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Abstract

We have witnessed a massive growth in wireless data, which almost doubles every year. The

wireless data is expected to skyrocket further in the future due to the proliferation of devices

and the emerging data-hungry applications. To accommodate the explosive growth in mobile

traffic, a large amount of wireless spectrum is needed. With the limited spectrum resource, the

current static spectrum allocation policy cannot serve well for future wireless systems. More-

over, it exacerbates the spectrum scarcity by resulting in severe spectrum underutilization. As

a promising solution, dynamic spectrum access (DSA) is envisaged to increase spectrum effi-

ciency by dynamic sharing all the spectrum. DSA can be enabled by cognitive radio technolo-

gies, which allow the unlicensed users (the secondary users, i.e., SUs) to dynamically access

the unused spectrum (i.e., spectrum holes) owned by the licensed users (the primary users i.e.,

PUs). In order to identify the unused spectrum (spectrum holes), unlicensed users need to con-

duct spectrum sensing. While spectrum sensing might be inaccurate due to multipath fading

and shadowing. To address this problem, user cooperation can be leveraged, with two main

forms: cooperative spectrum sensing and cooperative cognitive radio networking (CCRN). For

the former, SUs cooperate with each other in spectrum sensing to better detect the spectrum

holes. For the latter, SUs cooperate with the PUs to gain access opportunities from the PUs by

improving the transmission performance of the PUs.

Whereas cooperation can also incur security issues, e.g., malicious users might participate

into cooperation, corrupting or disrupting the communication of legitimate users, selfish user-

s might refuse to contribute to cooperation for self-interests, etc. Those security issues are

of great importance and need to be considered for cooperation in DSA. In this thesis, we s-

tudy security-aware cooperation in DSA. First, we investigate cooperative spectrum sensing in

multi-channel scenario such that a user can be scheduled for spectrum sensing and spectrum

sharing. The cooperative framework can achieve a higher average throughput per user, which
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provides the incentive for selfish users to participate in cooperative spectrum sensing. Second,

secure communication in CCRN is studied, where the SUs cooperate with the PU to enhance

the latter’s communication security and then gain transmission opportunities. Partner selection,

spectrum access time allocation, and power allocation are investigated. Third, we study risk-

aware cooperation based DSA for the multiple channel scenario, where multiple SUs cooperate

with multiple PUs for spectrum access opportunities, considering the trustworthiness of SUs.

Lastly, we propose an incentive mechanism to stimulate SUs to cooperate with PUs when they

have no traffic. The cooperating SUs are motivated to cooperate with PUs to enhance the se-

curity of the PUs by accumulating credits and then consume the earned credits for spectrum

trading when they have traffic in the future.
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Chapter 1

Introduction

In recent decades, a massive growth in mobile data has been witnessed, which almost doubles

every year. According to Cisco Visual Networking Index (VNI) [2], the mobile data traffic

is expected to grow at a Compound Annual Growth Rate (CAGR) of 61 percent from 2013

to 2018. It is predicted that mobile data will continuously grow up to 1000 times by 2020,

compared with the volume in the year of 2010 [3]. Therefore, wireless networks are facing the

challenges to accommodate such a large volume of data, which is referred to as the 1000x data

challenge.

The main factors accounting for the significant growth in mobile data are two-fold: the

proliferation of devices and the emerging data-hungry applications [4]. On one hand, with the

development of mobile networks, the number of devices also increases exponentially, such as

smart phones, tablets, and so forth. The promising machine-to-machine (M2M) application,

Internet of things (IoT), Internet of Vehicles (IoV) [5] also lead to more and more connected

devices. It is predicted by Qualcomm that 25 billion devices will be connected in 2020 [6].

On the other hand, the data-hungry applications bloom the data traffic, such as image transfer,

video streaming, and online gaming. A standard definition movie has 2.49 GB, while a high
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definition movie has 5.93 GB. It is expected that more and more multimedia-rich applications

will emerge and create a tremendous increase in mobile data, which poses an ever-increasing

pressure on the network operator to meet the requirements.

Such an exponential growth in mobile traffic and devices imposes huge demands on radio

spectrum. While, as a natural resource, radio spectrum is scarce and limited. Nowadays, the

spectrum is managed by government agencies (e.g., Federal Communications Commission or

FCC) and assigned to licensed users for exclusive use on a long term basis to avoid interference

among wireless systems of a large variety. It is recognized that this licensing policy has created

a severe shortage of spectrum for unlicensed users. Furthermore, spectrum underutilization by

licensed users exacerbates spectrum scarcity. The main reason of spectrum underutilization is

that licensed users typically do not fully utilize their allocated bandwidths for most of the time,

while unlicensed users are being starved for spectrum availability. Dynamic spectrum access

(DSA) is a paradigm created in an attempt to provide high bandwidth to the users and im-

prove spectrum utilization [1] [7] [8]. It can be enabled by cognitive radio (CR), which allows

unlicensed users to coexist with licensed users and make use of the underutilized spectrum

opportunistically [9] [10].

In dynamic spectrum access or cognitive radio network (CRN)1, licensed users and unli-

censed users are referred to as primary users (PUs) and secondary users (SUs), respectively.

With cognitive radio technology, SUs are aware of the radio environment and can select the

communication parameters, e.g., carrier frequency, bandwidth and transmit power, to optimize

the performance of communications accordingly. Traditionally, SUs perform spectrum sensing

before transmission, through which the SUs can identify and exploit the spectrum hole2 as well

as avoid the harmful interference to the PUs. Particularly, the SU scans a certain spectrum

range and detects whether the PU is active or not, then selects the available spectrum band for

1The term dynamic spectrum access and cognitive radio network is used interchangeably.
2That is a band of frequencies assigned to a primary user, which is not being utilized by that user at a specific

time and geographic location.
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Chapter 1. Introduction

access. During transmission, the SU has to carry out spectrum sensing continuously. When the

PU reclaims the frequency band, the SU must refrain from transmitting in the current band and

searches for a new band. Thus, spectrum sensing is so critical to both of the primary and the

secondary systems, which requires a high detection probability and a low false-alarm proba-

bility. However, the outcome of spectrum sensing may be inaccurate due to multipath fading

and shadowing , e.g., when the SU is in severe fading or shadowed by buildings while a PU

is active in the vicinity. Thus, it fails to detect the PU and then accesses the licensed channel,

causing interference to the PU. To deal with these problems, cooperation has been introduced

in the CRN. Pertaining to the participation of the PUs, there are mainly two forms of cooper-

ation, i.e., cooperation among unlicensed users and cooperation between SUs and PUs. In the

literature, the former is referred to as cooperative spectrum sensing, while the latter is coined

as the cooperative cognitive radio networking (CCRN).

1.1 Basics of Cognitive Radio

Cognitive radio (CR) is defined as a radio that can sense the surrounding wireless environments

where it operates and adjust the transmission parameters accordingly. To be more precise, FCC

gives the definition as follows: ”Cognitive radio: A radio or system that senses its operational

electromagnetic environment and can dynamically and autonomously adjust its radio operating

parameters to modify system operation, such as maximize throughput, mitigate interference,

facilitate interoperability, access secondary markets.” [11].

Two main characteristics that distinguish CR from the traditional wireless radio are cogni-

tive capability and reconfigurability. The former represents the awareness of CR with respect

to the transmitted waveform, RF spectrum, communication network, geography, locally avail-

able services, user need, security policy and so on, while the latter corresponds to capability of

adaption to the obtained information about the wireless environments [10].
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1.1.1 Functions

The main functions of CR include spectrum sensing, spectrum decision, spectrum sharing,

and spectrum mobility [1]. Spectrum sensing is a very important function, which should be

performed to acquire information from the surrounding environment, such as presence of the

PUs and channel availabilities, before transmission [12] [13]. It is necessary for CR to adapt its

operational parameters according to the status of the environment. The objectives of spectrum

sensing can be classified as follows: i) the operation of unlicensed users must avoid harmful

interference to licensed users by either switching to an available band or limiting its interference

to licensed users at an acceptable level, and ii) unlicensed users should efficiently and reliably

identify the spectrum holes to meet their quality of service (QoS) requirements. Therefore,

spectrum sensing is crucial for both the PUs and SUs.

After available channels are detected, spectrum decision is performed to select suitable

channels according to the QoS requirement of SUs. The decision is made based on the results of

spectrum sensing and the internal policy of the users (e.g., to maximize throughput, reliability,

or have the longest transmission time, and so on). Subsequently, the best channel to access is

selected among available channels.

When multiple SUs exist, spectrum sharing is necessary, especially for distributed CRN-

s. Spectrum sharing refers to the process of sharing the common available channels among

multiple SUs. The objective is to utilize the available channels in an efficient and fair way by

coordinating the users [14–16].

Since SUs have to vacate the current channel once the presence of PUs is detected, the SUs

have to find other available channels to access in order to maintain the ongoing transmissions.

This process is referred to as spectrum mobility. The goal is to meet the QoS requirement of

SUs by means of choosing the channel to move or sense.
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(a) Wireless systems without
CR.

(b) Wireless systems with CR.

Figure 1.1: Dynamic spectrum access.

1.1.2 Applications

Since CR is capable of autonomously adapting its operational parameters (e.g., transceiver

parameters) to work in a more efficient way, based on the information acquired from the en-

vironment by active monitoring, a large number of promising applications can be facilitated,

among which two key applications are identifies: dynamic spectrum access [7, 17–20] and

interoperability [21, 22]. Dynamic spectrum access (DSA) refers to the scenario where SUs

sense the available channels which are not occupied by PUs, and then access those channels

for transmission. Interoperability means that radios can connect different systems operating on

different protocols or standards so that they can communicate with each other.

As shown in Fig. 1.1, DSA is the main application, which has received great attention from

both academia and industry. The objective of DSA is to efficiently utilize the spectrum to solve

the problem of spectrum secrecy, which is the result of the ever increasing mobile devices and

the current static spectrum allocation policy. DSA allows SUs to opportunistically utilize the li-

censed spectrum bands when they are unoccupied. In order to avoid harmful interference to the

legacy system, SUs have to carry out spectrum sensing to detect the spectrum holes. Once the

available channels are detected, SUs can access for their transmissions. During transmission,

spectrum sensing has to be continuously performed to sense the activities of licensed users.

When the presence of a PU is detected, the SU vacates the current channel and chooses other

channels to sense for transmission opportunities.
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(a) Wireless systems without
CR.

Cognitive 

Radio

(b) Wireless systems with CR.

Figure 1.2: Interoperability enabled by cognitive radio.

As the second important application, interoperability has a huge potential impact on the

current communication architecture, as shown in Fig. 1.2. It is expected to further affect the

personal life of human. Nowadays, we are surrounded by different types of communication

systems, e.g., mobile networks, sensor networks, wireless local area network, TV broadcast

network, and so on. Those systems are independent and autonomous systems, with different

standards, spectrum bands, services, etc. With the technology of cognitive radio, the device

can reconfigure itself to communicate with incompatible radios. Specifically, CR first scans

the surrounding environment to detect what waveforms or networks are present. Then, it can

either reconfigure itself to communicate with the selected network, or it can act as a gateway to

connect different systems for communications. By doing so, diverse wireless systems can be

connected and communicate with each other.

1.1.3 Network Architecture

With the assistance of CR technology, SUs can coexist with PUs and utilize the temporarily

unused spectrum bands owned by PUs. Therefore, the CRN is comprised of two components:

the primary network and the secondary network, as shown in Fig. 1.3. Both networks can be

deployed in either a centralized or ad hoc mode, where communications are coordinated by

central nodes such as base stations or communications are carried out in a peer-to-peer fashion,

respectively.
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Figure 1.3: Cognitive radio network architecture [1].

The primary network corresponds to an existing network which holds a license for opera-

tion in certain spectrum bands. This network has the exclusive privilege to access the assigned

spectrum bands. If the primary network has an infrastructure, PUs can be coordinated to ac-

cess the network through the primary base station. In addition, the primary network might be

deployed in ad hoc mode, where PUs communicate with each other without any infrastructure.

The PUs’ transmissions occurring in the primary network should be protected from being inter-

fered by secondary networks. Generally speaking, PUs and primary base stations are typically

not equipped with CR functions. Therefore, it is the responsibility of SUs to sense the channel

before transmission and vacate the occupied channel when PUs re-appear.

The secondary network, composed of a set of SUs, does not have the license to operate

in any licensed spectrum bands. The secondary network can also be classified into two types:

infrastructure-based and ad hoc [23]. An infrastructure-based secondary network has a central

controller, e.g., a secondary base station or an access point. Opportunistic spectrum access by

SUs is usually coordinated by the central controller. Whereas in an ad hoc secondary network,

SUs can communicate with each other via multi-hop wireless links on either the licensed or
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the unlicensed spectrum bands. Both SUs and secondary base stations are equipped with CR

technology.

When some primary systems are willing to lease the spectrum for monetary rewards. The

secondary network can also pay a certain amount of money to gain the temporary exclusive

rights to use the spectrum. To this end, a spectrum broker is needed to facilitate the spectrum

trading.

1.2 Spectrum Sensing

The objective of spectrum sensing is to check the channel availability in order not to adversely

affect the performance of PUs [24] [25]. Since spectrum holes can be in specific time, or

a frequency band, or at a spatial location, spectrum sensing can be performed in the time,

frequency, and space domains. Although the main job of spectrum sensing is to obtain channel

availability information, it can also be used to determine the types of signals occupying the

spectrum, which may include modulation, carrier frequency, waveform, bandwidth, etc.

1.2.1 Sensing Approaches

Energy Detection

Energy detection is based on the fact that the energy of the signal is usually larger than that

of noise. To determine the existence of PUs, the energy detector compares its output (e.g,

the average or the total energy of the observed samples) with a predefined threshold, which is

derived based on the statistics of noise. If the output is above the threshold, then the energy

detector makes the decision that the PU is present; otherwise, it makes the decision that the

PU is absent. Energy detection is the most common type of spectrum sensing technology
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because of the following reasons: i) it is simple to implement; ii) it does not require any a

priori information regarding the PUs’ signal; iii) the detection time is relatively short [26–29].

Cyclostationarity Feature Detection

Typically, there are certain inherent features associated with the signal transmitted by PUs,

which can be exploited to detect the presence of PUs. Considering that for most communica-

tion systems the signals are cyclostationary due to the periodicity in the signals or the statistics,

while the noise is usually assumed as a wide-sense stationary process without correlation;

the cyclostationary features can be leveraged to distinguish the PUs’ signal and noise [30, 31].

Through the cyclostationary feature detection, features of PUs’ signal can be extracted to deter-

mine the existence of PUs. Compared with energy detection, cyclostationary feature detection

can provide better performance for the scenario of low SNR, with the price of high complexity.

Moreover, a priori knowledge regarding the characteristics of PUs’ signal is needed.

Matched Filter Detection

In most wireless systems, pilot bits are periodically transmitted for channel estimation, syn-

chronization, and so on. The pilot bits are public information, which can be used to detect

the presence of PUs. When the knowledge about the transmitted signal is available in the first

place, matched filter detection will be the optimal detection approach, because it can corre-

late the received signal with the known primary signal for the detection. Match filter has the

advantage of short detection time and it works well in the low SNR regime; but it requires per-

fect knowledge of the characteristics of PUs’ signals, e.g., modulation type, bandwidth, center

frequency, etc. Any imperfection about the PU’s signal will lead to severe degradation in the

detection performance.
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1.2.2 Limitations

SU2

PU1

PU2

SU3

SU1 SU4

Figure 1.4: Limitations of spectrum sensing.

Spectrum sensing is critical for DSA. However, the performance of sensing is limited by

several factors, including multipath fading, shadowing, primary receiver uncertainty problem

[32]. When the SU is experiencing multipath fading or shadowing, the reception of PU’s signal

will be significantly degraded, which adversely affects the detection accuracy. In addition, for

SUs which are out of the transmission range of the primary transmitter, they cannot detect

the PU’s transmission. Therefore, when those SUs start to transmit, harmful interference will

be created at the primary receiver, if the primary receiver is unfortunately located within the

transmission range of the SUs, which gives rise to primary receiver uncertainty problem. As

illustrated in Fig. 1.4, when PU1 is transmitting data to PU2, SU1 can receive signal of PU1

and know the presence of PUs. However, SU2 cannot detect PU1 because the building blocks

the signal from PU1. For SU3, since it is outside of the transmission range of PU1, it cannot

detect the PU’s transmission and therefore it starts its own transmission, which will cause

interference to the primary receiver, i.e., PU2. Moreover, spectrum sensing consumes energy

to detect the spectrum holes and has to be continuously carried out during the transmission to

detect PUs’s activities.
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1.2.3 Cooperation in DSA

To overcome the aforementioned issues, user cooperation can be leveraged, mainly in two

forms: cooperative spectrum sensing and cooperative cognitive radio networking (CCRN) [33].

For the former, the cooperation is carried out among SUs, where multiple SUs cooperate with

each other to enhance the detection performance. For the latter, the cooperation is carried out

between SUs and PUs, where SUs cooperate with PUs to improve the transmission perfor-

mance of the latter and then gain spectrum access opportunities as a reward.

Cooperative Spectrum Sensing

Cooperative spectrum sensing that relies on spatial diversity and multiuser diversity can im-

prove the detection performance in terms of increasing the detection probability and reducing

the false-alarm probability [34] [35], as shown in Fig. 1.5. Instead of using individual deci-

sion, multiple SUs share the sensing results to make a combined decision through cooperation.

Particularly, each SU performs local sensing and reports the detection results to a fusion cen-

ter to make a final decision in a centralized fashion, or exchange the local detection results

among themselves in a distributed fashion. Through cooperation, SUs share their sensing re-

sults and make a combined cooperative decision derived from the spatially collected observa-

tions, which can overcome the deficiency of individual observations at each SU. It has been

shown that cooperative spectrum sensing can effectively combat multipath fading and shadow-

ing, mitigate the receiver uncertainty problem, and hence significantly improve the detection

performance [36–39].

Typically, for centralized cooperative spectrum sensing, it is carried out following a three-

step process. First, individual SUs perform local sensing separately. Then, all the cooperating

SUs forward the sensing results to the fusion center, which might be the base station, a common

receiver and so on. Last, the fusion center combines all the received sensing results and makes a
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SU2

PU1

PU2

SU3

SU1

Figure 1.5: Cooperative sensing.

final decision on whether the PU is present or absent on the observed band. For the distributed

cooperative spectrum sensing, where there is no fusion center, SUs exchange the detection

results among themselves and then converge to a final decision after several iterations.

Cooperative Cognitive Radio Networking

Cooperative communications have been extensively studied in the literature. The basic idea

behind cooperative communication is as follows: when the source transmits message to the

destination, the nodes in between can also receive it due to the broadcast nature of the wire-

less media. Those nodes can process the received signal and retransmit to the destination.

Therefore, the destination can make use of the multiple copies of the message to create spatial

diversity to improve the reception performance. It is recognized that cooperative communica-

tions can improve the transmission rate, save energy, enhance the reliability and so on.

Because of the benefits of cooperative networking, there is a strong interest to introduce

cooperative networking to the CRN to deal with challenges of spectrum sensing and better

explore transmission opportunities. In cooperative cognitive radio networking (CCRN), SUs

cooperate with PUs to improve the latter’s performance in terms of transmission rate, reliability,

energy efficiency and so on, and in return gain transmission opportunities [40–50]. Specifically,
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PU1
PU2

SU

Figure 1.6: Cooperative cognitive radio networking.

an SU acts as a relay to improve a PU’s transmission performance. Then, the PU grants a period

of time to the SU as a reward, in which the SU can access the spectrum bands for transmissions.

By leveraging cooperation between PUs and SUs, a ”win-win” situation is created, where the

PU’s performance is enhanced and SUs can access the channel in the rewarding time. By this

emerging cooperative networking, SUs can be relieved from the burden of spectrum sensing.

1.3 Motivation and Research Contributions

1.3.1 Motivations

If all the SUs are well-behaved, cooperation can bring various benefits, e.g., cooperation in

spectrum sensing can increase the detection probability and reduce the false alarm probability,

while CCRN can create more transmission opportunities and relieve SUs from the burden of

spectrum sensing, which is energy consuming and sometimes inaccurate, etc. However, it

might not be always true that all the users are well-behaved in reality. Especially in an untrusted

environment, there may exist some dishonest users, even malicious ones. In such a scenario,

cooperation could incur critical security issues, e.g., the malicious or compromised users might

participate in cooperation, corrupting or disrupting the normal operation of DSA.

For cooperative spectrum sensing, most previous works have focused on the cooperation

scheme design to achieve accurate sensing results [37] [51] [39] [52] [53]. However, in an
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untrusted, even hostile environment, malicious users might launch different attacks to disturb

the detection, then jeopardize the operations in DSA. For instance, malicious users might trans-

mit signals presenting similar characteristics to those of PUs or just send jamming signals to

the target channel to interfere with the sensing process and significantly reduce the throughput

of legitimate SUs. The former is usually referred to as primary user emulation (PUE) attack,

while the latter is called jamming attack. Moreover, the malicious user might send false sensing

report to the fusion center, so as to mislead the spectrum sensing results and severely degrade

the performance of cooperative sensing [38], which is called false sensing report attack. The

countermeasures for those two attacks can be found in [54] [55]. In addition, one fundamental

security issue, i.e., the selfishness need to be considered as well. For instance, in cooperative

sensing, all the SUs are assumed to be cooperative, which might not be true in reality. Since

the user consumes energy to participate into cooperation and it may not have data to transmit

or not be the beneficial owner who accesses the channel later. The issue of how to stimulate

cooperation in spectrum sensing needs to be studied.

For the works in CCRN, all the cooperative frameworks only consider a friendly environ-

ment, where users are assumed trustworthy and well-behaved [40,41,44,46,56–58]. However,

in such an untrusted environment, dishonest users, even malicious ones, might be selected for

cooperation. Consequently, the performance can be compromised. For instance, a malicious

SU might be selected for cooperation, then it can alter the packets from the PU or fabricate

packets and then forward them to the destination. A dishonest SU may not obey the coopera-

tion rule during the cooperative transmission to pursue more self-benefits, e.g., it may transmit

its own packets instead of relaying the packets from the PU. Without considering these security

threats, the PU may choose an untrustworthy SU for cooperation, which may cause failure in

the cooperation and degrade its QoS. Thus, security needs to be considered for this emerging

cooperative networking.

As the explanation above, cooperation can encounter various security issues, which should

14



Chapter 1. Introduction

be taken into consideration. At the same time, security also brings opportunities for cooper-

ation, which can be explored to implement an alternative cooperative framework. Consider-

ing that when the primary sender transmits information to its receiver, there may exist some

eavesdroppers. Due to the broadcast nature of wireless communication, these eavesdroppers

can easily overhear the ongoing transmission. This not only hurts the confidentiality of com-

munications, but also exposes the risks and vulnerabilities that a malicious user can exploit

to launch attacks. To secure the communication effectively, there is a novel approach at the

physical (PHY) layer, which exploits the characteristics of the wireless channel to secure the

transmission. For the CRN, the PUs can choose friendly SUs for cooperation to enhance the

security of the primary link. In return, the cooperating SUs can access the channel as a re-

ward for their own transmission. For such a cooperation scheme, the issues related to the relay

selection and resource allocation need to be investigated.

Lastly, all the literature works in CCRN study the cooperation when the SUs have traffic to

send. To transmit their traffic, SUs help PUs to improve the latter’s transmission performance,

and in return access the channel during the rewarding time slots. However, when SUs have

no traffic at that time, they might not be interested to cooperate with PUs. How to simulate

cooperation in such a scenario needs to be studied.

In a nutshell, security is indispensable to be taken into consideration, when cooperation is

performed in DSA. Therefore, the security aspects of cooperation in DSA need to be exten-

sively investigated.

1.3.2 Contributions

The research objective is to develop cooperation schemes in DSA to improve the spectrum

efficiency and the accuracy of sensing, taking into consideration the security issues. Firstly,

cooperative spectrum sensing in a multi-channel CRN is studied, where multiple SUs cooper-
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ate with each other to detect unused channels and then share them. Specifically, for spectrum

sensing, the objective of the CRN is to maximize the expected available time while keeping

the interference to PUs under a predefined level. With the dynamics in the channel usage char-

acteristics and the detection capacities, the coordination problem is formulated as a nonlinear

integer programming problem. To find the solution efficiently, the deterministic optimization

problem is first transformed to an associated stochastic optimization problem, which is then

solved by cross-entropy (CE) method of stochastic optimization. Then, the sharing of the

available channels by SUs after sensing is modeled by a channel access game, based on the

framework of weighted congestion game. An algorithm for SUs to select access channels to

achieve Nash equilibrium (NE) is proposed. The proposed cooperative framework can achieve

a higher throughput per user, which provides the incentive for SUs to participate into coopera-

tion.

Secondly, cooperative cognitive radio networking is studied, which aims to enhance the

security of PUs and provide transmission opportunities to SUs. Two types of cooperation

schemes are proposed, whereby the PU either cooperates with two individual SUs or a cluster

of SUs, which are referred to as relay-jammer (R-J) scheme and cluster-beamforming (C-B)

scheme, respectively. In R-J scheme, two individual SUs act as a relay and a friendly jammer

to improve the PU’s secrecy; In return, the PU allocates a fraction of access time for SUs’

transmission. To achieve the maximum secrecy rate, joint time and power allocation is consid-

ered. Particularly, the cooperating relay and jammer determine the optimal transmission power,

while the PU decides the optimal time allocation strategy. In C-B scheme, the PU cooperates

with a cluster of SUs to enhance the secrecy of the primary link via collaborative beamforming,

where three different approaches are proposed for the scenarios with one eavesdropper, with

multiple eavesdroppers, and without eavesdroppers’ information, respectively. To maximize

the secrecy rate, weight selection and time allocation are also studied.

Thirdly, we study risk-aware cooperation in a multi-channel CRN, whereby multiple PUs
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operating over different channels choose trustworthy SUs as relays to improve throughput,

and in return SUs gain transmission opportunities. To study the multi-channel cooperative

spectrum access, cooperation over a single channel is investigated first, which involves a PU

selecting a suitable SU and granting a period of access time to the selected SU as a reward,

considering trustworthiness of SUs. The above procedure is modeled as a Stackelberg game,

through which access time allocation and power allocation are obtained. Based on the above

results, cooperation over multiple channels is studied from the perspective of the secondary

network and a secondary network-centric cluster-based (SCC) scheme is proposed. In SCC

scheme, SUs first form a cluster to share the channel state information (CSI), and the best SUs

are selected for cooperation with PUs over different channels to obtain the maximum aggregate

access time for the secondary network. Then, SUs share the obtained resource using congestion

game and quadrature signalling.

