(√
1 + d/2 + 1

)
(2.11)

where d is the number of space dimensions, see [113]. Here d = 3, so that ∆xmin ≈ 1.62
√

β.

Correspondingly, σ ≈ 1.62
√

βH , where H is the Hubble parameter. A convenient Hilbert

space representation of the modified commutation relations, Eqs.2.10, is given by

Xiψ(ρ) = i∂ρiψ(ρ) (2.12)

Piψ(ρ) =
ρi

1− βρ2
ψ(ρ) (2.13)

with the scalar product:

(ψ1, ψ2) =

∫

ρ2<β−1

d3ρ ψ∗1(ρ)ψ2(ρ) (2.14)

Thus, the operator A(τ) changes as the minimum length is introduced, i.e. when β > 0. The

action for scalars, Eq.2.9, then also changes to become:

S
(2)
S,β =

∫
dτ

∫

ρ2<β−1

d3ρ
1

2a3

{ ∣∣∣∣
(

∂τ − a′

a

ρi

1− βρ2
∂ρi − 3a′

a

)
u

∣∣∣∣
2

− a2ρ2|u|2
(1− βρ2)2

+
z′′

z
|u|2

}

(2.15)

The presence of ρ derivatives means that the ρ modes are coupled. Conveniently, in the new

variables (τ̃ , k̃)

τ̃ = τ,

k̃i = aρie−βρ2/2 (2.16)
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the k̃ modes decouple. To see this, note that:

∂τ − a′

a

ρi

1− βρ2
∂ρi = ∂τ̃ . (2.17)

We will use the common index notation ūk̃ for the decoupling modes. The k̃ modes only

coincide with the usual comoving modes on large scales, i.e., only for small ρ2. This means

that the precisely comoving k modes, obtained by scaling ki = api, are decoupling only at

large distances while they do couple at distances close to the cutoff scale. The action now takes

a decoupled form (i.e. there are no k̃ derivatives):

S
(2)
S,β =

∫
dτ̃

∫

k̃2<a2/eβ

d3k̃ a−6 κ

2

(∣∣∣∣
(

∂τ − 3a′

a

)
ūk̃(τ)

∣∣∣∣
2

− µ |ūk̃|2 +
z′′

z
|ūk̃|2

)
(2.18)

Here, the functions µ and κ are defined through

µ(τ, k̃) = −a2

β

W (−βk̃2/a2)

(1 + W (−βk̃2/a2))2
(2.19)

κ(τ, k̃) =
e−

3
2
W (−βk̃2/a2)

1 + W (−βk̃2/a2)
(2.20)

where W is the Lambert W function (see e.g. [114]), which is defined so that W (x)eW (x) = x.

As expected, each comoving mode k̃ has a starting time, τc, namely the time at which a(τc) =√
eβk̃2, which is when ρ2 = 1/β, which is when the mode’s proper wavelength is the cutoff

length. The equation of motion that follows from the action S
(2)
S,β is:

ū′′
k̃
+

(
κ′

κ
− 6

a′

a

)
ū′

k̃
+

(
µ− 3

κ′a′

κa
− 3

(
a′

a

)′
+ 9

(
a′

a

)2

− z′′

z

)
ūk̃ = 0 (2.21)

The equation of motion contains a number of terms that involve the scale factor a and appears

rather complicated. This is not a consequence of the introduction of the minimum length.

Instead, it is merely due to our choice of variables. To see this, note first that the functions µ

and κ are simpler in the variables τ and ρi:

µ(τ, ρ) =
a2ρ2

(1− βρ2)2
(2.22)

κ(ρ) =
e3βρ2/2

1− βρ2
(2.23)
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Thus, as the cutoff is removed, β → 0, we have that µ → k2 and κ → 1. The action Eq.2.18

thus turns into a conventional-looking action, except for an overall factor of a−6. The many

terms of a and a′ in the equation of motion Eq.2.21 trace back to this pre-factor a−6 in the

action in Eq.2.18. The occurrence of the factor a6 might be surprising since we had started

with the action S
(2)
S as given in Eq.1.38 which of course does not possess a time-dependent

pre-factor. The reason for the occurrence of this pre-factor is that the operations of Fourier

transforming and of scaling do not commute: We did not directly Fourier transform the starting

action Eq.1.38 from comoving positions to comoving momenta, as is usually done. Instead, we

first scaled the comoving position coordinates to proper coordinates (where we introduced the

minimum length), then Fourier transformed to proper momenta, and finally scaled to comoving

momenta. The field variable ūk̃ therefore differs from the usual field variable uk̃ by a factor of

a−3:

uk̃ = a−3ūk̃ (2.24)

In this commonly used field variable, the action S
(2)
S,β for scalar fluctuations, Eq.2.18, then takes

the more familiar-looking form

S
(2)
S,β =

∫
dτ̃

∫

k̃2<a2/eβ

d3k̃
1

2
κ

(
u′∗

k̃
u′

k̃
−

(
µ− z′′

z

)
u∗

k̃
uk̃

)
(2.25)

and also yields the equation of motion in a simpler form:

u′′
k̃
+

κ′

κ
u′

k̃
+

(
µ− z′′

z

)
uk̃ = 0,

(
derived from S

(2)
S,β

)
(2.26)

Note that the introduction of the minimum length did leave us with a time-dependent pre-

factor κ(τ, k̃) in the action Eq.2.25, a fact that we will return to. The mode equation Eq.2.26

generalizes Eq.1.45 in the presence of the minimal length cutoff - when starting from the action

S
(2)
S . We need to add that the canonical commutation relations between uk̃ and its conjugate

momentum, πk̃ = κu′k, namely

[uk̃, πk̃′ ] = iδ3(k̃ − k̃′), (2.27)

require that the solutions to equation (2.27) also obey the slightly generalized Wronskian con-

dition

uk̃(τ)u∗
′

k̃
(τ)− u∗

k̃
(τ)u′

k̃
(τ) = iκ−1. (2.28)
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Expressing the equation of motion Eq.2.26 in terms of the intrinsic curvature, < = −u/z, we

obtain:

<′′
k̃
+

(
κ′

κ
+

2z′

z

)
<′

k̃
+

(
µ +

z′κ′

zκ

)
<k̃ = 0

(
derived from S

(2)
S,β

)
(2.29)

It is straightforward to show that the wave equation and Wronskian equation reduce to the

usual wave equation Eq.1.45 and Wronskian condition Eq.1.44 in the limit β → 0, i.e. when

the minimum length cutoff is removed. To summarize, we calculated the generalization of

the action S
(2)
S to the action S

(2)
S,β and we have found the corresponding equation of motion in

Eq.2.26.

Let us now compare with the result of introducing the minimum length uncertainty relation

into the action S
(1)
S to obtain S

(1)
S,β . We read off from [71] that the action S

(1)
S,β yields the wave

equation:

<′′
k̃
+

(
κ′

κ
+

2z′

z

)
<′

k̃
+µ<k̃ = 0

(
derived from S

(1)
S,β

)

(2.30)

It is expressed in terms of the intrinsic curvature. In order to better compare with the equation

of motion Eq.2.26 which followed from S
(2)
S,β, we rewrite Eq.2.30 in terms of the field variable

u, to obtain:

u′′
k̃
+

κ′

κ
u′

k̃
+

(
µ− z′′

z
− z′

z

κ′

κ

)
uk̃ = 0

(
derived from S

(1)
S,β

)

(2.31)

The results of [71] also show that this field uk̃ satisfies the same Wronskian condition Eq.2.28.

Clearly, the equations of motion Eq.2.26 and Eq.2.31 differ and we will need to investigate the

origin and extent of the difference.

2.1.2 Tensor fluctuations with minimum length

From the case of scalar fields we find the corresponding two actions S
(1)
T,β and S

(2)
T,β for tensor

perturbations, namely by inserting suitable constants and by replacing occurrences of z by a.

For β = 0 the two actions are of course equivalent since differing merely by a boundary term.
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For β > 0, however, we find that they yield slightly different equations of motion:

h′′
k̃
+

(
κ′

κ
+

2a′

a

)
h′

k̃
+ µhk̃ = 0

(
derived from S

(1)
T,β

)
(2.32)

p′′
k̃
+

κ′

κ
p′

k̃
+

(
µ− a′′

a
− a′

a

κ′

κ

)
pk̃ = 0

(
derived from S

(1)
T,β

)
(2.33)

h′′
k̃
+

(
κ′

κ
+

2a′

a

)
h′

k̃
+

(
µ +

a′κ′

aκ

)
hk̃ = 0

(
derived from S

(2)
T,β

)
(2.34)

p′′
k̃
+

κ′

κ
p′

k̃
+

(
µ− a′′

a

)
pk̃ = 0

(
derived from S

(2)
T,β

)
(2.35)

2.1.3 Origin of the differences in the mode equations

In order to trace the inequivalence of the obtained equations of motion, we begin by noting that

we encountered an ordering ambiguity in Eqs. 2.8 and 2.10 when modifying the commutation

relations: consider the formal position and momentum operators in the operator A(τ). We

could have used the first quantization’s canonical commutation relations to bring the positions

and momenta in arbitrary order. Clearly, it does matter, however, whether we do this before

or after we change the first quantization’s commutation relations. In this way, for example by

adding terms of the form (xp − px − i~)f(x, p) before changing the commutation relations,

we could have introduced into the action arbitrary terms that vanish as the minimum length is

set to zero, i.e. as β → 0.

Of course, in any theory that generalizes quantum field theory by introducing a minimum

length parameter one can guess Hamiltonians and actions etc. only up to terms which vanish

as the minimum length parameter vanishes - much like quantum Hamiltonians can be guessed

from classical Hamiltonians only up to terms that vanish as ~→ 0. We encountered essentially

an instance of Dirac’s observation that quantization removes degeneracy. As in the case of

quantization, the minimalist approach to dealing with the ambiguity is to bring the action into

a simple form and not to use the ambiguity to introduce any such terms by hand that would

vanish as the minimum length is set to zero. This was the approach tacitly adopted in [71] and

we here also adopted the same minimalist approach when we introduced the minimum length

into S
(1)
S , S

(2)
S , S

(1)
T and S

(2)
T . We then found that actions S

(1)
S,β and S

(2)
S,β (and similarly S

(1)
S,β, S

(2)
S,β)
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yield differing equations of motion. How could this happen, given that the two actions S
(1)
S and

S
(2)
S (and similarly S

(1)
S,β, S

(2)
S,β) are equivalent?

We already indicated that the answer traces back to the fact that the actions in the two for-

mulations of types S(1) and S(2) are equivalent only up to a boundary term. After the minimum

length is introduced these terms are no longer boundary terms. To see that this is the case,

consider the scalar actions S
(2)
S,β as expressed in terms of the field uk̃, see Eq.2.25. We notice

that it possesses in its integration measure a time-dependent factor:
∫

dτ d3k̃ κ(τ, k̃) (2.36)

If we remove the minimum length, β → 0, we obtain of course κ → 1. In the case β > 0,

however, if ∫
dτd3k̃ ∆L =

∫
dτd3k̃

d

dτ
f(τ) (2.37)

is a negligible boundary term arising from a total time derivative, then in the presence of the

minimum length uncertainty relation
∫

dτd3k̃ κ(τ, k̃) ∆L =

∫
dτd3k̃ κ(τ, k̃)

d

dτ
f(τ) (2.38)

is not a boundary term. The same phenomenon occurs for tensor fluctuations: the two actions

which are normally equivalent because differing merely by the total time derivative4ST given

in Eq.1.52 now yield different equations of motion. Indeed, as expected, when the minimal

length is introduced the two actions differ by:

S
(2)
T,β − S

(1)
T,β =

∫
dτd3k̃

(
a′ah2

k̃

)′
κ(τ, k̃) (2.39)

The integrand is generally not a total time derivative due to the presence of the function κ(τ, k̃).

2.2 Conclusions

While the framework of quantum field theory is well-tested down to distances of about 10−18m,

it is generally expected that there are corrections due to quantum gravity when approaching the
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Planck length of about 10−35m which may well constitute a fundamental smallest length in

nature.

If, therefore, there exists a finite minimum wavelength then, during inflation, comoving

modes are continually being created. Initially, a new comoving mode will evolve under the

influence of Planck scale effects but it is clear that at late times a comoving mode’s equation

of motion will reduce to the usual low-energy mode equation, namely when the mode’s proper

wavelength becomes much larger than the minimum length. Thus, as was pointed out in [105],

the effects of the Planck scale can propagate into the observable low energy realm essentially

only by selecting a solution of the mode equation which at late times differs from the usually

assumed solution for the usual mode equation.

This suggests a simple technique for exploring possible effects that Planck scale physics

could have on inflationary predictions for the CMB: Assume that standard quantum field the-

ory holds unchanged down to the minimum wavelength where modes are being created. Then,

consider a variety of possible initial conditions for the newly created modes by applying candi-

date criteria for identifying the vacuum state. It is clear that in the time translation invariant de

Sitter case all effects reduce to merely an overall re-normalization of the flat spectrum (if each

mode’s initial condition is chosen by applying the same criterion). When the Hubble parameter

is varying, however, then modes oscillate a varying number of times before crossing the hori-

zon. Thus, generically, a mode’s amplitude will be alternatingly large and small when crossing

the horizon. This can lead to potentially observable characteristic oscillations in the spectrum,

see [107]. In this approach quantum field theory is assumed to hold unchanged down to the

Planck scale and therefore Planck scale physics is modelled so as to affect the predictions of

inflation, for any given evolution of the scale factor a(τ), merely through the initial conditions.

In any realistic model, of course, the quantum field theoretic mode equations will be modified

when approaching the Planck scale. This too will have an effect on the number of oscillations

that a mode undergoes before horizon crossing and it will therefore contribute to the predicted

oscillations of the CMB spectra.

Here, we considered a concrete model for how quantum field theory is modified when ap-

proaching the Planck length, namely by introducing the minimum length uncertainty principle.

The equations of motion then indeed became modified at scales close to the Planck scale. As
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was shown in [89, 91, 92], the inflationary predictions for the CMB are to some extent affected,

possibly leading to observable oscillations in the fluctuation spectra. However, while the equa-

tions of motion are known, the details of the predictions still significantly depend on precisely

which initial condition is chosen, i.e. on the identification of the vacuum state.

As yet, it is not fully understood in any model how Planck scale physics determines the

initial conditions of modes as they are being created, i.e. when their proper wavelength is the

minimum length. Within our model of spacetime as obeying a minimum length uncertainty

relation the problem of determining the initial conditions for new comoving modes is further

complicated by the fact that the mode equation possesses an irregular singular point at the initial

time, see [71, 89, 91, 92]. So far, in the literature, a mathematical argument based on analyticity

[89] and a physical argument based on similarity to the Bunch Davies vacuum [91, 92] have

been discussed and the implications for the CMB have been investigated. Nevertheless, the

crucial problem of determining the initial state of modes when they emerge from the Planck

scale in an expansion is still essentially unsolved.

Therefore, we here reconsidered the conventional approach to fixing the vacuum: Introduce

new variables in terms of which the action resembles that of a Minkowski space theory with

variable mass - a theory for which the correct vacuum is known. Interestingly, we found that

introducing the minimum length into this reformulated action does not yield the same theory -

the action and the equations of motion differ slightly. This means that the initial conditions are

slightly affected and starting from the actions of type S(2) would therefore affect how much the

mode’s state during the adiabatic phase deviates from the adiabatic vacuum. Thus, the predicted

magnitude of the effect of the minimum length on the CMB is correspondingly affected a little

bit. In the next two chapters we will investigate the implications of such discovery for the

tensor/scalar ratio and consistency relation between tensor and scalar spectra.



Chapter 3

On the Tensor/Scalar Ratio in Inflation with UV Cutoff

Anisotropy of the cosmic microwave background radiation (CMB) originates from both tensor

and scalar perturbations. To study the characteristics of each of these two kinds of perturba-

tions, one has to determine the contribution of each to the anisotropy of CMB. For example,

the ratio of the power spectra of tensor/scalar perturbations can be used to tighten bounds on

the scalar spectral index. We investigate here the implications for the tensor/scalar ratio of

the discovery made in the last chapter that the introduction of a minimal length cutoff in the

structure of space-time does not leave boundary terms invariant. Such a cutoff introduces an

ambiguity in the choice of action for tensor and scalar perturbations, which in turn can affect

this ratio.

As we reviewed in the last chapter, the quantum theory of gauge invariant cosmological

perturbations is based on the validity of general relativity and quantum field theory. Both of

these theories break down at Planckian scales. However if inflation lasts a little bit longer

than what is required to solve the problems of standard cosmology- as predicted by most infla-

tionary models [80]- many scales of cosmological size today have been sub-Planckian at the

onset of inflation. So it is natural to ask if the present cosmic microwave spectrum carries any

thumbprint of physics at such small scales.

