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Abstract 

Everyday experience suggests that certain people can find their way to a destination easily, while 

others have considerable difficulty. This dissertation focused on gaining a greater understanding 

of navigational strategies that can facilitate or hinder an individual’s wayfinding performance. 

The first study was conducted to gain a broad idea of various factors that may influence 

navigational performance. Participants were guided through a building and then asked to find 

their way to a destination. It was found that good navigators made fewer errors in traversing a 

learned route than did poor navigators. They were also better at recognizing landmarks they had 

seen along the route, recalling the appropriate directions to be turned at each landmark, and at 

drawing the correct pathways on a map drawing task. A discriminant analysis revealed that the 

best predictor of determining navigational performance was the ability to form spatial 

relationships between landmarks. Results from the first study demonstrated that good navigators 

were better at determining spatial relationships between landmarks, but it did not address 

whether this was due to spatial relationships between distances and/or angles. The focus of the 

second study was to gain a greater understanding of the degree to which distance and angular 

information are used by good and poor navigators in determining spatial relationships between 

landmarks. Results showed that neither a distance nor an angular strategy were preferred in 

either group of wayfinders. An analysis of navigators initial heading angle error to a target 

location suggested that good wayfinders may be more efficient at finding their way because they 

appear to plan routes prior to initiating self-locomotion. Such pre-planning was confirmed by the 

fact that good wayfinders’ initial heading direction error was significantly less than in poor 

wayfinders. Poor wayfinders appear to head in a random direction and then attempt to determine 

target locations. The use of landmark information may be useful in certain contexts, but this may 
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not always be the most efficient strategy. The last experiment was aimed at determining whether 

good navigators adjust strategies used (landmark vs. street), depending on contextual factors. 

Differences in strategies used were not found, however the results suggest that good navigators 

appear to be more skilled at navigating in environments rich with streets compared to poor 

wayfinders. Good and poor navigators were equally skilled at navigating in environments rich in 

landmarks.  It appears that the ability to determine spatial relationships between landmarks is the 

strongest predictor of navigational performance compared to a wide range of other navigational 

skills.  
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Literature Review: 
                                                                
General Introduction: 

Everyday experience suggests that certain people can easily find their way to a 

destination, while others have considerable difficulty (Kato & Takeuchi, 2003). Differences in 

navigational ability may arise because individuals focus on different types of information as they 

engage in wayfinding, such as landmark or cardinal direction cues. Various cognitive skills 

(memory, attention etc.) are necessary to successfully navigate, and thus identifying sources of 

variation in navigational ability is a challenge. It is often difficult to pinpoint these sources of 

individual differences since both internal and external factors contribute to individual differences 

in wayfinding ability. External factors include the characteristics of a situation or environment 

such as the availability of landmarks, and the pattern of streets and intersections.  Internal factors 

include characteristics of an individual such as sex, familiarity with the environment, and 

strategies used to navigate (Lawton, 1996).  There appears to be little agreement in the literature 

regarding which factors are the most important in predicting wayfinding ability. This dissertation 

is geared towards gaining a greater understanding of navigational strategies that can facilitate or 

hinder an individual’s wayfinding performance.  

In the past, individual differences have been examined by determining how they are 

related to psychometric tests of spatial ability. There are several psychometric tests that are often 

used, including tasks involving mental rotation of shapes, finding hidden figures and mazes 

(Caroll, 1993; Eliot & Smith, 1983; Lohman, 1988). Research by Hegarty, Richardson, 

Montello, Lovelace, & Subbiah, (2002), suggests that psychometric measures are weak 

predictors of environmental spatial performance. These tasks involve imagining the manipulation 

of small-scale space as opposed to visualizing one’s own changing orientation and location in a 
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large-scale space. The correlations with performance on these psychometric tests are typically 

not significant and rarely exceed an average of 0.3 (Hegarty et al., 2002).   

Wayfinding Strategies: 

           Individuals often differ in the strategies they use, from using landmarks, to using a spatial 

layout or an internal map of the environment. Landmark, route and survey strategies are three 

types of approaches used to navigate (Prestopnik & Ewoldesen, 2000).  

 Landmark knowledge is often a foundation upon which more extensive spatial 

representations form. Landmark knowledge involves using spatial reference point locations that 

are well known.  Route strategies involve using a sequence of instructions to navigate from one 

place to another. This strategy often involves navigating from one place to another using 

landmarks (Prestopnik & Ewoldesen, 2000). Using a route strategy involves the use of an 

internal mental representation of procedures that are required for locating a set of target locations 

in an environment. This type of strategy is inflexible since it forces the use of a specific direction 

from one place to another. Consequently, people who rely on route strategies become lost easily 

if they deviate from a learned route (Prestopnik & Ewoldesen, 2000). Route representations can 

preserve metric information regarding distances and directions between sets of locations, but 

they are more often conceptualized as preserving only topological information about proximity 

between locations. When using a route strategy, all information is encoded in terms of discrete 

sets of locations. This type of strategy does not allow a global simultaneous knowledge of all 

landmarks in an environment or their relative positions (Waller, 1999). 