Lastly, we study the user cooperation when SUs have no traffic. We propose a cooperative

framework, whereby the PU selects multiple SUs and stimulates them by granting an amount

of reward to transmit message securely in the presence of multiple eavesdroppers. The earned

credits can be utilized by SUs for spectrum leasing in the future when they have traffic. In

other words, the SUs can earn credits through cooperation with PUs and consume credits in

spectrum trading market when needed. In the cooperative framework, multiple cooperative

SUs, acting as relays and jammers, are selected by the PU using greedy or cross-entropy based

approaches. Then, the PU and the partners negotiate for the payment and transmission power,

which is modeled as a two-layer game. At the top layer, a buyer-seller game is utilized, where

the PU buys the service provided by the partners. At the bottom layer, all the partners share the

reward by determining their transmission powers in a distributed way, which is formulated as a

non-cooperative power selection game. By analyzing the game, the partners can determine the

transmission powers for cooperation, while the PU can select the best payment.
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1.4 Outline of the Thesis

This thesis is organized as follows: Chapter 2 studies cooperative spectrum sensing for a multi-

channel CRN. The user scheduling and spectrum sharing are devised. Chapter 3 and Chapter 4

focus on cooperation between SUs and PUs for access. In Chapter 3, the SUs cooperate with

the PUs to enhance the security of the PUs and gain spectrum access opportunities. Chapter

4 studies risk-aware cooperation in a multi-channel CRN for access, taking into consideration

the trustiness of SUs. Chapter 5 investigates cooperation with PUs for credits. The partner

selection and payment determination are studied. Finally, Chapter 6 concludes this research

and outlines some further research topics.
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Chapter 2

Cooperative Spectrum Sensing in

Multi-Channel CRNs

In this chapter, we study dynamic spectrum sensing in a multi-channel environment, which

integrates cooperative spectrum sensing and spectrum sharing [59]. Due to hardware limitation,

each SU can only choose one channel in spectrum sensing and access one channel at a time

for spectrum sharing. The objective of the CRN is to maximize the expected available time of

all the channels, under the constraint that the PUs are sufficiently protected. To this end, SUs

decide which channels to be sensed. Different from the existing works, a more general scenario

is considered in this chapter, where the main differences are: i) the detection performance of

individual SU depends on the channel condition, which may differ from user to user; and ii)

the channels are considered to present different usage characteristics, such as average sojourn

idle time and the probability of being idle. Due to those factors, the channel selection problem

becomes more challenging. We formulate the channel selection problem as a nonlinear integer

programming problem. Depending on the problem formulation, we first define an associated

stochastic optimization problem of the original deterministic optimization problem. Then, we

apply the cross-entropy (CE) method of stochastic optimization to find the channel selection
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solution efficiently. After spectrum sensing, we study spectrum sharing, which is modeled

using a more general game based on the framework of weighted congestion game. SUs with

different channel conditions are assigned different weights, with the purpose of favoring SUs

with better channel conditions. In the proposed game, each SU chooses a channel from the

available channel set to maximize their own interests. An algorithm that can help SUs to

achieve Nash Equilibrium (NE) is proposed. It is proved that the algorithm can achieve NE.

Simulation results are provided to show the performance of the proposed algorithms.

2.1 Literature Review

In the literature, many works on cooperative spectrum sensing for the single channel case have

been reported [37, 39, 51, 52, 60]. The authors in [37] propose a cooperative spectrum sens-

ing scheme to improve the spectrum sensing in the presence of shadowing or fading effects.

In [52], the authors propose a relay-based cooperation mechanism, which is a two-user cooper-

ative spectrum sensing scheme. This cooperation scheme shows that the detection time can be

reduced. The authors in [51] propose a selective-relay based cooperative sensing scheme with

no dedicated reporting channel. In [60], they also study the sensing and transmission trade-off

and show that the performance in terms of the spectrum hole utilization can be significantly

improved using cooperative relaying. An optimal sensing scheme for the multiuser coopera-

tion is proposed in [39]. Since there usually exist multiple channels in the system, DSA in

multi-channel CRNs has drawn increasing attentions recently.

For spectrum sensing in multi-channel scenarios, from the single user’s perspective, the

quickest detection is studied with the objective of finding an idle period from multiple channels

as fast as possible using the theory of partially observable Markov decision process (POMD-

P) in [61] and dynamic programming in [62], respectively. Besides that, from the system’s

perspective, the issue regarding how to assign SUs to different channels for maximizing the
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system performance are studied in [63–67]. In [63], heuristic channel selection algorithms

are designed for cooperative spectrum sensing to maximize the number of available channels.

In [65], the authors study this issue to maximize the throughput of SUs. However, a common

assumption is made that all the SUs have the same sensing performance for all channels. In

practice, the sensing performance of SUs depends on the channel conditions from the PUs to

the SUs, which usually differs from user to user. Moreover, the channel usage characteristics

of PUs are not taken into consideration in the existing literature.

For spectrum sharing, diverse approaches have been proposed in the literature. In [68], the

auction game is utilized, where SUs, PUs, and spectrum bands, are modeled as auctioneers,

bidders and bidding articles, respectively. In [69], SUs share the available channels by access-

ing the channel with equal probability. In [70], the spectrum access based on multi-channel

ALOHA protocol is studied using the theory of potential games, without considering avail-

able duration of channels. In [71], channel allocation is studied using a stable marriage game,

which aims to find the most stable pairings between the users and channels. Recently, conges-

tion game has gained much attentions, which is a prominent approach to model the scenario

where multiple rational users share a set of common resource. It has been utilized to solve the

issue of spectrum sharing in [19,72,73], where congestion game is utilized for SUs to share the

channels and each SU chooses one channel for accessing to maximize its own utility. However,

all SUs are treated equally, ignoring their channel conditions.

To simulate cooperative spectrum sensing in multi-channel CRNs, spectrum sensing and

spectrum sharing needs to be considered jointly. By carefully designing spectrum sensing and

sharing strategies, individual SU can be motivated to participate into cooperative spectrum

sensing. In this chapter, we propose a cooperative framework to improve the performance of

each individual SU so that selfish SUs are interested in the cooperation, which integrates user

scheduling for spectrum sensing and spectrum sharing, considering i) various detection capa-

bilities of individual SUs due to different the channel conditions and ii) dynamic of channel
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Table 2.1: Summary of important symbols.
Symbol Definition
N The number of SUs
K The number of channels
αj Transition rate from state ON to OFF for channel j
βj Transition rate from state OFF to ON for channel j
T j
ON Sojourn time for channel j being in ON state

T j
OFF Sojourn time for channel j being in OFF state
PPU The transmission power of the PU
M The number of samples in observation period
δ The detection threshold
Q Q function
hi,j Average channel gain from the PUj to SUi

σ2 Variance of the Gaussian noise
pd(i, j) Detection probability of SUi on channel j
pf (i, j) False alarm probability of SUi on channel j
γi,j Average received SNR at SUi from PUj

Sj Set of SUs selecting channel j
Fd(j) Cooperative detection probability for channel j
Ff (j) Cooperative false alarm probability for channel j
Fm(j) Cooperative misdetection probability for channel j

usage characteristics in terms of average sojourn idle time and the probability of being occu-

pied.

2.2 System Model

2.2.1 Network Architecture

We consider a cognitive radio network, where the SUs do not own any spectrum and can only

opportunistically access the unused spectrum of the PUs for transmission. The amount of

spectrum accessible to the SUs is further divided into a set of channels, each of which has a

fixed amount of frequency bandwidth.

In the network, there exist K licensed bands (channels) which allow PUs to transmit simul-
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ON/BUSY OFF/IDLE

Figure 2.1: ON-OFF model for a given channel.

taneously. Suppose that a PU operates in a channel, which can be either active or inactive. In

the same area, N SUs (N ≥ K) seek for transmission opportunities. In order to avoid interfer-

ence to the PUs, the SUs perform spectrum sensing before transmission to detect the unused

channels.

2.2.2 Channel Usage Characteristics

Similar to [74], an ON-OFF channel usage model is applied to model the status of each channel.

The status of the channel alternates between ON (busy) and OFF (idle). The SU can access

the channel only when it is in the state OFF. Suppose that PUj operates over channel j and

the state of each channel changes independently. Denote by αj the transition rate for channel

j (1 ≤ j ≤ K) from state ON to state OFF and βj vice versa. Then, the two-state Markov

chain in Fig. 2.1 can describe the status of a given channel. Note that the channel usage

characteristics may not be the same for all the channels. In other words, αi and βi for channel

i are not necessarily the same as αj and βj for channel j.

2.2.3 Individual Spectrum Sensing

Spectrum sensing is carried out to detect the status of the channels. Let H1 denote the state that

the PU is present in the channel of interest and H0 denote the state that the PU is absent. In

the literature, popular detection techniques include energy detection, cyclostationary detection,
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and matched filtering. In this work, we adopt energy detection due to its simplicity and minimal

time overhead (typically less than 1 ms). When energy detector is adopted in spectrum sensing,

the detection probability pd and the false alarm probability pf are defined as

pd = Pr(D > δ|H1), pf = Pr(D > δ|H0) (2.1)

where δ is the detection threshold andD is the test statistic. In particular,D = 1
M

∑M
n=1 |y(n)|2,

where M is the number of samples in an observation period and y(n) is the n-th sample of the

received signal.

Without loss of generality, similar to [12], we focus on the case of the complex-valued PSK

signal and Circular Symmetric Complex Gaussian (CSCG) noise. According to [12], the false

alarm probability of SUi for channel j can be given by

pf (i, j) = Q((
δ

σ2
− 1)
√
M) (2.2)

where Q(·) is the complementary distribution function of the standard Gaussian. We consider

the Neyman-Pearson criterion [75], where the false alarm probability is fixed. In other words,

the false alarm probabilities for all SUs are the same and denoted by pf for simplicity. There-

fore, all SUs have the same value of δ.

The detection probability of SUi for channel j is calculated as follows:

pd(i, j) = Q((
δ

σ2
− γi,j − 1)

√
M

2γi,j + 1
) (2.3)

where γi,j is the average received signal-to-noise ratio (SNR) from PUj at SUi. In particular,

γi,j =
PPUhi,j
σ2 , where PPU is the transmission power of the PU, hi,j is the average channel gain

from PUj to SUi, and σ2 is the variance of the Gaussian noise.

Given pf (i, j), based on (2.2) and (2.3), the detection probability pd(i, j) can be calculated
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as follows:

pd(i, j) = Q(
1√

2γi,j + 1
(Q−1(pf (i, j))−

√
Mγi,j)). (2.4)

2.2.4 Cooperative Spectrum Sensing

In cooperative spectrum sensing, SUs cooperate with each other to improve the sensing perfor-

mance. Specifically, SUs share the sensing results to output a combined decision on whether

the PU is present or absent using a decision fusion rule. The decision rules include AND rule,

OR rule, the soft combination rule, or the majority rule. In order to minimize the communica-

tion overhead and transmission delay, SUs only share their final 1-bit decisions (e.g., bit 0 and

1 represent the idle and busy states, respectively) rather than their decision statistics. When

OR rule is adopted, PUs are considered to be present if at least one SU claims the presence of

PUs. Suppose that each SU selects a channel for sensing at one time and let Sj be the set of

SUs selecting channel j. Then, the cooperative detection probability and the cooperative false

alarm probability can be given as follows:

Fd(j) = 1−
∏
i∈Sj

(1− pd(i, j)) = 1−
∏
i∈Sj

pm(i, j) (2.5)

Ff (j) = 1−
∏
i∈Sj

(1− pf (i, j)) = 1−
∏
i∈Sj

ps(i, j) (2.6)

where pm(i, j) = Pr(D < δ|H1) = 1− pd(i, j) and ps(i, j) = Pr(D < δ|H0) = 1− pf (i, j).

The cooperative misdetection probability F j
m is defined as the probability that the presence of

PU is not detected, i.e., F j
m = 1− F j

d .

If AND rule is adopted, PUs are considered to be present if all the SUs report the result of

presence. The cooperative detection probability and the cooperative false alarm probability are
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respectively given by

Fd(j) =
∏
i∈Sj

pd(i, j), Ff (j) =
∏
i∈Sj

pf (i, j). (2.7)

Note that in spectrum sensing, adopting the AND rule is more aggressive for SUs, while adopt-

ing the OR rule is more conservative. Adopting AND rule leads to a smaller false alarm prob-

ability, which means SUs are more aggressive to explore the spectrum access opportunities,

while adopting OR rule results in a greater detection probability, which means SUs are more

conservative to explore the spectrum access opportunities [76].

2.3 Spectrum Sensing in Multi-Channel CRNs

From the point of view of the SUs’ interests, SUs act more aggressively in spectrum sensing

and hence AND rule is adopted. The objective is to maximize the expected available time of

all the channels, under the constraint that the PUs are sufficiently protected. In the following,

the channel selection problem is formulated first. Then, the problem is solved based on a

cross-entropy (CE) approach.

2.3.1 Problem Formulation

Denote the sojourn times of ON state and OFF state for channel j by T jON and T jOFF , respec-

tively, which are assumed to follow exponential distributions with means given by

T
j

ON =
1

αj
, T

j

OFF =
1

βj
. (2.8)
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The probabilities that channel j is in ON state and OFF state are denoted by P j
ON and P j

OFF ,

respectively. P j
ON and P j

OFF can be calculated as

P j
ON =

βj
αj + βj

, P j
OFF =

αj
αj + βj

. (2.9)

If channel j is sensed to be in the OFF state when it is actually idle, the SUs have an average

period of T
j

OFF to access. If channel j is sensed to be in the OFF state when it is busy in fact,

the SUs will access the channel, interfering with the PUs.

When channel j is detected to be in OFF state and it is actually idle, on average, the SUs

have T
j

OFF for access. Further, we define a channel selection matrix I = (Ii,j)N×K , where

Ii,j = {0, 1} indicates whether or not SUi selects channel j for sensing. When Ii,j = 1, SUi

selects channel j for sensing, and vice versa. Based on I, the set of SUs choosing channel j can

be determined by Sj = {SUi, Ii,j = 1}. The objective for SUs is to maximize the total average

available time, which can be formulated as follows:

max
I

j=K∑
j=1

T
j

OFFP
j
OFF (1− Ff (j))

s.t.

j=K∑
j=1

Ii,j ≤ 1, i ∈ {1, 2, ..., N}

(1− Fd(j))P j
ON ≤ Pi

Ii,j = {0, 1}

(2.10)

where Pi is the probability of inference to the PU over channel i.

By using exterior point method which permits the variables to violate the inequality con-

straint during the iterations, the constraint that (1 − Fd(j))P j
ON ≤ Pi can be removed. Then,
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the above problem can be transformed into the following format:

max
I

j=K∑
j=1

[T
j

OFFP
j
OFF (1− Ff (j))− A(Fd(j))U0(1− Fd(j))P j

ON ]

s.t.

j=K∑
j=1

Ii,j ≤ 1, i ∈ {1, 2, ..., N}

Ii,j = {0, 1}

(2.11)

where U0 > 0 is a linear penalty factor when the constraint (1 − Fd(j))P j
ON ≤ Pi is violated.

A(Fd(j)) is the indicator function, where A(Fd(j)) = 1 when (1 − Fd(j))P
j
ON ≥ Pi, and

A(Fd(j)) = 0, otherwise.

In what follows, we apply the C-E method of stochastic optimization to solve the above

problem.

2.3.2 Cross-Entropy Based Approach

Cross-Entropy

The Cross-Entropy (C-E) method was first introduced to estimate the probabilities of rare

events in complex stochastic networks [77]. It was realized that a simple cross-entropy modifi-

cation of C-E method could also be used to solve difficult combinational optimization problem-

s. In C-E method, the deterministic optimization problem should be translated into a related

stochastic optimization problem, where the rare event simulation techniques similar to [77] can

be utilized. In other words, the main idea behind the C-E method is to define for the original

optimization problem an associated stochastic problem (ASP) and then efficiently solve the

ASP based on an adaptive scheme. It sequentially generates random solutions which converge

stochastically to the optimal or near-optimal one.

28



Chapter 2. Cooperative Spectrum Sensing in Multi-Channel CRNs

C-E algorithm:

The basic idea of C-E algorithm is to generate a random data sample according to a specified

stochastic policy, and update the stochastic policy based on the outcome of the sample to pro-

duce a ”better” sample in the next iteration. Algorithm 1 presents the detailed procedure of

channel selection, which consists of five main steps as follows.

Define the strategy space S for SUs as follows:

S := {ch1, ch2, ..., chK}, (2.12)

where each SU can only choose one channel from S. Define the probability vector associated

with the strategy space as follows:

Pit := {pi1,t, pi2,t, ..., piK,t},
K∑
j=1

pij,t = 1, (2.13)

where Pit denotes the stochastic policy of SUi on the strategy space S at t-th iteration, and pij,t

denotes the probability that SUi chooses channel j at t-th iteration.

1. (Initialization). Set the iteration counter t := 1. Set the initial stochastic policy Pi0 of all

SUs to be a uniform distribution on the strategy space S. In other words, for each SU, it

picks the strategy from the strategy space uniformly, with equal probability 1/K.

2. (Generation samples). Based on the stochastic policy of all SUs, Z samples of the strat-

egy vector are generated, which can be given as follows:

Si(z) := {Ii,1(z), Ii,2(z), ..., Ii,K(z)}, (2.14)

where Si(z) is the z-th strategy vector of SUi with only one element to be ”1” and the
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rest are ”0”. The probability for the Ii,j to be ”1” is pij,t.

3. (Performance evaluation). Substitute the samples into (2.11) to calculate the utilities

U(z). Arrange the U(z) in a nonincreasing order according to the values, i.e., U1 ≥

U2 ≥ ... ≥ UZ . Let υ be the (1 − ρ)-th sample, i.e., υ = Ud(1−ρ)Ze, where ρ is the

percentage of samples obsolete at each iteration and d·e is the ceiling function.

4. (Stochastic policy update). Based on the same sample, calculate Pit := {pi1,t, pi2,t, ..., piK,t}

using the following equation:

pij,t =

∑N
z=1 XUz≥υIi,j(z) = 1∑N

z=1XUz≥υ
, (2.15)

where XUz≥υ is defined as follows:

XUz≥υ =

1 U z ≥ υ

0 otherwise
(2.16)

5. If the stopping criterion is met, which is the maximum number of iterations (i.e., T ), then

stop; otherwise increase the iteration counter t by 1, and reiterate from step 2.

2.4 Spectrum Sharing in Multi-Channel CRN

After spectrum sensing, available channels can be detected. Subsequently, SUs start the process

of spectrum sharing. In this section, based on weighted congestion game, a channel access

game is utilized to model the behavior of SUs during spectrum sharing. A brief review of

congestion game is given first, followed by the proposed channel access game. Finally, a

channel access algorithm is proposed for SUs to achieve NE in spectrum sharing.
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Algorithm 1 Channel Selection Algorithm
1: // Initialization
2: pij,t = 1/K.
3: for t = 1 : T do
4: for z = 1 : Z do
5: for n = 1 : N do
6: Generate samples of the strategy vector.
7: end for
8: end for
9: for z = 1 : Z do

10: Calculate the utilities U(z) according to (2.11).
11: end for
12: Order the utilities U(z) in a nonincreasing manner.
13: for j = 1 : N do
14: for k = 1 : K do
15: Update Pit using (5.15)
16: end for
17: end for
18: end for
19: return

2.4.1 Channel Access Game

Congestion game is a prominent approach to model the scenario where multiple rational users

share a set of common resource. In congestion game, each individual player strives to maximize

its own utility by selecting a set of resources. The share of each resource is a non-increasing

function with respect to the number of players choosing it. The formal definition of congestion

game is given as follows.

The standard congestion game is defined by the tuple {N ,R, (
∑
i)i∈N , (U

r
j )j∈R}, where

N = {1, 2, ..., N} denotes the set of players, R = {1, 2, ..., R} denotes the set of resources,

(
∑
i) represents the strategy space of player i, and U r

j is the payoff associated with resource j,

which is a function of the total number of players sharing it. U r
j is a decreasing function due to

competition or congestion, e.g., U r
j = 1/nj , where nj is the total number of players choosing
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resource i. Denote by S = (s1, s2, . . . , sN) the strategy profile of the game, where si ∈
∑
ii∈R

and si corresponds to the strategy of player i. Denote by n = {n1, n2, . . . , nR} the congestion

vector, where nj represents the total number of players sharing resource j. The utility of player

i is given as follows:

Ui =
∑
j∈si

U r
j (nj(S)). (2.17)

A more general version of congestion game is the weighted congestion game, where each

player is assigned a weight. Denote by w = (w1, w2, . . . , wN) the weight vector of the players,

where wi is the weight of player i. Different from the standard congestion game, the payoff

associated with resource j is a function of the total weights of players sharing resource i. It has

been proved in [78] that every standard congestion game admits an NE. However, the weighted

congestion games do not necessarily possess an NE.

We model the channel access procedure of SUs based on weighted congestion game, where

SUs with good channel conditions are favored by being assigned a higher weight. The channel

access game Γ is defined by {N ,K, (wi)i∈N , (
∑
i)i∈N , (U

i
j)i∈N ,j∈K}, whereN = {1, 2, ..., N}

denotes the set of SUs, K = {1, 2, ..., K} denotes the set of channels, wi denotes the weight

associated with SUi,
∑
i represents the strategy space of SUi, and U j

i is the utility function of

SUi for selecting channel j. U j
i is a function of the sum of weights of SUs choosing the same

channel, which is a decreasing function. Each SU aims to maximize its utility by deciding

which channel to be accessed and the utility function of SUi can be given by

U j
i =

wiΨj∑
j∈si wi

= wiζj(Wj) (2.18)

where Ψj is the average sojourn time of state OFF of channel j, Wj is the sum of weights of

SUs choosing channel j, and ζj(Wj) =
Ψj∑
j∈si

wi
is the payoff function of resource j, which

depends on the sum of weights of channel j. Therefore, U i
j represents the access time that SUi
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can obtain. Note that when wi = 1 for all SUs, the channel access game Γ becomes a standard

congestion game, i.e., all the SUs are equally treated to share the common resource and select

the access channel to maximize their own interests. Thus, a higher fairness can be achieved.

On the other hand, the overall throughput of the secondary network needs to be considered

when sharing the available channels. In order to favor the users with good channel conditions,

greater weights can be assigned to them such that they have higher priority in the resource

sharing procedure. In other words, the SUs with greater weights can have longer average

time for transmissions, which consequently increases the overall throughput of the secondary

network. To this end, the channel is considered to be in a good or bad state, when compared

with a predefined threshold. The weights w′ and w (w′ > w) are assigned to the SUs with good

channel and bad channel conditions, respectively.

2.4.2 Game Analysis

In this game, each SU chooses a single channel to access for maximizing its utility. The solution

of this game is Nash Equilibrium (NE). If each one has chosen a strategy and no SU can

increase its utility by changing strategy while the strategies of others keep unchanged, then the

current set of strategies constitutes an NE.

Definition 3: A strategy profile S∗ = (s∗1, s
∗
2, . . . , s

∗
M) is an NE if and only if

Uj(s
∗
i , s
∗
−i) ≥ Uj(s

′
i, s
∗
−i),∀i ∈ N , s′i ∈ Si, (2.19)

where si and s−i are the strategies selected by SUi and all of its opponents, respectively. NE

means no one can increase its utility unilaterally.

The potential function approach is a well-known method to prove the existence of NE in the

congestion games. We can define a potential function with respect to the strategies of players,

in which every strictly improving move by a player will improve the value of this function. If
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there exists a potential function for a game, then it is guaranteed that the game exists an NE. In

the following, we will prove that the channel access game Γ is a weighted potential game, and

there exists an NE.

Definition 1: A game Υ is an ordinal potential game if there exists an ordinal potential

function P which satisfies the following condition:

U i(s−i, s
′
i)− U i(s−i, si) > 0 iff P (s−i, s

′
i)− P (s−i, si) > 0.

Definition 2: A game Υ associated with a weight vector w = (w1, w2, . . . , wN) is a weight-

ed potential game if there exists a weighted potential function P satisfying the following con-

dition:

U i(s−i, s
′
i)− U i(s−i, si) = wi[P (s−i, s

′
i)− P (s−i, si)]. (2.20)

To prove the existence of NE in the channel access game Γ, we use Rosenthal’s potential

function <(S) [72], which is defined as follows:

<(S) =
∑
j∈K

Wj∑
i=w

ζj(i)

=
N∑
i=1

∑
j∈si

ζj(W
i
j ),

(2.21)

where W i
j is the sum of weights of SUs selecting channel j whose indices do not exceed i.

Suppose SUi unilaterally deviates from strategy si to s′i. The change in the potential <(S)
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can be obtained as follows:

M <(si → s′i) = ζj∈s′i(Wj + wi)− ζk∈si(Wk)

= ζj∈s′i(Wj(s−i, s
′
i)− ζk∈si(Wk(s−i, si))

=
1

wi
[U i(s−i, s

′
i)− U i(s−i, si)],

(2.22)

where U i is the utility function of SUi. Therefore, the channel access game Γ is a weighted

potential game.

In [79], for every finite ordinal potential game, there exists an NE. Since weighted potential

game is a subset of ordinal potential games, there exists an NE in the weighted potential game.

Therefore, an NE exists in the channel access game Γ. It is well known that an NE can be

achieved when each SU strives to optimize their own utilities after a finite number of steps [72].

Therefore, we propose a channel access algorithm, Algorithm 2. The main idea of the proposed

algorithm is that each SU aims at improving its own utility and then they end up optimizing the

global objective, i.e., the potential function. By doing so, the NE can be obtained. The proof

that the algorithm can achieve NE is given in Appendix A.

2.5 Simulation Results

In this section, simulation results are provided to validate the performance of the proposed

algorithms. The simulation is set up as follows. In a 2 km×2 km area, there is a set of PUs

located inside the circle with 1 km radius, while a group of SUs seeking for transmission

opportunities is randomly distributed outside the circle. The transmission power of PUs is set

to 10 mw, while the variance of noise is set to -80 dB. The channel gain between a given SU

and a PU is calculated by h = k
dµ

, where k = 1 and µ = 3.5. The value of pf is set to 0.1 for

all SUs. For simplicity, let w′ = 2w and w = 1. The detailed simulation parameters are shown
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Algorithm 2
1: // Channel Access Algorithm
2: Set congestion vector W (S) = (W1, ...,WK) = (0, 0, ..., 0).
3: for each SUi ⊆ N do
4: if Channel i for SUi pair is in good state then
5: wi ⇐ w′ and put SUi into the set UG1

6: else
7: wi ⇐ w and put SUi into the set UG2

8: end if
9: end for

10: Order the rewarding periods on each channel [Ψ1,Ψ2, . . . ,ΨK ] decreasingly according to
the length.