Vacuum fluctuations of the inflaton, φ0 – the field that drives inflation – produce both scalar

and tensor perturbations, both of which contribute to the anisotropy of the cosmic microwave

39
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background radiation. For any inflationary model one can calculate r, the ratio of tensor to

scalar amplitudes. r multiplies the upper bound on the scalar density perturbations by a factor

of (1 + r)−1/2. By knowing it one can tighten the bounds on the scalar spectral index [115,

116]. A more important consequence of measuring r exactly is determining the contribution of

tensor perturbations to the anisotropy of the CMB. As the amplitude of tensor perturbations is

proportional to the Hubble scale during inflation, by knowing r, one can nail down the energy

scale of inflation. It is therefore important to know r in as much detail as possible in order to

extract cosmological parameters with more precision.

The effect of trans-Planckian physics on the tensor/scalar ratio was addressed for the first

time in [117], where the authors discovered that the ratio will be influenced by the short dis-

tance physics, if trans-Planckian physics does not lead to the same vacuum for scalar and tensor

fluctuations. In this chapter, following the discovery of last chapter, we explore how the non-

minimal choices of the boundary term for tensor and scalar fluctuations affect the tensor/scalar

ratio. The structure of this chapter is as follows: first, we present the equations that scalar and

tensor fluctuations satisfy in the presence of a UV cut off, categorizing various cases for which

the ratio can change. Following ref. [91] we then solve these equations for scalar and tensor

perturbations numerically in a near de-Sitter background. We compute how the scalar power

spectrum varies as a function of σ, the ratio of noncommutative and Hubble lengths. In the

fourth section we ultimately find the ratio of tensor to scalar fluctuations.

3.1 Ratio of tensor/scalar fluctuations with a cutoff

As mentioned in the last chapter, using the gauge-invariant intrinsic curvature perturbations of

the comoving hypersurface, <, the action for scalar perturbations can be written as

S
(1)
S =

1

2

∫
dτ d3y z2

(
(∂τ<)2 − δij ∂i<∂j<

)
. (3.1)

or alternatively as

S
(2)
S =

1

2

∫
dτd3y

(
(∂τu)2 − δij ∂iu ∂ju +

z′′

z
u2

)
. (3.2)
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where < = −u/z [39, 40] and z is given by equation 1.36.

These two actions for scalar fluctuations are equivalent up to a boundary term in absence of

minimal length, with S
(2)
S more commonly used in the literature because of its similarity with

the action of a massive free scalar field in Minkowskian space-time. However the effective

mass, z′′/z is time dependent.

When the generalized uncertainty principle (2.3) is employed, S
(1)
S and S

(2)
S are no longer

equivalent. Instead, they respectively yield the following equations of motion for the Fourier

components of u, [72]:

u′′
k̃
+

κ′

κ
u′

k̃
+

(
µ− z′′

z
− z′

z

κ′

κ

)
uk̃ = 0, (3.3)

u′′
k̃
+

κ′

κ
u′

k̃
+

(
µ− z′′

z

)
uk̃ = 0, (3.4)

where µ(τ, ρ) and κ(ρ) are given by equation 2.22. ρ is a parameter that plays the role of

inverse wavelength. The difference in the above equations of motion was attributed to the

non-triviality of the manner in which minimal length affects the boundary terms. The scalar

fluctuation amplitude is then defined as [118]

AS(k) ≡ 2

5
P

1/2
S =

2

5

√
k3

2π2

∣∣∣uk̃

z

∣∣∣
k̃/aH→0

. (3.5)

Similarly, for tensor perturbations, among an infinite number of actions that are equivalent

in the absence of minimal length we choose [72] to start from

S
(1)
T =

m2
Pl

64π

∫
dτd3y a2(τ) ∂µh

i
j ∂µhi

j (3.6)

and

S
(2)
T =

1

2

∫
dτd3y

(
∂τPi

j∂τP i
j − δrs∂rPi

j∂sP
i
j +

a′′

a
Pi

jP i
j

)
, (3.7)

that again differ from each other by a boundary term. As we will see, one of these actions has

a minimal effect on tensor/scalar ratio whereas the other one has a maximal effect. Also, the

S
(1)
T is the action one obtains by directly expanding the Einstein-Hilbert action. Here

P i
j(y) =

√
m2

Pl

32π
a(τ)hi

j(y) (3.8)
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and hij is the transverse traceless part of tensor perturbations of the metric (1.33).

The k̃-Fourier component of Pij (denoted pk̃), satisfies the following equation of motion

using the cutoff modified S
(1)
T

p′′
k̃
+

κ′

κ
p′

k̃
+

(
µ− a′′

a
− a′

a

κ′

κ

)
pk̃ = 0, (3.9)

whereas it satisfies

p′′
k̃
+

κ′

κ
p′

k̃
+

(
µ− a′′

a

)
pk̃ = 0. (3.10)

if we employ the variational principle on the cutoff modified S
(2)
T .

We define the tensor amplitude as [118]

AT (k) ≡ 1

10
P

1/2
T =

1

10

√
k3

2π2
|pk̃|k̃/aH→0 (3.11)

The ratio of tensor to scalar fluctuations and scalar spectral index are respectively given by

r ≡ A2
T

A2
S

, (3.12)

n(k)− 1 ≡ d ln A2
S(k)

d ln k
. (3.13)

The effect of r is to multiply the upper bound on the density perturbations by a factor of

(1 + r)−1/2 which in turn affects our estimation of the scalar spectral index [115, 116].

In the absence of minimal length, one can expand the ratio of tensor/scalar fluctuations in

terms of the slow roll parameters. To first order it is [115, 118, 119]

A2
T

A2
S

= ε (3.14)

where

ε ≡ 3φ2
0

2

(
V (φ0) +

1

2
φ̇2

0

)−1

=
m2

Pl

4π

(
Hφ

H

)2

. (3.15)

is the first slow-roll parameter [118]. Here, φ subscript denotes differentiation with respect to

φ. In presence of minimal length the relation (3.14), takes the following form

A2
T

A2
S

= ε

∣∣∣∣
pk

uk

∣∣∣∣
2

k/aH→0

(3.16)
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The ambiguity in choosing the actions for scalar and tensor fluctuations in the presence of

the minimum length is a new source of trans-Planckian effects that can modify the tensor/scalar

ratio r. In general we have four possibilities:

I,II If we choose either (S
(1)
S , S

(1)
T ) or (S

(2)
S , S

(2)
T ) as the actions describing scalar and tensor

fluctuations, the scalar modes uk̃, and tensor modes pk̃, satisfy differential equations that

are as similar as possible. In particular this implies that in the special cases of near-

de-Sitter and power-law inflation where z′′/z = a′′/a (see [118]) and z′/z = a′/a (see

Appendix to this chapter), the equations governing both scalar and tensor perturbations

are identical. Since metric and inflaton perturbations cannot be fully distinguished in a

gauge invariant manner, scalar and tensor modes should also obey the same initial condi-

tions, yielding
∣∣∣ pk

uk

∣∣∣ = 1. The distinction between cases I and II becomes apparent when

the inflating background deviates from the power-law and near-de-sitter backgrounds.

III,IV The other extreme is to select either of the pairs (S
(1)
S , S

(2)
T ) or (S

(2)
S , S

(1)
T ) to describe

the situation. In these cases the modes uk̃ and pk̃, satisfy differential equations of dif-

fering form even in near-de-Sitter and power-law backgrounds. In particular the tensor

amplitude is not just ε times the scalar amplitude in power-law backgrounds. In the next

section we present a complete analysis of the scalar and tensor spectra in near-de-Sitter

space. We will investigate how the ratio of tensor to scalar perturbations varies as a

function of σ, the ratio of minimal length to Hubble length during inflation. If general

covariance holds at short distances, one would not expect that scalar and tensor pertur-

bations satisfy different equations of motion at Planckian epochs. While this expectation

is reasonable, it is by no means guaranteed: scalar modes are a mix of field and metric

fluctuations in an arbitrary gauge, whereas the tensor modes are purely metric. It is not

clear that a short-distance cutoff will affect fluctuations of the metric in the same way as

fluctuations in an arbitrary scalar field. By taking into account this possibility seriously,

we implicitly assume that general covariance could have been broken during inflation.



3.2. Scalar perturbations with minimum length in near-de-Sitter space 44

3.2 Scalar perturbations with minimum length in near-de-

Sitter space

Curvature fluctuations arise because the value of the inflaton field is coupled to the energy

density of the vacuum energy driving inflation, i.e. fluctuations in the inflaton field result in

fluctuations in the expansion rate at linear order in perturbation theory. This coupling is what

creates fluctuations in the intrinsic curvature scalar, which are then manifest as density fluctua-

tions. Since in de Sitter space fluctuations in the inflaton field, φ, are not coupled to fluctuations

in the energy density, the amplitude of density fluctuations is zero. A naive exploitation of the

formalism of refs. [39, 118] implies that the expression for density fluctuations is singular for

de Sitter space. The reason that the expression is singular is not because the density fluctuation

amplitude is singular, but because the foliation of space-time implicit in the choice of gauge

becomes singular.

Nevertheless, we can proceed in this manner by assuming that ε is close to zero, i.e. that

the background is arbitrarily close to the de Sitter limit. Note that we are taking H , the Hubble

parameter, to be very small, since it is known from COBE that PS = H2/ε ' const.× 10−5.

We begin with an analysis of the scalar power spectrum, tracking the normalized modes

which are inside the horizon until they are far outside the horizon, where their amplitude deter-

mines the perturbation spectrum. To this end, we will solve the mode equation (3.3) numeri-

cally. As in Ref.[91, 92], we describe the initial evolution by an approximate analytic solution,

which we then evolve numerically to late times.

In this section and in what follows, we first analyze the action S
(2)
S and S

(1)
T for scalar and

tensor perturbations respectively. In de Sitter space a = −1/(Hτ) and z′′/z = 2/τ 2. A mode

with a fixed comoving wave number k̃ corresponds over time to increasing proper wavelengths.

Each mode’s proper wavelength corresponds to the Planck length at some time τ that depends

on k̃ and this is when the evolution of that mode begins. This time is when a2(τk̃) ' βk̃2 and

ρ2 = 1/β. At this initial time equation (3.3) has an irregular singular point.

Since de Sitter space is time-translation invariant, the equation can be written in terms of
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the dimensionless parameter w = k̃τ , in terms of which all the modes evolve jointly:

d2uk̃

dw2
+ n(w)

duk̃

dw
+ Ω2(w)uk̃(w) = 0, (3.17)

where

n(w) =
1

θ(ζ(w))

dθ(ζ(w))

dw
(3.18)

Ω2(w) = −
(

1

σ2w2

W (ζ(w))

(1 + W (ζ(w)))2
+

2

w2

)
(3.19)

and in de Sitter space ζ(w) = −σ2w2. Here we define

σ =
√

β/H−1, (3.20)

which is the ratio of the minimal length scale and the Hubble length scale during inflation. The

function W (x) is the Lambert W-function, defined by the relation W (x)eW (x) = x [114].

Equation (3.17) has a singular point at wcrit = $ = − 1
σ
√

e
. The singular point at $ is an

irregular singular point because the coefficients of duk̃/dw and uk̃ are not analytic in v = w−$

n(v) = − 1

2v
− 7

12

e1/2

√
Av

+
67

144

e

A
+ · · ·

Ω2(v) =
A

v
− e1/2

√
A√

v
− 37

72
e + · · · (3.21)

where

A =
e1/2

4σ
. (3.22)

Proceeding along the lines given in ref. [91, 92], we solve for the leading behavior of uk̃ by

extracting the most singular terms of the equation of motion

ük̃ −
1

2v
u̇k̃ +

A

v
uk̃ = 0, (3.23)

where in the overdot now denotes the derivative with respect to v. Ignoring the u̇k̃ term, this

equation is similar to the high frequency limit of the mode equation:

u′′k(τ) + Ω2
k(τ)uk(τ) = 0 (3.24)
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whose solution is approximated by the WKB form

uk(τ) =
1√
2Ωk

exp(−i

∫ τ

Ωk(τ
′)dτ ′) (3.25)

if the adiabatic condition |Ω′
k/Ω

2
k| ¿ 1 is satisfied. This choice of vacuum, which is called

Bunch-Davies vacuum, reduces to the Minkowskian vacuum for wavelengths smaller than the

Hubble scale. Inspired by this similarity, one can suggest a Bunch-Davies-like vacuum of the

form:

uk̃(v) = (
v

4k̃2A
)1/4 exp(−2i

√
Av) (3.26)

with

Ωk̃ = k̃
√

A/v. (3.27)

This vacuum does not satisfy the adiabaticity conditions in the vicinity of its creation time,

v = 0. To be specific:
Ω′

k̃

Ω2
k̃

=
k̃

2

1√
Av

(3.28)

For v ∼ 0 the adiabatic condition is violated. It means that each mode is born in an excited

state. In the model of trans-Planckian physics proposed in ref.[85], each mode undergoes three

phases in its evolution. In the first phase, the wavelength of the given mode is much smaller

than the Planck length: λ ¿ lp. Each mode is born into the vacuum state that minimizes the

Hamiltonian and satisfies the adiabaticity condition. In the second phase, the wavelength of the

mode is larger than the Planck length but still smaller than the Hubble radius, lp ¿ λ ¿ lH . In

the third phase the mode is outside the Hubble radius: λ À lH . In our version of this scenario,

the first phase is removed and replaced by an excited initial state which violates the adiabaticity

conditions.

In fact, equation (3.23) is solved exactly by

u(y) = C+F (v) + C−F ∗(v) (3.29)

where

F (y) = (

√
A

2
+ iA

√
v) exp(−2i

√
Av) (3.30)
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Figure 3.1: The left figure shows how each mode evolves in the presence of a cutoff as a

function of w = k̃τ . Each mode is created at a finite conformal time and the amplitude of the

modes is modulated on a monotonously increasing curve. C− is assumed to be zero. The right

figure shows how in absence of minimal length each mode is created at infinite conformal time

and its amplitude monotonously increases until it leaves the horizon.

and where the coefficients C± are constrained through the Wronskian condition 2.28 that re-

duces to

|C+|2 − |C−|2 =
e−1

2k̃A3
. (3.31)

This equation will lead to a one parameter family of solutions. Similarity with the Bunch-

Davies vacuum suggests that C− = 0. In addition, in this case, it is possible to obtain conven-

tional QFT result when σ → 0. However there exist other legitimate choices of the vacuum.

Specifically, it is possible to recover the standard QFT result in the limit σ → 0, if C− ap-

proaches zero faster than σ3/2, as we shall subsequently demonstrate. However we will first

assume that C− = 0.

Equation (3.17) has been solved to order 1/v. As in Ref.[91] we will extract the subleading

behavior of uk̃ by the method of dominant balance [120]. We solve the differential equation

(3.17) up to 1/
√

v by defining uk̃(v) = F (v)(1 + ε1(v)), extracting the most singular terms.

The equation of motion for ε1 is:

d2ε1

dv2
− 1

2v

dε1

dv
− 3

2
e1/2

√
A

v
= 0 (3.32)
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which has the solution

ε1(v) =
1

3

√
Ae1/2v3/2(3 ln(v)− 2). (3.33)

The solution is improved by extracting the residual ln(v) terms. To do so, we replace uk̃

by F (v)(1 + ε1(v))(1 + ε2(v)) and extract the most singular terms to obtain the following

differential equation for ε2(v)

d2ε2

dv2
− 1

2v

dε2

dv
− 7

8
e ln(v) = 0. (3.34)

whose solution is

ε2(v) =
7

16
ev2(2 ln(v)− 5). (3.35)

We have solved the differential equation (3.17) up to terms that vanish as v → 0. We glue

this analytic solution, which is valid when the mode is in the vicinity of the irregular singular

point and inside the horizon, to the full numerical evaluation of the mode equation. As the

coefficients of uk̃ and u′
k̃

are infinite at v = 0, this junction is done at a finite nonzero value

of v0. By varying v0 we have checked that our results do not depend on the choice of starting

point. We evolved the mode equation using Fehlberg fourth-fifth order Runge-Kutta method

implemented in Maple 9. In Figure 3.1 we have shown how each fluctuation mode evolves as a

function of w = k̃τ . In the absence of minimal length there is no birth time for the modes and

|uk| increases monotonically as it evolves. As we incorporate minimal length into the problem,

each mode is created at a definite k̃-dependent time and |uk̃| is modulated on a monotonically

increasing function until it crosses the horizon. At that time |uk| stops oscillating and goes to

infinity as we approach the present time. One should notice that parameter k̃ is different from

the comoving momentum at large momenta. This difference modifies the condition of horizon

crossing in terms of the parameter k̃. Note that ρ plays the role of inverse wavelength in our

model. Using the relation between ρ and k̃ [72],

k̃i = aρie−βρ2/2, (3.36)

we can express the criterion of horizon crossing , ρ = H , in terms of a parameter k̃

k̃ = aH exp(−βH2/2) (3.37)
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Figure 3.2: The dependence of
√

2πφ̇
H2 P

1/2
S is plotted against σ. As σ goes to zero, the standard

result of 1√
2

is obtained. It is assumed that C− = 0.

which takes the following form in de Sitter space

whorizon = − exp(−σ2/2) (3.38)

where w = k̃τ . In absence of minimal length this criterion reduces to the familiar one in de

Sitter space, w = −1.