11: Order the SUs in the user set UG1 and UG2 decreasingly according to the channel gain
12: for each SUi ⊆ UG1 do
13: SUi calculates wiζj(Wj + w′)
14: SUi selects the channel with maximum wiζj(Wj + w′)
15: Wj ⇐ Wj + w′

16: end for
17: for each Ψj , where j ⊆ UG2 do
18: SUi calculates wiζj(Wj + w)
19: SUi selects the channel with maximum wiζj(Wj + w)
20: Wj ⇐ Wj + w
21: end for
22: return
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Figure 2.2: Convergence of C-E algorithm.

in Table II. We obtain the average results using Monte Carlo simulation.
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Table 2.2: Parameters used in the simulations
Parameters Value

Number of channels [3, 4, 5, 6, 7]
Number of samples 6000

Transmission power of PUs 10mw
Variance of noise -80dB

Path loss exponent µ 3.5
P rm 0.1
pf 0.1

TOFF [4, 4, 5, 5]
α [0.6, 0.8, 1, 1.2]
U0 2

Simulation times 200

Fig. 2.2 shows the convergence speed of the proposed C-E algorithm for the case when

the number of channel is set to 5. It can be seen that after a few iterations the C-E algorithm

converges, which means all SUs select a channel for sensing with probability 1. It can also be

seen that a larger number of SUs results in a larger utility.

Fig. 2.3 shows the utility of the secondary network with respect to the number of SUs

for different approaches when the number of channels is 4. We compare the proposed C-

E algorithm with the greedy algorithm in [65]. Greedy 1 algorithm does not consider the

dynamics of channels and detection probabilities of SUs, while Greedy 2 algorithm does. It

can be seen that Greedy 2 algorithm can achieve higher utility than Greedy 1 algorithm. In

C-E algorithm, ρ and Z are set to 0.2 and 100, respectively. It can also be seen that the C-E

algorithm can achieve higher utility than the Greedy algorithms.

Fig. 2.4 shows the utility of the secondary network with respect to the number of channels

for different approaches when the number of SUs is 10. It can be seen that as the number

of channels increases, the utility of the secondary network increases. It can also be seen that

Greedy 2 algorithm performs slightly better than Greedy 1 algorithm, while the proposed C-E

algorithm can achieve the highest utility among these algorithms.
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Figure 2.3: Utility of SUs versus the number of SUs.
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Figure 2.4: Utility of SUs versus the number of channels.

Fig. 2.5 shows the throughput of the secondary network with respect to the number of SUs

by using the weighted congestion game and standard congestion game when the number of

channels is set to 5. The throughput is calculated using the Shannon capacity formula. For

each SU, the channel condition is randomly generated, which takes value from [15dB, 35dB]

using a uniform distribution. The threshold is set to 25dB. If the channel gain is greater than

the threshold, it is treated as good channel and the SU will be assigned a larger weight in

weighted congestion game. From the figure, it can be seen that the weighted congestion game

can achieve higher throughput compared with the standard congestion game. This is because
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Figure 2.5: Throughput of SUs versus the number of SUs.
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Figure 2.6: The proposed framework versus random channel access.

the SUs with good channel conditions are favored, which can obtain a relatively larger share of

the available channel.

Fig. 2.6 shows the average throughput per user for the proposed sensing and access strategy

and random channel access strategy, respectively, when the number of channels is set to 5. With

the random channel access strategy, SUs randomly choose a channel for sensing and access the

channel when it is detected idle. From the figure, it can be seen that the proposed sensing and

access strategy can achieve higher throughput per user. It implies that SUs have the incentive

to participate in the proposed sensing and access strategy since they can achieve higher utility.
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2.6 Summary

In this chapter, we have proposed a cooperative framework for a multi-channel CRN, which in-

tegrates cooperative spectrum sensing and spectrum sharing, considering both the diverse chan-

nel usage characteristics and the diverse sensing performance of individual SUs. To maximize

the expected available time of all the channels, a cross-entropy based approach is proposed. For

spectrum sharing, a channel access game is formulated based on weighted congestion game.

An channel access algorithm is proposed to achieve NE. Simulation results have demonstrated

that, with the proposed cooperative framework, a higher throughput per user can be achieved.
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Secure Communications in CCRN

In this chapter, we investigate the cooperative framework which targets for improving the se-

cure transmission of PUs via cooperation with SUs that have incentive to gain certain trans-

mission opportunities. Two types of cooperation schemes are proposed, whereby the PU either

cooperates with two individual SUs or a cluster of SUs, which are referred to as relay-jammer

(R-J) scheme and cluster-beamforming (C-B) scheme, respectively. In R-J scheme, two indi-

vidual SUs act as a relay and a friendly jammer to improve the PU’s secrecy; in return, the PU

allocates a fraction of access time for SUs’ transmission. To achieve the maximum secrecy rate,

joint time and power allocation is considered. Particularly, the cooperating relay and jammer

determine the optimal transmission power, while the PU decides the optimal time allocation

strategy. In C-B scheme, the PU cooperates with a cluster of SUs to enhance the secrecy of

the primary link via collaborative beamforming, where three different approaches are proposed

for the scenarios with one eavesdropper, with multiple eavesdroppers, and without eavesdrop-

pers’ information, respectively. To maximize the secrecy rate, the weight selection and time

allocation are also studied.
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3.1 Literature Review

Since security is a critical issue in wireless environments due to the broadcast nature of wire-

less communications [80], PUs also have the need for secure communications. Traditionally,

the security is dealt with by encryption at upper layers; yet, it becomes very challenging for

a network without infrastructure [81]. Moreover, the encryption algorithms could be compro-

mised and an alternative way for enhancing the security is to protect the transmitted signal from

being received or decoded by the eavesdroppers [82]. Recently, physical (PHY) layer security,

or information-theoretic security, has attracted a lot of attentions in the research communi-

ty [83–85], which exploits the properties of the wireless channel to secure communications.

In [83], it is shown that the perfectly secure information can be transmitted at a nonzero rate

from the source to the destination, while the eavesdropper cannot learn anything regarding it.

This rate is referred to the secrecy rate, which is defined as the difference between the trans-

mission rate of the source-destination link and that of the source-eavesdropper link. However,

the secrecy rate would be equal to zero when the source-destination channel is worse than that

of the source-eavesdropper channel.

To address the above issue, user cooperation has been introduced to enhance the secrecy

of communications [86–90]. In [86], three types of schemes using decode-and-forward (DF),

amplify-and-forward (AF), and cooperative jamming, are proposed to improve the secrecy via

cooperation. In [87], distributed beamforming is leveraged at relays to enhance the source’s

secrecy. Nevertheless, these schemes cannot be applied directly to CRNs because the special

features of CRNs have not been taken into consideration: i) PUs have higher priorities for

spectrum usage in CRNs; ii) it might not be reasonable to assume that PUs and SUs cooperate

unconditionally with each other, since they have their own interests. Considering the features

of CRNs, a cooperation based spectrum access is studied in [91], which improves the security

of the primary link and provides transmission opportunities to SUs. However, the cooperation
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Table 3.1: The key notations.
Symbol Definition
N The number of SUs
S The primary source
D The primary destination
R The relay SU
J The jammer SU
E Eavesdropper
C The cluster of SUs

E-CSI The channel state information (CSI) regarding E
R̄EX The expected overall transmission rate of SUs
PC
max The maximum power of SU(s) for cooperation
Pmax The power budget of individual user or the cluster
R̄S,i The overall transmission rate of SUi

US,i The satisfaction of SUi for the transmission rate via cooperation
hSD The channel gain from S to D
hSE The channel gain from S to E
hSR The channel gain from S to R
hRD The channel gain from R to D
hRE The channel gain from R to E
hJD The channel gain from J to D
hJE The channel gain from J to E
α, β The access time allocation coefficient
R̄Q The predefined required transmission rate of the PU for the scenario without E-CSI
PR The transmission power of R during cooperation
PJ The transmission power of J during cooperation

R̄SEC The overall secrecy rate of the PU

objective is achieved at the expense of employing multiple antennas and only the scenario with

a single eavesdropper is considered. In reality, the assumption of multiple antennas might not

be feasible. Moreover, more practical scenarios, where there exist multiple eavesdroppers or

the information regarding eavesdropper(s) is not available, need to be investigated.
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Figure 3.1: System model for secure communication in CCRN.
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3.2 System Model

We present the system model in this section. As depicted in Fig. 3.1, the system consists of

a primary source (S), a primary destination (D), multiple SUs, and an eavesdropper (E) or

multiple eavesdroppers who aim to decode the PU’s information [92]. In the primary network,

S holds a time slot of duration T to communicate with D over a bandwidth of W Hz. Different

from [92] [93], which assume that there is no direct link between S and either D or E, and only

focus on the secure information transfer from the relays to D, we consider a more general case

where there exist direct links. It is known that when the channel between S and D is worse

than that between S and E, the secrecy rate is zero. To transfer information securely, S either

chooses two cooperating SUs, i.e., a relay SU (R) and a jammer SU (J), or a cluster (C) of SUs

for cooperation, which are all considered friendly1. This common assumption can be found

in [87–94]. The cooperation between the PU and untrusted SUs has been studied in one of our

1For SUs, the first and foremost need is to acquire access opportunities for transmissions. In this regard, SUs
don’t have much motivation to compromise PUs’ secrecy. Otherwise, PUs may not be interested in cooperation
with SUs. As a consequence, SUs will lose transmission opportunities.
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previous work [95], where trust values of SUs are taken into consideration.

Cooperation can be performed in a three-phase fashion or a two-phase fashion. The time

structure for the three-phase cooperation is shown in Fig. 1(a). A fraction α of the duration

T is used for the transmission from S to D, which is further divided into two parts according

to β, where 0 < α, β < 1. Particularly, in the first phase of α(1 − β)T , S transmits data

to cooperating SUs, which is also overheard by D and E. In the second phase, a subsequent

duration of αβT is leveraged for the transmission from cooperating SUs to D. For R-J scheme,

shown in Fig. 1(a), R employs DF protocol to relay the PU’s message to D, and simultaneously

J transmits an artificial jamming signal to confound E. For C-B scheme, shown in Fig. 1(b),

the SUs in C first decode the PU’s message and then each of them forwards a weighted version

of that message to D via collaborative beamforming. In the last phase, the remaining (1−α)T

is granted to cooperating SUs for transmitting their own data as a reward, in which the relay SU

and jammer SU access the channel in a TDMA fashion, while the SUs in C transmit the data

to a common secondary receiver via collaborative beamforming [96]. To ease presentation, the

period for the first two phases, i.e., (αT ), is termed as cooperation period, while the last phase

of (1 − α)T is termed as rewarding period. When there exist multiple eavesdroppers, C-B

scheme is carried out in a two-phase fashion, as shown in Fig. 1(b). The operation in the first

phase is the same as that of the previous cases. In the second phase, the cluster simultaneously

transmits the PU’s message and its own data.

Since SUs will not cooperate with the PU unconditionally, SUs have a requirement on

the expected overall transmission rate R̄EX , which SUs desire through cooperation. However,

for the three-phase cooperation, the actual average transmission rate of SUs depends on the

time period granted by the PU. From the PU’s perspective, it tends to grant less time to SUs,

and hence transmission rate of SUs obtained via cooperation will be much less than R̄EX . In

order to enforce the PU to grant an acceptable rewarding time, SUs’ strategy is to determine

the effort that they are willing to make during cooperation, i.e., the maximum power PC
max for
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cooperation, according to the transmission rate obtained. As a result of the SUs’ strategy2, if the

PU chooses a lager α, although the cooperation period is prolonged, the cooperating SUs will

choose a lower transmission power, which will lead to a decrease in the performance during the

cooperation period. Then, the overall secrecy rate may be reduced. If the PU chooses a smaller

α to acquire more effort from SUs during the cooperation period, although the performance in

the cooperation period is increased, the time for that period is reduced, which may cause a drop

in the overall secrecy rate.

A slow, flat, block Rayleigh fading environment is considered, where the channel remains

static in one time slot and changes independently over different time slots. The channel coeffi-

cient from S to D is denoted by hSD. Similarly, we have hSR, hSE , hRD, hRE , hJD, and hJE .

The global CSI is available for the system, including D-related CSI (D-CSI) and E-related CSI

(E-CSI), which is a common assumption in PHY layer security literature. The cooperation

when E-CSI is unavailable will be discussed in Section V. In addition, additive white Gaussian

noise is assumed with zero mean and the one-side power spread density is N0. Moreover, each

node is equipped with a single antenna and communicates with each other in a half-duplex

mode.

In the following, matrices and vectors are denoted by bold uppercase letters and bold low-

ercase letters, respectively. (·)∗, (·)T , and (·)† denote the conjugate, transpose, and conjugate

transpose, respectively. I denotes the identity matrix. [x]+ denotes the maximum value be-

tween x and 0, while x? denotes the optimal value of x. | · | denotes the magnitude of a channel

or the absolute value of a complex number, while ‖ · ‖ is the Euclidean norm of a vector or a

matrix.

2The strategy of SUs for the two-phase cooperation is explicitly explained in Section 3.4.2 and Section 3.5,
respectively.
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3.3 R-J Cooperation Scheme

3.3.1 Problem Formulation

Secrecy Rate of PU

We use secrecy rate as a measure for the secure communication. To obtain the secrecy rate, the

transmission rates at different nodes are calculated as follows.

In the first phase, S transmits data to R and the transmission rate at R is given by

RR = W log2(1 + γ), (3.1)

where γ = P |hSR|2
WN0

and P is the transmission power of the PU.

In the second phase, R relays the PU’s message to D using DF protocol, and simultaneously

J broadcasts an artificial jamming signal. Since D receives signals in both the first and second

phases, the transmission rate RD at D using maximal ratio combining (MRC) is given by

RD = W log2(1 + ξ +
PR|hRD|2

WN0 + PJ |hJD|2
), (3.2)

where ξ = P |hSD|2/(WN0) is the SNR from the first phase, and PR and PJ are the transmis-

sion power of R and J during cooperation, respectively.

Likewise, E also receives signals during the first two phases. Therefore, the transmission

rate at E can be expressed as follows:

RE = W log2(1 + δ +
PR|hRE|2

WN0 + PJ |hJE|2
), (3.3)

where δ = P |hSE|2/(WN0) is the SNR from the first phase.
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When the DF cooperative communication is applied, the overall transmission rate of D and

E equal to the minimum rate of the first two phases, respectively [97], i.e.,

R̄D = min{α(1− β)RR, αβRD}

R̄E = min{α(1− β)RR, αβRE}
(3.4)

By definition, the secrecy rate RSEC is given by:

RSEC = [RD −RE]+, (3.5)

Substituting (3.4) into (3.5), the overall secrecy rate is then given by

R̄SEC = [min{α(1− β)RR, αβRD} − αβRE]+ (3.6)

Overall Transmission Rate of SUs

Let PS,i be the transmission power of SUi for its own communication, where i = R or J. SUs

are considered to have the same power constraint Pmax. R and J transmit in a TDMA mode

and the overall transmission rate of SUi is given by

R̄S,i =
1− α

2
W log2(1 +

PS,i|hS,i|2

WN0

), (3.7)

where hS,i is the channel coefficient from i to its corresponding receiver.

As mentioned in the system model, SUs have a requirement on the expected overall trans-

mission rate R̄EX via cooperation. From (3.7), R̄S,i is related to the time period granted by the

PU. To measure SUs’ degree of satisfaction on R̄S,i, US,i is defined as US,i = min{ R̄S,i
R̄EX

, 1},

which implies how satisfactory SUi is with R̄S,i. For instance, if R̄S,i = R̄EX , US,i is equal to 1.

In order to enforce the PU to grant an acceptable rewarding time, SUs’ strategy is to determine
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the effort that they are willing to make during cooperation, i.e., the maximum power PC
max for

cooperation, according to the degree of satisfaction. For simplicity, PC
max = US,i · Pmax. In

other words, the degree of effort that the SU is willing to make depends on the degree of the

satisfaction obtained. For example, if US,i = 1, the SU is willing to devote full power Pmax for

cooperation, i.e., PC
max = Pmax.

Secrecy Rate Maximization

Since the SU typically does not have much transmission opportunities, it aims at maximizing

the throughput by adopting Pmax for its own transmission. Thus, given a certain α, R̄S,i =

1−α
2
W log2(1 +

Pmax|hS,i|2
WN0

). Based on the degree of the satisfaction, PC
max can be determined,

which is a function of α. As shown in (3.6), R̄SEC is related to α, β, and the transmission

power PR and PJ , which are constrained by PC
max. From PU’s perspective, the objective of

cooperation is to maximize the overall secrecy rate R̄SEC . Therefore, the PU chooses the time

allocation coefficients α and β, while the SUs determine the optimal transmission power for

cooperation, which can be formulated as the following optimization problem:

max
α,β,PR,PJ

R̄SEC

s.t. 0 < α, β < 1, 0 ≤ PR ≤PC
max, 0 ≤ PJ ≤ PC

max.

(3.8)

3.3.2 Cooperation Parameters Determination

The time allocation coefficients and transmission power can be optimized by solving the above

optimization problem. To do this, the procedure can be divided into two steps: i) given α, R

and J select the optimal transmission power; and ii) S selects the optimal α?, β? to maximize

the secrecy rate, aware of the results of the first step.

From (3.6), for a given α, the overall secrecy rate R̄SEC not only depends on RD−RE , but
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also on β. In fact, R̄SEC can be further expressed as follows:

R̄SEC = [αβ(RD −RE)]+ = α[
RR(RD −RE)

RR +RD

]+

= α[RR −
RR(RR +RE)

RR +RD

]+,

(3.9)

where RR, RD and RE are given by (3.1), (3.2), and (3.3), respectively. The derivation is given

in the Appendix B. Note that given α, the optimal β? = RR
RR+RD

.

In the literature, most of the existing works assume the time duration for the transmission

from S to R and from R to D are equal, and try to maximizeRD−RE based on this assumption.

However, RR and RD are typically not the same. Furthermore, the overall transmission rate is

the minimum one between R̄R and R̄D for DF strategy. Thus, it is not optimal to assign equal

duration for these two phases. From (3.9), it can be seen that the secrecy rate cannot achieve the

optimum value by only maximizing RD − RE . This is because when RD increases, RD − RE

increases, but β decreases. Note that the objective function in (3.9) has encapsulated the above

factors and in this chapter we study the nontrivial case where the secrecy rate is positive.

Power Allocation

Since the relay is leveraged to increase the transmission rate at destination compared with that

at the eavesdropper, it requires that |hRD| > |hRE|. The job of the jammer is to create more

interference at the eavesdropper than at the destination and it is necessary that |hJE| > |hJD|.

In what follows, to achieve the maximum secrecy rate, the optimal transmission power of relay

SU and jammer SU are analyzed, respectively, when α is given.

Relay SU: Since RR is fixed, maximizing R̄SEC = RR − RR(RR + RE))/(RR + RD) is

equivalent to minimizing f(PR, PJ) , (RR + RE)/(RR + RD). Similar to [98], we study the

case in the low SNR regime, which corresponds to the cases of long-distance transmissions or
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energy-limited scenarios. We approximate log2(1 + snr) ≈ snr [99]. Based on (3.1), (3.2),

(3.3), and the approximation, we have

f(PR, PJ) =
ΨE + PR|hRE|2/(WN0 + PJ |hJE|2)

ΨD + PR|hRD|2/(WN0 + PJ |hJD|2)
, (3.10)

where ΨD = γ + ξ and ΨE = γ + δ. Take the first order derivative of f with respect to PR

and it is always negative because |hRD| > |hRE|. Therefore, f(PR, PJ) is a monotonically

decreasing function of PR and the optimal transmission power P ?
R is PC

max for maximizing the

secrecy rate. Note that PC
max is a function of α.

Jammer SU: The optimal transmission power P ?
J is selected such that the objective function

in (3.10) can be maximized. The derivative of (3.10) with respect to PJ is proportional to a

quadratic function in the following form:

∂f

∂PJ
∝ ψ1 · P 2

J + ψ2 · PJ + ψ3, (3.11)

where

ψ1 =|hJD||hJE|PR(|hRD|ΨE|hJE| − |hRE|ΨD|hJD|)

ψ2 =2|hJD||hJE|N0PR(|hRD|ΨE − |hRE|ΨD)

ψ3 =|hRD||hRE|P 2
RN0(|hJD| − |hJE|)+

N2
0 (|hRD|ΨE|hJE| − |hRE|ΨD|hJE|).

Since |hRD| > |hRE| and |hJE| > |hJD|, we have ψ1 > 0, ψ2 > 0, and PR = PC
max. If ψ3 > 0,

there is no positive root for the quadratic function in (3.11) and ∂f
∂PJ

> 0 for the range from 0 to

PC
max. Thus, P ?

J equals to 0 to maximize the secrecy rate, indicating a non-jamming scenario.

If ψ3 < 0, there is one positive root −ψ2+
√
ψ2
2−4ψ1ψ3

2ψ1
. When −ψ2+

√
ψ2
2−4ψ1ψ3

2ψ1
> PC

max, ∂f
∂PJ

< 0

for the range from 0 to PC
max and hence P ?

J should be selected as PC
max. Otherwise, P ?

J should
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be equal to −ψ2+
√
ψ2
2−4ψ1ψ3

2ψ1
.

Time Allocation

From (3.9), the objective function has taken the factor of β into consideration. Given α, the

optimal transmission power of SUs has been obtained in the previous section. Therefore, the

optimal β? can be easily determined by

β? =
RR

RR +RD

, (3.12)

where RD is the transmission rate at D when R and J choose the optimal transmission power.

The optimal α? can be determined by solving the following equation:

α? = arg maxαβ(RD −RE) (3.13)

Note that β, RD, and RE are all functions of α (0 < α < 1).

3.4 C-B Cooperation Scheme with E-CSI

In this section, we discuss the cooperation between the PU and a cluster of SUs when E-CSI is

available. We propose a three-phase cooperation scheme and a two-phase cooperation scheme

for the scenarios in the presence of an eavesdropper and multiple eavesdroppers, respectively.

To maximize the secrecy rate, time allocation and weights selection are jointly considered.
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3.4.1 C-B Scheme for Single Eavesdropper (CBSE)

Problem Formulation

Secrecy Rate of PU: In the presence of one eavesdropper, the cooperation is performed in a

three-phase fashion, as shown in Fig. 2(a). In the first phase, the PU broadcasts to the cluster

the signal
√
Ps, where s is the information symbol with E{|s|2} = 1, which is overheard by D

and E. In order for all the cluster members to successfully decode the signal, the transmission

rate RR from S to C is determined by the worst channel between S and the cluster members.

RR = W log2(1 + min
i

P |hSR,i|2

N0W
), (3.14)

where hSR,i is the channel from S to ith SU in the cluster. Denote by yD,1 and yE,1 the signal

received at D and E in the first phase, respectively, which can be given by

yD,1 =
√
PhSDs+ nSD

yE,1 =
√
PhSEs+ nSE

(3.15)

where nSD and nSE are the noise at D and E, respectively.

In the second phase, each SU in the cluster decodes the received symbol and forwards a

weighted version of the re-encoded symbol s̃ to D. Let w be the column vector of the weights

of all SUs in the cluster and N be the number of SUs in the cluster. Then, the received signals

yD,2 and yE,2 at D and E in the second phase can be written respectively as:

yD,2 = h†RDws̃+ nRD

yE,2 = h†REws̃+ nRE

(3.16)

where hRD = [h∗D,1, h
∗
D,2, ..., h

∗
D,N ]T and hRE = [h∗E,1, h

∗
E,2, ..., h

∗
E,N ]T . Note that hD,i and hE,i

are the complex channel coefficients from the ith SU in the cluster to D and E, respectively,
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where i ∈ {1, 2, ..., N}. nRD and nRE are the noise at D and E, respectively.

Assume that the cooperating SUs use the same codewords as S. The transmission rate at D

and E are given as follows:

RD = W log2(1 + ξ +
w†hRDh†RDw

N0W
)

RE = W log2(1 + δ +
w†hREh†REw

N0W
),

(3.17)

where ξ and δ are the same as that in (3.2) and (3.3), respectively. Substituting (3.14) and (3.17)

into (3.6), we can obtain the overall secrecy rate.

Overall Transmission Rate of SUs: In the third phase, the SUs in the cluster transmit the

data to the secondary receiver via collaborative beamforming. The overall rate R̄S at the sec-

ondary receiver can be given by

R̄S = (1− α)W log2(1 +
v†hRSh†RSv
N0W

), (3.18)

where v is the column vector of the weights of all cooperating SUs for the secondary transmis-

sion and hRS = [h∗S,1, h
∗
S,2, ..., h

∗
S,N ]T . Note that hS,i is the complex channel coefficient from

the ith SU in the cluster to the secondary receiver. To maximize the transmission rate, the SUs

select the optimal v?, under the total power constraint, which can be formulated as follows:

max
v

v†hRSh†RSv

s.t. v†v ≤ Pmax

(3.19)

To achieve the maximum transmission rate, v should lie in the space spanned by hRS . Thus, v?

can be given by v? =
√
Pmax

hRS
‖hRS‖

, where ‖ hRS ‖ is the Euclidean norm of hRS . Therefore,

54



Chapter 3. Secure Communications in CCRN

given a certain α, the overall transmission rate R̄S is given by

R̄S = (1− α)W log2(1 +
Pmax ‖ hRS ‖2

N0W
). (3.20)

Secrecy Rate Maximization: Similar to Section 3.3.1 and 3.3.1, the cluster of SUs, as a w-

hole, determines the maximum power PC
max for cooperation based on the satisfaction obtained.

Substituting (3.14) and (3.17) into (3.9), we can obtain R̄SEC . To maximize R̄SEC , the PU

selects the optimal time allocation coefficients and the SUs determine the best beamforming

weights under a total power constraint.

Cooperation Parameters Determination

Optimal Weight Selection: The SUs select the optimal weight w? to maximize the secre-

cy rate R̄SEC . From (3.9), given α, maximizing R̄SEC is equivalent to maximizing (RR +

RD)/(RR + RE). Substituting (3.17) into it, the optimal weight can be determined by solving

the following problem.

max
w

ΨD + w†hRDh†RDw
ΨE + w†hREh†REw

s.t. w†w ≤ PC
max

where ΨD = (γ + ξ)N0W and ΨE = (γ + δ)N0W . Let us rewrite w =
√
PC
maxŵ, where

ŵ†ŵ=1. The above problem is then transformed into the following form:

max
w

ΨD + pŵ†hRDh†RDŵ
ΨE + pŵ†hREh†REŵ

s.t. ŵ†ŵ = 1, p ≤ PC
max

(3.21)
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To guarantee R̄SEC to be positive, it is necessary that the numerator should be greater than

the denominator. Due to this necessary condition, the derivative of the objective function in

(3.21) with respect to p is positive and R̄SEC is maximized when p = PC
max. Thus, the above

optimization problem can be further rewritten as

max
ŵ

ŵ†QRDŵ
ŵ†QREŵ

s.t. ŵ†ŵ = 1

(3.22)

where

QRD =
ΨD

PC
max

I + hRDh†RD and QRE =
ΨE

PC
max

I + hREh†RE.

The problem in (3.22) is a generalized eigenvector problem and the optimal ŵ? is selected as

the uniform eigenvector of QRDQ−1
RE corresponding to its largest eigenvalue. Therefore, given

α, the optimal w? =
√
PC
maxŵ?.

Time Allocation: Similar to 3.3.2, β? can be determined by substituting (3.17) into (3.12),

when optimal w is selected. The optimal α? can be determined by solving the following prob-

lem, when the optimal weights and β are selected.

α? = arg maxαβ(RD −RE) (3.23)

Note that β, RD, and RE are all functions of α (0 < α < 1).
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3.4.2 C-B Scheme for Multiple Eavesdroppers (CBME)

Problem Formulation

For the case of multiple eavesdroppers, the cooperation can be performed in a two-phase way,

as shown in Fig. 2(b). The operation in the first phase is the same as that in the previous cases

and the transmission rate RR is given in (3.14).

In the second phase, instead of relaying the PU’s data and transmitting its own data in

different phases, the cluster transmits x which is the sum of the weighted version of the PU’s

information symbol s̃ and its information symbol z with E{|z|2} = 1. Therefore, x can be

represented by x = ws̃ + vz, where w and v are the column vectors of the weights of all SUs

for transmitting the PU’s symbol and SUs’ symbol, respectively. Then, the received signals

yD,2 and yE,2 at D and eavesdroppers in the second phase can be written respectively as:

yD,2 = h†RDws̃+ h†RDvz + nRD

yE,2 = H†REws̃+ H†REvz + nRE
(3.24)

where HRE is the matrix of channel coefficients between the SUs and eavesdroppers, and nRE

is the noise vector at eavesdroppers. To transmit the PU’s data and its own data simultaneously,

the cluster utilizes the approach based on zero-forcing beamforming, which is similar to the

work in [100]. By doing so, the SUs’ transmission will not interfere with the concurrent trans-

mission of the PU, and vice versa. To this end, v should be in the null space of h†RD such that

h†RDv = 0 and w should be in the null space of h†RS such that h†RSw = 0. Therefore, the overall

transmission rate R̄S at the secondary receiver is

R̄S = (1− α)W log2(1 +
| h†RSv |2

N0W
). (3.25)

Different from the pervious case, it is not necessary to enforce the PU to grant a reasonable
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period of time to SUs due to the following reasons: i) relaying PU’s data and transmitting

SUs’ data occupy the same period, and hence, the PU itself will not just allocate a quite short

duration for the second phase, which affects the PU’s performance as well; and ii) the cluster

can achieve the expected transmission rate R̄EX on its own, i.e., R̄S = R̄EX , by choosing w and

v. Denote by P1 and P2 the transmission power for relaying the PU’s data s̃ and transmitting

its own data z, respectively, where P1 = w†w and P2 = v†v. Since the cluster has a total

power budget Pmax, it holds that P1 +P2 ≤ Pmax. To maximize the secrecy rate of the PU and

guarantee the expected transmission rate R̄EX of the SUs, the cluster chooses the suitable w

and v under the total power constraint, while the PU determines α.

Cooperation Parameters Determination

For convenience, let w =
√
P1ŵ and v =

√
P2v̂, respectively, where ŵ†ŵ = 1 and v̂†v̂ = 1. To

select the optimal w? and v?, we perform the following two steps: i) determine the optimal ŵ?

and v̂? given P1 and P2; and ii) select P1 and P2, based on the results of the previous step.

Step 1: We first determine the optimal ŵ? and v̂?. For v̂, the objective is to maximize the

transmission rate at the secondary receiver, under the constraint of no interference at D. There-

fore, the optimal v̂? can be determined by solving the following optimization problem.

max
v̂
| h†RS v̂ |2

s.t. h†RDv̂ =0 and v̂†v̂ = 1

(3.26)

From (3.26), it can be seen that v̂ is orthogonal to hRD, which means v̂ belongs to the

subspace of h⊥RD, i.e., the null space of hRD. To maximize the objective function in (3.26), the

optimal v̂? should be selected in the direction of the orthogonal projection of hRS onto h⊥RD.
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Thus, v̂? can be determined as follows:

v̂? =
(I− ĥRDĥ†RD)hRS
‖ (I− ĥRDĥ†RD)hRS ‖

, (3.27)

where I − ĥRDĥ†RD is the orthogonal projector onto h⊥RD and ĥRD is the normalized vector of

hRD.

For ŵ, the objective is to maximize the secrecy rate of the PU. Due to the presence of

multiple eavesdroppers, it is typically difficult to obtain the optimal ŵ?. Instead, a suboptimal

solution is devised as follows. The cluster selects ŵ to null out the PU’s information at all

eavesdroppers3, i.e., H†REŵ = 0. By doing so, the transmission rate at all eavesdroppers are

zero. Thus, maximizing the secrecy rate is equivalent to maximizing RD, which can be given

by

RD = W log2(1 + ξ + P2
| h†RDŵ |2

N0W
), (3.28)

where ξ is the same as that in (3.2).

As mentioned before, w should also be in the null space of h†RS . Thus, the optimal ŵ? can be

selected such that | h†RDŵ | is maximized under the constraint that H†REŵ = 0 and h†RSw = 0.

Define a matrix HR, which contains hRS and HRE , i.e., HR = [hRS HRE]. Then, the constraint

becomes H†Rw = 0. To satisfy it, ŵ should belong to the subspace of H⊥R, i.e., the null space of

HR. To maximize | h†RDŵ |, the optimal ŵ? should be closest to h†RD and meanwhile belongs

to H⊥R. Thus, ŵ? should be the orthogonal projection of hRD onto the subspace H⊥R. Then, ŵ?

can be given by

ŵ? =
(I−HR(H†RHR)−1H†R)hRD
‖ (I−HR(H†RHR)−1H†R)hRD ‖

, (3.29)

3Note that the number of SUs needs to be greater than that of eavesdroppers for this purpose.
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where I−HR(H†RHR)−1H†R is the orthogonal projector on H⊥R.

Step 2: Determination of P1, P2 and α. Substituting (3.27) and (3.29) into (3.25) and (3.28),

respectively, it can be seen that R̄S is a function of P1 and α, while RD is a function of P2.

Given a certain α, the cluster needs to select P1 to meet the expected transmission rate R̄EX

and the rest of power, i.e., P2, contributes to RD. Similar to the Appendix, when the secrecy

rate is maximized, we have α = RD
RR+RD

. Therefore, we have the following equations:

(1− α)W log2(1 +
P1 | h†RS v̂? |2

N0W
) = R̄EX

α =
RD

RR +RD

P1 + P2 = Pmax.

(3.30)

Solving the above equations, we have

P1 =
(RRN0 +WξN0+ | h†RDŵ? |2)R̄EX

RR | h†RS v̂? |2 + | h†RDŵ? |2 R̄EX

α = 1− N0R̄EX

P1 | h†RS v̂? |2

(3.31)

3.5 C-B Cooperation Scheme without E-CSI (CBNE)

When E-CSI is unknown, it is impossible for the PU to determine the optimal length for the

rewarding time, i.e., (1 − α)T . Therefore, from the perspective of the PU, it desires that the

SUs will make their best efforts to help for secure communication. To this end, the PU grants a

period time to SUs such that the need of SUs can be met, i.e., R̄EX of the SUs can be obtained.

In return, the SUs will make the best efforts to help the PU, i.e., to devote the maximum power

Pmax for cooperation.
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3.5.1 Problem Formulation

The cooperation is carried out in a three-phase fashion, as shown in Fig. 2(a). In the first phase,

the transmission rate from S to the cluster and D are the same as in Section 3.4.1, which are

given by (3.14) and (3.17), respectively.

In the second phase, all the cluster members transmit a combination of a weighted version

of the re-encoded symbol s̃ and an artificial noise. Similar to [101], the artificial noise is

leveraged to mask the concurrent transmission from S to D. As such, the cluster transmits

x, which is given by x = ws̃ + na, where w is the column vector of the weights of all SUs

in the cluster and na is the artificial noise. Then, the received signals yD,2 and yE,2 at D and

eavesdroppers in the second phase can be written as:

yD,2 = h†RDws̃+ h†RDna + nRD

yE,2 = h†REws̃+ h†REna + nRE
(3.32)

As mentioned before, the total power constraint of the cluster for cooperation is Pmax.

Denote the power spent for transmitting the information symbol s̃ and the artificial noise na by

PI and PN , respectively. It holds that PI +PN ≤ Pmax. To enhance the security of the PU, the

cluster has to allocate the power properly.

Due to the unknown CSI related to the eavesdroppers, the cluster performs in the following

way. In order to avoid interfering with D, the artificial noise should be transmitted in the null

space of hRD such that h†RDna = 0. Moreover, instead of transmitting in certain dimension,

the power of artificial noise should be spread uniformly in the dimensions of the null space

of hRD [97]. Since the artificial noise does not interfere with D but the eavesdroppers, more

power allocated to the artificial noise is more beneficial to increase the secrecy rate. However,

allocating all the power to the artificial noise will cause that the transmission rate at D becomes

extremely low, which is not desired. To avoid this, the power allocated to information symbol
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transmission, i.e., w†w, should guarantee that the transmission rate at D is above a predefined

required transmission rate, which is similar to the work in [87]. Denote this predefined rate by

R̄Q and R̄D should be greater than R̄Q in order to meet this requirement. Therefore, the cluster

allocates the minimum power for the information symbol transmission to achieve R̄Q so that

more power can be left to be utilized to confound the eavesdroppers.

The last phase is the same as that in Section 3.4.1 and the overall transmission rate R̄S can

be expressed as (3.20), for a given α.

3.5.2 Cooperation Parameters Determination

Optimal Weight Selection

To achieve the above goal, we first determine the minimum power for R̄Q, which can be ob-

tained by solving the following problem:

min
w

w†w

s.t. αW log2(1 + ξ+
w†hRDh†RDw

N0W
) ≥ R̄Q,

(3.33)

where ξ is the same as in (3.2). The left hand side of the constraint is the overall transmission

rate, which equals to α multiplied by RD in (3.17). The inequality constraint yields the same

result as the equality constraint. Thus, for the low SNR regime, the constraint can be further

represented by

w†hRDh†RDw = ϑ, (3.34)
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where ϑ = N0W (
RQ
αW
− ξ). Defining H̃ = hRDh†RD and applying the method of Lagrange

multipliers, the Lagrange multiplier function is given by

L(w, λ) = w†w− λ(w†H̃w− ϑ), (3.35)

where λ is the Lagrange multiplier. Take the derivative of L(w, λ) with respect to w†, and let

it be equal to zero. Then, we have H̃w = w
λ

. It can be seen that 1/λ is the eigenvalue of H̃,

while w is the corresponding eigenvector. Multiplying both sides of this equation by w†λ, we

can obtain

w†w = λw†H̃w = λϑ, (3.36)

where the last equality holds due to the constraint in (3.34). It can be seen that minimizing the

transmission power, i.e., w†w, is equivalent to minimizing λ or to maximizing 1/λ, since ϑ is a

constant. Therefore, the optimal w? should be selected as the eigenvector of H̃ corresponding

to its largest eigenvalue. In other words, w? can be given by w = ςn, where n is the normalized

principal eigenvector of H̃ and the scalar ς is given by ς =
√

ϑ

n†H̃n
. With w?, the cluster spends

the minimum power to meet the QoS requirement, and then, more power can be utilized to

spread the artificial noise to confound the eavesdroppers.

Time Allocation

β? can be determined by substituting (3.17) into (3.12), when the optimal w? is selected. The

PU selects α such that the SUs can achieve the expected transmission rate and in return the

SUs make their best efforts to help the PU. The overall transmission rate R̄S at the secondary
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receiver is given in (3.20). To achieve R̄EX , α can be determined as

α = 1− R̄EX

Pmax ‖ hRS ‖2
(3.37)

3.6 Simulation results

In this section, we present simulation results to provide insight of the proposed cooperation

schemes. In the simulation, the bandwidth W and T are set to be one unit, while Pmax and

noise power are set to 2 mw and 1 mw, respectively. For R-J scheme, Fig. 3.3 shows the trends

of the overall secrecy rate R̄SEC of the PU with respect to the time allocation coefficient α, for

different channel hS between the SU and its corresponding receiver. It can be seen that R̄SEC

first increases and then decreases with α increasing due to the fact that SUs determine their

effort according to the time that the PU grants to them. In addition, the maximum R̄SEC is

circled for the three lines and the corresponding optimal α? is 0.5, 0.55, and 0.6, respectively.

Moreover, both R̄SEC and the optimal α? increase when the channel gain |hS| increases. This

is because a better channel condition between the SU and its corresponding receiver results in

a better transmission rate, and hence, the PU can allocate a shorter period of time to SUs to

achieve the same level of SUs’ effort, or the SUs are willing to devote more transmission power

for cooperation when given the same rewarding time.

Fig. 3.4 shows R̄SEC of the PU obtained by using R-J scheme and equal-duration relay

jammer (EDRJ) scheme. The only difference between EDRJ scheme and R-J scheme is that

the time durations for the first two phases in EDRJ are equal and the secrecy rate is maximized

without considering time allocation. It can be seen that R-J scheme outperforms EDRJ because

R-J scheme jointly optimizes the time and transmission power to maximize R̄SEC . In other

words, the scheme without considering time allocation is not optimal, which is consistent with

the analysis in Section 3.3.2.
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Figure 3.3: Overall secrecy rate of PU versus α for R-J scheme for |h2
S| =0.4, 0.6, 0.8,

respectively (|hRD|2 = 0.8, |hRE|2 = 0.5, |hJD|2 = 0.4, |hJE|2 = 0.8, and REX=0.4 bit/s/Hz).
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Figure 3.4: Comparison between R-J scheme and EDRJ scheme (|hSD|2 = 0.3, |hSE|2 = 0.4,
|hSR|2 = 0.6, |hRE|2 = 0.3, |hJD|2 = 0.3, and |hJE|2 = 0.5)

Fig. 3.5 shows the access time of SUs (i.e., 1−α∗) when cooperating with the PU using R-J

scheme. It can be seen that the access time decreases when the channel gain of hRS increases.

This is because with a better channel, the PU can grant a shorter time to SUs to obtain the same

level of efforts from SUs to maximize the PU’s secrecy rate. It also shows that with a smaller

expected transmission rate, the PU can grant a shorter time to SUs to achieve the same level

of SUs’ effort, or the SUs are willing to devote more transmission power for cooperation when
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Figure 3.5: Access time of SUs versus channel condition hRS for R-J scheme.
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Figure 3.6: Overall secrecy rate of the PU versus α for CBSE scheme (|hSD|2 = 0.3,
|hSE|2 = 0.4, the worst channel |hSR,i|2 is set to 0.4).

given the same rewarding time.

Fig. 3.6 shows R̄SEC of the PU when cooperating with a cluster of SUs. For simplicity,

the complex channels between all the SUs and D are approximately the same and equal to

ej
π
4 ; similarly the complex channels between SUs and E are set to 0.8ej

π
4 . It can be seen that

there exists an optimal α? such that R̄SEC can achieve the maximum value. This is because

of the result of the strategy of SUs, which is presented in the system model. Moreover, R̄SEC

increases when the total number of SUs (N ) in the cluster increases. This is because more SUs
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Figure 3.7: Comparison between CBSE scheme and EDCB scheme (|hRE| = 0.3,
|hSD| = 0.3, |hSE| = 0.4, N = 3, and the worst channel |hSR,i|2 = 0.4).
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Figure 3.8: Comparison between R-J scheme and CBSE scheme.

can provide larger array gain to increase the secrecy rate.

In the following simulations, the complex channel coefficient h is given by |h| · ejθ, where

|h| is the channel gain and θ is uniformly distributed in [0, 2π). We obtain the average results

using Monte Carlo simulation which consists of 1000 trials. Fig. 3.7 shows R̄SEC of the PU

obtained by using CBSE and equal-duration cluster beamforming scheme (EDCB) in the p-

resence of an eavesdropper. The only difference between EDCB and CBSE is that the time

durations for the first two phases are equal in EDCB and the secrecy rate is maximized without
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Figure 3.10: R̄SEC of PU versus the number of eavesdroppers for CBME scheme
(|hRE| = 0.4, |hRD| = 0.5, |hRS| = 0.6, and N = 10).

considering time allocation. It can be seen that CBSE outperforms EDCB. That is because

CBSE jointly optimizes the time and beamforming weights to maximize R̄SEC .

Fig. 3.8 shows R̄SEC of the PU obtained by using CBSE scheme and R-J scheme. When

the size of the cluster is equal to 2, which is the same to the number of SUs in R-J scheme,

the secrecy rate obtained using CBSE is higher than that of R-J scheme. Moreover, the secrecy

rate increases with the number of SUs in the cluster. This is because more SUs can provide

larger array gain to increase the secrecy rate.
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Figure 3.11: Minimum transmission power versus |hRD| for CBNE scheme (|hRE| = 0.4,
|hRD| = 0.5, 0.1, R̄Q = 0.5 b/s/Hz and N = 3).
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Figure 3.12: Minimum transmission power versus the number of SUs for CBNE scheme
(|hRD| = 0.5, R̄EX = 0.3 b/s/Hz).

Fig. 3.9 shows the access time of SUs using CBSE scheme when cooperating with the PU.

It reveals that the access time reduces when the channel gain increases. The reason is that the

PU can grant a shorter time to SUs to get the same efforts from SUs. Moreover, a smaller

expected rate results in a shorter access time, since SUs needs less time for a smaller expected

rate. With more SUs in the cluster, the access time will be reduced because more SUs provide

larger array gain to increase the transmission rate.

Fig. 3.10 shows the overall secrecy rate of the PU with respect to the number of eavesdrop-
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pers (M ) for different expected transmission rate of SUs. It can be seen that R̄SEC drops as

M increases. Moreover, it can also be seen that a lower R̄EX results in a larger overall secrecy

rate. This is because the SUs can spend less transmission power to achieve a lower R̄EX , and

hence more power can be used to increase the secrecy rate of the PU.

Fig. 3.11 shows the minimum transmission power of SUs with respect to |hRD| for different

expected transmission rate of SUs. It can be seen that the minimum transmission power drops

as |hRD| increases. This is because SUs can spend less transmission power to achieve the

same QoS requirement, with a better channel condition. It can also be seen that a smaller

R̄EX results in a lower transmission power. The reason is that only a shorter time is needed

for SUs to achieve a smaller R̄EX , which causes a larger α; and then, the SUs can spend less

transmission power to achieve the same R̄Q.

Fig. 3.12 shows the trends of the minimum transmission power of SUs versus the number

of SUs in the cluster. It can be seen that the minimum transmission power drops as the number

of SUs increases. Moreover, a smaller |hRS| results in a larger transmission power. This is

because a longer duration for rewarding time is needed for SUs to achieve R̄EX when |hRS| is

smaller, which causes a smaller α; and hence, the SUs need to spend more transmission power

to help the PU to satisfy the QoS requirement.

3.7 Summary

In this chapter, we have proposed two types of cooperative spectrum access to enhance the

security of the PU and provide channel access opportunities to SUs. In order to enhance the

security, the PU can either cooperate with two individual SUs (R-J scheme) or a cluster of

SUs (C-B scheme). For R-J scheme, the two SUs act as one relay and one friendly jammer to

increase the secrecy rate of the PU in the presence of one eavesdropper. For C-B scheme, a

cluster of SUs enhance the secrecy of the PU’s communication via collaborative beamforming.
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Especially, for C-B scheme, three cooperation approaches have been proposed for the scenar-

ios with one eavesdropper, with multiple eavesdroppers, and without any information about

eavesdroppers. To maximize the secrecy rate, joint time and transmission power allocation is

considered in R-J scheme, while time allocation and weight selection are jointly optimized in

C-B schemes. We have shown through simulation results that with the proposed schemes, the

secrecy of PU’s communications can be significantly enhanced and the SUs can acquire certain

access time.
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Risk-aware Cooperation for Access in

Multi-channel CRNs

In this chapter, risk-aware cooperative spectrum access schemes for the CRN with multiple

channels are proposed, whereby multiple PUs operating over different channels choose trust-

worthy SUs as relays to improve throughput, and in return SUs gain transmission opportunities.

Specifically, cooperation over a single channel is studied first, which involves a PU selecting

the suitable SU and granting a period of access time to the selected SU as a reward, consider-

ing trustworthiness of SUs. The above procedure is modeled as a Stackelberg game, through

which access time allocation and power allocation are obtained. Based on the outcomes of the

single-channel scenario, cooperation over multiple channels is studied. In order to better ex-

ploit spectrum access opportunities, a secondary network-centric cluster-based (SCC) scheme

is proposed for the multi-channel scenario, whereby SUs first form a cluster, select the best

SUs to obtain the maximum aggregate access time using maximum weight matching, and then

share the obtained channels fairly using congestion game and quadrature signalling. The con-

dition for Nash Equilibrium (NE) of the congestion game is provided and an algorithm for the

SCC scheme is devised. Numerical results demonstrate that, with the proposed scheme, PUs
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can achieve higher throughput, while SUs can get more average access time and achieve higher

fairness, compared with the random channel access approach.

4.1 Literature Review

Cooperative cognitive radio networking have been proposed to overcome the limitations of

the spectrum sensing [40–42, 44, 46, 56], whereby SUs cooperate with PUs to improve latter’s

transmission performance, and in return gain transmission opportunities. Therefore, both PUs

and SUs can benefit from cooperation, which creates a win-win situation. In [41], the PU

leases a fraction of access time to SUs in exchange for cooperation to increase the transmis-

sion rate, and during the rewarding time the SUs transmit simultaneously by selecting suitable

transmission power. In [40], SUs cooperate to improve the PU’s transmission rate and share

the rewarding resource via a payment mechanism. A two-phase cooperation scheme is pro-

posed in [46], whereby the PU transmits its signal to the SU in the first phase, and then the

SU decodes the received signal and superimposes it with its own signal to broadcast in the sec-

ond phase, using different power levels. In [42], different cooperation schemes are proposed,

whereby the PU can cooperate with trustworthy SUs to enhance its security level and SUs can

gain transmission opportunities.

However, all the above works only consider cooperation at the transmission link, i.e., one

pair of PU and SU(s), which might not be sufficient to exploit the cooperation benefits in the

whole network. This is because there exist multiple links in the network, which causes competi-

tion among PUs when they choose SUs. In [47], the authors consider multiple PUs performing

cooperation with multiple SUs in the network, where the transmission of PUs are divided into

different frames and different pairs of PU and SU perform cooperation over different frames.

However, it is still limited to a single channel. In practice, a system usually consists of multiple

channels, allowing users to communicate simultaneously. Therefore, a more realistic scenario
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Table 4.1: The main notations.
Symbol Definition
N The set of SUs in the cluster, |N | = N
M The set of inactive SUs in the cluster, |M| = M
K The set of channels in the network, |K| = K

αi(j) The access time allocation coefficient when the PU on channel j cooperates with SUi
U ip(j) The utility function of the PU on channel j when cooperating with SUi in Stackelberg game
U is(j) The utility function of SUi when cooperating with the PU on channel j in Stackelberg game
P ic(j) The transmission power of the PU on channel j when cooperating with SUi
hips(j) The channel gain from PUj to SUi
hpb(j) The channel gain from PUj to the base station
hisb The channel gain from SUi to the base station
his The channel gain from SUi to the corresponding secondary receiver
P is The transmission power of SUi
Tri The trust value of SUi
Ψi The duration of the rewarding access time of channel i
U ji The utility of SUi in the congestion game
ni The total number of inactive SUs choosing channel i in congestion game
ζ(ni) The share of channel i which each SU selecting that channel can obtain
n(S) The congestion vector corresponding to strategy profile S

is that cooperation among multiple PUs and multiple SUs could be performed over different

channels simultaneously. However, the existing solutions might not be applicable, since they

are designed either for one pair of PU and SU or multiple PUs and multiple SUs over one chan-

nel. Moreover, it is often assumed that SUs are well-behaved during cooperation. When there

exist some dishonest users, or even malicious ones, those SUs can participate in cooperation,

and hence cooperation may incur risks

4.2 System Model

This section presents the details of the cooperative cognitive radio networking model under

consideration, together with the main system parameters, shown in Table 4.1.
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Figure 4.1: Cooperative cognitive radio network with multiple channels

4.2.1 MAC Layer

As shown in Fig. 4.1, the system consists of two components, the infrastructure-based primary

network and the ad hoc secondary network. The primary network with multiple channels (K

channels) allowsK PUs to transmit data simultaneously. Each PU communicates with the base

station (BS) over one channel in a time slot with length T , and the PU over a ceratin channel can

be indicated by the channel index, e.g., PUj denotes the PU operating over channel j, where

j ∈ {1, 2, ..., K}. In the secondary network, SUs transmit data to the corresponding receivers.

Motivated by the poor quality of the primary link or large volume of data transmission require-

ment, PUs may seek for the opportunities to cooperate with SUs to increase the throughput. For

cooperation, one PU selects one SU as a relay which adopts the Amplify-and-Forward (AF)

mode [102] to forward the PU’s message to improve the throughput1. In return, the PU grants a

period of access time as a reward to the cooperating SU. Specifically, for a given channel, e.g.,

channel j, the cooperation between PUj and SUi is carried out in the following way. A fraction

αi(j) of the time slot duration T (0 < αi(j) ≤ 1) is used for cooperative communication. Note

that for αi(j), i corresponds to SUi and j corresponds to channel j or PUj . In the first duration

1The analysis for Decode-and-Forward (DF) mode is similar to that of AF mode. Hence, we only focus on AF
cooperative scheme.
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of αi(j)T
2

, PUj transmits data to SUi, and in the subsequent duration of αi(j)T
2

, SUi relays the

received data to BS. In the last period of (1− αi(j))T , which is the rewarding time, the coop-

erating SUi transmits its own data to the corresponding secondary receiver. A common control

channel is assumed for exchanging information among PUs, SUs, and BS (e.g., CSI), and for

delivering the decision of the PUs to the secondary network.