For values of σ close to 1, i.e. when the energy scale of inflation is of the order of the

minimal length, the horizon-crossing condition is considerably modified. Of course, we are

really interested in the asymptotic values of |uk̃|, when ρ/H → 0. To implement it numerically,

we have assumed this condition is satisfied when ρ/H = 0.01. We can express this condition

in terms of a parameter w:

wasymp = −0.01 exp(−σ2/20000). (3.39)

The general answer to Equation(3.17), has the form of uk̃(τ) = N(k̃)Uk̃(w). Comparison with

Equation (3.31) yields N(k̃) = 1/
√

k̃. So, the power spectrum in near-de Sitter space is:

P
1/2
S =

√
k̃3

2π2

∣∣∣uk̃

z

∣∣∣ =
H2

φ̇

|−wUk̃(w)|
π
√

2
|w=wasymp (3.40)

On the other hand, quantum field theory yields the following result for the near-de Sitter space

P
1/2
S (σ = 0) =

H2

2πφ̇
(3.41)
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Figure 3.3: The left figure shows the dependence of
√

2πφ̇
H2 P

1/2
S against σ when C−/C+ = 0.5.

The right figure graphs the dependence of
√

2πφ̇
H2 P

1/2
S on σ when C− ∝ σ. In neither of these

cases do we recover the standard field theory result when σ → 0.

In Fig. 3.2 we have displayed the σ dependence of the scalar power spectrum when C− = 0.

For small values of σ, the power spectrum has an oscillatory behavior around its standard result.

For sufficiently large values of σ the power spectrum is significantly suppressed. This could be

used as a mechanism for solving the fine tuning problem of inflationary models [91].

Next we relax the condition C− = 0. Equation (3.31) will lead to a one parameter family of

solutions. The criterion of approaching the result of conventional quantum field theory when

σ → 0 can be used to constrain our space of solutions. It has been pointed out [91] that if the

ratio of C−/C+ is a non-zero constant then the tensor power spectrum does not approach its

standard result in the limit σ → 0 . In Fig. 3.3, we have examined this statement for scalar

perturbations and noticed that the same thing happens for scalar perturbations too. However,

in general, C− can be a function of σ. Since we know that when C− = 0 and C+ ∝ σ3/2, we

obtain the standard result in the limit of σ → 0, we expect that if C− approaches zero faster

than σ3/2 when σ → 0 the criterion of recovering the standard QFT result is satisfied. We have

verified this statement for C− ∝ σ and C− ∝ σ2 respectively as shown in Figures 3.3 and 3.4.

Hence we conjecture that it is possible that C− be proportional to σn, n > 3
2

whilst obtaining

the standard QFT result in the limit σ → 0.
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Figure 3.4: The left figure shows the dependence of
√

2π
H

P
1/2
S against σ when C− ∝ σ2. The

right figure shows the ratio of scalar power spectrum when C− = 0 to scalar power spectrum

when C− ∝ σ2. In this case the scalar power spectrum approaches the standard result when

σ → 0

In most inflationary models the expansion rate is slower than de Sitter space; the ratio of

minimum length to physical horizon is not constant and decreases towards the end of inflation.

Our study of de Sitter space suggests that the amplitude of the longer modes will be affected

more. However, one should also note that observation constrains the energy scale of inflation

to change very slowly during inflation [129], so any change of minimal length over the Hubble

radius ratio should be very small.

3.3 Tensor/Scalar ratio with minimum length in near-de Sit-

ter space

As explained above, if the action of the tensor perturbations, in absence of σ, is given in eq.(3.7)

then the tensor power spectrum will be ε times that of the scalar perturbations. Otherwise, if

the action is given by eq. (3.6), its power spectrum will not be a simple multiple of the scalar

perturbations. Although a complete analysis of the equation of motion derived from this action

has been done once in de Sitter space [91], we recapitulate those calculations in the present
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Figure 3.5: The dependence of
√

πmP

4H
P

1/2
T is plotted against σ.

√
πmP

4H
P

1/2
T approaches the

standard result of 1√
2

as σ goes to zero. We have assumed that D− = 0.

context to find the ratio of tensor to scalar fluctuations. The outline of the calculations is

completely similar to what was done for scalar perturbations: we tailor the solution that is

valid in vicinity of the irregular singular point to the numerically integrated solution. The exact

analytic solution in the neighborhood of the singular point is:

uk̃ = D+G(v)(1 + ξ1(v))(1 + ξ2(v)) + D−G∗(v)(1 + ξ1(v))(1 + ξ2(v)) (3.42)

where

G(y) = (

√
B

2
+ iB

√
v) exp(−2i

√
Bv),

ξ1(v) =
1

3
e1/2v3/2

√
A(3 ln(v)− 2),

ξ2(v) =
7

8
ev2 ln(v)− 35

16
ev2, (3.43)

B =
1

8

8A2 + e

A
(3.44)

D+ and D− are constrained by the following wronskian condition

|D+|2 − |D−|2 =
e−1

2k̃B3
(3.45)
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Figure 3.6: The dependence of P
1/2
T

4
√

εP
1/2
S

is plotted against σ. It approaches the standard result

of unity as σ goes to zero. C− and D− are set to zero.

Again, we have considerable freedom in choosing our vacuum. Since the right-hand side of

eq.(89) approaches zero like σ3 when σ → 0, if D− tends to zero faster than σ3/2 we can recover

the standard QFT result. Hereafter we restrict ourselves to D− = 0 so as to have a Bunch-

Davies-like vacuum. We use equation (3.45) with D− = 0 at a point close to the singularity

to integrate the differential equation. In Fig. 3.5 we have displayed the σ-dependence of the

tensor power spectrum. The oscillationary behavior in vicinity of σ = 0 and decaying behavior

for larger values of σ has repeated.

Fig. 3.6 shows how the tensor to scalar perturbations ratio varies as a function of σ when

C− = D− = 0. For small values of σ, it oscillates about its standard value, ε. For intermediate

values of σ it remains almost constant on a value that is less than its standard result. Although

the tensor and scalar fluctuations both decrease as σ increases, their ratio gradually increases

by increasing σ and even becomes larger than its standard value. This means that the tensor

fluctuations decrease more slowly than do the scalar fluctuations.

We can derive some qualitative features of the same study for power-law backgrounds from

what we derived in near-de Sitter space. At the beginning of inflation the expansion is faster

than it is at the end of inflation and so the Hubble parameter is larger. Hence the effect is much

more profound for modes that leave the horizon at that time. For such modes, the ratio will be

much more distorted from standard predictions. We plan to return to this problem in greater
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Figure 3.7: The dependence of P
1/2
T

4
√

εP
1/2
S

is plotted against σ. It approaches the standard result of

unity as σ goes to zero. C− and D− are set to zero. It is assumed that S
(1)
S and S

(2)
T describes

the behavior of scalar and tensor perturbation, respectively.

detail in next chapter.

Now we assume that S
(1)
S and S

(2)
T describes the behavior of scalar and tensor perturbation.

In near-De-sitter and power-law backgrounds the equations derived from S
(1)
S and S

(2)
T are

the same as the ones derived from S
(1)
T and S

(2)
S respectively. Therefore the ratio A2

T

εA2
S

will

be reversed. Fig. 3.7 shows that how the ratio of tensor to scalar perturbations varies as a

function of σ. The same oscilationary behavior in vicinity of σ = 0 has repeated. However in

this case the tensor/scalar ratio decreases as the ratio of minimal length approaches the Hubble

length during the inflation. This mechanism might be used to dampen the contribution of tensor

amplitudes to the anisotropy of the microwave background radiation.

3.4 Approximate dependence of amplitude of r on σ

The equations of motion that arise from the scalar action S
(1)
S and tensor action S

(2)
T (the sit-

uation is the same for S
(2)
S and S

(1)
T ) differ merely in their “mass terms”, i.e. in the terms

that multiply the undifferentiated field. In near-de-Sitter and power-law backgrounds, the mass
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Figure 3.8: Comparison of the three “mass terms” ln(µ) (dashed), ln(|d|) (dotted) and ln(a′′/a)

(solid) versus conformal time. The term d of the ambiguity is dominated by µ and a′′/a

throughout the evolution.

terms differ by the term

d(τ, k̃) =
a′κ′

aκ
. (3.46)

Although above we obtained numerically the effect of presence of such a term in the equation

of motion, let us obtain an estimation for the amplitude of dependence of ratio, r, on σ. The

term d competes with the two other “mass” terms, a′′/a and µ. In Fig. 3.8, the magnitudes of

the terms, d, a′′
a

and µ are compared by plotting the logarithm of their absolute values against

conformal time. We chose the de-Sitter background with a realistic Planck length to Hubble

length ratio of σ = 10−5. In de Sitter space all k̃ modes evolve in the same way and we

arbitrarily chose k̃ = 1. The curves start at the creation time τk̃ of the mode and end at future
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infinity τ = 0. There are three distinct phases in a mode’s evolution:

A) In the initial phase close to the creation time, the behavior of the differential equation

is dominated by the terms µ and d which both appear to diverge. (The function a′/a is regular

at τk̃ since the creation time of a particular mode is not a special time for the scale factor).

We need to determine, therefore, the relative magnitudes of d and µ as τ → τ+

k̃
. Now a

straightforward calculation yields for the ratio of the functions d and µ:

d(τ, k̃)

µ(τ, k̃)
= − σ2

(
5 + 3W (−k2σ2τ 2)

)
(3.47)

The range of the Lambert W function is the finite interval [−1, 0]. Thus, since µ is divergent

at τk̃, also d is divergent at τk̃. However, Eq.3.47 also implies that at all times the term d is

much smaller than the term µ, namely by a factor σ2, up to a pre-factor of order one. Thus, any

criterion that one might adopt for determining the mode’s initial condition at τk̃ is, therefore,

affected by the presence or absence of the term d, though only relatively weakly because µ

dominates d by a factor of order σ2.

B) The initial period is followed by an adiabatic period in which all three terms µ, d and

a′′/a are slowly varying. This phase lasts until horizon crossing. In order to estimate the

effect of the term d on the time evolution in this phase we compare the oscillation frequencies

Ωd =
√

µ− a′′/a− d and Ω0 =
√

µ− a′′/a in the adiabatic phase with and without the term

d respectively. During the adiabatic phase we can neglect the term a′′/a and we can set µ ≈ k̃2

to obtain: Ωd/Ω0 = (1 − d/(2µ)) + O(d2/µ2), i.e. Ωd ≈ Ω0(1 + bσ2) and thus ∆Ω ≈ bk̃σ2

where b is of order one. In principle, this frequency shift alters the number N of oscillations

during the duration of the second phase. In order to estimate N , we recall that the k̃ mode is

created at the time τk̃ = − 1
Hk̃

√
eβ

and that therefore the duration of the second phase is of the

order of T ≈ 1
Hk̃

√
eβ

. Recall that σ =
√

βH , which implies T ≈ 1/(k̃σ
√

e). Thus, in the course

of the adiabatic second phase, the presence or absence of the term d implies approximately N

more or fewer oscillations, where

N ≈ ∆Ω T ≈ b k̃ σ2

k̃σ
√

e
≈ σ (3.48)

C) The last period, from horizon crossing to the infinite future τ → 0 is not clearly resolved
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in our plot. It is the period when the term a′′/a diverges and entirely dominates the µ and d

terms since they stay finite.

Overall, the presence of factor d changes the number of e-folds only during the second

phase. Taking into account the relation 1.61, one realizes that the presence of factor d in the

mode equation introduces a modification of order σ in the curvature perturbations of comoving

hypersurface. As the power spectrum, P (k), is proportional to <2, one can conclude that the

presence of factor d in the mass term induces a factor σ2 modification in the calculated power

spectrum from S
(1)
S . This chain of reasoning leads us to believe that 4r/r is proportional to

σ2.

3.5 Conclusion

Both tensor and scalar perturbations are responsible for the anisotropy of the CMB. Knowledge

of the ratio of tensor/scalar perturbations provides an important constraint on related cosmo-

logical parameters.

We have investigated the implications of implementing a minimal length hypothesis from

the generalized uncertainty principle (2.3) for the tensor/scalar ratio r in inflationary scenarios.

Specifically, we have studied how an ambiguity generically present in this hypothesis [72] leads

to different conclusions about how and whether trans-Planckian physics alters r. In two of the

cases the ratio remains constant, unless the background deviates from a power-law expansion

during inflation. In the other two cases, the ratio is modified even in a simple de Sitter or

power-law background. We also found the dependence of the ratio on the minimal length for

the near-de-Sitter background in these two cases.

The tensor fluctuations are expected to contribute to the CMB’s B -polarization. This

effect may be observable with the upcoming PLANCK satellite. One can then differentiate the

contribution of tensor fluctuations from scalar ones to check the above scenario.
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3.6 Supplementary material for Chapter 3

The scalar gauge invariant parameter, u, is proportional to <, the intrinsic curvature perturba-

tions of the spatial hypersurface through a factor z see eq. (1.36) which is equivalently can be

defined as:

z =
aφ̇0

H
(3.49)

where H is the Hubble parameter, ȧ/a (dot denotes differentiation with respect to the physical

time). So one obtains:
z′

z
=

a′

a
+

φ̇0
′

φ̇0

− H ′

H
. (3.50)

φ̇0
′
/φ̇0 can be written as aφ̈0/φ̇0. Using the definition of η

η(φ) ≡ − φ̈0

Hφ̇0

=
m2

Pl

4π

(
Hφφ

H

)
= ε− mPlεφ√

16πε
, (3.51)

this can be written in terms of the slow roll parameters:

φ̇0
′

φ̇0

= −η
a′

a
. (3.52)

H ′/H is equal to aφ̇0Hφ/H . Choosing the convention that φ̇0 > 0, from Eq. (3.15) one

derives:
Hφ

H
= −2

√
πε

mPl

(3.53)

and

φ̇0
2

=
2εV

3− ε
. (3.54)

The inflaton energy density is φ̇0
2

2
+ V and the first Friedmann equation

H2 =
8π

3m2
Pl

(
φ̇0

2

2
+ V ), (3.55)

combined with (3.54), yields:

V =
m2

PlH
2(3− ε)

8π
. (3.56)
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From Equations (3.54)and (3.56) one concludes:

φ̇0 =
mPlH

2

√
ε

π
. (3.57)

Using the above equation one obtains:

H ′

H
= −ε

a′

a
. (3.58)

Inserting equations (3.58) & (3.52) back into eq.(3.50), we obtain the following expansion for

z′/z in terms of the slow roll parameters:

z′

z
=

a′

a
(1 + ε− η). (3.59)

In power-law and near-De-sitter space ε = η and so z′/z = a′/a.



Chapter 4

Running of the Spectral Index and Violation of the Consistency

Relation Between Tensor and Scalar Spectra from

trans-Planckian

4.1 Introduction

One of the intriguing properties of inflationary cosmology, which could be used to test the

fundamental theories of quantum gravity, is its capacity to accommodate sub-Planckian fluc-

tuations that were redshifted exponentially during a quasi-de-Sitter expansion of the universe

[38]. Many realizations of inflation predict several more e-foldings than are required to solve

the problems of standard cosmology [80]. Assuming that these inflationary models are correct,

all scales of cosmological interest today originate inside the Planck scale at the early stages of

inflation. These fluctuations would be manifest in the temperature anisotropy of the cosmic mi-

crowave background radiation (CMBR), which can be regarded as a fossil record of primeval

inhomogeneities. It is therefore reasonable to expect that by studying the cosmic microwave

background radiation one can extract information about physics at very small distance scales

[121].

A beautiful mechanism was suggested in [71] to incorporate minimum length into the in-

60
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flationary formalism. The only assumption underlying this formalism is that the fundamental

theory of quantum gravity possesses a linear operator X i for every space-time coordinate and

that its expectation value 〈X i〉 is real. One can then show that the short distance structure of

any such coordinate could not only be continuous or discrete, but could also be unsharp in

one of two ways [93]. The two unsharp cases are distinguished by the so-called deficiency

indices of X i being either nonzero and equal (Fuzzy type A) or unequal (Fuzzy type B) [93].