4.2.2 Physical Layer

The channels between nodes are modeled as rayleigh block-fading channels, constant within

each slot and varying over different slots. The channel gains from PUj to BS, from PUj to SUi,

from SUi to BS, and from SUi to its corresponding secondary receiver are denoted by hpb(j),

hips(j), hisb, and his, respectively. Similar to [40,41,46,57], the channel state information (CSI)

is assumed available in the system, which can be obtained by periodical pilots. The bandwidth

for each channel is W . For cooperation, PUj chooses power P i
c(j) for the transmission from

PUj to SUi. SUi is constrained to spend the same power P i
s for both the cooperation and its

own transmission so as to ensure that SUi spends at least the same power for cooperation as

which it is willing to spend for its own transmission. The one-sided power spectral density of

the independent additive white Gaussian noise is N0.

4.2.3 Security Threats

If all the SUs are well-behaved, both PU and SU can benefit from their cooperation. However,

when there exist some dishonest or malicious SUs, the normal operation of CCRN cannot be

guaranteed. Specifically, the following security issues arising in CCRN need to be considered.

During cooperation, the malicious SUs can alter the packets from the PU or fabricate pack-

ets and then forward them to the destination. A legitimate SU may be compromised and mis-

behaves when it is selected to cooperate with the PU, e.g., it may launch black or grey hole
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attack, etc. A dishonest SU may not obey the cooperation rule during cooperation to pursue

more self-benefits, e.g., it may transmit its own packets instead of relaying the packets from the

PU. Moreover, considering the mobility of SUs, the malicious or dishonest SUs may misbe-

have at one place and then move to other places. Since there is no record of the past behaviors,

these users can have the same opportunity to be selected to cooperate with the PU, and then

continue to harm the system. As a summary, we list the potential misbehaviors in CCRN as

follows.

1. Selfishness: the cooperating SU may choose a lower transmission power than the ex-

pected one during cooperation or it just chooses not to forward the PU’s message to save

energy.

2. Maliciousness: the malicious SU may delete, modify or replace the bits in the DF mode.

In AF mode, it may intentionally add some jamming signals to corrupt the PU’s signal.

3. Dishonesty: the dishonest SU may provide fake CSI to gain transmission opportunities.

Without considering these security threats, the PU may choose an untrustworthy SU for coop-

eration, which may cause the failure of cooperation and degrade the QoS of PUs.

4.3 Cooperation over Single Channel

In this section, we will discuss the cooperation between a PU and an SU over channel j. Since

we focus on a single channel, for ease of presentation, the channel indices in related notations

are omitted, e.g., αi(j) becomes αi, hips(j) becomes hips, and so on. Due to the poor chan-

nel condition or the traffic requirement, the PU may desire higher throughput which the direct

transmission cannot achieve. In this case, the PU can choose an SU to act as a cooperating relay

to increase its throughput, while in return grant a period of access time to the SU. Therefore,
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the cooperation can be performed on a basis of mutual benefits, where the PU can increase its

throughput while the SU can gain transmission opportunities. To evaluate the risks of cooper-

ation, trust value is applied and the above cooperation procedure is modeled using Stackelberg

game. In such a game, the utilities of both the PU and the SU are presented and analyzed. By

analyzing the game, the close-form solutions for the players’ best strategies are derived, which

constitute the Stackelberg equilibrium.

4.3.1 Trust Computational Model

In an unfriendly environment, the aforementioned security issues may rise, which cannot be

well mitigated by means of cryptographic methodologies [103]. Thus, trust and reputation sys-

tem is applied to address these issues [104]. Specifically, trust values are assigned to SUs and

utilized to evaluate the behaviors of SUs. The primary system maintains a table for recording

identities and the corresponding trust values of its one-hop neighboring SUs. In addition, BS

keeps the trust values of all SUs in its domain. Each time after cooperation, the behavior of the

selected SU will be evaluated and the trust value will be updated accordingly. Then, the trust

value will be exchanged periodically between the PUs and the BS.

We use a Bayesian framework [105] [106] to evaluate the trust values: each entity is as-

sumed to behave well with probability p, and misbehave with probability (1 − p), i.e., the

behavior of the entity follows a Bernoulli distribution. Through a series of observations, a

posteriori probability can be derived to estimate the future behaviors of the entity. Posteriori

probabilities of binary events can be represented as the beta distribution. An expression of the

probability density function (PDF) f(p̂|κ, ι) in terms of the gamma function Γ is given by:

f(p̂|κ, ι) =
Γ(κ+ ι)

Γ(κ) · Γ(ι)
· p̂(κ−1) · (1− p̂)(ι−1), (4.1)

where p̂ is the estimate of p, and κ, ι are the two parameters. The expectation of beta distri-
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bution is given by E(p̂) = κ
(κ+ι)

, which can be used to represent the trust value of the relevant

entity.

In our system, a malicious or dishonest SUi behaves well with probability pi and misbe-

haves with probability 1 − pi. In order to estimate the trustworthiness of SUs, BS needs to

observe the ongoing transmission and evaluate the activities of SUs according to the received

signals. To determine whether the relaying SU misbehaves or not, one approach is to utilize

tracing symbols, which are known at both the source and the destination [107] [108]. Another

way is based on the correlation between signals received from the source and the relay [109].

In addition, the misbehavior can also be detected based on the success or failure of transmitted

frames via acknowledgment (ACK/NACK) [110]. Based on existing works in the literature, it

is assumed that the misbehavior of relaying nodes can be detected. Consider a process with

two possible outcomes (misbehavior or well-behavior), and let µ and ν be the observed number

of good behaviors and misbehaviors, respectively. Then, the PDF of observing outcomes in the

future can be expressed as a function of past observations by setting: κ = µ+ 1 and ι = ν + 1.

Thus, the expected value of p̂ can be determined from observations as follows:

E(p̂) =
µ+ 1

(µ+ ν + 2)
, (4.2)

which is used as the trust value Tri of SUi.

When new observations of a particular SU are made, e.g., δ observed misbehaviors and

ξ observed good behaviors, the associated trust value can be updated using (4.2) by setting

ν := ν + δ and µ := µ+ ξ.

4.3.2 Stackelberg Game between PU and SU

Since the primary user and secondary user are selfish and rational, they might not have a com-

mon objective, i.e., the PU and the SU are interested in maximizing their own utilities. Thus,

79



Cooperation over Single Channel

game theory can be applied to model the interactions between the two users. Moreover, consid-

ering different priorities for spectrum usage of PUs and SUs, Stackelberg game is most suitable

to model the cooperation procedure. In the Stackelberg game, the PU acts as the leader and

the SU acts as the follower. As the leader, the PU can choose the best strategies, aware of the

effect of its decision on the strategies of the follower (the SU); while the SU can just choose its

own strategies given the selected parameters of the PU. The utility functions for both PU and

SU are respectively defined in the following. By analyzing the game, the best cooperating SU

and the optimal cooperation parameters can be determined.

Primary User

Given a fixed time duration T , increasing the throughput is equivalent to increasing the average

transmission rate. To this end, the PU selects the most suitable SU from the set Sp of its one-

hop neighbors. Suppose that SUi is chosen for cooperation, the PU decides the slot allocation

parameter αi and its transmission power P i
c to maximize the potential profit, on the basis of

available instantaneous CSI.

Without cooperation, the transmission rate of the direct communication can be given by

Rd = W log2(1 +
P |hpb|2

N0

). (4.3)

For cooperation, the transmission rate Ri
c through AF cooperative communication between

the PU and SUi is given as follows:

Ri
c =

αiW

2
log2[1 +

P i
c |hpb|

2

N0

+ f(P i
c

∣∣hips∣∣2 , P i
s

∣∣hisb∣∣2)], (4.4)
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where

f(P i
c

∣∣hips∣∣2 , P i
s

∣∣hisb∣∣2) =
1

N0

P i
c

∣∣hips∣∣2 P i
s |hisb|

2

P i
c

∣∣hips∣∣2 + P i
s |hisb|

2
+N0

.

The factor αi
2

accounts for the fact that αiT is used for cooperative relaying, which is further

split into two phases. The PU chooses cooperation only when the transmission rate via cooper-

ation is greater than that of the direct communication. Considering the trust value Tri of each

neighboring SUi, the utility function is given by

U i
p = Tri ·Ri

c, (4.5)

which indicates the expected transmission rate the PU can achieve through cooperation with

SUi. The objective of the PU is to maximize its utility function and the strategy is to choose the

most suitable SU from the set of its one-hop neighboring SUs and the cooperation parameters,

i.e., the slot allocation parameters αi and the transmission power P i
c for cooperation with the

selected SUi.

Secondary User

The SU can gain transmission opportunities through cooperation with the PU. In particular, the

SU relays PU’s data in the second phase and transmits its own data in the last phase. Assuming

cooperation with the PU, the selected SUi decides its transmission power, pertaining to the

given α . The target of the SU is to maximize throughput (equivalent to the transmission rate)

without expending too much energy. Following the cooperation agreement, SUi spends the

same power P i
s for both cooperative and secondary transmissions. In particular, the transmis-

sion rate Ri
s for secondary transmission between SUi and its corresponding receiver is given
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by

Ri
s(αi) = (1− αi)W log2(1 +

P i
s |his|

2

N0

). (4.6)

With energy consumption P i
s(1 − αi

2
)T , the utility function of SUi can be represented by

Ri
s(αi)T − c · P i

s(1 − αi
2

)T , where c (0 < c < 1) is the weight of energy consumption in

the overall utility. With a smaller c, the SU values throughput more than energy consumption,

and vice versa. Over the period of T , the utility function of SUi is given by

U i
s(αi) = W log2(1 +

P is|his|2
N0

)(1− αi)− c(1− αi
2

)P i
s . (4.7)

The objective of SUi in the game is to maximize its utility by choosing the optimal transmission

power P i
s .

4.3.3 Game Analysis

As a sequential game, the Stackelberg game can be analyzed by the backward induction method.

First, the optimal strategy of the SU (the follower) is analyzed, assuming the strategy of the

PU (the leader) is fixed. Second, the PU decides the optimal strategy, aware of the outcomes of

the first step. By doing so, the best response functions of both the PU and the SU are derived

such that the corresponding utilities can be maximized. Then, the Stackelberg equilibrium of

the proposed game can be achieved based on the best response functions.

Best Response Function of the SU

Assuming that the PU uses αi for cooperation, SUi selects the optimal transmission power to

maximize its utility, which can be formulated as the following optimization problem:
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maxP is U
i
s(αi) = (1− αi)W log2(1 +

P is|his|2
N0

)− c(1− αi
2

)P i
s

s.t. 0 ≤ P i
s ≤ Pmax,

where Pmax is the power constraint for SUi. Solving the above problem, the optimal transmis-

sion power can be determined.

Definition 1: Let P ∗is (αi) be the best response function of the secondary user if the utility

of SUi can achieve the maximum value when P ∗is (αi) is selected, for any given αi, i,e., ∀ 0 <

αi < 1, U i
s(P

∗i
s (αi), αi) ≥ U i

s(P
i
s(αi), αi).

Theorem 1. The best response function of the secondary user P ∗is (αi) is given by P ∗is (αi) =

min{ (1−αi)W
c(1−αi

2
) ln 2
− N0

|his|
2 , Pmax}, when the primary user selects a certain αi for cooperation.

Proof. Given the time allocation coefficient αi, the utility function of SUi is given as follows:

U i
s(αi) = (1− αi)W log2(1 +

P i
s |his|

2

N0

)− c(1− αi
2

)P i
s . (4.8)

From the above equation, it is easy to prove that the utility function first increases and then

decreases with the increase of P i
s without considering the power constraint. Therefore, there

exists an optimal power such that U i
s can reach the maximum value at that transmission power.

Taking the first order partial derivative of the utility function with respect to P i
s yields

∂U i
s

∂P i
s

=
(1− αi)W |his|

2

(1 + P ish
i2
s

N0
)N0 ln 2

− c(1− αi
2

). (4.9)

Setting ∂(U is)
∂(P is)

= 0 yields the optimal transmission power, which is given by

(1− αi)W
c(1− αi

2
) ln 2

− N0

|his|
2 . (4.10)
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Taking the power constraint into consideration, the best response function P ∗is (αi) will be

P ∗is (αi) = min{ (1− αi)W
c(1− αi

2
) ln 2

− N0

|his|
2 , Pmax}. (4.11)

This completes the proof.

The first order derivative of the best response function with respect to αi is given by
−αiW

(−2+a)2c ln 2)
, which is negative. Therefore, the best transmission power of SUi is a decreas-

ing function of αi. It is explained by that the SU is willing to spend more transmission power

during cooperation if the PU allocates more time for the SU’s transmission.

Best Response Function of the PU

Aware of the best response function of the SU, the PU decides its own best strategy for util-

ity maximization. Thus, the best response function can be derived by solving the following

optimization problem:

maxαi,P ic ,i
αiW

2
log2[1 +

P ic|hpb|2
N0

+ f(P i
c

∣∣hips∣∣2 , P i
s |hisb|

2
)]

s.t. 0 < P i
c ≤ Pmax, 0 < αi ≤ 1, SUi ⊆ Sp.

Definition 2: Let α∗, P ∗i∗c , i∗ be associated with the best response function of the primary

user if the utility of the PU can achieve the maximum value when this strategy is selected.

Theorem 2. The best response function of the primary user α∗, P ∗i
∗

c , i∗ can be given by (α∗, P ∗i
∗

c , i∗) =

arg maxαi,P ic ,i U
i
p. In particular, i∗ = arg maxU i

p(P
∗i
c , α

∗
i ), where

P ∗ic = Pmax
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α∗i =


(15), if W

c ln 2
− N0

|his|2
< Pmax

max{2 + 2
c ln 2
W

(Pmax+
N0

|his|2
)−2

, (15)}, otherwise
(4.12)

P ∗ic and α∗i are the optimal transmission power and time allocation coefficient respectively,

assuming cooperation with SUi. The optimal P ∗i
∗

c and α∗i correspond to the selected i∗.

Proof. Since the first order derivative of the utility function with respect to P i
c is always pos-

itive, Up is a monotonically increasing function as P i
c increases. Moreover, considering the

parameters P i
c and αi are independent, P i

c should be selected as the maximum power so that

the utility can reach the maximum value. Therefore, to solve the optimization problem, it is

equivalent to optimize the utility function when P i
c = Pmax and SUi selects the best response

P ∗is (αi). Since the first term in (4.11) monotonically decreases with respect to αi, its maximum

value is W
c ln 2
− N0

|his|
2 .

When W
c ln 2
− N0

|his|
2 < Pmax, P ∗is (αi) always takes the value of the first term in (4.11).

Substituting P i
c = Pmax and P ∗is (αi) = (1−αi)W

c(1−αi
2

) ln 2
− N0

|his|
2 into the utility function of PU, the

utility can be expressed by

U i
p =

αiW

2
log2[1 +

Pmax |hpb|2

N0

+

f(Pmax
∣∣hips∣∣2 , P ∗is (αi)

∣∣hisb∣∣2)],

(4.13)

which is a function of αi. The first order derivative of (4.13) is given by

∂U i
p

∂αi
= A · α2

i +B · αi + C, (4.14)
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where

A =Pmax
∣∣hips∣∣2 c+ 2W

∣∣hisb∣∣2 +N0c

B =− 2Pmax
∣∣hips∣∣2 c− 4W

∣∣hisb∣∣2 − 2N0c = −2 · A

C =2W
∣∣hisb∣∣2 .

To find the optimal α∗i such that Up can be maximized, set first order derivative of (4.13) equal

to 0. Since C < A, we have B2 − 4AC > 0. Thus, the above quadratic function has real

root(s). Considering the range of αi (0 < αi < 1), there exists one and only one root αr. The

optimal α∗i is given by

α∗i = αr = 1−
√

1− C

A

= 1−

√√√√1− 2W |hisb|
2

Pmax
∣∣hips∣∣2 c+ 2W |hisb|

2
+N0c

(4.15)

When W
c ln 2
− N0

|his|
2 ≥ Pmax, there exists α0 in the range from 0 to 1, such that P ∗s (α0) = Pmax.

Specifically, α0 = 2+ 2
D−2

, where D = c ln 2
W

(Pmax+ N0

|his|
2 ). The reason is that the range of D is

from 0 to 1 due to the assumption that W
c ln 2
− N0

|his|
2 ≥ Pmax. For αi ≤ α0, P ∗is (αi) always takes

the value of Pmax. Hence, U i
p reaches the maximum value in that range when α0 is chosen. For

α0 < αi ≤ 1, there exists one and only one root αr for the above quadratic function, which

is in the range from 0 to 1. If αr < α0, then ∂Up
∂αi

< 0 when α0 < αi ≤ 1. The derivative of

Up with respect to αi is monotonically decreasing. Thus, the optimal α∗i = α0. Otherwise, the

optimal α∗i = αr.

Based on the above analysis, the optimal α∗i can be given as (4.12) in the theorem 2.

This completes the proof.
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4.3.4 Existence of the Stackelberg Equilibrium

In this section, we prove that the solutions P ∗s in (4.11) and α∗ in (4.12) are the Stackelberg

Equilibrium. For this purpose, we discuss the two cases with/without considering the power

constraint of the SU using the following properties. The detailed proof for the properties can

be found in Appendix C. Based on the properties, we first prove the existence of Stackelberg

Equilibrium when the power constraint is not considered.

Property 1. The utility function Us of the SU is concave with respect to its own power

level Ps when the time allocation coefficient α is fixed.

For both cases, Property 1 always holds, which shows the concavity of the utility function

of the SU. Due to Property 1, Us is concave with respect to Ps. Without considering the power

constraint, setting ∂(U is)
∂(P is)

= 0 yields the optimal transmission power P ∗s , which is given in (4.10).

With P ∗s in (4.10), the SU can maximize its utility Us.

For the case without considering the power constraint, we also have the following proper-

ties.

Property 2. For all SUs, the optimal transmission power P ∗s in (4.10) decreases with the

time allocation coefficient α.

Property 3. The utility function of the primary user is concave with respect to the time

allocation coefficient α, given that the optimal transmission power P ∗s of the SU in (4.10) is

fixed.

Due to Property 2, there is a trade-off for the PU to select the time allocation coefficient α.

When the PU allocates less time to the cooperating SU for transmission, the SU will choose

a lower transmission power during cooperation, which results in a reduction in the utility of

the PU. When the PU allocates more time for the SU, the PU will have less time for its own

transmission, which may also lead to a decrease in its utility. In other words, the PU cannot

keep increasing its utility by increasing α.
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Due to Property 3, the optimal α can be obtained by setting ∂Up
∂α

= 0, since the utility

function of the PU is concave with respect to α. Therefore, the PU can always find its optimal

time allocation coefficient α∗ in (4.15) such that Up(α∗) ≥ Up(α). Together with Property 1,

given the time allocation coefficient α, the SU can always find its optimal transmission power

P ∗s in (4.10). Then, P ∗s in (4.10) and α∗ in (4.15) are the Stackelberg Equilibrium.

In the following, we will discuss the case with power constraint. Due to Property 2, P ∗s in

(4.10) increases as α decreases. For a given value of α, P ∗s may achieve its maximum value

Pmax. Since the scenario before P ∗s approaches Pmax is the same as the case without power

constraint, we only discuss the case when P ∗s = Pmax. When the SU chooses Pmax, it is optimal

for the PU to choose α0, as in the analysis of α∗ in Section 4.3.3. Therefore, we conclude that

the solutions P ∗s in (4.11) and α∗ in (4.12) are the Stackelberg Equilibrium.

4.3.5 Numerical Results

In this part, we present numerical results so as to provide insight into the proposed cooperative

framework. Similar to [41], by normalizing the distance between PU and BS, the SU is ap-

proximately placed at the distance d ∈ (0, 1) from the PU and 1− d from the BS. Considering

a path loss model, the average power gains between the PU and SU, and between the SU and

BS, are
∣∣hips∣∣2 = 1

dζ
and |hisb|

2
= 1

(1−d)ζ
, respectively, where ζ = 3.5 is the path loss coefficient.

Aiming at reducing the system parameters, the maximum secondary transmission power Pmax

is normalized to 1 and we choose Pmax/N0 = 0 dB.

Fig. 4.2 shows the the PU’s throughput on certain channel, averaged over fading, versus

the normalized distance d, for c = 0.2 and 0.5. It is seen that there exists a cooperation range

in which the PU can cooperate with the SU to achieve a higher throughput than that of direct

transmission. Further, a smaller weight c results in a larger cooperation range.

Fig. 4.3 shows the impact of trust values on the SU selection. A number of SUi (i =
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Figure 4.2: Throughput of PU, averaged over fading, versus the normalized distance d.
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Figure 4.3: The impact of trust value on SU selection.

1, 2, 3, 4, 5) with associated trust values 0.75, 0.99, 0.85, 0.9, and 0.95, are located at the nor-

malized distances d = 0.3, 0.4, 0.5, 0.6, and 0.7, respectively. Without considering trust values,

the PU should select SU3 since the PU can achieve the highest throughput via cooperation with

SU3. Considering trust values of SUs, SU2 is the best choice since the PU can attain highest

expected throughput via cooperation with SU2.
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4.4 Cooperation over Multiple Channels

In this section, we extend the cooperation scheme from the single-channel case to the multi-

channel case, where each SU can only select one channel each time to perform cooperation

over that channel. The approach for the single channel cannot bring the maximum benefit to

the whole network because it only focuses on the interest of individual users. It is possible

that multiple SUs compete with each other over some channels for transmission opportunities,

while no SUs exploit the transmission opportunities over the other channels. Therefore, from

the perspective of the whole secondary network, the transmission opportunities are not effi-

ciently utilized; from the perspective of the individual SU, it is not guaranteed that the SU can

obtain the chance to access the channel since it also depends on other SUs selecting the same

channel. To maximize the total utility of the secondary network, the SCC scheme is proposed

for multi-channel CRNs in the section.

4.4.1 SCC Scheme

To exploit the spectrum access opportunities efficiently, the SCC scheme is proposed with the

objective of maximizing the total utility of the secondary network, which is defined as the

aggregate rewarding access time of all channels. For a given channel, the rewarding access

time can be obtained when the SU and the PU use the Stackelberg Equilibrium strategy for

cooperation over that channel. Considering the secondary network is formed in ad hoc mode,

to maximize the total network utility and the average access time per user, SUs first form a

cluster, perform cooperation with PUs to gain transmission opportunities, and then share the

obtained resource fairly.

Specifically, based on the geographic locations, SUs form a clusterN with size N to share

CSI. Then, the best SUs can be selected for each channel, which perform cooperation with

PUs, in order to achieve the maximum aggregate rewarding access time of different channels.
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This problem corresponds to a maximum weight matching problem, which can be represented

by the bipartite graph in Fig. 4.4. Particularly, the vertices correspond to SUs and PUs, while

the weight on each edge represents the rewarding access time 1 − αi(j)T when SUi and PUj

cooperate with each other. Finding the best SUs for cooperation to maximize the aggregate

rewarding time is equivalent to finding the maximum weight matching in Fig. 4.4. The well

known Hungarian algorithm can be performed to find the matching such that the sum of the

weights can be maximized [111].

Figure 4.4: Maximum weight matching

Then, the selected SUs cooperate with the corresponding PUs over different channels using

Stackelberg Equilibrium strategy to obtain the rewarding access time. After that, the SUs in

the cluster start to share the obtained rewarding time fairly. For this purpose, SUs are divided

into two classes: active SUs (i.e., the selected SUs to perform cooperation with PUs as relays)

and inactive SUs (the rest SUs with the size of M ). Considering that the active SUs spend

the transmission power during cooperation, they should have a larger share of the rewarding

time. To this end, two classes of users first share the channels using quadrature signaling,

i.e., the active SUs stay in the current operating channels and use the in-phase component of
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QAM for transmission, while each inactive SUs selects one channel to access and transmit by

employing the quadrature component of QAM. By leveraging quadrature signaling, the active

and inactive SUs can transmit concurrently without interference with each other. For each

inactive SU, they also have to decide which channel to access to maximize their own utilities,

i.e., the shares of rewarding time for accessing the channels. The decision-making process is

modeled by a congestion game and the Nash Equilibrium (NE) strategy can be found. The

share that each inactive SU can obtain is determined by the NE. With the SCC scheme, each

SU can be guaranteed to gain certain access time. Moreover, the average access time obtained

using the SCC scheme is longer than that using the random channel access approach, which

will be shown in the numerical results.

Each inactive SU selects a access channel among the multiple channels with differen-

t rewarding time, aiming to maximize its own utility. The congestion game is leveraged to

model this process, which is defined by the tuple {M,K, (
∑
i)i∈M, (U

i
j)i∈M,j∈K}, where

M = {1, 2, ...,M} is the set of inactive SUs, K = {1, 2, ..., K} denotes the set of chan-

nels,
∑
i represents the strategy space of SUi, and U j

i is the utility function of SUi when

selecting channel j. Note that U j
i is a decreasing function of the total number of SUs selecting

the channel j, because of the competition or congestion. In other words, when more SUs select

the same channel, each SU can obtain a less share. Each SU tries to maximize its utility by

deciding which channel to access. The utility function of SUi can be defined as follows:

U j
i = Ψjζ(nj), (4.16)

where Ψj is the length of the rewarding access time of channel j, ζ(nj) is the share of the

rewarding access time which SUi obtains over channel j, and nj is the total number of inactive

SUs selecting channel j. Therefore, U i
j represents the access time that SUi can have. For

simplicity, the inactive SUs selecting the same channel share the rewarding time equally using

TDMA, and then ζ(ni) = 1/ni.
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In the congestion game, if each one has chosen a strategy and no one can increase its utility

by changing strategy unilaterally, the current strategy profile constitutes an NE.

Definition 3: A strategy profile S∗ = (s∗1, s
∗
2, . . . , s

∗
M) is an NE if and only if

Ui(s
∗
i , s
∗
−i) ≥ Ui(s

′
i, s
∗
−i),∀i ∈M, s′i ∈ Si, (4.17)

where si and s−i are the strategies selected by SUi and the other SUs, respectively. NE means

no one can increase its utility unilaterally.

It is known that the congestion game always exists pure NE. The condition for NE in the

congestion game is given as follows:

ni = d
ΨiM −

∑
j 6=i,j∈KΨj∑

j∈KΨj

e+ n′, (4.18)

where n′ ∈ {0, 1, 2, . . . , dΨiM+Ψi(K−1)∑
k∈KΨk

e − dΨiM−
∑
k 6=i,k∈KΨk∑

k∈KΨk
e − 1}. The detailed proof can

be found in the Appendix C. Since any strategy profile which satisfies the above condition in

(4.18) will constitute an NE, there exist multiple NEs in the proposed congestion game. In

order for the SUs to select an NE strategy, procedure 2 in algorithm 5 can be used for SUs to

determine which channel to access.

The whole procedure of SCC scheme is presented in Algorithm 1, which consists of two

main parts: the best SUs selection and rewarding access time sharing.

4.4.2 Numerical Results

To evaluate the performance of the SCC scheme, similar to [86], we set up the simulation

scenario as follows: the base station is placed at the origin (0, 0) and PUs are randomly located

between (0, dp,min) and (0, dp,max); while SUs are randomly located between (0, ds,min) and
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Algorithm 3
1: // Initialization: Form the cluster based on geographic locations
2: // Procedure 1: Best SUs Selection
3: for each SUi ∈ N do
4: for PUj on channel j, j ∈ K do
5: Calculate access time allocation αi,j using (4.12)
6: Calculate rewarding periods Ψi,j = 1− αi,j .
7: end for
8: end for
9: Run Hungarian algorithm to find the best SUs for cooperation

10: // Procedure 2: Rewarding Access Time Sharing
11: Set congestion vector n(S) = (n1, ..., nK) = (0, 0, ..., 0).
12: Order the rewarding periods on each channel [Ψ1,Ψ2, . . . ,ΨK ] decreasingly according to

the length.
13: for each SUi ⊆ N do
14: if SUi is active SU then
15: SUi stays in the current operating channel.
16: SUi employs the in-phase component for transmission.
17: else
18: for each Ψj , where j ⊆ K do
19: Calculate Ψjζ(nj + 1).
20: end for
21: SUi selects the channel with maximum Ψjζ(nj + 1).
22: SUi employs the quadrature component for transmission.
23: nj = nj + 1.
24: end if
25: end for
26: return

(0, ds,max). The number of PUs is set to 5. The distances between nodes are normalized by

dp,max and the previous path loss model is utilized to calculate average power gains.

Fig. 4.5 shows the impact of the number of inactive SUs (M ) on the NE of the congestion

game. Define channel selection indicator of channel i as the number of inactive SUs choosing

channel i divided by the total number of inactive SUs, i.e., ni/M , which reflects the popularity

of the channel. WhenM is small, some channel(s) may not be chosen by any SU. For example,

there is no inactive SU choosing channel 1 when M = 8. When M becomes higher, all
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Figure 4.5: Impact of the number of inactive SUs on Nash Equilibrium
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Figure 4.6: Average access time per SU averaged over fading for SCC scheme and random
channel access

channels are selected by at least one SU and the selection indicator of each channel also changes

to satisfy the NE condition.

Fig. 4.6 shows the average access time per user, averaged over fading, versus the size of

the cluster. We compare the proposed scheme with the random channel access approach. It can

be seen that each SU can obtain longer access time using the proposed scheme, compared with

the random channel access approach. The reason is that the best SUs are selected to obtain the

maximum aggregate time, which is fairly shared by all the SUs.
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Figure 4.7: Fairness among SUs versus the number of SUs

Similar to [112], we define fairness as (
∑
i Ui)

2

N
∑
i U

2
i

, where Ui is the access time obtained by SUi.

Fig. 4.7 shows the fairness among SUs. It can be seen that the fairness of the SCC scheme

outperforms the random access approach. This is because each SU can obtain a certain share

of access time using the SCC scheme, while only a few SUs can exclusively access the channel

using the random channel access approach.

4.5 Summary

In this chapter, we have studied cooperative cognitive radio networking in multi-channel s-

cenario, considering trustworthiness of SUs. We have investigated cooperation over a single

channel by Stackelberg game. Based on the results of the single channel scenario, we have

proposed a SCC scheme for the cooperation over multiple channels. In the SCC scheme, SUs

form a cluster to maximize the total utility of the secondary network and share the obtained

resources based on congestion game and quadrature signaling. Numerical results have demon-

strated that, with the proposed schemes, the PUs can achieve higher throughput, while the SUs

can obtain longer average access time, compared with the random channel access approach.

96



Chapter 5

Cooperation for Credits

In this chapter, we study the user cooperation to enhance the PU’s security when SUs have no

traffic, where the PU cooperates with SUs to transmit message securely in presence of multiple

eavesdroppers [113]. To stimulate the cooperation of SUs, the PUs grant credits to them. The

earned credits can be utilized by SUs for spectrum leasing in the future when they have traffic.

In other words, the SUs can earn credits through cooperation with PUs and consume credits in

spectrum trading market when needed. In this study, we mainly focus on the following issues:

i) with whom to cooperate; ii) how to determine and share the credits. To address those issues,

a cooperative framework is proposed, whereby the PU selects multiple SUs and stimulates

them by granting an amount of rewards. Specifically, multiple SUs acting as cooperative relays

and jammers are selected by the PU using greedy or cross-entropy based approaches. Then,

the PU and the SUs negotiate for the payment and transmission power, which is modeled as a

two-layer game. At the top layer, a buyer-seller game is utilized, where the PU pays to buy the

service provided by the SUs. At the bottom layer, all the SUs share the reward by determining

their transmission powers in a distributed way, which is formulated as a non-cooperative power

selection game. By analyzing the game, the SUs can determine the transmission powers for

cooperation, while the PU can select the best payment. To further improve the utility of the
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Figure 5.1: Cooperation for credits.

PU, a set of reward allocation coefficients are introduced and optimized using particle swarm

optimization approach.

5.1 System Model

As depicted in Fig. 5.1, the system consists of a primary transmitter as the source (S), a primary

receiver as the destination (D), M intermediate SUs (i = 1, 2, ...,M ), and one or multiple

eavesdroppers (E) who aim to decode the source’s information [92]. It is known that when

the channel between S and D is worse than that between S and E, the secrecy rate is zero.

To transfer information securely, S requests the SUs for cooperation, which are all considered

friendly1. For cooperation, it may not be the best for all the friendly nodes to participate.

Moreover, the SUs can act as relay or jammer in cooperation. To maximize the secrecy rate, S

has to select the suitable cooperative SUs and their roles (relay or jammer).

A slow, flat, block Rayleigh fading environment is considered, where the channel remains

static in one time slot and changes independently over different time slots. The channel coeffi-

1The work in [114, 115] consider user cooperation with untrusted nodes.

98



Chapter 5. Cooperation for Credits

cients from S to D and S to a specific E are denoted by hsd and hse, respectively. The channel

coefficient from S to SU i ∈ M is denoted by his. Similarly, the channel coefficients from

SU i ∈ M to D and E are hid and hie, respectively. The global CSI is assumed available for

the system, including D-related CSI (D-CSI) and E-related CSI (E-CSI), which is a common

assumption in PHY layer security literature [86, 87, 89, 90]. E-related CSI (E-CSI) can be ob-

tained in the scenarios where the eavesdroppers are active in the network and their transmission

can be monitored [86]. In addition, additive white Gaussian noise is assumed with zero mean

and the one-side power spectral density is N0. Moreover, each node is equipped with a single

antenna and communicates with each other in a half-duplex mode.

5.2 Partner Selection

We use secrecy rate as a measure for secure communication, which is defined as the difference

between the transmission rate at D and that at E. In what follows, we will first analyze the

secrecy rate through cooperation and then select the suitable partners.

At the destination D, the SNR γsd from the direct link (S to D) is given by

γsd =
Ps |hsd|2

N0

, (5.1)

where Ps is the transmission power of the source.

Suppose that SU i is in the relay set R, then the SNR from relay i using Amplify-and-

Forward (AF) cooperative protocol can be given as follows [102]:

γid =
1

N0

Ps |his|
2
Pi |hid|

2

Ps |his|
2 + Pi |hid|

2
+N0

, i ∈ R, (5.2)

where Pi is the transmission power of node i.

99



Partner Selection

Suppose that SU j is in the jammer set J, the interference γjd caused by jammer j can be

given as follow:

γjd =
Pj
∣∣hjd∣∣2
N0

, j ∈ J. (5.3)

Using maximal ratio combining (MRC), the achievable rate at D can be expressed as fol-

lows:

Rd =
W

2
log2(1 +

γsd +
∑

i∈R γ
i
d

1 +
∑

j∈J γ
j
d

). (5.4)

At a generic eavesdropper, e.g., k-th E, the SNR γse from the source can be given as follows:

γse =
Ps |hse|2

N0

. (5.5)

The SNR γie from relay i, where i ∈ R, can be given as follows:

γie =
1

N0

Ps |his|
2
Pi |hie|

2

Ps |his|
2 + Pi |hie|

2 +N0

, i ∈ R. (5.6)

The interference γje caused by jammer j, where j ∈ J, can be given as follow:

γje =
Pj |hje|

2

N0

, j ∈ J. (5.7)

Similarly, the achievable rate at the k-th E can be expressed as follows:

Rk
e =

W

2
log2(1 +

γse +
∑

i∈R γ
i
e

1 +
∑

j∈J γ
j
e

). (5.8)
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According to the definition of secrecy rate, the secrecy rate is given by

Rk
sec = Rd −Rk

e , (5.9)

where Rd and Rk
e are given in (5.4) and (5.8), respectively.

Considering the presence of multiple eavesdroppers, the overall secrecy rate Rsec is given

by

Rsec = max{0,min
k
{Rd −Rk

e}}, (5.10)

where Rk
e is the achievable rate at the k-th eavesdropper.

In the first step, the source selects the cooperative relays and jammers to maximize the

secrecy rate, assuming that the transmission power of the potential participants is fixed. This

problem can be formulated as follows:

max
Xi,j ,∀i∈{1,2,...,M}

Rsec

s.t.
∑

j∈{R,J,Nu}

Xi,j = 1,∀i ∈ {1, 2, ...,M}

Xi,j ∈ {0, 1},∀i ∈ {1, 2, ...,M} and ∀j ∈ {R, J,Nu}

Specifically, the binary variable Xi,j indicates the role of SU i, where j can be {R, J,Nu},

which correspond to act as a relay (R), a jammer (J), or keep silent (Nu). For example, when

Xi,R = 1, SU i acts as a relay. The secrecy rate Rsec = W
2

log2(1 +
γsd+

∑
i∈R γ

i
d

1+
∑
j∈J γ

j
d

)− W
2

log2(1 +

γse+
∑
i∈R γ

i
e

1+
∑
j∈J γ

j
e

), where the relay and jammer set can be determined by R = {i,Xi,R = 1} and

J = {i,Xi,J = 1}. Exclusive search can obtain the optimal solution. However, the complexity

is high since the search space is exponential to the number of intermediate nodes. Instead, two

heuristical algorithms are proposed in the following.
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5.2.1 Greedy-based Partner Selection Algorithm

Based on the above formula, a greedy partner selection algorithm is developed, as shown in

Algorithm 1. The main idea is to select the best cooperative SU at each round until the overall

secrecy rate cannot be improved.

Algorithm 4 Greedy Parter Selection Algorithm
Input: M, his, h

i
d, h

i
e, ∀i ∈M.

Output: Partner selection results R and J
1: (Initialization): Set Rsec = 0, ∀i ∈M.
2: for i← 1 to M do
3: for j ∈ {R, J,Nu} do
4: Xi,j = 1
5: Calculate R

′
sec

6: end for
7: Find the maximum R′sec
8: if R′sec > Rsec then
9: Rsec = R′sec

10: Xi,j = argmaxR′sec
11: end if
12: end for
13: return R = {i,Xi,R = 1} and J = {i,Xi,J = 1}

5.2.2 Cross-Entropy based Partner Selection Algorithm

The partner selection problem can also be solved using the Cross-entropy (C-E) method, which

is more efficient in searching the optimal solution [116]. In C-E method, ”deterministic” opti-

mization problem should be translated into a related ”stochastic” optimization problem, where

the rare event simulation techniques similar to [77] can be utilized. In other words, the main

idea behind the C-E method is to define for the original optimization problem an associated

stochastic problem (ASP) and then efficiently solve the ASP by an adaptive scheme. It sequen-

tially generates random solutions which converge stochastically to the optimal or near-optimal

one.
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Typically, the C-E method involves an iterative procedure where each iteration comprises of

the following two phases: i) Generate a random data sample according to a specified stochas-

tic policy; ii) Update the stochastic policy based on the outcome of the sample to produce a

”better” sample in the next iteration.

C-E algorithm: Algorithm 2 represents the detailed procedure of channel selection, which

consists of five main steps as follows.

Define the strategy space S for all the SUs as follows:

S := {R, J,Nu}. (5.11)

The probability vector associated with the strategy space is given as follows:

Pit := {piR,t, piJ,t, piNu,t},
∑

j∈{R,J,Nu}

pij,t = 1, (5.12)

where Pit denotes the stochastic policy of SU i on the strategy space S at t-th iteration, and pij,t

denotes the probability that SU i chooses strategy j at t-th iteration.

1. (Initialization). Set the iteration counter t := 1. Set the initial stochastic policy Pi0 of

all SUs to be the uniform distribution on the strategy space S. In other words, for each

intermediate node, it picks the strategy from the strategy space uniformly, with equal

probability 1/3.

2. (Generation samples). Based on the initial stochastic policy of all nodes, the Z samples

of the strategy vector are generated, which can be given as follows:

Si(z) := {I iR(z), I iJ(z), I iNu(z)}, (5.13)
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Algorithm 5 C-E Partner Selection Algorithm
Input: M, T , Z, ρ, his, h

i
d, h

i
e,∀i ∈M.

Output: Partner selection results R and J
1: (Initialization): Set Rsec = 0 and pij,t = 1/3, j ∈ {R, J,Nu}, ∀i ∈M.
2: for t← 1 to T do
3: for z ← 1 to Z do
4: for i← 1 to M do
5: Generate samples of the strategy vector.
6: end for
7: end for
8: for z ← 1 to Z do
9: Calculate the utilities U(z) according to (5.9).

10: end for
11: Order the utilities U(z) in a nonincreasing manner.
12: for i← 1 to M do
13: for j ← {R, J,Nu} do
14: Update Pit using (5.15)
15: end for
16: end for
17: end for
18: return R = {i, piR,T = 1} and J = {i, piR,J = 1}

where Si(z) is the z-th strategy vector of node i with only one element to be ”1” and the

rest are ”0”. The probability for I ij to be ”1” is pij,t.

3. (Performance evaluation). Substitute the samples into (5.11) to calculate the utilities

U(z). Arrange the U(z) in a nonincreasing order according to the values, i.e., U1 >

U2 > ... > UZ . Let υ be the (1−ρ) sample quantile of the performances: υ = Ud(1−ρ)Ze,

where d·e is the ceiling function.

4. (Stochastic policy update). Based on the same sample, calculate Pit := {piR,t, piJ,t, piNu,t},

using the following equation:

pij,t =

∑Z
z=1XUn≥υI

i
j(z) = 1∑Z

z=1XUz≥υ
, (5.14)
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where XUz≥υ is defined as follows:

XUz≥υ =

1 U z ≥ υ

0 otherwise
(5.15)

5. If the stopping criterion is met (e.g., the maximum iteration number is reached), stop;

otherwise increase the iteration counter t by 1, and reiterate from step 3.

5.3 Incentive Mechanism for Cooperative Secure Communi-

cations

To motivate the SUs to participate in cooperation for security enhancement, the source an-

nounces an amount of reward to all the participants. Then, all the participants, which is com-

petitive with each other, maximize their utilities by determining the transmission power for

cooperation, given the announced reward. This process is modeled as a two-layer game, which

can be illustrated in Fig. 5.2. On the top layer, a buyer-seller game is utilized to model the

payment selection process, based on the framework of two-stage Stackelberg game. On the

bottom layer, all the partners share the reward by determining their transmission powers in a

distributed way, which is formulated as a non-cooperative power selection game. By analyzing

the game, the best payment and transmission power can be determined. In the following, we

first define the utilities of players and then analyze the game to find the best strategies for the

players.
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Figure 5.2: Two layer game.

5.3.1 Utility Functions

The utility of the source node (i.e., the primary transmitter) is given by

Us = λ1Rsec −Rm (5.16)

where λ1 is the profit per secrecy rate, while 0 ≤ Rm ≤ Rmax is the payment it grants to the

cooperative relays and jammers.

The cooperative relays and jammers share the payment according to their contribution to

the secrecy rate. In other words, the payment the cooperative participant can obtain is propor-

tional to the contribution it makes in the cooperation. Since the relay is leveraged to increase

the perfect secrecy of the relaying link compared with that of the eavesdropper link, the contri-

bution can be approximately given by
P ir|hird|
|hire|

. While the jammer is leveraged to increase more

artificial noise at eavesdropper than at the destination node, the contribution the jammer makes

can be approximately given by
P ij |hije|
|hijd|

.
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The utility of the selected SU i is given by

Ui =
Piri∑
j⊆C Pjrj

Rm − λ2Pi.

where C := R]J is the set of selected nodes with the sizeN , λ2 is the cost rate for transmission

power, and the contribution factor ri is defined as follows:

ri =


|hid|
|hie|

, i ∈ R
|hie|
|hid|

, i ∈ J
(5.17)

As a two-stage game, the buyer-seller game can be analyzed by the backward induction

method. First, the optimal strategies (i.e., the transmission powers) of the partners are analyzed,

assuming the strategy of the source node (i.e., the payment) is fixed. Second, based on the

results of the first step, the source node decides the optimal strategy, being aware of the effects

of its decision on the strategies selected by the partners. By doing so, the best strategies of

both the source node and the partners are obtained such that the corresponding utilities can be

maximized.

5.3.2 No-cooperative Power Selection game

In order to stimulate the cooperation of the SUs, the source node pays for their service. Each

SU gets a certain amount of payment according to its contribution in the service. For a given

reward, each cooperative node tries to maximize its own utility by selecting a suitable trans-

mission power, which is modeled as a non-cooperative power selection game.

Definition 5.3.1. Non-cooperative power selection game is defined by G = {C, {Si}, {Ui}},

where C is the set of players, Si is the strategy set of SU i, and Ui is the utility function of SU i.
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Note that Si is the transmission power that SU i can choose and the utility function of SU i

is given as follows:

Ui =
Piri∑
j⊆C Pjrj

Rm − λ2Pi.

Theorem 3. There exists a Nash equilibrium in the non-cooperative power selection game

G = {C, Si, {Ui}}.

Proposition 1. An NE exists in the non-cooperative power selection gameG = {C, {Si}, {Ui}},

if for all node i ∈ C: i) Si is a nonempty, convex, and compact subset of some Euclidean space

RN ; and ii) Ui is continuous in P and concave in Pi, where P is the set of Pi, i ∈ C.

The strategy space Si is defined as the transmission power 0 ≤ Pi ≤ Pmax. Therefore, the

strategy space is a nonempty, convex, and compact subset of some Euclidean space Rn.

Since the utility Ui is given by

Ui =
Piri∑
j⊆C Pjrj

Rm − λ2Pi. (5.18)

which is continuous in P . Taking the first derivative of Ui with respect to Pi yields

∂Ui
∂Pi

=
riRm

∑
j 6=i,j⊆C Pjrj(∑

j⊆C Pjrj

)2 − λ2 (5.19)

Then, taking the second derivative of Ui with respect to Pi, we have

∂2Ui
∂2Pi

= −2
ri

2Rm

∑
j 6=i,j⊆C Pjrj(∑

j⊆C Pjrj

)3 < 0 (5.20)

The second derivative of Ui with respect to Pi is always negative, which means Ui is concave

in Pi. Therefore, the non-cooperative power selection game G exists an NE.
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Theorem 4. The non-cooperative power selection game G has an unique Nash equilibrium.

Definition 5.3.2. A weighted sum of Ui(P ) is given by σ(P, µ) =
∑N

i=1 µiUi(P ), where µ =

{µ1, µ2, ..., µN} with µi ≥ 0 and P = {P1, P2, ...Pi, ...PN}. The pseudogradient of σ(P, µ) is

defined by ϕ(P, µ), which is given by

ϕ(P, µ) =


µ1∇1U1(P )

µ2∇2U2(P )
...

µN∇NUN(P )

 (5.21)

Define Ψ(P, µ) be the Jacobian matrix of ϕ(P, µ) with respect to P .

Proposition 2. If σ(P, µ) is diagonally strict concave in P for some positive µ, the non-

cooperative power selection game has a unique Nash equilibrium [117].

Proposition 3. σ(P, µ) is diagonally strict concave if the symmetric matrix [Ψ(P, µ),Ψ′(P, µ)]

is negative definite for P [117].

Proposition 4. The symmetric matrix [Ψ(P, µ),Ψ′(P, µ)] is negative definite for P if the fol-

lowing conditions are satisfied: i) Ui(P ) is concave with respect to Pi; ii) Ui(P ) is convex with

respect to P−i , where P−i is the transmission power of other nodes rather than SU i; iii) σ(P, µ)

is concave with respect o P for some positive µ [117].

As proved before, Ui(P ) is concave with respect to Pi. In the following, we prove the last

two propositions. Taking the first derivative of Ui(P ) with respect to Pj , j 6= i, yields

∂Ui
∂Pj

= − riRmrj(∑
j⊆C Pjrj

)2 (5.22)
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The second derivative of Ui(P ) with respect to Pj (j 6= i) is given by

∂2Ui
∂2Pj

=
2riRmr

2
j(∑

j⊆C Pjrj

)3 > 0 (5.23)

Therefore, Ui(P ) is convex with respect to P−i . According to the rule that ∂
∑
i f(x)

∂x
=
∑

i
∂f(x)
∂x

,

based on (5.20) and (5.32), the second derivative of σ(P, µ) with respect to Pi is given by

∂2σ(P, µ)

∂2Pi
= µi

−2ri
2Rm

∑
j 6=i,j⊆C Pjrj(∑

j⊆C Pjrj

)3 +
∑

j 6=i,j⊆C

µj
2rjRmr

2
i(∑

j⊆C Pjrj

)3 (5.24)

It is obvious that for some positive µ, ∂2σ(P,µ)
∂2Pi

> 0. Therefore, the non-cooperative power

selection game has a unique NE.

Since Ui is concave with respect to Pi, the best response correspondence can be obtained

by setting the first derivative of Ui with respect to Pi to 0, as follows:

∂Ui
∂Pi

= −−riRmAi + λ2Ai
2 + 2λ2AiPiri + λ2Pi

2ri
2(∑

j⊆C Pjrj

)2 = 0 (5.25)

where Ai =
∑

j 6=i,j⊆CwjPjrj . By solving it, the solutions are given by

P ∗i =


0 if

∑
j 6=i,j⊆C Pjrj ≥

RmPiri
λ2

1
ri

(
√

RmPiriAi
λ2

− Ai) if
∑

j 6=i,j⊆C Pjrj <
RmPiri
λ2

and 1
ri

(
√

RmPiriAi
λ2

− Ai) < Pmax

Pmax otherwise
(5.26)

The detailed procedure can be found in the Appendix D.
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By solving the equations set (5.25), we can find the unique equilibrium as follows:

P ∗i = [min{ RmriBi

λ2(ri +Bi)2
, Pmax}]+ (5.27)

where Bi = (N−1)ri∑N
j=1

ri
rj
−N+1

. The detailed procedure can be found in the Appendix D.

5.3.3 Source Node Utility Maximization

Based on the analytical results of the power selection game, the source determines its strategy

(the payment) to maximize its utility, aware of the effects of its strategy on the results of the

power selection game. It can be formulated as the following problem:

max
Rm

Us = λ1Rsec −Rm

s.t. 0 ≤ Rm ≤ Rmax.

(5.28)

where Rsec is obtained when the partners adopt the transmission power given by (5.27), which

is a function of Rm. Therefore, the utility function of the source becomes a function of one

single parameter Rm. To find the best Rm, the classic approach is to find the extremum by

setting the first derivative of Us with respect to Rm equal to 0 and then compare the extremum

with the boundary to find the best payment R∗m. Finally, we can obtain the best strategy of

partners by substituting R∗m into (5.27).

5.4 Weighted Payment Allocation Approach

In the previous section, the source can only determine the amount of payment to the cooperative

partners. To further improve the utility of the source, it can actively affect the way how the

partners share the payment by means of introducing a set of weights for the partners, which

111



Weighted Payment Allocation Approach

are relevant to the CSI of the partners. Specifically, the source introduces the weights W :=

{w1, w2, ..., wi, ..., wN} as the allocation coefficients, associated with the selected SUs, where

N is the total number of selected SUs for cooperation, 0 ≤ wi ≤ 1 is the allocation coefficient

for SU i and
∑

iwi = 1. With the allocation coefficient posed by the source, the interaction

between the source and SUs are modeled using the similar game as before.

5.4.1 Utility Functions

The utility function of the source node is the same as before, which is given as follows:

Us = λ1Rsec −Rm. (5.29)

Different from the previous case, the utility of the cooperative SU i is given by

Ui =
Piwiri∑
j⊆C Pjwjrj

Rm − λ2Pi. (5.30)

where wi is the payment allocation coefficient for SU i and ri is the contribution factor defined

in (5.17).

5.4.2 Non-cooperative Power Selection Game

Given the payment Rm and the allocation coefficients W := {w1, w2, ..., wi, ..., wN}, the s-

elected SUs determine their own strategies, i.e., the transmission power, to maximize their

utilities, given by (5.30).

Taking the first derivative of Ui with respect to Pj , j 6= i, yields

∂Ui
∂Pj

= − wiriRmwjrj(∑
j⊆CwjPjrj

)2 (5.31)
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The second derivative of Ui with respect to Pj (j 6= i) is given by

∂2Ui
∂2Pj

=
2wiriRm(wjrj)

2(∑
j⊆CwjPjrj

)3 > 0 (5.32)

Similar to the proof for the existence of NE and the uniqueness in the previous case, the

new power allocation game can be proved to have a unique NE.

Since Ui is concave with respect to Pi, the best response correspondence can be obtained

by setting the first derivative of Ui with respect to Pi equal to 0, i.e.,

∂Ui
∂Pi

= −−wiriRmAi + λ2Ai
2 + 2λ2AiwiPiri + λ2wi

2Pi
2ri

2(∑
j⊆CwjPjrj

)2 = 0 (5.33)

where Ai =
∑

j 6=i,j⊆CwjPjrj .