In the case of fuzzy type B, sequences of vectors in the physical domain exist such that 4X i

converges to zero. They are fuzzy in the sense that vectors of increasing localization around

different expectation values in general do not become orthogonal. Fuzzy type A behavior has

appeared in a number of studies in quantum gravity and string theory where the uncertainty

in 4X i has a finite lower bound at Planck scale [94]. As mentioned in the previous chap-

ters, this short distance structure can be modelled as quantum gravitational correction to the

commutation relation between the position and momentum operators

[X,P] = i(1 + βP2), (4.1)

where β1/2 parameterizes the minimum length. The equations for tensor modes were later

analyzed numerically in [91, 92], and it was predicted that the effect on the CMBR can be as

large as σ, where σ is the ratio of the minimum length to the Hubble length during inflation,

β1/2H ≡ σ.

As discussed in the previous chapters, this mechanism of implementing minimal length in

the action has an ambiguity: the usual strategy for determining the initial condition requires

reformulating the action and discarding a boundary term. In the absence of minimal length,

two actions that differ by a boundary term are equivalent. However, the introduction of a

minimal length scale renders two actions that normally differ by a boundary term inequivalent,

yielding different equations of motion. One has an infinite set of actions that are equivalent

when the minimal length is set to zero. Only experiment can adjudicate which choice of action

is preferable. Nevertheless, in the last chapter, from the infinite number of actions that are

equivalent in the absence of minimal length, we adopt two actions for each of tensor and scalar

fluctuations. The first one is chosen by a minimalist criterion: we select the action that is

derived directly by expanding the action of a scalar field minimally coupled to gravity without
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introducing any additional terms by hand. The second action, which differs from the first by

a boundary term, is chosen by the criterion of similarity with the action of a free massive

scalar field in a Minkowskian background. Such a similarity simplifies the task of choosing the

vacuum. Basically, one can choose the vacuum as one does in Minkowskian space-time.

We will examine, in the context of the minimal length hypothesis as implemented in the

second chapter, a firm prediction of inflationary cosmology, the consistency relation between

scalar and tensor perturbations. In the case of single-field slow-roll inflation the consistency

conditions are given in terms of equality relations, whereas for multiple-field models of infla-

tion these are weakened to inequalities. The first of the consistency relations states that the

ratio of the amplitude of tensor to scalar perturbations is a constant known as the tensor spec-

tral index [119, 122]. We investigate how the effects of trans-Planckian physics alter this ratio

and the tensor spectral index under the considerations noted in the second chapter. This is in

contrast to recent work in this area in which this possibility was investigated without focusing

on any specific model of short distance physics, instead assuming that the trans-Planckian en-

ergies result in a vacuum state that is different from the standard Bunch-Davies vacuum [117].

We shall restrict ourselves to single-field inflation for the rest of the discussion, although our

results could straightforwardly be generalized to multiple-field inflation.

This chapter is structured as follows: first we recapitulate our results from chapter 2 for both

tensor and scalar fluctuations and also remind the reader the form of first consistency relation.

Next, we study numerically the equations of motion for scalar and tensor modes in a power-

law background and derive the tensor/scalar fluctuations and the tensor spectral index in each

case. As mentioned earlier, actions that differ by a boundary term are rendered inequivalent

once one implements the minimal length hypothesis. Although this implies an infinite amount

of freedom in choosing the action for both scalar and tensor fluctuations, there are only a few

actions that have reasonable physical motivation, and we shall confine our considerations to

these cases. Specifically, we shall discuss how these physically well-motivated but distinct

actions modify the consistency relation between tensor and scalar spectra.
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4.2 Tensor/Scalar Ratio and the Violation of the Consistency

Relation

As derived in the second chapter, incorporating the minimal length hypothesis to the scalar

action, S
(1)
S , written in terms of gauge invariant curvature perturbations of the comoving hy-

persurface, <, yields

u′′
k̃
+

κ′

κ
u′

k̃
+

(
µ− z′′

z
− z′

z

κ′

κ

)
uk̃ = 0, (4.2)

where u = −z< [39, 40] and z is defined in eq. 1.36.

However the cutoff modified equation of motion for the fluctuation mode uk̃, derived from

S
(2)
S is:

u′′
k̃
+

κ′

κ
u′

k̃
+

(
µ− z′′

z

)
uk̃ = 0, (4.3)

where

µ(τ, k̃) = −a2

β

W (−βk̃2/a2)

(1 + W (−βk̃2/a2))2
(4.4)

κ(τ, k̃) =
e−

3
2
W (−βk̃2/a2)

1 + W (−βk̃2/a2)
. (4.5)

As before, k̃i = aρie−βρ2/2 where ρi is the Fourier transform of the physical coordinate xi.

k̃i is a variable that is equivalent to comoving momentum at large wavelengths.

Following [118], we define the scalar amplitude as

AS(k) ≡ 2

5
P

1/2
S =

2

5

√
k3

2π2

∣∣∣uk̃

z

∣∣∣
k̃/aH→0

. (4.6)

Similarly, implementing the minimal length to the actions of tensor perturbations, S
(1)
T & S

(2)
T

yields respectively

p′′
k̃
+

κ′

κ
p′

k̃
+

(
µ− a′′

a
− a′

a

κ′

κ

)
pk̃ = 0, (4.7)

where S
(2)
T differs from S

(1)
T by a boundary term. P i

j(y) ≡
√

m2
Pl

32π
a(τ)hi

j(y) where hi
j(y) is

the tensor perturbations of the metric. Following [118], we define the tensor amplitude as

AT (k) ≡ 1

10
P

1/2
T =

1

10

√
k3

2π2
|pk̃|k̃/aH→0 . (4.8)
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One can expand the ratio of tensor/scalar fluctuations in terms of the slow roll parameters

in the absence of a cut-off. To first order it is [118, 119, 122]

r ≡ A2
T

A2
S

= ε (4.9)

where

ε ≡ 3φ̇2
0

2

(
V (φ0) +

1

2
φ̇2

0

)−1

=
m2

Pl

4π

(
Hφ

H

)2

(4.10)

with the φ subscript and over-dot respectively denoting differentiation with respect to φ and the

cosmic time, t, related to conformal time τ by t =
∫

adτ . Both tensor and scalar fluctuations

contribute to the anisotropy of the CMBR. Hence, to extract the characteristics such as spectral

indices for each type of fluctuation we need to know r [115, 116].

Since scalar and tensor perturbations originate from a single inflaton potential they are not

independent. A hierarchy of consistency conditions links them together [118]. It has been

argued that such conditions – if empirically verified – would offer strong support for the idea

of inflation. Observational difficulties will probably render only the first consistency condition

useful. The first of these consistency relations relates r to the tensor spectral index, nT , defined

as

nT (k) ≡ d ln A2
T (k)

d ln k
. (4.11)

To first order in slow-roll parameters nT can expanded, yielding

nT = −2ε, (4.12)

and so the first-order consistency relation takes the following form

r ≡ A2
T

A2
S

= −nT

2
(4.13)

in the absence of a cut-off.

In presence of minimal length the relation (3.14) is modified

A2
T

A2
S

= ε

∣∣∣∣
pk

uk

∣∣∣∣
2

k/aH→0

(4.14)
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where uk and pk will satisfy different differential equations contingent upon the choice of

action in the presence of a cutoff. Furthermore, eq.(4.12) no longer holds true1.

Hence one expects that Planck scale physics will modify the consistency relation. Our

predictions of course depend on the choice of the action for tensor and scalar perturbations.

As noted above, for both tensor and scalar spectra there are two physically motivated actions,

yielding four cases of interest that we will separately analyze below.

4.2.1 The Mode Equations in a Power Law Background

Before presenting our numerical results for the power spectra, it will be instructive to consider

the explicit form of the mode equations (2.26, 2.31, 2.33 and 2.35). A power-law inflationary

background is described by

a(t) = tp, a(τ) =

(
τ

τ0

)q

, q =
p

1− p
, (4.15)

where t(τ) is the cosmic (conformal) time and p > 1. Assuming that at t = 1, a(t) = 1 then

τ0 = 1/(p − 1). We will track the evolution of the modes numerically from when they are

created at the time τk̃ ≡ τ0

(
eβk̃2

)1/2q

, until τ → 0 at which point we calculate the power

spectrum. To this end, we define a new variable, y, so that τ = τk̃(1 − y). It will prove

convenient to work with the rescaled quantity k = k̃ep/2/k̃crit., where k̃crit corresponds to the

mode that crosses the horizon just before the Hubble radius reaches the minimal length scale,√
βH = 1. Explicitly it is given by

k̃crit = e−1/2p(βp2)
(p−1)/2

. (4.16)

With these definitions, the mode equation (2.31) becomes

ük̃ −
q

1− y

W (5 + 3W )

(1 + W )2
u̇k̃ −

(
eq2k2/pW

(1− y)−2q(1 + W )2

+
q(q − 1)

(1− y)2
+

q2

(1− y)2

W (5 + 3W )

(1 + W )2

)
uk̃ = 0, (4.17)

1We are grateful to A. Kempf for bringing this to our attention
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where an overdot now denotes a derivative with respect to y, and the argument of the Lambert

W function is −e−1(1 − y)−2q. The other mode equations (2.26),(2.33) and (2.35) may be

obtained by dropping the final term in the parentheses and replacing uk̃ with pk̃ as necessary.

The definition of k was chosen to remove the explicit dependence upon the minimal length,

but we now see that there is an added benefit to the choice of these variables. For large p, to

very good approximation q is −1 . In fact, actually setting q = −1 changes the equations very

little. To a very good approximation then, all the important dependence upon p occurs through

the factor k2/p. When written using the k variable the behavior of the modes is independent of

β, but following all the factors through we find that the normalization of the power spectrum

varies as β−1/2.

We start tracking the mode numerically just after it is created by solving the mode equations

approximately for small y. The approximate solution enables us to choose our vacuum, and fix

the normalization of the mode function. There is a branch cut in the Lambert W function when

its argument is −e−1, but since we will start following the mode numerically from some small

but positive y we may treat it as a removable singularity when we determine the approximate

solution, since W ∼ −1 + 2
√−qy + O(y) as y → 0+. In general the asymptotic solution is

expressible in terms of Hankel functions. The explicit form is dependent on the exact mode

equation since it is the terms having the factor (1 + W )−2 that dominate as y → 0.

4.2.2 (S
(1)
T , S

(2)
S )

Let us first assume that the actions for tensor and scalar fluctuations are S
(1)
T and S

(2)
S , respec-

tively. Since in this case uk̃ and pk̃ satisfy different equations, the tensor/scalar ratio differs

from the standard quantum field theory prediction. Solving equation (4.17) near y = 0 with

the method of dominant balance [120] (previously employed in other studies [74, 91, 92]); we

find

pk(y) = D+ G(k, y)(1 + ξ1(k, y))(1 + ξ2(k, y)) + D− G∗(k, y)(1 + ξ∗1(k, y))(1 + ξ∗2(k, y))

(4.18)



4.2. Tensor/Scalar Ratio and the Violation of the Consistency Relation 67

where

G(k, y) = y3/4H−3/4(2
√

Aky)

ξ1(k, y) = −ek2/p

6
(−qy)3/2(2− 3 log y) (4.19)

ξ2(k, y) =
qy2

48

(
3q(16− 59ek2/p) + 4i(2 + ek2/p)(3i + 7q2

√
2 + ek2/p) + 42qek2/p log y

)

and

Ak = −q

4

(
2 + ek2/p

)
. (4.20)

The quantities D− and D+ are constrained by the Wronskian condition which implies:

|D+|2 − |D−|2 = −ηk̃π
√−qe−3/2. (4.21)

In a near de-Sitter background if D−/D+ goes to zero when β → 0, then the standard QFT

result can be recovered [74]. However if D−/D+ is constant in this limit, one cannot recover

the standard QFT result as β → 0 [92]. We conjecture that the same type of reasoning is valid

in a power-law background, and therefore we still have freedom in choosing the vacuum. We

shall proceed with the choice D− = 0, which corresponds to a Bunch-Davies-like vacuum.

This analytic solution can then be used as an initial condition to numerically integrate the

differential equation from a point in the vicinity of the singular point until τ ≈ 0. At this

point, we extract the late time amplitude of uk̃. Figure 4.1 illustrates our results for the tensor

amplitude for p = 500. This value of p is consistent with recent observations indicating that,

the scalar spectral index, nS , which for a power-law background in the absence of minimal

length happens to be 1 − 2/p, is greater than 0.95 [4]. We also assume that β = 1002, which

corresponds to a minimal length 100 times larger than Planck scale. This is a reasonable

assumption in the framework of scenarios of large extra dimensions [61]. We see that the

standard tensor power spectrum is modulated by oscillations, corresponding to a slow decrease

in H as the universe expands. Increasing p (though still working with the rescaled variable k)

does not change the qualitative features of the power spectrum, it only results in a shift of the

log k axis to the left. Since k appears in the mode equation as k2/p and k̃crit scales as pp this

rescaling of the axis can have a significant effect on the spectrum when we compare power
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spectra for different p with a common set of units for k̃. As p increases, the wavelength of

the oscillations increases [92]. Also, as k increases the frequency of the oscillation increases,

though the amplitude decreases. As expected, when k → ∞, we recover the standard field

theory result. The left graph in Figure 4.1 illustrates the power spectrum for the modes that

have a larger amplitude than those seeding the structure formation in Hubble patch. In the right

graph we plot a window of k where the amplitudes are of the same order as the modes that are

precursors to structure formation, 10−5 ≤ P
1/2
S ≤ 10−4 [92], or equivalently with p = 500,

10−7 ≤ AT ≤ 10−6.

On the left in Figure 4.2 we plot the tensor spectral index for the range of wavelengths that

lie outside our horizon. The existence of minimal length results in running from a blue to a red

spectrum on such scales. This happens despite the fact that ε, the first slow roll parameter, does

not have a local minimum. This is a counterexample to generic result of [123], which claims

that if the spectral index is to run from a blue to a red spectrum there must be a local minimum

in the slope of the potential. On the right in Figure 4.2, we graph nT in the observable range

of k. While we see the expected oscillations about the standard value, the large k behavior is

now more difficult to understand. The increasing frequency of oscillations for the tensor power

spectrum results in a growth of both the amplitude and frequency of the oscillations. Current

measurements put a lower bound of 40 on p [4]. With such a weak lower bound, the frequency

of the oscillations is very small. As any measurement of the spectral index is taken over a

finite range of k, one would not be able to detect such oscillations. Taking small intervals

centered at successively larger values of k we would find that the average value of nT over the

interval approaches the standard field theory result. To be able to detect these oscillations one

needs extremely precise measurements. This oscillationary behavior of the spectral index is

quite distinct from another model of trans-Planckian physics based on the non-commutativity

of physical time and space coordinates [124]. For such such a model, it was shown that the

spectral index runs from n > 1 on large scales to n < 1 , where transition happens on scales

close to H−1
0 [125–128].

Assuming that the action for scalar perturbations is described by S
(2)
S , the scalar modes sat-

isfy eq.(2.35). Exploiting the dominant balance technique, we again extract the most singular

terms in the mode equation in the vicinity of the irregular singular point with the approximate
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Figure 4.1: In these figures we assume that tensor perturbations are described by S
(1)
T . The left

graph shows the dependence of AT on log k for p = 500 and β = 104. k = 1 corresponds to

kcrit(500). The large modulation corresponds to physical scales much larger than our horizon.

On the right, we plot the tensor amplitude with a window of k whose amplitudes are of the

same order as the modes that originated the structure formation in our universe.

solution:

uk(y) = C+ F (k, y)(1 + ε1(k, y))(1 + ε2(k, y)) + C− F ∗(k, y)(1 + ε∗1(k, y))(1 + ε∗2(k, y)),

(4.22)

where

F (k, y) = y3/4H−3/4(2
√

Bky)

ε1(k, y) = −ek2/p

6
(−qy)3/2(2− 3 log y) (4.23)

ε2(k, y) = −qy2

48

(
48(1− q) + 28iqe3/2k3/p + 3ek2/p(4 + 59q − 14q log y

)
.

and Bk is given by

Bk = −q

4
ek2/p. (4.24)

Again, we have a constraint on the integration constants C+ and C− from the Wronskian con-

dition:

|C+|2 − |C−|2 = −ηk̃π
√−qe−3/2. (4.25)

In the rest of the analysis, we choose C− = 0, to have a Bunch-Davies-like vacuum. However,

we emphasize that this choice is not unique and there is still a considerable amount of freedom
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in the choice of C−. Specifically, inspired by our analysis in near-de-Sitter space [74], we

conjecture that if

lim
β→0

C−
C+

= 0, (4.26)

we recover the standard result.