By solving the equations set (5.33), we can find the unique equilibrium as follows:

P ∗i = [min{ RmwiriBi

λ2(wiri +Bi)2
, Pmax}]+ (5.34)

where Bi = (N−1)wiri∑N
j=1

wiri
wjrj

−N+1
.

5.4.3 Source Node Utility Maximization

In the previous section, we present how the weight coefficient W affects the power allocation

of the cooperative partners, as shown in (5.34). Different transmission power selection in

turn changes the utility function of the source. Therefore, there exists an implicit relationship

between the utility function Us and the weight coefficient W . In this section, we aim to find

the optimal W such that Us can be maximized, which can be formulated as the following
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optimization problem:

max
w1,w2,...,wN

Us

s.t. 0 ≤ wi ≤ 1, i = 1, 2, ..., N∑
i
wi = 1

(5.35)

Since it is difficult to derive an explicit equation to express the relation between Us and

W , regular optimization methods may not be applicable. Bio-inspired and swarm intelligence

optimal method, as an important branch of optimization theory, provides an effective way to

address such complex problems. Genetic algorithm (GA) is the most successful one in this area

and has been applied to solve many practical problems. However, due to the inherent encoding

structure and iteration rule, GA is not appropriate for continuous variable optimization. In

this section, we adopt a relatively new swarm intelligence method, named Particle Swarm

Optimization (PSO) to solve the above problem [20,118]. Compared with GA, PSO has better

global searching ability, especially in the continuous space, and a local searching ability near

the end of the run.

The standard PSO algorithm typically involves the following steps: 1) Construct particle

structure to map the solution of interest problem; 2) Create initial topology for particle swarm

and parameters; 3) Evaluate fitness value of each particle; 4) Update particle position; 5) Repeat

step (2) to (4) until the solution satisfies the terminating condition.

Following this framework, we first construct a root particle Par, which is a vector of alloca-

tion coefficients, i.e., Par = {w1, w2, ..., wn}. The n-th element of Par indicates the allocation

coefficient for n-th partner (i.e., wn). In other words, Par implies an initial allocation, as well

as a start point for the optima searching. In this chapter, an equal weight distribution strategy

are adopted, i.e. Par(n) = 1/N .

Based on the given Par, we initialized the particle swarm with the size of NPSO. The i-

114



Chapter 5. Cooperation for Credits

Figure 5.3: Illustration of calculating the fitness for a given particle.

th particle can be expressed as an N -dimensional vector Pai and denote its n-th element by

Pai(n), which is given as follows:

Pai(n) = Par(n) + ω, (5.36)

where ω follows the uniform distribution in [−Par(n), 1− Par(n)].

Pai(n) =
Pai(n)∑
n Pai(n)

,∀i ∈ [1, NPSO], n ∈ [1, N ] (5.37)

The fitness value of the i-th particle is denoted as Fii, which actually is the utility of the

source. In other words, Fii is the utility function Us of source that can be obtained by using

(5.16). Fig. 5.3 illustrates the process for calculating the fitness for a given particle. In addition,

denote by PaGopt the global best particle of the swarm, i.e. the particle with the highest fitness
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value Gopt; denote by PaGopt
i the best historical position of i-th particle with the corresponding

fitness value Popti. The position variation for i-th particle is denoted as Veti. At the t-th

iteration, the particle position can be updated by the following equations:

Vet+1
i = λ

(
Veti + cγ1(PaGopt

i − Pati) + cγ2(PaGopt − Pati)
)

(5.38)

Pat+1
i = Pati + Veti (5.39)

where λ is inertia coefficient in PSO algorithm and the random variables γ1 and γ2 are

uniformly distributed within [0,1]. In this chapter, these parameters are set as follows:

λ =
1

|1− c−
√
c2 − 2c|

(5.40)

where c = 2.05 and λ = 0.729. Algorithm 3 represents the detailed procedure of the PSO

based weight selection.

5.5 Simulation Results

In this section, simulation results are provided to evaluate the performance of the proposed

scheme. The simulation is set up as follows. In a 1 km× 1 km area, the source, the destination,

and two eavesdroppers are located at the origin, (1 km, 0.5 km), (1 km, -0.5 km), and (0.8 km,

-0.4 km), respectively, while a set of SUs are located in between. The maximum transmission

power of all nodes are set to 1 W, while the noise power is set to -70 dB. The average power

gains between nodes is calculated by the path loss with exponent µ = 3.5. The maximum

power is set to 10 W.

To evaluate the average performance of the proposed partner selection algorithms with re-

spect to the number of intermediate SUs, Monte Carlo simulation is carried out, which consists
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Algorithm 6 PSO based weight selection algorithm
Input: Number of partners, number of particle swarm NPSO

Output: Weight Coefficient W
1: // Step1: Initialization
2: Generate root particle particleroot with equal weight distribution,
3: for i← 1 to NPSO do
4: Generate searching particle particlei
5: end for
6: // Step2: Find particleGopt, Gopt
7: Calculate the Fitnessi of source node, i = 1, 2, ..., NPSO

8: Find the global best particleGopt and Gopt
9: Find the local best particleGopt

i and Popti
10: // Step3: Update
11: for i← 1 to NPSO do
12: Update particlei using (5.38) and (5.39)
13: Run Step 2
14: if particleGopt and particleGopt

i stay unchanged then
15: Stop
16: else
17: Continue
18: end if
19: end for
20: Return particleGopt
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of 500 trials. At each trial, a number of intermediate SUs are uniformly distributed in the area.

Fig. 5.4 shows the average secrecy rate using the exhaustive search algorithm, the proposed

greedy algorithm, C-E algorithm, and single relay and jammer selection algorithm in [119].

The exhaustive search algorithm has the best performance and it provides a performance bench-

mark. It can be seen that the C-E algorithm can achieve almost the same performance as the

exhaustive search algorithm does. Moreover, it can be seen that the proposed algorithms can

achieve higher secrecy rate, compared with the single relay and jammer selection algorithm.

This is because they can fully exploit the benefits of cooperation by leveraging multiple relays

and jammers.
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Figure 5.4: Comparison among different partner selection algorithms.

In the following simulation, we validate the incentive mechanism in the network scenario,

as shown in Fig. 5.5. The source, destination, eavesdroppers are fixed at the same location

as before, while 15 intermediate SUs are distributed at the locations marked in the figure. The

source can choose the reward from the range between 0 and 100. Fig. 5.6 shows the utility of the

source, averaged over fading distribution, versus the amount of reward, for different λ1 and λ2.

It can be seen that the overall utility first increases and then decreases as the reward increases.

The reason is that, at the beginning, with increasing reward, the partners are willing to devote

more transmission power during cooperation, which leads to an increase in the secrecy rate.
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However, when the reward keeps rising, the cost also increases, which will lower the overall

utility. It can also be seen that there exists an optimal value of the reward, with which the utility

can be maximized. It can also be seen that a larger λ1 leads to a greater utility and payment

because the source node cares more about the secrecy rate and is willing to pay more reward to

increase the secrecy rate. Moreover, a larger λ2 leads to a lower utility, since the intermediate

SU cares more about their energy consumption and it will devote less power to cooperate given

the same payment.
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Figure 5.5: The network scenario for simulation.

Fig. 5.7 shows the utilities of intermediate SUs, averaged over fading distribution. It can

be seen that the partners, who contribute to increase the secrecy rate of the source, can receive

a certain amount of reward through cooperation, which implies that all the partners have the

incentive for cooperation. Moreover, the node located at (0.9 km, -0.4 km) act as a jammer

(node 13), while other nodes receiving non-zero rewards act as relays.

Fig. 5.8 shows the average utility of the source using PSO with respect to the number of

intermediate SUs, using Monte Carlo simulation. It can be seen that with PSO algorithm, the

source can achieve higher utility than that using only C-E partner selection algorithm when

the proposed incentive mechanism is applied. That is because the source can actively affect
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Figure 5.6: Utility of the source versus the amount of rewards.
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Figure 5.7: Utilities of intermediate nodes averaged over fading when λ1 = 60 and λ2 = 1.

the power allocation of the intermediate SUs by introducing the reward allocation weights.

Through adjusting the weights, the intermediate SUs can be better stimulated to further improve

the secrecy rate.

Fig. 5.9 shows the utilities of intermediate SUs, averaged over fading distribution using

the same network scenario in Fig. 5.5. Compared with Fig. 5.7, it can be seen that more

intermediate SUs are encouraged/stimulated to contribute to increase the secrecy rate when

PSO algorithm is applied.
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Figure 5.8: Utilities of the source with PSO when λ1 = 100 and λ2 = 1.
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Figure 5.9: Utilities of intermediate nodes averaged over fading using PSO when λ1 = 60 and
λ2 = 1.

5.6 Summary

In this chapter, we have proposed a cooperative framework to enhance the PU’s security in

present of multiple eavesdroppers through cooperation with SUs who have no traffic require-

ment. Two partner selection algorithms have been devised, which can select suitable SUs,

acting as relays or jammers to maximize the secrecy rate. A game-theoretic incentive mecha-

nism has been proposed to stimulate the SUs to participate into cooperation. With the proposed
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cooperative scheme, all the cooperative SUs can gain a ceratin amount of credits, which can

be used in the future when needed. In addition, the security of the PU can be significantly

enhanced by preventing eavesdroppers from decoding the message transmitted. The proposed

scheme can be applied in a network without infrastructure for secure information transfer, or

for key exchange. Moreover, the proposed scheme can combine with the upper layer crypto-

graphic schemes to provide enhanced security.
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Conclusion and Future Works

In this chapter, we summarize the major research contributions and discuss future research

works.

6.1 Major Research Contributions

This research aims at developing security-aware cooperation schemes for dynamic spectrum

access. We are working on different cooperation scenarios, including cooperative spectrum

sensing, secure communications in CCRN, risk-aware cooperation in CCRN, and cooperation

with PUs for credits. Particularly, in this thesis, we have

• investigated dynamic spectrum access in a multi-channel CRN. A cooperative framework

integrating spectrum sensing and spectrum sharing has been proposed, considering both

the diverse channel usage characteristics and the diverse sensing performance of individ-

ual SUs. For spectrum sensing, to maximize the expected available time of all the chan-

nels, a cross-entropy based approach has been proposed to schedule SUs for selecting
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sensing channels. For spectrum sharing, an channel access algorithm has been proposed

to achieve NE. The proposed cooperative framework can achieve higher throughput per

user, which provides incentive to SUs to participate into cooperative spectrum sensing.

• investigated cooperation in the CRN, taking the physical layer security into considera-

tion. With the proposed cooperation schemes, the PU enhances the security of commu-

nications and SUs can gain transmission opportunities. Particularly, the PU can either

cooperate with two individual SUs or a cluster of SUs. For the former (R-J cooperation

scheme), the two SUs act as one relay and one friendly jammer to increase the secre-

cy rate of the PU in the presence of one eavesdropper. For the latter (C-B cooperation

scheme), a cluster of SUs enhances the secrecy of the PU’s communication via collabo-

rative beamforming. Two different scenarios with single eavesdropper and with multiple

eavesdroppers are studied, respectively. To maximize the secrecy rate, joint time and

transmit power allocation is considered in R-J cooperation scheme, while time alloca-

tion and weight selection are jointly optimized in C-B cooperation schemes. Numerical

results have demonstrated that, with the proposed schemes, the secrecy of PU’s commu-

nications can be significantly enhanced through cooperation with SUs.

• studied risk aware cooperation in cooperative cognitive radio networking, whereby mul-

tiple primary users (PUs) operating over different channels choose trustworthy secondary

users (SUs) as relays to improve throughput, and in return SUs gain transmission oppor-

tunities. We have investigated cooperation over a single channel by Stackelberg game, in

which the trustworthiness of SUs is integrated. Based on the results of the single channel

scenario, we have proposed a SCC scheme for the cooperation over multiple channel-

s, where SUs form a cluster to maximize the total utility of the secondary network and

share the obtained resources based on congestion game and quadrature signaling.

• proposed a cooperative framework to gain credits when the SUs have no traffic. The
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SUs earn credits through cooperation to enhance the security of the PUs in present of

multiple eavesdroppers. The earned credits can be utilized for spectrum leasing when

they have traffic in the future. Specifically, two partner selection algorithms have been

devised, which can select suitable SUs, acting as relays or jammers to maximize the

secrecy rate. A game-theoretic incentive mechanism has been proposed to stimulate

the SUs to participate into cooperation. With the proposed cooperative scheme, all the

cooperative SUs can gain ceratin amount of credits security, which can be used in the

future when needed. In addition, the security of the PU can be significantly enhanced by

preventing eavesdroppers from decoding the message transmitted. The proposed scheme

can be applied in a network without infrastructure for secure information transfer, or

for key exchange. Moreover, the proposed scheme can combine with the upper layer

cryptographic schemes to provide enhanced security.

6.2 Future Research Directions

The research directions for further study are listed as follows:

• In the current work, we only consider the cooperation between one PU and multiple

SUs for secure communication when SUs have no traffic. A more general scenario is

that there exist multiple PUs requesting for cooperation and grant different payments.

In such a case, SUs have more choices to choose with whom to cooperation for credit

accumulation. Different SUs can form coalitions automatically to perform cooperation

with different PUs to maximize their utilities, e.g., the earned credits. Each SU makes

the decision to join or leave a coalition to pursue its own utility. The issue of how to

group SUs into different coalitions needs to be studied.

• For risk-aware cooperation in CCRN, we integrate trust values into the partner selection
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phase. Considering that the failure of transmission might be caused by other factors such

as channel impairment, how to distinguish misbehavior from other factors needs to be

considered. In addition, different misbehavior might have different levels of damage.

Therefore, when calculating the trust values, different weights should be put on different

misbehavior. Therefore, an efficient misbehavior detection method and a more accurate

trust value model are needed.

• Cooperative sensing is a promising approach to detect the presence of the PUs by ex-

ploiting the spatial diversity of the secondary users. Such a spatial diversity might be

exploited by a malicious attacker or untrusted fusion center to achieve involuntary ge-

olocation of a secondary user by linking his location-dependent sensing report to his

physical position. This kind of threat might stop legitimate SUs to participate in coop-

erative sensing, if they are privacy-sensitive. Thus, a privacy preservation cooperation

scheme is crucial for cooperative spectrum sensing. In the literature, only one recent

work studied the privacy preserving framework in cooperative spectrum sensing [120],

in which a privacy preserving cooperative sensing framework was proposed. Although

the privacy of SUs can be protected using the proposed framework in [120], when there

exist some malicious SUs misbehaving during cooperation, it is difficult to track them.

Thus, the malicious SUs can misbehave without being traced. It motivates us to inves-

tigate the conditional privacy-preserving cooperative sensing framework, whereby not

only the location privacy of SUs can be protected but also the misbehaving SU can be

traced. Specifically, we will focus on a centralized cooperative sensing system, where

there exists a fusion center (FC). We will make an effort to propose a conditional privacy-

preserving framework for cooperative sensing system so that the privacy of participants

can be protected from being leaked to malicious users while the abnormal participants

can be detected and traced by the FC.

126



Bibliography

[1] I. Akyildiz, W. Lee, M. Vuran, and S. Mohanty, “A survey on spectrum management in

cognitive radio networks,” IEEE Communications Magazine, vol. 46, no. 4, pp. 40–48,

2008.

[2] Cisco, “Cisco visual networking index: Global mobile data traffic forecast,” White Pa-

per, 2014.

[3] Nokia Siemens Networks, “2020: Beyond 4g radio evolution for the gigabit experience,”

White Paper, 2011.

[4] N. Zhang, N. Cheng, A. T. Gamage, J. W. Mark, and X. Shen, “Cloud assisted hetnets

toward 5g wireless networks,” IEEE Communization Magazine, 2015, to apprear.

[5] N. Lu, N. Zhang, N. Cheng, X. Shen, J. W. Mark, and F. Bai, “Vehicles meet infrastruc-

ture: Toward capacity–cost tradeoffs for vehicular access networks,” IEEE Transactions

on Intelligent Transportation Systems, vol. 14, pp. 1266 – 1277, 2013.

[6] URL: http://www.qualcomm.com/media/documents/wireless-networks-1000x-more-

small-cells.

[7] Q. Zhao and B. M. Sadler, “A survey of dynamic spectrum access,” IEEE Signal Pro-

cessing Magazine, vol. 24, no. 3, pp. 79–89, 2007.

127



BIBLIOGRAPHY

[8] I. Akyildiz, W. Lee, M. Vuran, and S. Mohanty, “Next generation/dynamic spectrum

access/cognitive radio wireless networks: a survey,” Computer Networks, vol. 50, no. 13,

pp. 2127–2159, 2006.

[9] J. Mitola III and G. Maguire Jr, “Cognitive radio: making software radios more person-

al,” IEEE Personal Communications, vol. 6, no. 4, pp. 13–18, 1999.

[10] S. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE Jour-

nal on Selected Areas in Communications, vol. 23, no. 2, pp. 201–220, 2005.

[11] F. C. Commission et al., “Notice of proposed rule making and order: Facilitating op-

portunities for flexible, efficient, and reliable spectrum use employing cognitive radio

technologies,” ET docket, no. 03-108, p. 73, 2005.

[12] Y.-C. Liang, Y. Zeng, E. C. Peh, and A. T. Hoang, “Sensing-throughput tradeoff for cog-

nitive radio networks,” IEEE Transactions on Wireless Communications, vol. 7, no. 4,

pp. 1326–1337, 2008.

[13] A. Ghasemi and E. Sousa, “Spectrum sensing in cognitive radio networks: requirements,

challenges and design trade-offs,” IEEE Communications Magazine, vol. 46, no. 4, pp.

32–39, 2008.

[14] J. Huang, R. A. Berry, and M. L. Honig, “Auction-based spectrum sharing,” Mobile

Networks and Applications, vol. 11, no. 3, pp. 405–418, 2006.

[15] H. Zhou, B. Liu, L. Gui, X. Wang, and Y. Li, “Fast spectrum sharing for cognitive radio

networks: A joint time-spectrum perspective,” in Proceedings of IEEE GLOBECOM,

2011.

128



BIBLIOGRAPHY

[16] T. Han, T. Xing, N. Zhang, K. Liu, B. Tang, and Y. Liu, “Wireless spectrum sharing via

waiting-line auction,” in Proceedings of 11th IEEE Singapore International Conference

on Communication Systems, 2008.

[17] Y. Xing, R. Chandramouli, S. Mangold et al., “Dynamic spectrum access in open spec-

trum wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 24,

no. 3, pp. 626–637, 2006.

[18] Y. Wang, Y. Zhang, Q. Zhang, and S. Wu, “Optimal selection of false alarm probability

for dynamic spectrum access,” IEEE Communications Letters, vol. 17, pp. 844–847,

2013.

[19] N. Cheng, N. Zhang, N. Lu, X. Shen, and J. W. Mark, “Opportunistic spectrum access

for cr-vanets: A game theoretic approach,” IEEE Transactions on Vehicular Technology,

to appear.

[20] Y. Wang, Q. Zhang, Y. Zhang, and P. Chen, “Adaptive resource allocation for cognitive

radio networks with multiple primary networks,” EURASIP Journal on Wireless Com-

munications and Networking, vol. 2012, no. 1, pp. 1–18, 2012.

[21] J. Wang, M. Ghosh, and K. Challapali, “Emerging cognitive radio applications: A sur-

vey,” IEEE Communications Magazine, vol. 49, no. 3, pp. 74–81, 2011.

[22] D. Scaperoth, B. Le, T. Rondeau, D. Maldonado, C. W. Bostian, and S. Harrison, “Cog-

nitive radio platform development for interoperability,” in Proc. of IEEE MILCOM.

IEEE, 2006, pp. 1–6.

[23] I. Akyildiz, W. Lee, and K. Chowdhury, “Crahns: Cognitive radio ad hoc networks,” Ad

Hoc Networks, vol. 7, no. 5, pp. 810–836, 2009.

129



BIBLIOGRAPHY

[24] Y. Zeng, Y. Liang, A. Hoang, and R. Zhang, “A review on spectrum sensing for cognitive

radio: challenges and solutions,” EURASIP Journal on Advances in Signal Processing,

vol. 2010, 2010.

[25] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio

applications,” IEEE Communications Surveys & Tutorials, vol. 11, no. 1, pp. 116–130,

2009.

[26] W. Zhang, R. Mallik, and K. Letaief, “Optimization of cooperative spectrum sensing

with energy detection in cognitive radio networks,” IEEE Transactions on Wireless Com-

munications, vol. 8, no. 12, pp. 5761–5766, 2009.

[27] H. Kim and K. G. Shin, “In-band spectrum sensing in cognitive radio networks: energy

detection or feature detection?” in Proc. of ACM Mobicom. ACM, 2008, pp. 14–25.

[28] Y. Zeng, Y. C. Liang, and R. Zhang, “Blindly combined energy detection for spectrum

sensing in cognitive radio,” IEEE Signal Processing Letters, vol. 15, pp. 649–652, 2008.

[29] Z. Ye, G. Memik, and J. Grosspietsch, “Energy detection using estimated noise variance

for spectrum sensing in cognitive radio networks,” in Proc. of IEEE WCNC. IEEE,

2008, pp. 711–716.

[30] K.-L. Du and W. H. Mow, “Affordable cyclostationarity-based spectrum sensing for cog-

nitive radio with smart antennas,” IEEE Transactions on Vehicular Technology, vol. 59,

no. 4, pp. 1877–1886, 2010.

[31] Z. Ye, J. Grosspietsch, and G. Memik, “Spectrum sensing using cyclostationary spec-

trum density for cognitive radios,” in 2007 IEEE Workshop on Signal Processing Sys-

tems. IEEE, 2007, pp. 1–6.

130



BIBLIOGRAPHY

[32] I. Akyildiz, B. Lo, and R. Balakrishnan, “Cooperative spectrum sensing in cognitive

radio networks: A survey,” Physical Communication, 2010.

[33] N. Zhang, H. Zhou, K. Zheng, N. Cheng, J. W. Mark, and X. Shen, “Cooperative het-

erogeneous framework for spectrum harvesting in cognitive cellular network,” IEEE

Communization Magazine, 2015, to apprear.

[34] E. Peh and Y.-C. Liang, “Optimization for cooperative sensing in cognitive radio net-

works,” in Proceedings of IEEE WCNC 2007. IEEE, pp. 27–32.

[35] G. Ganesan and Y. Li, “Cooperative spectrum sensing in cognitive radio networks,” in

Proceedings of IEEE DySPAN, 2005.

[36] D. Cabric, S. Mishra, and R. Brodersen, “Implementation issues in spectrum sensing for

cognitive radios,” in Proceedings of the 38th. Asilomar Conference on Signals, Systems,

and Computers,, pp. 772–776, 2004.

[37] A. Ghasemi and E. Sousa, “Collaborative spectrum sensing for opportunistic access in

fading environments,” in New Frontiers in Dynamic Spectrum Access Networks, 2005.

DySPAN 2005. 2005 First IEEE International Symposium on. Ieee, 2005, pp. 131–136.

[38] S. Mishra, A. Sahai, and R. Brodersen, “Cooperative sensing among cognitive radios,”

in Proc. of IEEE ICC, vol. 4. IEEE, 2006, pp. 1658–1663.

[39] W. Lee and I. Akyildiz, “Optimal spectrum sensing framework for cognitive radio net-

works,” IEEE Transactions on Wireless Communications, vol. 7, no. 10, pp. 3845–3857,

2008.

[40] J. Zhang and Q. Zhang, “Stackelberg game for utility-based cooperative cognitiveradio

networks,” in Proceedings of the tenth ACM international symposium on Mobile ad hoc

networking and computing, 2009.

131



BIBLIOGRAPHY

[41] O. Simeone, I. Stanojev, S. Savazzi, Y. Bar-Ness, U. Spagnolini, and R. Pickholtz,

“Spectrum leasing to cooperating secondary ad hoc networks,” IEEE Journal on Se-

lected Areas in Communications, vol. 26, no. 1, pp. 203–213, 2008.

[42] N. Zhang, N. Lu, N. Cheng, J. W. Mark, and X. Shen, “Cooperative spectrum access

towards secure information transfer for crns,” IEEE Journal on Selected Areas in Com-

munications, to appear.

[43] T. Elkourdi and O. Simeone, “Spectrum leasing via cooperation with multiple primary

users,” IEEE Transactions on Vehicular Technology, vol. 61, no. 2, pp. 820–825, 2012.

[44] S. Hua, H. Liu, M. Wu, and S. Panwar, “Exploiting mimo antennas in cooperative cog-

nitive radio networks,” in Proceedings IEEE INFOCOM, Shanghai, China, April, 2011.

[45] N. Zhang, N. Lu, N. Cheng, J. W. Mark, and X. Shen, “Towards secure communications

in cooperative cognitive radio networks,” in Proceedings of IEEE ICCC’13, 2013.

[46] Y. Han, A. Pandharipande, and S. Ting, “Cooperative decode-and-forward relaying for

secondary spectrum access,” IEEE Transactions on Wireless Communications, vol. 8,

no. 10, pp. 4945–4950, 2009.

[47] Y. Yi, J. Zhang, Q. Zhang, T. Jiang, and J. Zhang, “Cooperative communication-aware

spectrum leasing in cognitive radio networks,” in Proceedings of IEEE DySPAN 2010.

IEEE, pp. 1–11.

[48] N. Zhang, N. Cheng, N. Lu, H. Zhou, J. W. Mark, and X. Shen, “Risk-aware cooper-

ative spectrum access for multi-channel cognitive radio networks,” in IEEE Journal on

Selected Areas in Communications, 2013.

132



BIBLIOGRAPHY

[49] I. Stanojev, O. Simeone, U. Spagnolini, Y. Bar-Ness, and R. Pickholtz, “Cooperative arq

via auction-based spectrum leasing,” IEEE Transactions on Communications, vol. 58,

no. 6, pp. 1843–1856, 2010.

[50] N. Zhang, N. Cheng, N. Lu, H. Zhou, J. W. Mark, and X. Shen, “Cooperative cognitive

radio networking for opportunistic channel access,” in Proceedings of IEEE GLOBE-

COM’13, 2013.

[51] Y. Zou, Y. Yao, and B. Zheng, “A selective-relay based cooperative spectrum sensing

scheme without dedicated reporting channels in cognitive radio networks,” IEEE Trans-

actions on Wireless Communications, vol. 10, no. 4, pp. 1188–1198, 2011.

[52] G. Ganesan and Y. Li, “Cooperative spectrum sensing in cognitive radio, part i: Two user

networks,” IEEE Transactions on Wireless Communications, vol. 6, no. 6, pp. 2204–

2213, 2007.

[53] Y. Zou, Y. Yao, and B. Zheng, “Cooperative relay techniques for cognitive radio systems:

Spectrum sensing and secondary user transmissions,” IEEE Communications Magazine,

2012.

[54] Z. Yuan, D. Niyato, H. Li, J. B. Song, and Z. Han, “Defeating primary user emulation

attacks using belief propagation in cognitive radio networks,” IEEE Journal on Selected

Areas in Communications, vol. 30, no. 10, pp. 1850–1860, 2012.

[55] L. Duan, A. W. Min, J. Huang, and K. G. Shin, “Attack prevention for collaborative

spectrum sensing in cognitive radio networks,” IEEE Journal on Selected Areas in Com-

munications, vol. 30, no. 9, pp. 1658–1665, 2012.

[56] Y. Han, S. Ting, and A. Pandharipande, “Cooperative spectrum sharing protocol with

secondary user selection,” IEEE Transactions on Wireless Communications, vol. 9, no. 9,

pp. 2914–2923, 2010.

133



BIBLIOGRAPHY

[57] B. Cao, L. Cai, H. Liang, J. Mark, Q. Zhang, H. Poor, and W. Zhuang, “Cooperative

cognitive radio networking using quadrature signaling,” in Proceedings of IEEE INFO-

COM, Orlando, USA, March 2012.

[58] A. Alshamrani, X. Shen, and L. Xie, “QoS provisioning for heterogeneous services in

cooperative cognitive radio networks,” IEEE Journal on Selected Areas in Communica-

tions, vol. 29, no. 4, pp. 819–830, 2011.

[59] N. Zhang, H. Liang, N. Cheng, Y. Tang, J. W. Mark, and X. Shen, “Dynamic spectrum

access in multi-channel cognitive radio networks,” IEEE Journal on Selected Areas in

Communications, vol. 32, no. 11, pp. 2053–2064, 2014.

[60] Y. Zou, Y. Yao, and B. Zheng, “Cooperative relay techniques for cognitive radio systems:

Spectrum sensing and secondary user transmissions,” IEEE Communications Magazine,

2012.

[61] Q. Zhao and J. Ye, “Quickest detection in multiple on–off processes,” IEEE Transactions

on Signal Processing, vol. 58, no. 12, pp. 5994–6006, 2010.

[62] L. Husheng, “Restless watchdog: Selective quickest spectrum sensing in multichannel

cognitive radio systems,” EURASIP Journal on Advances in Signal Processing, vol.

2009, 2009.

[63] W. Wang, B. Kasiri, J. Cai, and A. S. Alfa, “Channel assignment of cooperative spectrum

sensing in multi-channel cognitive radio networks,” in Proceedings of IEEE ICC, 2011.

[64] R. Fan and H. Jiang, “Optimal multi-channel cooperative sensing in cognitive radio

networks,” IEEE Transactions on Wireless Communications, vol. 9, no. 3, pp. 1128–

1138, 2010.

134



BIBLIOGRAPHY

[65] H. Yu, W. Tang, and S. Li, “Optimization of cooperative spectrum sensing in multiple-

channel cognitive radio networks,” in Proceedings of IEEE GLOBECOM, 2011.

[66] R. Fan, H. Jiang, Q. Guo, and Z. Zhang, “Joint optimal cooperative sensing and resource

allocation in multichannel cognitive radio networks,” IEEE Transactions on Vehicular

Technology, vol. 60, no. 2, pp. 722–729, 2011.

[67] N. Zhang, N. Cheng, H. Liang, Y. Tang, J. W. Mark, and X. S. Shen, “Efficient channel

assignment for cooperative sensing based on convex bipartite matching,” in Proceedings

of IEEE ICC’14, 2014.

[68] X. Wang, Z. Li, P. Xu, Y. Xu, X. Gao, and H.-H. Chen, “Spectrum sharing in cognitive

radio networksłan auction-based approach,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics,, vol. 40, no. 3, pp. 587–596, 2010.

[69] X. Hao, M. Cheung, V. Wong, and V. Leung, “Hedonic coalition formation game for

cooperative spectrum sensing and channel access in cognitive radio networks,” IEEE

Transactions on Wireless Communications, vol. 11, pp. 3968 – 3979, 2012.

[70] K. Cohen, A. Leshem, and E. Zehavi, “Game theoretic aspects of the multi-channel

aloha protocol in cognitive radio networks,” IEEE Journal on Selected Areas in Com-

munications, 2013.

[71] A. Leshem, E. Zehavi, and Y. Yaffe, “Multichannel opportunistic carrier sensing for

stable channel access control in cognitive radio systems,” IEEE Journal on Selected

Areas in Communications, vol. 30, no. 1, pp. 82–95, 2012.

[72] M. Liu and Y. Wu, “Spectum sharing as congestion games,” in Proceedings of IEEE

Allerton, 2008.

135



BIBLIOGRAPHY

[73] L. Law, J. Huang, and M. Liu, “Price of anarchy for congestion games in cognitive radio

networks,” IEEE Transactions on Wireless Communications, vol. 11, pp. 3778 – 3787,

2012.

[74] H. Kim and K. G. Shin, “Optimal online sensing sequence in multichannel cognitive

radio networks,” IEEE Transactions on Mobile Computing, vol. 12, no. 7, pp. 1349–

1362, 2013.

[75] G. Ganesan, Y. Li, B. Bing, and S. Li, “Spatiotemporal sensing in cognitive radio net-

works,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 1, pp. 5–12,

2008.

[76] Z. Quan, S. Cui, and A. H. Sayed, “Optimal linear cooperation for spectrum sensing in

cognitive radio networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 2,

no. 1, pp. 28–40, 2008.

[77] R. Y. Rubinstein, “Optimization of computer simulation models with rare events,” Eu-

ropean Journal of Operational Research, vol. 99, pp. 89–112, 1997.

[78] R. W. Rosenthal, “A class of games possessing pure-strategy nash equilibria,” Interna-

tional Journal of Game Theory, vol. 2, no. 1, pp. 65–67, 1973.

[79] D. Monderer and L. S. Shapley, “Potential games,” Games and economic behavior,

vol. 14, no. 1, pp. 124–143, 1996.

[80] R. Lu, X. Li, X. Liang, X. Shen, and X. Lin, “Grs: The green, reliability, and security

of emerging machine to machine communications,” IEEE Commun. Magazine, vol. 49,

pp. 28–35, 2011.

[81] H. V. Poor, “Information and inference in the wireless physical layer,” IEEE Wireless

Communications, vol. 19, no. 2, pp. 40–47, 2012.

136



BIBLIOGRAPHY

[82] N. Anand, S. Lee, and E. Knightly, “Strobe: Actively securing wireless communications

using zero-forcing beamforming,” in Proc. of IEEE INFOCOM’12, 2012.

[83] L. Ozarow and A. Wyner, “Wire-tap channel ii,” in Advances in Cryptology. Springer,

pp. 33–50, 1985.

[84] J. Huang and A. Swindlehurst, “Robust secure transmission in miso channels based on

worst-case optimization,” IEEE Transactions on Signal Processing, vol. 60, no. 4, pp.

1696–1707, 2012.

[85] D. Goeckel, S. Vasudevan, D. Towsley, S. Adams, Z. Ding, and K. Leung, “Artificial

noise generation from cooperative relays for everlasting secrecy in two-hop wireless

networks,” IEEE J. Select. Areas of Commun., vol. 29, no. 10, pp. 2067–2076, 2011.

[86] L. Dong, Z. Han, A. Petropulu, and H. V. Poor, “Improving wireless physical layer

security via cooperating relays,” IEEE Trans. Sign. Proces., vol. 58, no. 3, pp. 1875–

1888, 2010.

[87] H. Wang, Q. Yin, and X. G. Xia, “Distributed beamforming for physical-layer security of

two-way relay networks,” IEEE Transactions on Signal Processing, vol. 60, pp. 3532–

3545, 2012.

[88] L. Lai and H. El Gamal, “The relay–eavesdropper channel: Cooperation for secrecy,”

IEEE Trans. Inf .Theory, vol. 54, no. 9, pp. 4005–4019, 2008.

[89] G. Zheng, L. Choo, and K. Wong, “Optimal cooperative jamming to enhance physical

layer security using relays,” IEEE Trans. Sign. Proces., vol. 59, no. 3, pp. 1317–1322,

2011.

[90] J. Li, A. Petropulu, and S. Weber, “On cooperative relaying schemes for wireless physi-

cal layer security,” IEEE Trans. Sign. Proces., no. 99, pp. 1–1, 2011.

137



BIBLIOGRAPHY

[91] K. Lee, O. Simeone, C. Chae, and J. Kang, “Spectrum leasing via cooperation for en-

hanced physical-layer secrecy,” in Proc. of IEEE ICC’11, 2011.

[92] Z. Gao, Y. Yang, and K. Liu, “Anti-eavesdropping space-time network coding for coop-

erative communications,” IEEE Trans. Wirel. Commun., vol. 10, no. 11, pp. 3898–3908,

2011.

[93] L. Dong, Z. Han, A. Petropulu, and H. Poor, “Secure wireless communications via co-

operation,” in Annual Allerton Conference on Communication, Control, and Computing,

2008.

[94] N. Zhang, N. Lu, N. Cheng, J. W. Mark, and X. Shen, “Cooperative networking towards

secure communications for crns,” in Proc. of IEEE WCNC’13, 2013.

[95] N. Zhang, N. Lu, R. Lu, J. W. Mark et al., “Energy-efficient and trust-aware cooperation

in cognitive radio networks,” in Proc. of IEEE ICC’12, 2012.

[96] H. Ochiai, P. Mitran, H. Poor, and V. Tarokh, “Collaborative beamforming for distributed

wireless ad hoc sensor networks,” IEEE Transactions on Signal Processing, vol. 53,

no. 11, pp. 4110–4124, 2005.

[97] L. Tang, X. Gong, J. Wu, and J. Zhang, “Secure wireless communications via coopera-

tive relaying and jamming,” in Proc. of IEEE GLOBECOM’11, 2011.

[98] M. Gursoy, “Secure communication in the low-snr regime: A characterization of the

energy-secrecy tradeoff,” in Proc. of IEEE ISIT’09. IEEE, pp. 2291–2295.

[99] G. Kim, Scheduling in wireless ad hoc networks: algorithms with performance guaran-

tees. ProQuest, 2008.

[100] A. Wiesel, Y. C. Eldar, and S. Shamai, “Zero-forcing precoding and generalized invers-

es,” IEEE Transactions on Signal Processing, vol. 56, no. 9, pp. 4409–4418, 2008.

138



BIBLIOGRAPHY

[101] S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wirel.

Commun., vol. 7, no. 6, pp. 2180–2189, 2008.

[102] J. Laneman, D. Tse, and G. Wornell, “Cooperative diversity in wireless networks: Effi-

cient protocols and outage behavior,” IEEE Transactions on Information Theory, vol. 50,

no. 12, pp. 3062–3080, 2004.

[103] A. Boukerche and Y. Ren, “A trust-based security system for ubiquitous and pervasive

computing environments,” Computer Communications, vol. 31, no. 18, pp. 4343–4351,

2008.

[104] H. Yu, Z. Shen, C. Miao, C. Leung, and D. Niyato, “A survey of trust and reputation

management systems in wireless communications,” Proceedings of the IEEE, vol. 98,

no. 10, pp. 1755–1772, 2010.

[105] S. Ganeriwal, L. Balzano, and M. Srivastava, “Reputation-based framework for high

integrity sensor networks,” ACM Transactions on Sensor Networks (TOSN), vol. 4, no. 3,

pp. 1–37, 2008.

[106] A. Jøsang and R. Ismail, “The beta reputation system,” vol. 160, 2002.

[107] Y. Mao and M. Wu, “Tracing malicious relays in cooperative wireless communications,”

IEEE Transactions on Information Forensics and Security, vol. 2, no. 2, pp. 198–212,

2007.

[108] T. Khalaf and S. Kim, “Error probability in multi-source, multi-relay networks under

falsified data injection attacks,” pp. 1–4, 2008.

[109] S. Dehnie, H. Senear, and N. Memon, “Detecting malicious behavior in cooperative

diversity,” in Proceedings of the Conference on Information Science and Systems (CISS)

2007. IEEE, 2007, pp. 895–899.

139



BIBLIOGRAPHY

[110] S. Dehnie and N. Memon, “Detection of misbehavior in cooperative diversity,” in Pro-

ceedings of IEEE MILCOM 2008. IEEE, 2008, pp. 1–5.

[111] D. B. West et al., Introduction to graph theory. Prentice hall Englewood Cliffs, 2001,

vol. 2.

[112] R. Jain, D.-M. Chiu, and W. R. Hawe, A quantitative measure of fairness and discrimina-

tion for resource allocation in shared computer system. Eastern Research Laboratory,

Digital Equipment Corporation, 1984.

[113] N. Zhang, N. Lu, N. Cheng, X. Zhang, J. W. Mark, and X. Shen, “Partner selection

and incentive mechanism for physical layer security,” IEEE Transactions on Wireless

Communications, 2015, to apprear.

[114] R. Zhang, L. Song, Z. Han, and B. Jiao, “Physical layer security for two-way untrusted

relaying with friendly jammers,” IEEE Transactions on Vehicular Technology, vol. 61,

no. 8, pp. 3693–3704, 2012.

[115] N. Zhang, N. Cheng, N. Lu, H. Zhou, J. W. Mark, and X. Shen, “Risk-aware cooperative

spectrum access for multi-channel cognitive radio networks,” IEEE Journal on Selected

Areas in Communications, vol. 32, no. 3, pp. 516–527, 2014.

[116] M. G. Damavandi, A. Abbasfar, and D. G. Michelson, “Peak power reduction of ofdm

systems through tone injection via parametric minimum cross-entropy method,” IEEE

Transactions on Vehicular Technology, vol. 62, no. 4, pp. 1838–1843, 2013.

[117] J. B. Rosen, “Existence and uniqueness of equilibrium points for concave n-person

games,” Journal of the Econometric Society Econometrica, pp. 520–534, 1965.

140



[118] Q. Xu, X. Li, H. Ji, and X. Du, “Energy-efficient resource allocation for heterogeneous

services in ofdma downlink networks: Systematic perspective,” IEEE Transactions on

Vehicular Technology, vol. 63, no. 5, pp. 2071–2082, 2014.

[119] I. Krikidis, J. Thompson, and S. McLaughlin, “Relay selection for secure coopera-

tive networks with jamming,” IEEE Transactions on Wireless Communications, vol. 8,

no. 10, pp. 5003–5011, 2009.

[120] S. Li, H. Zhu, Z. Gao, X. Guan, K. Xing, and X. Shen, “Location privacy preservation

in collaborative spectrum sensing,” Proceedings of of INFOCOM12.

[121] L. M. Law, J. Huang, and M. Liu, “Price of anarchy of wireless congestion games,”

IEEE Transactions on Wireless Communications, to appear.

141



Appendices

Appendix A:

Proof of Nash Equilibrium

For an NE, it should satisfy the following requirement:

wiζj∈si(Wj) ≥ wiζk(Wk + wi), ∀k ∈ K, j 6= k, i = 1, ..., N. (6.1)

To constitute an NE, for any two arbitrary users i and k, according to (6.7), we have

wiζj∈si(Wj) ≥ wiζj∈sk(Wj + wi) and

wkζj∈sk(Wj) ≥ wkζj∈si(Wj + wk)

Suppose that SU1 chooses channel k with the maximum w′ζk(Wk + w′), since w′ζk(Wk +

w′) > w′ζm(Wm + w′), m 6= k,m ∈ K. For SU2, it chooses channel l with the maximum

w′ζl(Wl + w′), since w′ζl(Wl + w′) > w′ζs(Ws + w′), s 6= l, s ∈ K. Since w′ζk(Wk + w′) >

w′ζl(Wl +w′), we have w′ζk(Wk +w′) > w′ζl(Wl +w′+w′). Also, we have w′ζl(Wl +w′) >

w′ζk(Wk + w′). Thus, none of them are willing to change their strategies, and hence their

strategies constitute an NE.

For the subsequent users in UG1, they choose their best strategies and then all the strategy

files constitute an NE for the new users and existing users. For a new user SUn, it chooses
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channel q with the maximum w′ζq(Wq + w′), since w′ζq(Wq + w′) > w′ζm(Wm + w′), m 6=

q,m ∈ K. Before SUn joining, all the former users’s strategies constitute an NE. i.e., for SUp

choosing channel j, w′ζj(Wj) > w′ζm(Wm + w′),m 6= j,m ∈ K. Then, we have w′ζj(Wj) >

w′ζq(Wq + w′) > w′ζq(Wq + w′ + w′). It also holds that w′ζq(Wq + w′) > w′ζm(Wm + w′),

m 6= q,m ∈ K. Thus, the strategies of all the users constitute an NE.

For the user set UG2, each user is assigned a weight of w. For a new user SUj , it chooses

channel x with the maximum wζx(Wx + w), since wζx(Wx + w) > wζm(Wm + w), m 6=

x,m ∈ K. Before SUj joining, all the former users are in NE. Taking an arbitrary user SUi

as an example, if SUi has chosen channel j rather than channel x, wiζj(Wj) > wiζm(Wm +

wi), m 6= j,m ∈ K. Then, we have wiζj(Wj) > wiζx(Wx + wi) > wζx(Wx + wi + wi).

Therefore, for those SUs choosing channel j rather than channel x, they should stay in their

current channel and do not change their strategies. If SUi has chosen channel x, sincewiζ(Wx+

w) > wiζ(Wm + w), m 6= x,m ∈ K, wiζ(Wx + w) > wiζ(Wm + w) > wiζ(Wm + w + w),

m 6= x,m ∈ K. Then, we have Ψxζ(Wx +w) > Ψjζ(Wj +w +w′). Those users do not have

the motivation to change their strategies. Therefore, for all users, their strategies constitute an

NE.
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Appendix B:

When α(1 − β)RR ≥ αβRD, we have β ≤ RR
RR+RD

. Then, the secrecy rate in (3.6) can

be given by [αβRD − αβRE]+ = αβ[(RD − RE)]+, which is a monotonically increasing

function with respect to β. To maximize the secrecy rate, β should take the maximum value
RR

RR+RD
. Substituting β = RR

RR+RD
into (3.6), the secrecy rate can be rewritten as follows:

R̄SEC = α[RR(RD−RE)
RR+RD

]+. When α(1 − β)RR ≤ αβRD, we have β ≥ RR
RR+RD

. Then, the

secrecy rate in (3.6) can be given by [α(1 − β)RR − αβRE]+. which is a monotonically

decreasing function of β. To maximize the secrecy rate, β should take the minimum value
RR

RR+RD
. Substituting β = RR

RR+RD
into (3.6), the secrecy rate can be rewritten as follows:

R̄SEC = α[RR(RD−RE)
RR+RD

]+. As shown above, for the two cases, to maximize the R̄SEC , β always

equals to RR
RR+RD

. Moreover, when β takes the optimal value, it holds that α(1 − β)RR =

αβRD. Thus, R̄SEC = α[RR(RD−RE)
RR+RD

]+ = α[RR − RR(RR+RE
RR+RD

)]+.
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Appendix C:

Proof of Property 1

Taking the first order partial derivative of the utility function with respect to Ps yields

∂Us
∂Ps

=
(1− α)W |hs|2

(1 + Psh2s
N0

)N0 ln 2
− c(1− α

2
). (6.2)

Then, we have

∂U2
s

∂P 2
s

= − (1− α)W |hs|4

(1 + Psh2s
N0

)2N2
0 ln 2

. (6.3)

From the above equation, we can see that ∂U
2
s

∂P 2
s
< 0. Therefore, the utility function U i

s of SUi is

concave in its own power level P i
s when the time allocation is fixed.

Proof of Property 2

For a given SU, the optimal transmission power is given by

P ∗s (α) =
(1− α)W

c(1− α
2
) ln 2

− N0

|hs|2
. (6.4)

Taking the first derivative of P ∗s with respect to α, we have

∂P ∗s
∂α

=
−αW

(−2 + α)2 c ln 2
. (6.5)

The denominator is always positive, while the numerator is negative. Then, ∂P ∗s
∂α

< 0. There-

fore, the optimal transmission power P ∗s decreases with α.

Proof of Property 3

Since P ∗s is continuous with α, the utility function Up of the PU is also continuous with α.

Substituting P ∗s (α) = (1−α)W
c(1−α

2
) ln 2
− N0

|hs|2
into Up, the utility can be given by (4.13), which is a
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function of α. Taking first order derivative of (4.13) withe respect to α yields (4.14). Then,

taking second order derivative of (4.13) with respect to α yields

∂2Up
∂α2

= 2 · Aα +B. (6.6)

Since A > 0, B = −2A, and 0 < α < 1, we have ∂2Up
∂α2 < 0. Therefore, the utility function of

the primary user is concave in the time allocation coefficient α.

NE Condition

A strategy profile is a set of strategy of all inactive SUs and is denoted by S = s1, s2, . . . , sM ,

where si is the strategy of SUi, Denote by n(S) = (n1, ..., nK) the congestion vector cor-

responding to the strategy profile S, where ni represents the total number of SUs choosing

channel i. For an NE, according the definition of NE, it holds that

Ψiζ(ni) ≥ Ψkζ(nk + 1),∀k ∈ K, k 6= i. (6.7)

Similar to the work in [121] where uniform MAC is considered, ζ(ni) = 1/ni. To constitute

an NE, for any two arbitrary channels i and j, according to (6.7), we have

Ψi

ni
≥ Ψj

nj + 1
and

Ψj

nj
≥ Ψi

ni + 1
,

which can be further written as

Ψj

Ψi

ni − 1 ≤ nj ≤
Ψj

Ψi

ni +
Ψj

Ψi

, j 6= i. (6.8)

For any channel k ∈ K, k 6= i, j, it also holds that

Ψk

Ψi

ni − 1 ≤ nk ≤
Ψk

Ψi

ni +
Ψk

Ψi

, k 6= i, j. (6.9)
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Combining (6.8) and (6.9), we have

∑
j 6=i,j∈K

(
Ψj

Ψi

ni − 1) ≤
∑

j 6=i,j∈K

nj ≤
∑

j 6=i,j∈K

(
Ψj

Ψi

ni +
Ψj

Ψi

), (6.10)

which can be further written as∑
j 6=i,j∈KΨj

Ψi

ni − (K − 1) ≤
∑

j 6=i,j∈K

nj ≤ (6.11)∑
j 6=i,j∈KΨj

Ψi

ni +

∑
j 6=i,j∈KΨj

Ψi

, (6.12)

Since
∑

j 6=i,j∈K nj = M − ni, we have

ΨiM −
∑

j 6=i,j∈KΨj∑
j∈KΨj

≤ ni ≤
ΨiM + Ψi(K − 1)∑

j∈KΨj

. (6.13)

Let the right side of (6.13) minus the left side, and we have

ΨiM + Ψi(K − 1)∑
j∈KΨj

−
ΨiM −

∑
j 6=i,j∈KΨj∑

j∈KΨj

> 1.

Moreover, for the left side of (6.13), it holds that

−1 <
ΨiM −

∑
k 6=i,k∈KΨk∑

k∈KΨk

< M

Therefore, the proposed congestion game has the following solution:

ni = d
ΨiM −

∑
j 6=i,j∈KΨj∑

j∈KΨj

e+ n′, (6.14)

where n′ ∈ {0, 1, 2, . . . , dΨiM+Ψi(K−1)∑
k∈KΨk

e − dΨiM−
∑
k 6=i,k∈KΨk∑

k∈KΨk
e − 1}.
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Appendix D

Derivation of (5.26) The objective function can be rewritten as follows:

∂Ui
∂Pi

=
riPm

∑
j 6=i,j⊆C Pjrj(∑

j⊆C Pjrj

)2 − λ2 = 0

=⇒
∑
j⊆C

Pjrj =

√
ri
∑

j 6=i,j⊆C Pjrj

λ2

=⇒Pi =
1

ri
(

√
riPm

∑
j 6=i,j⊆C Pjrj

λ2

−
∑

j 6=i,j⊆C

Pjrj)

(6.15)

Considering the physical meaning and the maximum power constraint, we have

P ∗i =


0 if

∑
j 6=i,j⊆C Pjrj ≥

PmPiri
λ2

1
ri

(
√

PmPiriA
λ2

− A) if
∑

j 6=i,j⊆C Pjrj <
PmPiri
λ2

and 1
ri

(
√

PmPiriA
λ2

− A) < Pmax

Pmax otherwise
(6.16)

Derivation of (5.27) To solve the optimal transmission power of the selected partners, we

have

∂Ui
∂Pi

= 0

=⇒
riPm

∑
j 6=i,j⊆C Pjrj(∑

j⊆C Pjrj

)2 = λ2

(6.17)
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Then, we have
r1Pm

∑
j 6=1,j⊆C Pjrj

(
∑
j⊆C Pjrj)

2 = λ2

...
riPm

∑
j 6=i,j⊆C Pjrj

(
∑
j⊆C Pjrj)

2 = λ2

...
rnPm

∑
j 6=n,j⊆C Pjrj

(
∑
j⊆C Pjrj)

2 = λ2

(6.18)

Therefore, ∑
j 6=1,j⊆C Pjrj = ri

r1

∑
j 6=i,j⊆C Pjrj

...∑
j 6=n,j⊆C Pjrj = ri

rn

∑
j 6=i,j⊆C Pjrj

(6.19)

Since the summation of the left side equal to the summation of the right side, we have,

(
ri
r1

+
ri
r2

+ ...+
ri
rn

)
∑

j 6=i,j⊆C

Pjrj = (n− 1)(
∑

j 6=i,j⊆C

Pjrj + Piri) (6.20)

We also have

Pi =
1

ri
(

√
riPm

∑
j 6=i,j⊆C Pjrj

λ2

−
∑

j 6=i,j⊆C

Pjrj) (6.21)

Then, we can calculate Pi as follows:

Pi =
PmriBi

λ2(ri +Bi)2
(6.22)

where Bi = (n−1)ri∑n
j=1

ri
rj
−n+1

.

Considering the physical meaning of Pi and the maximum power constraint, we have

P ∗i = [min{ PmriBi

λ2(ri +Bi)2
, Pmax}]+ (6.23)
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