This approximate solution is again used to set the initial conditions for a numerical integra-

tion of the mode equation. The qualitative behavior of the scalar power spectrum is found to be

similar to that found for the tensor modes. In Figure 4.3, we have plotted the tensor/scalar ratio

for p = 500 and β1/2 = 100. The main effect of the different action for the scalar perturbations

in this case appears to be a slight “compression” of the oscillations to smaller k. This compres-

sion causes the tensor/scalar ratio to oscillate in the observable window of k about the constant

value we expect to find when there is no minimum length. This is depicted on the right graph in

Figure 4.3. Knowing this ratio is important if one is to understand the contribution that each of

these types of perturbation makes to the anisotropy of the CMBR [116]. In Fig.4.3 we see from

the left graph that the ratio stays constant at a value less than the standard QFT result for small

values of k that correspond to wavelengths outside our horizon. For increasing k it attenuates

until reaches a minimum, after which it increases to a value much higher than the standard

result. Thereafter it starts oscillating about the standard QFT predictions. The amplitude of the

oscillations dies off as k increases. Notice also that A2
T /A2

S is suppressed relative to nT by an

order of magnitude, implying in general a violation of the consistency relation (4.13).

This behavior for the tensor/scalar ratio was anticipated from our earlier calculations in

near de-Sitter background [74], using S
(1)
T for tensor and S

(2)
S for scalar perturbations. In near

de-Sitter space for small values of σ ≡ √
βH , the ratio oscillates around the quantum field-

theoretic prediction. For a fixed value of minimal length, this corresponds to small values

of the Hubble parameter. As in a power-law background, short wavelength modes (large k)

experience a slower rate of expansion, and so we expect oscillationary behavior in this region.

Larger wavelengths are generated at the beginning of inflation, when the Hubble parameter

(and in turn σ) were larger. For such wavelengths, this ratio is almost constant in a near de-

Sitter background. In a power-law background for such values of k we see (Fig. 4.2) that the

ratio is constant.
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Figure 4.2: S
(1)
T is assumed to be the action of tensor fluctuations. Left graph shows the

dependence of nT on log k for wavelengths far bigger than our horizon. β and p are assumed

to be 104 and 500, respectively. The horizontal line represents the result when there is no

minimum length. On the right we have graphed nT in the observable range of k.

4.2.3 (S
(2)
T , S

(1)
S )

In this section, we assume that tensor and scalar perturbations satisfy eqs.(2.35) and (2.31)

respectively. In a power-law background, z′′/z = a′′/a [118] and z′/z = a′/a [74] so

the equation describing scalar (tensor) perturbations is the same as the one describing tensor

(scalar) perturbations in section 4.1. From equation (3.16), one can deduce that r/ε now is just

the inverse of r/ε from the last section.

In Figure 4.4 we show the tensor spectral index derived from the action S
(2)
T overlaid on

that found from S
(1)
T . Again, we note that the removal of the third term in parentheses of

(4.17) causes a compression of the oscillations to smaller values of k, but the magnitude of

oscillations is still larger than those of A2
T /A2

S by an order of magnitude, indicating in general

that the consistency condition is still violated.

4.2.4 (S
(1)
T , S

(1)
S ) and (S

(2)
T , S

(2)
S )

For both of these cases the mode equations for tensor and scalar fluctuations are identical. We

therefore recover the standard field theory result for the ratio A2
T /A2

S . The tensor spectral index
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Figure 4.3: We assume (S
(1)
T , S

(2)
S ) respectively describe tensor and scalar fluctuations. The

left figure shows r for p = 500 and β = 1002 for wavelengths far bigger than our horizon. On

the right we plot the ratio of tensor to scalar fluctuations, in the observable window of k.

has already been presented in Figures 4.1 and 4.3. Again the oscillations about the standard

result indicate there are violations of the consistency condition.

4.2.5 β dependence of fluctuations

Up until now we have been working with a rescaled variable that allows us to study the generic

behavior for any β. Recall that the definition of our variable k involves β dependence of the

form k ∼ β(p−1)/2k̃ and there is an overall factor of β−1/2 in the normalization of the power

spectrum. One may then qualitatively compare our results for different values of β by noting

that, up to normalization, changing β just corresponds to a shifting of the log k axis. For

example, a value of β = 1002, causes the spectra of Figures 4.1, 4.2 and 4.3 to shift to the left

relative to the β = 5002 results. For a given k̃ the net result is that the size of the fluctuations

about the standard field theory result are suppressed.

To be more exact, we may parameterize the tensor power spectrum as A2
T = A2

T,qft(1 +

δAT (β, k)), where AT,qft is the standard quantum field theory result for the tensor power spec-

trum. In Figure 4.4, for action S
(2)
T , we plot δAT (β, k) for β = 5002 and β = 1002 written in

units where k = 1 corresponds to k̃ = ep/2/k̃crit for β = 1002. We find that the size of the

oscillations and their wavelength both appear to vary as β1/2, the only dimensionful parameter
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Figure 4.4: In the figure on the left, we overlay the tensor index for the power spectra obtained

from S
(1)
T (solid) and S

(2)
T (dashed). On the right, we have graphed δAT , modifications to the

standard quantum field theory prediction due to the presence of minimal length, for β = 5002

(solid line) and β = 1002 (dashed). Here, we have assumed that S
(2)
T describes the action for

tensor perturbations and p = 100.

in the problem.

4.3 Observability of Trans-Planckian Signatures

As argued above, the effect of of trans-Planckian physics could be proportional to the ratio of

minimal length over Hubble radius during inflation,
√

βH . Identifying 1/
√

β with Λ, equiv-

alently one can express the magnitude of the effect as H/Λ. It is interesting to know to what

extent the minimal length can be constrained within the given observational dataset. As there

are fundamental limits from cosmic variance on how accurately the primordial spectrum can

be measured, one can argue that the effect should be observable with the proviso that it is larger

than the limits of cosmic variance. The lower limits of cosmic variance are set at small scales.

The intrinsic uncertainty in knowing the cosmic multipoles, C`s, could be expressed as:

4C`

C`

=

√
2

2` + 1
. (4.27)

CMB probes up to `max = 2000 and so the lowest value of cosmic variance is around 0.022.

One may conclude that the effect of trans-Planckian physics should be larger than the above
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limit, in order to be observable for the CMB experiments. However, one should emphasize

that the above lower bound should be used cautiously as the signal would involve all of the

above C`s and the ripples in the power spectrum are convolved with the intrinsic structure in

the spectrum. Easther et. al. [130] tried to answer this question more accurately, using various

data analysis techniques and they concluded that the the amplitude of perturbations is directly

correlated with the detectability of any trans-Planckian signature. The amplitude of tensor

perturbations is proportional to H/mPl, which should be less than 10−4 to avoid smearing the

CMB temperature beyond its limit of anisotropy. For r ≈ 0.15, they concluded that H/Λ

should be greater than 0.004 to leave detectable modulations. If r ≈ 0.00013, H/Λ bigger than

0.02 could be recovered.

As stated in section 3.4, the effect of trans-Planckian signatures on 4r/r is proportional

to (H/Λ)2. Verde et. al., [131], have considered all experiments that try to measure the CMB

polarization, including the space and ground-based ones, and found that foreground contami-

nation and residuals from foreground subtraction are the limiting factors in detecting a primor-

dial gravity wave signal. An ideal experiment, with no lensing and no foreground, could have

reached the sensitivity of 4r/r ≈ 10−3 at 1σ error. This means that an ideal experiment could

detect possible trans-Planckian modulations in r, if H/Λ > few × 0.01. However, lensing

and foreground, reduces the sensitivity of 4r/r to 0.1 which means that any trans-Planckian

signature is observable in the ratio, if H/Λ ≥ 0.3.

4.4 Conclusion

In this chapter, we investigated the consistency relation between tensor and scalar fluctuations

in the framework of power-law inflation with a cut-off due to minimal length. Since the method

of implementing the minimal length hypothesis (4.1) depends on the action one starts from,

there is a choice amongst an infinite number of actions that in the absence of minimal length

are otherwise equivalent. However there are only two physically reasonable cases for both

scalar and tensor perturbations: that of minimality (add no boundary terms to the original

action) and that of simplicity (add terms such that the modified action most closely resembles
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the action of a free massive scalar field in a Minkowski background). This yields four distinct

cases and we investigated each for a choice background consistent with recent observations

that constrain the magnitude of the scalar spectral index.

Confining our attention to these cases, we found that Planck scale physics can considerably

modify the consistency condition (4.13) and can lead to the running of spectral indices regard-

less of which action one employs. Depending on the choice of action for tensor and scalar

perturbations, we may find that the tensor/scalar ratio oscillates (in the observable window of

k) about the constant value we expect to find in the absence of minimal length. However the

magnitude of the modifications depends upon the choice of action. Constraining this choice –

both observationally and theoretically – remains a challenge for future studies.



Chapter 5

Generation of Cosmological Seed Magnetic Fields from Inflation

with Cutoff

5.1 Introduction

Cosmic magnetic fields are ubiquitous at all large intragalactic scales. It is a well-known ob-

servational fact that our galaxy and many other spiral galaxies are endowed with coherent

magnetic fields of µG (microgauss) strength [132–136], having approximately the same en-

ergy density as the cosmic microwave background radiation (CMBR). There is also evidence

for larger magnetic fields of similar strength within clusters [137, 138]. The presence of mag-

netic fields at larger scales has also been confirmed [139, 140]. These magnetic fields play an

important role in various astrophysical processes, such as the confinement of cosmic rays and

the transfer of angular momentum away from protostellar clouds so that they can collapse and

become stars. Magnetic fields are also present in the intracluster gas of rich clusters of galaxies,

in quasistellar objects (QSO’s) and in active galactic nuclei. They may influence the formation

process of large-scale structure [141–143].

It is widely believed that galactic magnetic fields are amplified and sustained by a dy-

namo mechanism [134–136, 144, 146], in which the cyclonic turbulent motion of ionized gas

combined with the differential rotation of the galaxy exponentially amplifies a “seed” magnetic

76
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field. This continues until the backreaction of the motion of the plasma offsets the growth of the

field, stabilizing it to dynamical equipartition strength. However, while the dynamo mechanism

provides an amplification mechanism, it does not explain the origin of galactic magnetic fields,

and requires a “coherent” seed magnetic field for it to be effective. Indeed, it has been shown

that seed magnetic fields that are too incoherent may undermine the action of the dynamo

[148]. Most dynamo scenarios require a minimum coherence length equal to the dimension of

the largest turbulent eddy, usually around ∼ 100 pc. If the mechanism has functioned over the

whole age of the galaxy(∼ 10G yr) a seed field of 10−19G is required. If recent observations

are correct and the universe is dominated by a dark-energy density component [18, 150–152],

then galaxies are older than previously thought and the seed magnetic field may be as low as

Bseed ∼ 10−30G [153]. This happens since the presence of dark energy increases the age of the

universe significantly, but does not change the time of galaxy formation [153]. Dynamo mech-

anism amplifies the seed magnetic field exponentially, B(t) = Bseed exp [Γ(t− tgf )], where

0.3 < Γ−1 < 0.8 [Gyr]. Presence of dark energy changes the age of the universe by a 7 Gyr.

For Γ−1 ≈ 0.3 Gyr, the required seed decreases by an eleven orders of magnitude.

A contrasting view is that the primeval magnetic flux trapped in the gas that collapsed to

form the galaxy is responsible for the existence of galactic magnetic fields. This hypothesis

also requires the existence of a seed magnetic field, one that is as great as the field observed

today [154, 155]. Several scenarios have been suggested for creation of the required seed mag-

netic field, the most important of which involve battery [148] or vorticity [156–158] effects.

The battery mechanism requires a large-scale misalignment of density and pressure gradients

usually related to active galactic nuclei (AGN) or starburst activity. Therefore, it is difficult to

realize in the majority of galaxies. The vorticity mechanism is based on the relative motions

of photons and electrons induced by vorticity that was present before decoupling. Of course

this mechanism assumes the existence of primeval vorticity. In addition, large-scale vortical

motions can be effective only if ionization of the plasma is considerable, which does not occur

at the galaxy-formation epoch.

Throughout most of the history of the universe the average time τ between particle inter-

actions has been much smaller than the expansion time scale, τ ¿ tHubble . Consequently the

universe has been a good conductor [159], and any primeval cosmic magnetic field would have
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evolved in a manner that preserved magnetic flux: Ba2 ∼ constant, where a is the scale factor.

Hence the dimensionless ratio r = B2/ (8πργ), where ργ is the radiation energy density, is

almost constant and provides a convenient measure of magnetic field strength. If there had

been a pregalactic cosmic magnetic field that collapsed with the gas that formed the galaxy, its

strength must have increased as [ρgal/ρtot(t)]
2/3, where ρtot(t) is the average cosmic mass den-

sity at time t. As ρtot ∝ a−3 and ρgal/ρtot = 106 today (t0 = 0), it follows that the strength of

the magnetic field at the time of formation tform. must have been 104[a(tform.)/a(t0)]
2Bcosmic

or Bgal. ' 3r1/210−2G. This yields r ' 10−34 for initiating the galactic dynamo, or alterna-

tively r ' 10−8 for seeding the galactic magnetic field itself while avoiding the necessity of a

galactic dynamo. If the existence of dark energy in the universe is confirmed, the minimum r

required to seed the dynamo mechanism reduces to 10−56.

Inflation offers the hope of furnishing a mechanism for kinematically and dynamically

producing the seed for cosmic magnetic fields. It provides the kinematic means for produc-

ing long-wavelength effects at very early times through microphysical processes operating on

scales less than the Hubble radius. Since an electromagnetic wave with λphys ≥ H−1 has the

appearance of static E and B fields, very long wavelength photons (λphys À H−1) can lead to

large-scale magnetic fields (which then become supported by currents). Of course the electric

field generated during the inflationary stage not only is not amplified, but is actually damped

down due to the large conductivity of the primeval plasma. Another reason inflation is consid-

ered to be a prime candidate for field amplification is the fact that during inflation the universe

is devoid of charged particles. Hence, the magnetic flux is not necessarily conserved and r can

increase. Furthermore, inflation can superadiabatically amplify the energy density (' kdρ/dk)

of the minimally coupled field [159]. Then the energy density decays as a−2, rather than the

usual result a−4 (“adiabatic result”).

However the conformal flatness of the Robertston-Walker metric prevents the background

gravitational field from producing particles, provided the underlying matter theory is confor-

mally invariant. A pure U(1) gauge theory with the standard Lagrangian L = −1
4
FµνF

µν is

conformally invariant, from which it follows that ρB ∝ B2 always decreases as a−4. During the

inflationary epoch, the total energy density in the universe is dominated by vacuum energy and

therefore the energy density in any magnetic field during inflation is significantly suppressed.
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In fact it can be shown that r = 10−104λMpc [159], where λMpc ≡ λ/1Mpc.

Several proposals have been given to break the conformal invariance of the theory: (i)

coupling the electromagnetic field to a non-conformally-covariant charged field [161], (ii) cou-

pling the electromagnetic field to gravity via either gauge non-invariant terms such as RAµA
µ,

RµνA
µAν or gauge invariant ones like RµνλκF

µνF λκ/m2, RµνF
µκFκ

ν/m2 or RF µνFµν/m
2

[159], (iii) invoking effects due to the quantum conformal anomaly [161, 162], (iv) creating

primordial magnetic fields at either the QCD transition epoch [163] or the electroweak tran-

sition [164], (v) breaking conformal invariance via nonzero vacuum expectation values of flat

directions in minimally supersymmetric standard models (MSSM) [165].

Attempts to realize the first possibility were carried out by coupling the electromagnetic

field to the scalar field Φ responsible for inflation via a term ∝ eΦF µνFµν [160]. This investi-

gation showed that in the exponential potential for the inflaton

V (Φ) = (
6− q

3
)

16π

mPl
2
ρ0

bΦe(−
√

q
2
(Φ−Φ0)), (5.1)

it is possible to generate an intergalactic magnetic field whose present strength (depending on

values of parameters of the model) lies between 10−65 to 10−10 on a scale of 1/1000 that of the

Hubble scale. In (5.1) mPl is the planck mass, Φ0 is the value of the scalar field and ρ0
bΦ is the

homogeneous scalar field energy density when the scale factor is a0. Thus in this scenario one

can have the desired galactic magnetic field by resorting to the dynamo mechanism.

Considering next possibility (ii), if we add gauge non-invariant terms to the action, the

U(1) gauge invariance will be broken. To avoid the phenomenological disasters this can cause

one can endow the photon with a mass squared of the order of H2 (well below present limits of

detectability). It has been shown [159] that such a term can create primeval fields with strength

as large as r ∼ 10−8 .

Gauge invariant modifications to the action have much better theoretical motivation. For

example, all RF 2 terms can be obtained by calculating the effective Lagrangian for QED in

curved space-time to one loop order [166]. At early times, when R1/2 ∼ H ∼ ρ
1/2
tot /mpl À

10−11mpl, these terms govern the behavior of the electromagnetic field. However at later times,

when R1/2 ¿ 10−11mpl, they are negligible compared to the standard −1
4
F 2 term. In a power-
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law inflationary background the amplitude of large-scale fields is not large enough to be astro-

physically interesting [159].

The third possibility has proven to be promising for gauge theories with large groups and

a greater number of bosons than fermions. In such theories, it has been shown that this mech-

anism for breaking conformal invariance in quantum electrodynamics can create a sufficient

amount of primordial magnetic field [161]. However, in the simplest version of the grand uni-

fied SU(5) model with three generations of fermions the magnetic field produced is below the

requirement of the dynamo mechanism.

Phase transitions at different cosmological epochs (grand unification, the electroweak tran-

sition [164] or the quark confinement epoch [163]) have also been considered. However, since

the generating mechanisms are causal, the coherence of the created magnetic field cannot be

larger than the particle horizon at the time of the phase transition. Because all the above tran-

sitions occurred very early in the universe’s history, the comoving size of the horizon is rather

small. The best case is the QCD transition, for which the horizon corresponds to ∼ 1 a.u.

Consequently the real magnetic fields generated lack sufficient coherence.

The MSSM flat directions, made up of gauge invariant combinations of squarks and slep-

tons, acquire non-vanishing vacuum expectation values (vev) during inflation. These flat di-

rections endow the standard model gauge fields with mass and break the conformal invariance.

The quantum fluctuations of these flat directions, in contrast to the their classical vevs, induce

fluctuations in the gauge degrees of the freedom that cannot be gauged away. The gauge field

fluctuations that are stretched outside the horizon during inflation, provide us with a seed (hy-

per)magnetic field after they re-enter the horizon. They give rise to U(1)em magnetic field with

strength of 10−30 G, as required by the dynamo mechanism [165].

Here we consider an alternative mechanism that is based on a hypothesis of a minimal

fundamental length scale. Minimal length breaks conformal invariance and so it might be

expected that primordial magnetic fields can be produced during inflation. One suggestion

[71] for implementing minimal length into the inflationary scenario in the context of trans-

Planckian physics [85] is based on the hypothesis of a generalized uncertainty principle:

∆x∆p ≥ 1

2

(
1 + β (∆p)2

)
, (5.2)
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where
√

β is the ultraviolet cutoff on the order of the Planck or string length. In this section

we employ this formalism to implement minimal length into the action of electrodynamics.

This translates into a UV cutoff which, once implemented, has the sole effect of modifying

the evolution of the electromagnetic field. As we will demonstrate, the formalism is not able

to create a squeezing effect for the electromagnetic field. Therefore the energy density of the

electromagnetic field attenuates adiabatically, ρB ∝ a−4.

However, it has recently been shown [72] that terms in the action that are total time deriva-

tives are not invariant under the influence of the minimal length hypothesis [71]. Consequently

such terms contribute to the equations of motion of the matter fields. We consider in this thesis

an example of a total time derivative that, under the influence of the UV cutoff, causes the

photon to gain a large negative mass during inflation. This effect goes to zero at the end of in-

flation and so such a mass is undetectable today. We shall show that this approach is successful

in providing the dynamo mechanism with sufficient primordial seed magnetic field. Even in

absence of the dynamo mechanism, one can adjust a free parameter in the action to account for

the observed magnetic field of galaxies today.

5.2 Cutoff Breaking of Conformal Invariance

The existence of a preferred minimal length breaks the conformal invariance of the background

geometry. Here we will examine the effect of this conformal breaking on the evolution of

electromagnetic fields.

We introduce a fundamental length (i.e. the presence of a cut-off) in the inflationary sce-

nario via generalization of the quantum mechanical commutation relation [71]

[X,P] = i −→ [X,P] = i
(
f (β)1 + g(β)PiPj

)
(5.3)

where f (β) , g (β) are functions such that f (0) = 1 and g (0) = 0; their actual form is deter-

mined below. This generalization significantly modifies trans-Planckian physics, whose effects

are then manifest in the CMBR. Here we employ the above formalism to find the effect this

cutoff has on the evolution of magnetic fields.
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We begin with the action of electromagnetism in an expanding curved background

S = −
∫

1

4

√−ggµνgαβFµαFνβd3ydτ (5.4)

where the yi’s are comoving spatial coordinates related to the proper ones by xi = a(τ)yi and

τ is the conformal time. Assuming that the background is flat Friedmann Robertson Walker,

with the metric

ds2 =





−dt2 + a2(t)
i=3∑
i=1

dyi2

a2(τ)(−dτ 2 +
i=3∑
i=1

dyi2),
(5.5)

one can write down the action in the following form:

S =
1

4

∫
[2FoiFoi − FikFik]d

3ydτ (5.6)

Roman indices i and k run from 1 to 3 and repeated indices are summed over. The disappear-

ance of the scale factor a(τ) is a consequence of the conformal invariance of electromagnetism.

By imposing the radiation gauge A0 = ∂iAi = 0, the above action can be rewritten in the fol-

lowing form

S =
1

2

∫
[(∂0A)2 − (∇×A)2]d3ydτ. (5.7)

in terms of the electromagnetic potential Ai. This action is the familiar electrodynamic action,

S =
1

2

∫
(E2 −B2)d3ydτ, (5.8)

written in radiation gauge.

The most general form of the modified commuation relation (1.30) that breaks Lorentz

invariance (see also [167]) while preserving the translational and rotational symmetry is given

by (2.10). We still assume that [Xi,Xj] = [Pi,Pj] = 0. To impose this modified commuation

relation, we rewrite the action using proper spatial coordinates x = a(τ)y in the form:

S =
1

2

∫
dτd3x

2a3

{([
∂τ +

a′

a
∂xixi − 3a′

a

]
A

)2

− a2 (∇×A)2

}
(5.9)



5.2. Cutoff Breaking of Conformal Invariance 83

We can identify −i∂xi as the momentum operator, Pi , and xi as the position operator, Xi. We

can cast the action (5.9) to a simpler form:

S =

∫
dτ

2a3

{(
A, B†(τ)B(τ)A) + a2(P×A

)2
}

, (5.10)

where we have consolidated (∂τ + ia′
a

∑3
i=1 PiXi − 3a′

a
) into a new operator B(τ). Since

∂iA
i = 0, it means that (P ×A)2 = P2A2. A suitable vectorial Hilbert space representation

of the new commutation relation can be defined by using auxiliary variables ρl:

XlA(ρ) = i∂ρlA(ρ) (5.11)

PlA(ρ) =
ρl

1− βρ2
A(ρ) (5.12)

(Ai(ρ), A′
j(ρ)) =

∫

ρ2<β−1

d3ρA∗
i (ρ)A′

j(ρ) (5.13)

Ultimately the action takes the following form:

S =

∫
dτ

∫

ρ2<β−1

d3ρ
1

2a3

{
|(∂τ − a′

a

ρi

1− βρ2
∂ρi − 3a′

a
)A|2 − a2ρ2|A|2

(1− βρ2)2

}
(5.14)

As before, the presence of ρ derivatives means that the ρ modes are coupled. However we

can define variables (τ̃ , k̃) as in (2.16). The k̃ modes decouple because of relation (2.17)

We will use the common index notation Āk̃ for those decoupling modes. The k̃ modes

coincide with the usual comoving modes on large scales, i.e., only for small ρ2. This means

that the comoving k modes that are obtained by scaling, ki = api, decouple at large distances

and couple at small distances. The action now takes the form

S =

∫
dτ̃

∫

k̃<a2/eβ

d3k̃L (5.15)

where

L =
1

2
ν

{∣∣∣∣
(

∂τ − 3
a′

a

)
Āk̃

∣∣∣∣
2

− µ
∣∣Āk̃

∣∣2
}

µ is as in (2.22) and ν is defined as κ/a6 where κ is defined in (2.23). It is convenient to express

these functions in terms of the Lambert W function

µ(τ, k̃) = −a2

β

W (ζ)

(1 + W (ζ))2
(5.16)
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ν(τ, k̃) =
e−3W (ζ)/2

a6(1 + W (ζ))
(5.17)

where ζ = −βk̃2/a2. The equation of motion for the action (1.47) is:

Ā′′
k̃
+

ν ′

ν
Ā′

k̃
+

(
µ− 3

ν ′

ν
(
a′

a
)− 3

(a′

a

)′ − 9(
a′

a
)2

)
Āk̃ = 0 (5.18)

The operations of Fourier transforming and of scaling from proper position coordinates do not

commute [71]. Hence the field variable Āk̃ is different from that commonly employed in the

literature, Ak̃ by a factor of a3:

Āk̃ = a3Ak̃ (5.19)

Taking into account eq.(5.19), we obtain

A′′
k̃
+

κ′

κ
A′

k̃
+ µAk̃ = 0; (5.20)

as the equation of motion for scalar perturbations in presence of a minimal length cutoff.

The solutions to equation (5.20) are constrained by the Wronskian condition which follows

from the canonical commutation relation between Ak̃ and its conjugate momentum, Πk̃ = κA′
k̃

[Ai
k̃
, Πj

k̃′
] = iδijδ3(k̃ − k̃′) (5.21)

or equivalently

Ai
k̃
A
′j∗
k̃
− Ai∗

k̃
A
′j
k̃

= iκ−1δij (5.22)

During the de Sitter phase, a = −1/Hτ and so ζ = −βH2k̃2τ 2. σ =
√

βH is the ratio of

the cutoff to the Hubble parameter during inflation. The factors µ and κ′/κ have the following

expansions in the limit in which the mode is outside the horizon (k̃τ ¿ 1):

µ(τ, k̃) = k̃2 + 3β2H2k̃4τ 2 + · · · (5.23)

κ′(τ, k̃)

κ(τ, k̃)
= 5βH2k̃2τ + 12β2H4k̃4τ 3 + · · · (5.24)

In that regime, the modes satisfy the following equation:

A′′
k̃
+ k̃2Ak̃ = 0 (5.25)
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Thus Ak̃ ∝ eik̃τ and Bi = εilmFlm/a2 where Flm = ∂lAm − ∂mAl. As a result ρB varies like

a−4, which is the adiabatic result.

Superficially this mechanism is unable to amplify the cosmic magnetic fields. However it

has been shown that this method of implementing the cut-off in the action has an ambiguity:

total time derivatives no longer reduce to pure boundary terms [72]. In continuous space-time,

the presence of such a boundary term does not affect the evolution of the electromagnetic

potential. However the operator ∂τ that acts on the electromagnetic potential inside the total

time derivative transforms to B(τ) in the proper spatial coordinates. Since the modification

of the commutation relation between X i and P j affects how this operator acts upon Aµ, this

procedure of implementing minimal length will not keep such total time derivatives invariant.

Fortunately another option is available. It can be shown that any boundary term in physical

space transforms to a non-boundary term in momentum space in the following manner:
∫

(f(a,A))′d3ydτ →
∫

κ(τ, k̃)(f(a,Ak̃))
′d3k̃dτ (5.26)

and so it is possible that they may contribute to the equation of motion in such a way that

the above behavior of the magnetic field is modified. Since we wish to break the conformal

invariance, we endow the photon with a mass term [168–171]. This implies that f(a,A) =

g(a, a′, . . .)AµAµ. However we also do not want to modify the behavior of the photon in the

well-understood part of the history of the universe, namely the radiation and matter dominated

eras. Since during these eras the scale factor respectively behaves as τ and τ 2, we assume that

g(a) ∝ a′′′. So far the proposed boundary term adds to Eq.(5.25) a term ∝ −a′′′κ′
a2κ

Ak̃ which

looks like Ak̃/τ as the mode crosses outside the horizon. Recalling the equation of motion for

scalar fluctuations, uk, (1.45), the term that creates the amplification is z′′uk/z which behaves

like uk/τ
2 as the mode is far outside the horizon. Hence we multiply the previous term with

another factor of a to produce the desired behavior.

Summarizing, the proposed boundary term is:

4S =
1

M2
1

∫
(AµAµa

′′′a)′d3ydτ (5.27)

where µ runs over space-time indices 0 · · · 3 and M1 is an arbitrary constant with dimensions
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of mass whose presence keeps 4S dimensionless. We can write this covariantly as

4S =
1

M2
1

∫
∇α(Ξζα)

√
gd3ydτ

where Ξ is the scalar function

Ξ =
1

3
(AµAµ)

(∇2K − 2∇µ∇νKµν

) √
ζ · ζ

where Kµν is the extrinsic curvature of the boundary surface whose normal is nµ =
(
a(τ),~0

)

and ζα =
(
1,~0

)
is the conformal Killing vector of the spacetime. Also, one can express a′′′ in

the following form:

a′′′ = a4H3(1− 2q + j) (5.28)

where q and j are respectively the deceleration and jerk parameters defined as [172]

q = − ä

aH2
, (5.29)

j =

...
a

aH3
, (5.30)

where dot denotes differentiation with respect to the physical time. The presence of such a

term modifies the propagator of the photon only during inflation. The vertices and propagator

of the electron do not get modified at any time. Therefore, the amplitude for the diagrams that

describe photon splitting [173–175], γ → nγ, remain intact and hence abide with the current

bounds that exist on photon splitting [176].

The equation of motion for Ak̃ derived from the variation of the cutoff-modified action

S +4S is

A′′
k̃
+ (k̃2 − 1

M2
1

a′′′κ′

aκ
)Ak̃ = 0, (5.31)

During the de Sitter expansion, a = −1/Hτ . For modes outside the horizon, k̃τ ¿ 1, and

eq.(5.31) reduces to

A′′
k̃
− n

τ 2
Ak̃ = 0 (5.32)

where n = 30σ2k̃2/M2
1 . In this limit we have |Ak̃| ∝ τm± where m± = 1

2
(1 ± √

1 + 4n).

Here σ =
√

β/H−1, where
√

β is the minimal length associated with the ultraviolet cutoff and
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H is the Hubble constant during inflation. The fastest growing solution during the de Sitter

phase is proportional to τ p or equivalently a−p, where we set p = m− . Note that for p = −1

(n = 2), |Ak̃| varies like a and ρB ∝ a−2, which is the superadiabatic result. The evolution

of electromagnetic waves during reheating and the matter-dominated (MD) era is described

by the same equation as (2.18) with a ∝ τ 2, whereas in the radiation dominated (RD) epoch

a ∝ τ . In these three epochs the effective mass of the photon vanishes and ρB ∝ a−4. During

RD, MD, and reheating, the electromagnetic field behaves as it does in absence of the cut-off.

The ratio of the energy stored in the k-th mode of quantum fluctuations, ρB(k), to the

total energy density of the universe, ρtot, at first horizon-crossing, a = a1, is approximately

equal to [M/mPl]
4. Here M4 is the vacuum energy density during inflation. Such a quantum

fluctuation will be excited during the de Sitter expansion, ref.[178], and can be treated as a

classical fluctuation in the electromagnetic field when it crosses outside the horizon. After

horizon-crossing ρB(k) varies as a−2(p+2) while the total energy density of the universe re-

mains constant, ρtot ∝ M4. Since the extra term added to the equation of motion is zero during

reheating, in the MD and RD epochs the stored energy density in the k-th mode magnetic fluc-

tuation attenuates adiabatically, ρB ∝ a−4. In reheating and the MD era, the energy density of

the universe decreases as a−3 whereas in the RD epoch the total energy density of the universe

diminishes as a−4. Therefore the invariant ratio, ρB(k)/ργ on the scale λ is:

r ' e−2N(λ)(p+2)

[
M

mPl

]8/3[
TRH

mPl

]4/3

, (5.33)

where N(λ) is the number of e-folds the universe expands between the first horizon crossing

of the comoving scale λ and the end of inflation. It is given by the following equation [178]:

N(λ) = 45 + ln λMpc +
2

3
ln(M14) +

1

3
ln(T10) (5.34)

and M = M141014 GeV, TRH = T101010 GeV. Plugging this equation back into Eq.(5.33), one

obtains

r ' (7× 1025)−2(p+2)

[
M

mPl

]−4p/3[
TRH

mPl

]−2p/3

λ
−2(p+2)
Mpc (5.35)

The above formula is correct regardless of whether horizon re-crossing takes place at the RD

or MD eras. Note that we have normalized our comoving scales such that today physical scales

are equal to comoving scales, i.e. atoday = 1.
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Figure 5.1: The left figure shows the dependence of M1 on M , the energy scale of inflation.

The right figure shows how M1 varies as TRH changes. For all physically acceptable values of

M and TRH , M1 ∼ 10−43GeV.

Two constraints on M and TRH should hold in any viable scenario of inflation. First, to

prevent the production of long-wavelength gravitons that distort the microwave background

radiation beyond its upper limit of anisotropy, M < 10−2mPl . Second, M and TRH should be

greater than 1 GeV so that radiation domination takes place before nucleosynthesis.

To trigger the dynamo mechanism, there must be sufficient seed magnetic field at cosmo-

logically interesting scales. This condition could be used to determine the value of M1. As-

suming that the required seed magnetic field has been substantial on galaxy-scales, λ ∼ 1Mpc,

one can obtain a relation between M1 and other relevant parameters of the problem:

M1 '
1.6× 10−38

[
ln(TRH/mPl) + 3 ln b + 2 ln(M/mPl)

]
σ

([
ln r + 4 ln b

][
3 ln r + 18 ln b + 2 ln(TRH/mPl) + 4 ln(M/mPl)

])1/2
Gev (5.36)

where b = 7× 10−25. If M, TRH and σ are specified, one can obtain the corresponding values

of M1. In table 1, we have tabulated the results for different values of M, TRH corresponding

to different scenarios of inflation and some values of r required to initiate astrophysically in-

teresting phenomena. As Fig.(1) and (2) show, for a fixed value of σ and all physically relevant

values of M and TRH , M1 does not vary too much. For σ ∼ 10−5[72] we find M1 ∼ 10−43GeV.

Since the coupling of the added term is proportional to M−2
1 , the smallness of M1 indicates that
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the coupling of electromagnetic field to the curvature of the expanding background, due to the

existence of minimal length, has been enormous during the inflationary era. However the cou-

pling is extinguished in all other epochs due to the special form of the interaction. One may

wonder if the term added to the equation of motion for photon has any observable effect on

the behavior of electromagnetic field at present time. The added term will be proportional to
βH2

0

λ2M2
1

, where H0 is today Hubble parameter. Above, we calculated the value of M1 to have

the required seed to account for the cosmic magnetic fields and realized that H0 ≈ M1. Thus,

the above term becomes observable, if λ ≈ √
β, or equivalently when the wavelength of elec-

tromagnetic field becomes comparable with the scale of new physics. Experiments with very

short wavelength photons should be able to put bounds on the value of β or even verify this

scenario.

Although we should await a unified theory to determine how gravity is coupled to the other

fields of nature, this phenomenological scenario suggests that the enigmatic primordial mag-

netic fields might have their origin in the special characteristics of space-time at high energies

( See also ref.[179] on how non-commutativity of the space-time might help us account for

primeval magnetic fields).

5.3 Conclusion

The origin of magnetic fields with µG strength that are observed on intragalactic scales re-

mains an intriguing mystery. As the observed magnetic field is coherent on such cosmological

scales, the first cosmological process one might think of as being able to produce such preva-

lent fields is inflation. However the conformal invariance of the electromagnetic field prohibits

the quantum fluctuations of the electromagnetic field from squeezing and amplifying during

inflation.

The existence of a minimal length breaks this conformal invariance. We have proposed a

scenario based on this observation that can provide the requisite initial magnetic seed for the

astrophysical dynamo mechanism. With a proper choice of the free parameter within the theory

one can avoid the need for the dynamo mechanism.
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TRH(GeV) r|λ=1Mpc M1 × 1043(GeV)

1017 10−8 0.5639

109 10−8 0.5103

1017 10−34 0.7311

109 10−34 0.6638

1017 10−56 0.9819

109 10−56 0.8973

Table 5.1: Values for M1 corresponding to different inflationary scenarios and different values

of r = (ρB)/ργ|1Mpc. Here σ is assumed to be 10−5 and M is held constant at 1017 GeV. M1

does not vary significantly for all interesting values of M,TRH and r.

The scenario is based on the observation that incorporating minimal length at the level of

first quantization, as was done for the first time in [71], does not render total time derivatives

invariant under the influence of minimal length. Therefore one can have actions that are equiv-

alent at the continuous space-time level, but are distinct from one another once the presence

of minimal length is introduced. We added a prototype for such a total time derivative term to

the action of electromagnetism that respects the behavior of the photon throughout the history

of the universe except for the inflationary era. During inflation this term induces a huge mass

for the photon. We found that to match this model with observation we must tune the free

parameter of the model, M1, to be extremely small. Since M−2
1 is proportional to the coupling

of electromagnetism to the background geometry during inflationary epoch, the small size of

M1 is indicative of gravity and electromagnetism being strongly coupled at that time. We note

that the numerical value of M1 is approximately the inverse Hubble length, but we have found

no deeper explanation for this coincidence at the level of the model presented here.

Of course it is conceivable that other gauge bosons of the standard model can inherit the

same tachyonic instability that we have considered for the photon. However all other gauge

bosons are non-Abelian and so will experience screening effects that we expect will tend to
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dampen out this instability [180, 181]. A detailed calculation of this effect remains an interest-

ing subject for future study.

Of course the main drawback for this model is its arbitrariness in the choice of total time

derivative. It would be really interesting if one were able to find candidates from existing

models of fundamental physics. Our main goal here was that of demonstrating that specific

characteristics of space-time at Planckian epochs can create observable phenomena in the uni-

verse at much later cosmological times.



Chapter 6

Power Spectrum and Signatures for M-theory Cascade Inflation

6.1 Introduction

For a long time it seemed difficult to connect inflation to string-theory. In its low-energy ap-

proximation string-theory is described by supergravity. Inflation based on the F-term potentials

of 4-dimensionalN = 1 supergravities resulting from string/M-compactifications suffers from

a large slow-roll parameter η. The origin of this problem traces back to the appearance of the

Kähler-factor exp(K) in the F-term potential. New possibilities to address this problem arose

with the advent of D-branes [60]. They allowed to identify the inflaton with open string modes

such as the geometrical distance between two D-branes [63].

An inflaton requires a very shallow potential. Hence, a priori, moduli serve as natural

candidates. To provide them with a non-trivial potential, supersymmetry needs to be broken,

which can be done in various ways. One might add anti D-branes to the open string sector [66]

or supersymmetry breaking fluxes to the closed string sector [182]. Also the inclusion of non-

perturbative instanton effects leads to spontaneous supersymmetry breaking in the low-energy

supergravity [183]. Assuming just a single inflaton, the task for deriving inflation from string-

theory then becomes finding a way of breaking supersymmetry which leaves the inflaton with a

sufficiently flat potential while endowing all other moduli with steep stabilizing potentials. All

92
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standard methods of breaking supersymmetry generate, however, steep potentials, not flat ones.

One way to generate a flat inflaton potential nevertheless is to study brane-antibrane inflation in

warped backgrounds with the inflaton being identified with the brane-antibrane distance [66].

Warped geometries arise in the presence of branes and fluxes. The eventual stabilization of the

volume modulus, however, modifies the inflaton potential and renders it too steep for inflation

unless fine-tuning is applied [184].

Here, we focus on an alternative mechanism to generate inflation in M/string-theory, the

multi brane inflation proposal [77] (see also [185]). One starts with a multi inflaton scenario

associating one inflaton with each inter-brane separation. The presence of several branes is

indeed generically enforced by tadpole cancellation conditions. The interesting advantage of

this mechanism lies in the fact that the potentials for the individual inflatons need no longer be

flat. The reason is that the Hubble friction experienced by every inflaton becomes large – sim-

ply by increasing the number of inflatons – regardless of the steepness of the potentials. This

had first been pointed out in [26] in the context of 4-dimensional Friedmann-Robertson-Walker

(FRW) cosmologies based on exponential potentials which generate power-law inflation. The

premise under which this mechanism operates is the suppression of strong cross-couplings

among the inflatons. This suppression is given in multi brane inflation models since interac-

tions between non-neighboring branes which could generate cross-couplings are suppressed

by longer distances. In M-theory cascade inflation, there is an exponential suppression of such

cross-couplings since interactions between the relevant M5-branes arise from non-perturbative

open M2-instantons.

In this chapter, after highlighting the needed ingredients of M-theory cascade inflation,

we focus on the determination of its power spectrum and the resulting observable signatures.

Beyond demonstrating the compatibility of the power spectrum with present cosmological con-

straints, we find that it exhibits three distinctive signatures – power suppression at small dis-

tances, stepwise decrease in the spectral index and oscillations in the spectrum. The power

suppression which follows in cascade inflation from M-theory dynamics might serve as an ex-

planation for the scarceness of observed dwarf galaxies in the Milky Way halo, as suggested in

[186], [187]. This is not explained by standard cosmology which overpredicts their abundance

by an order of magnitude. The oscillations and stepwise decreases, on the other hand, pro-
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vide a unique signature which allow one to probe M-theory observationally by measuring the

spectral index. It furthermore clearly distinguishes M-theory cascade inflation observationally

from other string inflation models.

6.2 Multiple M5-brane Assisted Inflation

To realize assisted inflation within heterotic M-theory [188, 189], one should find a setup with

several scalar fields each having the same exponential potential. The setup suggested in [77]

contains N parallel M5-branes distributed along the S1/Z2 interval. Compactifying M-theory

on a six dimensional Calabi-Yau manifold and preserving N = 1 supersymmetry in four di-

mensions, one obtains N M5-branes which fill the 4-dimensional non-compact space-time and

wrap the same two-cycle Σ2 on the Calabi-Yau. It is a warped compactification due to the

presence of G-flux sourced by the 10-dimensional boundaries and additional spacetime-filling

M5-branes [190], [194]. For simplicity it is assumed that each M5-brane have wrapped the

basis two-cycle Σ2 once. Assuming the vanishing of expectation values for charged matter

fields, the main contributions to the superpotential come from both open membrane instan-

tons wrapping each the same Σ2 on the Calabi-Yau and stretching between both boundaries

(99), between two of the M5-branes (55), between the visible boundary and an M5-brane (95)

or between an M5-brane and the hidden boundary (59), and also the gaugino condensation

[182, 191, 192] on the hidden boundary [193], WGC :

W = W99 + W55 + W59 + W95 + WGC . (6.1)

By grouping all N M5-branes together but away from both boundaries, one can neglect the

inter-boundary interaction, W99, and the interaction between M5-branes and either boundaries,

W59 and W95. The gaugino condensation on the hidden boundary, WGC , could be neglected

by placing the hidden boundary away from the singularity where the warp factor of the back-

ground geometry of vanishes [194–196]. Although having hidden boundary at the singularity

leads to interesting particle phenomenology [197–199], the situation during inflation could

be quite different. Particulary, it is possible that at the beginning of inflation one starts off

with a subcritical-size orbifold which expands gradually to its critical value toward the end of
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inflation. By bringing the hidden boundary at subcritical distance, the hidden gauge theory

becomes perturbative, as the Calabi-Yau volume on the hidden boundary quickly grows when

the orbifold size shrinks [195]. Therefore we neglect the gaugino condensation and the H-flux

superpotential induced by it during inflation. The corresponding flux, however, becomes im-

portant at the end of inflation. Taking all the above into account, among all the open membrane

interactions in W , we only consider those between the M5-branes, W55:

W = W55. (6.2)

Suppressing the gauge bundle moduli related to the E8 Yang-Mills sector, the effective four

dimensional N = 1 supergravity theory is described in terms of the volume modulus of the

Calabi-Yau, S, the modules associated to the length of the orbifold, T and the M5-brane chiral

superfields Yi:

S = V + VOM

N∑
i=1

(
x11

i

L

)
+ iσS (6.3)

T = VOM + iσT (6.4)

Yi = VOM

(
x11

i

L

)
+ iσi (6.5)

Here V denotes the Calabi-Yau volume averaged over S1/Z2 and VOM is the averaged volume

of an open membrane instanton wrapping Σ2 and stretching from one boundary to the other. L

is the length of the S1/Z2 interval and the position modulus of the i-th M5-brane ranges over

0 ≤ x11
i ≤ L. The axions σS, σT , σi arise from various components of the three-form potential

C of eleven-dimensional supergravity, see [183]. There are also h2,1 complex structure moduli

Zα. The superpotential takes the following form in term of the above moduli:

W = h
∑
i<j

e−(Yj−Yi). (6.6)

It is useful to define the following additional real moduli

s = S + S̄, t = T + T̄ , yi = Yi + Ȳi, y =

(
N∑

i=1

yi
2

)1/2

, (6.7)
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and their positive functions

Q = s− y2

t
, R = 3Q2 − 2

y4

t2
. (6.8)

Kähler-potential for these moduli is given by [200–202]:

K = K(S) + K(T ) + K(Y ) + K(Z), (6.9)

where

K(S) + K(Y ) = − ln Q, (6.10)

K(T ) = − ln

(
d

6
t3

)
(6.11)

K(Z) = − ln

(
i

∫
Ω ∧ Ω̄

)
. (6.12)

Above, d and Ω are respectively the Calabi-Yau intersection number and Kähler form. The

N = 1 supergravity expression for F-terms yields the following positive potential

U = M4
Ple

K
(∑

K ĪJDĪW̄55DJW55 − 3|W55|2
)

, (6.13)

where the Kähler covariant derivative and eK are respectively defined as

DiW55 ≡ ∂W55

∂Yi

+ W55
∂K

∂Yi

(6.14)

eK =
6(

i
∫

Ω ∧ Ω̄
)
Qt3d

. (6.15)

To guarantee the partial minimization of the potential energy, one has to impose the following

constraints:

DαW55 = 0 (6.16)

DiW55 = 0 (6.17)

Applying the above constraints, the potential looks like the following

d
(
i
∫

Ω ∧ Ω̄
)

6M4
Pl

U =

(
3Q

Rt3
− 2y2

Q2t4

)
|W55|2 (6.18)
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To map the above potential to assisted inflation, the multiplicative factor of |W55|2 should be

independent of y. To achieve this goal, one has to impose the following constraint:

Qt À y2 (6.19)

The above constraints will lead to an upper bound on N , the number of M5-branes. The Käler

derivative in DiW55 = 0 reduces to normal derivative, ∂iW55 = 0, in the regime of validity

of supergravity where both s and t are considerably larger than one. Consequently, if one

concentrates on the dominant nearest neighbor interaction between adjacent M5-branes, such

a constraint dictates that the M5-branes should be equidistantly distributed. Calling the real

part of the separation of adjacent M5-branes ∆y/2, the potential could be cast to the following

form

U =
6M4

Pl

(
i
∫

Ω ∧ Ω̄
)
(N − 1)2

st3
e−∆y (6.20)

The kinetic term for Yi is not canonical and takes the form

Skin = −M2
Pl

∫
d4x

√−gKi̄∂µYi∂
µȲ̄ (6.21)

where

Ki̄ =
4yiyj + 2Qtδij

Q2t2
(6.22)

and the repetition of indices indicates summation. In the limit where the constraint (6.19) is sat-

isfied, one obtains Ki̄ = 2δij/Qt. To map the dynamics of M5-branes to assisted inflation the

fields must have canonical kinetic terms and therefore one can define canonically normalized

real M5-brane position and difference fields

φi =
2MPl√

Qt
yi, ∆φ =

2MPl√
Qt

∆y. (6.23)

The position fields, φi, are related to the center of mass field

φcm =
1

N

N∑
i=1

φi (6.24)

in the following manner

φ = φcm +

(
i− N + 1

2

)
∆φ. (6.25)
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Now if we switch from the set of fields {φi, ∆φ} to {φcm, ∆φ}, the potential for φcm will be

identically zero and the sum of φi kinetic terms becomes

1

2

N∑
i=1

∂µφi∂
µφi =

N(N2 − 1)

12
∂µ∆φ∂µ∆φ. (6.26)

Thus one can define canonically normalized difference field, ϕ,

ϕ ≡
√

N(N2 − 1)

6
∆φ = MPl

√
2N(N2 − 1)

3Qt
∆y (6.27)

such that the kinetic term takes the standard form, 1
2
∂µϕ∂µϕ. Ultimately the potential for the

field, ϕ, takes the form:

UN(ϕ) = U0e
−

√
2

pN

ϕ
MPl (6.28)

where

U0 = Ũ0(N − 1)2 =
6M4

Pl

(
i
∫

Ω ∧ Ω̄
)
(N − 1)2

st3d
(6.29)

and

pN =
4N(N2 − 1)

3Qt
. (6.30)

The potential (6.28) can lead to power-law inflation, if

pN > 1 ⇔ 4N(N2 − 1) > 3Qt (6.31)

The above constraint along with the one in (6.16) limit the viable range of N . Adopting typical

values of V = 341 and VOM = 7 and x11
i /L = O(1/2) for the relevant case of unbroken E8

(see table 1 of [203]) one obtains

s = 682 + 3.5N, t = 14, y2 ' 49N (6.32)

Then constraints (6.16) & (6.31) deliver the following bounds on N

19 < N ¿ 195 (6.33)
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6.3 Cascade Inflation

Let us now describe the cascade inflation phase. The repulsive M2-interactions between the

M5-branes cause them to spread over the S1/Z2 interval until the two outermost M5-branes

hit the boundaries. The ensuing non-perturbative small instanton transition transforms the

outermost M5-branes into small instantons on the boundaries [204]. More precisely, the small

instantons are described by a torsion free sheaf, a singular bundle. The singular torsion free

sheaf can then be smoothed out to a non-singular holomorphic vector bundle by moving in

moduli space [205]. This process changes the topological data on the boundaries while the

number N of M5-branes participating in the inflationary bulk dynamics drops to N − 2. The

small instanton transitions can be either chirality or gauge group changing [205]. We are

considering the first case in which a change in the third Chern class of the visible boundary’s

vector bundle changes the number of fermion generations during the transition. This opens up

the attractive possibility of reducing dynamically the number of generations during the cascade

inflation phase, given that most compactifications exhibit a large number of generations far

greater than three. Notice that for the chirality changing transition the gauge group will not

change during the transition and unwanted relics are not produced.

The cascading process starts when the first two outermost M5-branes hit the boundaries and

no longer participate in the bulk dynamics. We assume that the energy of the M5-branes that

collide with the boundary redshifts as matter or energy. The remaining N − 2 M5-branes will

continue to spread until the second most outermost M5-branes hit the boundaries in a second

transition and so on. The successive stepwise drop of the number of M5-branes by two marks

the cascade inflation phase. Between each of these transitions we have a potential of the form

(6.28) giving power-law inflation but with stepwise decreasing values for N and thus different

parameters pN and UN after each transition. The cascade inflation process comes to an end

when the number of M5-branes, given by

Nm = N − 2m (6.34)

in the m-th phase, drops below a critical value NK in the K-th phase determined by the exit
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condition

exit from inflation : pNK
= 1 . (6.35)

Throughout the cascading process the inflaton will always be identified with the M5-brane

separation and grows continuously. Since the energy of the M5-branes that coalesce with the

boundaries redshifts as matter or radiation, their contribution will always remain subdominant

to the M5-branes in the bulk. Therefore, evolution during cascade inflation could be approxi-

mated by a series of consecutive power-law inflation phases

am(t) = amtpNm , tm−1 ≤ t ≤ tm, m = 1, ..., K . (6.36)

Matching the scale factor at the transition times tm determines the prefactors to be

am = a1t
pN1
1

(
t2

t1

)pN2
(

t3

t2

)pN3

. . .

(
tm−1

tm−2

)pNm−1 1

(tm−1)
pNm

(6.37)

The scale factor, but not the Hubble parameter, is therefore continuous at the transition times

tm. The onset time of inflation, t0, is determined by inverting the exact power-law inflation

solution for ϕ(t) in the initial phase and noting that ∆x(t0)/L ¿ 1. The result is

t0 ' 2N2

3MPl

√
2td

s
. (6.38)

Similarly, by inverting the solution for ϕ(t) one obtains for the transition times

tm − t0 =
1

MPl

√
st3d

6

( m∑

k=2

pNk
(3pNk

− 1)

Nk − 1
e

t
(

1
Nk−1

− 1
Nk−1−1

)
+

pN1(3pN1 − 1)

N1 − 1
e

t
N1

)
(6.39)

from which the number of e-foldings generated during cascade inflation follows

Ne ≡ ln

(
a(tf )

a(t0)

)
=

K∑
m=1

pNm ln

(
tm

tm−1

)
. (6.40)

WMAP three-year results indicate that the scalar spectral index, ns, is 0.951+0.015
−0.019 [5]. For

power-law inflation one has ns = 1− 2/(pN − 1) in the initial phase. Adopting typical values

of s = 682 and t = 14 for the case of an unbroken hidden E8 [77], N has to lie within the
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interval 61 ≤ N ≤ 75 to satisfy the spectral index constraint. Of course, the initial number

of M5-branes can be larger than this upper bound, with the proviso that the resulting ns, at the

scales of our Hubble radius, lies within the interval given by the WMAP data set. Taking the

central value, ns ∼ 0.951, one finds N = 66 M5-branes.

The scale of inflation, M , can be at most of order the grand unified (GUT) scale to have

gravitational waves under control. Assuming instant reheating one needs about 60 e-foldings

to solve the problems of standard Big-Bang (SBB) cosmology. Mapping the cascade inflation

model, with the above values for s and t, to GUT-scale inflation, requires d ∼ 4 × 105. One

might lower the required minimal number of e-foldings by either lowering the reheating tem-

perature, TRH, or M . However, for the above choices of s and t, lowering M requires larger

values for d which seem to be non-generic. The details of reheating have yet to be worked

out for cascade inflation, nonetheless, we assume instant reheating and therefore TRH ∼ M .

We should note here that the above values of s, t, d and N are not the only values that lead

to GUT scale inflation which satisfy the theoretical and observational constraints. Surfing the

landscape of parameters allows us to choose different sets of parameters. For example, one

can also achieve a GUT-scale inflation by choosing (s, t, d, N) = (6000, 11.4, 50000, 129) or

(3000, 20, 1000, 123). As we will see, different values for these parameters determine the

location of the resulting oscillations in the power spectrum. Henceforth, we will proceed with

the initial values (s, t, d, N) = (682, 14, 4 × 105, 66) although the qualitative features do not

change with other choices of parameters.

Starting initially with N = 66 M5-branes in the bulk, we find

t0 = 3.21× 105 (6.41)

in Planckian units. The total number of e-foldings is

Ne = 237.83, (6.42)

which is much larger than the number of e-foldings required to solve the horizon and flatness

problems of SBB. Most of the inflationary expansion takes place within the first power-law

phase in which none of the M5-branes has yet collided with the boundaries. However, we are

interested in the last 60 e-foldings of expansion which are within our observable horizon.
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6.4 Power Spectrum of Cascade Inflation

Inflation, besides solving the flatness and horizon problems of standard cosmology, provides a

causal mechanism to generate the seed for large scale structures of the universe. Temperature

fluctuations of the cosmic microwave background radiation (CMBR) – the afterglow of the

BigBang – are believed to be generated by quantum fluctuations of the field(s) responsible

for inflation. WMAP alone indicates a flat Λ-dominated universe with nearly scale-invariant

power spectrum with ns(0.05Mpc−1) ∼ 0.95 [5]. Any viable inflationary model should be

able to produce a power spectrum compatible with these observations.

As explained in the introduction, during inflation two types of perturbations are produced:

scalar (density) perturbations and tensor perturbations (gravitational waves). These two types

of perturbations are both responsible for the temperature anisotropy of the CMBR. Let us fo-

cus on scalar perturbations. The evolution of Fourier components of scalar perturbations, uk, is

known to be governed by the equation (1.45). uk is the Fourier component of the gauge invari-

ant Mukhanov variable u and is proportional to the curvature perturbation R of the comoving

hypersurface [118]

u = −zR . (6.43)

The solutions to the mode equation (1.45) are normalized so that they satisfy the Wronskian

condition 1.44. Ultimately the scalar power spectrum is defined as

P 1/2
s =

√
k3

2π2

∣∣∣uk

z

∣∣∣
k/aH→0

(6.44)

The power spectrum should be evaluated in the limit where the mode goes well outside the

horizon. To recover the ordinary quantum field theory result at very short distances much

smaller than the curvature scale, we require that the mode approaches the Bunch-Davies vac-

uum when k/aH →∞
uk(τ) → 1√

2k
e−ikτ . (6.45)

To solve the scalar mode equation (1.45), we parameterize the scale factor in terms of

conformal time

am(τ) = bm(τ − cm)qNm , τm−1 ≤ τ ≤ τm, m = 1, ..., K , (6.46)
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Figure 6.1: The left graph shows the dependence of log Ps(k) on log k for the scales that have

crossed the horizon at least once during the last 60 e-foldings and are still outside the horizon

at the end of inflation. It clearly displays the stepwise decrease in the amplitude of the power

spectrum. The right graph shows log Ps(k) vs. log k around the first transition. The amplitude

of oscillations decreases as k increases.

where

qNm =
pNm

1− pNm

, cm = τm−1− tm−1
1−pNm

am(1− pNm)
, bm = am

1/(1−pNm )(1− pNm)qNm , (6.47)

and τm is the conformal time corresponding to tm. It can be found by the following recursive

relation

τm = tm
(1−pNm ) − tm−1

(1−pNm )

am(1− pNm)
+ τm−1 . (6.48)

Thus during each power-law phase, equation (1.45) simplifies to a Bessel equation

u′′k +
(
k2 − ν2

m − 1
4

(τ − cm)2

)
uk = 0, τm−1 ≤ τ ≤ τm (6.49)

where

νm =
3

2
+

1

pNm − 1
. (6.50)
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Figure 6.2: The left graph shows the dependence of ns on log k for the first five inflationary

bouts. It clearly displays the stepwise decrease in the spectral index. The right graph shows ns

vs. log k around the first transition. The period of oscillations decreases as k increases.

The Bessel equation has the following general solution

uk(τ) = Cm(k)(cm − τ)1/2H(1)
νm

(kcm − kτ) + Dm(k)(cm − τ)1/2H(2)
νm

(kcm − kτ) (6.51)

where H
(1)
νm and H

(2)
νm are the first and second Hankel functions of order νm. Starting from the

first power-law phase and demanding that the mode satisfies equation (6.45) at the beginning

of cascade inflation, one can determine C1(k) and D1(k)

C1(k) =
π

2
ei(ν1+ 1

2
)π/2 , D1(k) = 0 . (6.52)

Through the transition from one power-law phase to the next, the scale factor is continuous

but the Hubble parameter is not. This happens because the potential has steps at the transitions.

Potentials with steps occur in supergravity motivated models of inflation where the inflaton lies

within the hidden sector and is gravitationally coupled to a visible sector which contains the

standard model [206]. Spontaneous supersymmetry breaking that occurs in the visible sector

changes the mass of the inflaton and leads to sudden downward steps in the inflaton potential.
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During inflation, the resulting change in the potential is compensated by an increase in the

inflaton kinetic energy. Therefore the slow-roll approximations become unreliable around the

transition points [207]. Despite some similarity that exists between the cascade inflation model

and these supergravity motivated inflation models, there is an eminent difference. In cascade

inflation, the differences in potential energy after each step are transferred to the boundaries

as the two outermost M5-branes dissolve into them via small instanton transitions. Thus the

kinetic energy of the inflaton fields, whose role is played by the separations of the M5-branes in

the bulk, will not get modified by the existence of such jumps in the potential. That is why we

can still approximate the evolution by a power-law, even instantaneously after the transitions.

Since the Hubble parameter decreases whereas the scale factor remains continuous through the

transitions, the size of the Hubble radius increases slightly. Therefore some modes that have

just gone outside the horizon, are recaptured and start oscillating again. As we will see these

oscillations will be translated to oscillations in the power spectrum later.

Focusing on adiabatic perturbations, the 3-curvature perturbations of the comoving hyper-

surface, R, are continuous and differentiable through the transitions [208]. This allows us to

determine the i-th Bogoliubov coefficients in terms of (i− 1)-th ones and calculate the power

spectrum in the limit when all modes are far outside the horizon. We also note that [74]

z(τ) = a(τ)mPl

√
εm

4π
, (6.53)

where

εm =
1

pNm

. (6.54)

The left graph in fig. 6.1 displays the power spectrum for the modes that have crossed the

horizon at least once during the last 60 e-folds of inflation and are still outside the horizon at the

end of inflation. Since the Hubble parameter and pm, drops in each step, the total amplitude of

perturbations decreases as well. The modes that cross the horizon twice during the transitions

display oscillatory behavior. Actually, the oscillations last for an interval of k much larger than

the interval crossed by the horizon twice. As the right graph in fig.6.1 shows, for the first step

with approximately 7% drop in amplitude of the potential, the oscillations last for as much as

three decades of k. The left graph in (6.2) presents ns vs. log k for the first five inflationary
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bouts. Aside from the superimposed oscillations, the modes pick up the value of the spectral

index of the bout during which they cross the horizon. Of course, this is only true for the

first few bouts that last long enough to let the oscillations fade away. For the last inflationary

bouts which last much less than an e-folding, this inference breaks down. The perturbation

amplitudes are suppressed significantly and we have a very red spectrum at such scales. As

the right graph in fig. (6.2) demonstrates, the period of oscillations in the power spectrum

decreases as k increases.

6.5 Discussion

Although the standard ΛCDM inflationary model has been successful in describing the results

of the WMAP anisotropy probe, the statistics for the data is rather poor. In fact, the probability

that the best fit to the TT spectrum is correct is only about 3%. The poor statistics stems mainly

from the features or “glitches” in the power spectrum that the model is unable to fit [4]. Al-

though these glitches may have been caused by beam asymmetry, gravitational lensing of the

cosmic microwave background or the non-Gaussianity in the noise maps, it is quite possible

that these glitches are due to features in the underlying primordial curvature perturbation spec-

trum. Particularly, attempts that have been made to reconstruct the curvature perturbation from

the WMAP data, noticed possible features in the primordial spectrum [209, 210]. The possi-

bility that such features are signatures of trans-Planckian physics [72, 75], was investigated in

several papers, see for e.g. [212]. They could also be generated by resonant particle production

during inflation [213]. Mathews et. al. adopted this scenario and used the features observed in

the matter power spectrum deduced from galaxy surveys and damped Lyman-α systems at high

redshift to put some constraints on the mass of produced fermion species and their coupling to

the inflaton [214]. The features may also be caused by steps in the underlying inflaton potential

[206]. Covi et. al. have recently used this scenario to explain measured deviations of WMAP

three-year data from a featureless power spectrum [211], using potentials with steps.

However the signatures of cascade inflation are in fact distinct from all three above sce-

narios. In contrast to trans-Planckian superimposed oscillations, that should be present across
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all scales, the oscillations in the cascade inflation power spectrum occur only around some

particular wavelengths. Also as noted above, the dynamics of cascade inflation is different

from supergravity inflationary models with transitions in the hidden sector. This difference, in

turn, results in different features in the power spectrum: in cascade inflation, the scalar spectral

index changes before and after the transitions, whereas in supergravity motivated models of

inflation the scalar spectral index remains the same [211]. Finally, resonant particle production

during inflation, rather than decreasing, increases the amplitude of density perturbations, since

resonant extraction of inflaton field energy decreases the kinetic energy of the inflaton. Also,

because of the resonant nature of the process, the produced feature is rather sharp, extending

less than a decade in wavenumber. In cascade inflation, the number of M5-branes and other

M-theory parameters such as the stabilized volume and orbifold moduli, can change the loca-

tion and magnitude of the resultant oscillations but not its qualitative properties. It will be very

interesting to constrain these M-theory parameters using observational data. One should also

note that in the generation of oscillations in the power spectrum from supergravity motivated

models with hidden sector inflation, one has to assume that symmetry breaking phase transi-

tions happen during inflation [206]. In cascade inflation this assumption will necessarily be

true as the small instanton transitions are generated by the same M5-branes whose dynamics

drives inflation. Hence, features in the potential are an inevitable consequence.

Let us finally focus on another implication of cascade inflation for structure formation.

N -body simulations of structure formation use the assumption of a scale-invariant power spec-

trum and predict the number of dwarf galaxies in the Milky-Way halo an order of magnitude

larger than observed [215]. The simulations also predict cuspy central core densities, while

galaxy rotation curves are often better fit with constant density cores [216, 217]. Solutions to

these shortcomings range from those which alter baryonic physics (see for e.g. [218]) to those

that modify the nature of dark matter [187, 219]. Furthermore, in [186] it was suggested that

a sudden downswing in the power spectrum at small scales could explain the discrepancy and

ameliorate the disagreement between cuspy simulated halos and smooth observed halos. Zent-

ner and Bullock [220, 221] later argued, however, that the estimate used in [186] to determine

the effect of the primordial spectrum on the subhalo population of the halo to be incorrect. In

cascade inflation, the power spectrum and the scalar spectral index drop in each step. Its value
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at small scales is therefore necessarily smaller than what a simple extrapolation of the spectrum

at large scales predicts. With our above choice of parameters, the first downturn occurs at at

about 0.012 Mpc. A suppression at this scale ameliorates the problem of dearth dwarf galaxies

without violating constraints from the Lyman-alpha forest. Thus, cascade inflation provides us

with an M/string-theory inflation model that can naturally obviate this tension between theory

and observation.
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