 Survey strategies offer a more flexible approach to wayfinding. This type of strategy is 

often conceived as using a “map in the head” or “cognitive map” and involves the use of metric 
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relations such as bearings. A cognitive map is a mental representation that corresponds to an 

individual’s perception of the real world. Cognitive maps are often used while wayfinding and 

thus will be examined in several studies. Several studies will examine the role of landmark 

information, since it is involved in forming cognitive maps. This strategy does not simply 

involve knowing the locations between which a wayfinder has traversed. The focus with survey 

strategies is global, and such strategies rely on universal concepts that do not alter when direction 

or orientation changes. For example, survey strategies often involve using cardinal directions or 

the sun as reference points. Using a survey strategy is much more flexible than using a route 

strategy since survey knowledge allows the ability to find shortcuts that are different from the 

originally learned route (Prestopnik & Ewoldesen, 2000). 

 A study by Hund & Minarik (2006), examined the use of landmark and cardinal strategies 

as related to wayfinding performance.  The results indicate that as a reliance on cardinal 

strategies increased, navigational efficiency also increased, suggesting that wayfinding strategies 

are related to navigational ability. It also appears that there is a correlation between wayfinding 

strategies and navigation efficiency. A reliance on cardinal strategies was associated with 

decreased navigation time (Hund & Minarik, 2006). 

 Successful wayfinding requires appropriate strategies and each type of strategy is 

associated with a certain reasoning process and spatial representation (Carlson, Holscher, 

Shipley, & Dalton, 2010). In order for a given strategy to be effective, an individual must be able 

to cope with the processing and representation demands of that strategy (Carlson et al., 2010). 

Individual differences in navigational ability arise from variations in strategies used. How 

successful a wayfinder is in a given environment is also influenced by the compatibility between 

the environment and the strategies an individual uses. Certain people may be better at navigating 
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because they select appropriate strategies applicable to the type of environment they are in 

(Carlson et al., 2010).  

 According to Hund & Padgitt (2012), individuals with a good sense of direction report 

using more survey knowledge relative to route strategies compared to poor wayfinders. In this 

study, the effectiveness of wayfinding directions in a complex indoor environment was 

examined. Direction quality was measured using effectiveness ratings and behavioural indices. 

In previous studies, individuals with self-reported good sense of direction gave higher ratings to 

survey descriptions relative to those with a poor sense of direction (Hund & Padgitt, 2012). 

Sex Differences:                                     

There is little agreement on the issue of sex differences not only in wayfinding, but also 

in spatial ability generally. Previous studies examining navigational performance have found that 

men outperform women on paper-and-pencil tests of spatial ability, desktop virtual reality 

environments and real-world settings (Lovden et al., 2007). Individual differences due to gender 

are usually fairly small. Several studies have suggested that gender appears to play a minor role 

in the way in which environmental information is encoded (Sandstrom et al., 1998; Ward et al., 

1986). When gender differences are found, they are often attributed to gender-related strategies. 

Males tend to rely more on cardinal directions while women are more to likely to use landmark 

information. Due to these differences in strategies men tend to rely more on survey knowledge.  

Women, on the other hand, are reported to rely more on route knowledge (Charleston & Zieles, 

1996; Lawton, 1994). Females appear to have superior object location memory although this can 

depend on the type of objects and the extent of metric precision that is required (Hegarty & 

Wolvers, 2010).  
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Gender differences in performance on the use of landmarks have been found, but the 

results have been inconsistent. A study by Cutmore et al., (2000) suggests that both male and 

females use landmarks as navigational tools effectively (Cutmore et al., 2000). Conversely, a 

study by Parush & Berman (2004) suggests that the use of landmarks improves performance in 

females when used in conjunction with maps, but hinders performance in males (Parush & 

Berman, 2004).  

Sense of Direction: 

Another source of individual differences is an individual’s sense of direction. Sense of 

direction is defined as knowledge of one’s location in space. Individuals with a good sense of 

direction can provide a reliable reference bearing when they are registering the degree of a turn. 

Individuals with a good sense of direction can also accurately orient their mental representation 

of a configuration to match a scene they are viewing (Cornell, Sorenson & Mio, 2003). 

The concept of sense of direction was developed in early analysis of navigation when an 

organism was observed to locate itself in unfamiliar territory. It appears that humans are capable 

of various methods of wayfinding depending on the type of information that is available to them. 

An individual’s sense of direction could be important to all of these methods. For example, 

individuals with a good sense of direction may be more skilled at looking for areas likely to 

contain landmarks and can use the information to direct actions at intersections or routes. A good 

sense of direction can also provide an accurate reference bearing when wayfinders are registering 

a degree of a turn (Cornell et al., 2003).  

Research on sense of direction has previously dealt with either the ability to maintain 

orientation while moving through space or the ability to point to unseen goals and draw maps 
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(Howard & Templeton, 1966). Individuals with a good sense of direction are skilled at 

determining spatial relationships beyond their immediate position and surroundings (Kozlowski 

& Bryant, 1977). According to several researchers, sense of direction involves the ability to 

mentally coordinate egocentric and imagined frames of references (Kozlowski and Bryant 1977; 

Sholl 1988, Montello & Pick, 1993). In a study by Bryant (1982), participants were asked to 

point to unseen objects at a university campus. The results indicate a strong correlation between 

self-reports of sense of direction and pointing error (r = -0.63) (Bryant, 1982).  

Research by Kozlowski & Bryant (1977), suggests that individuals with a good sense of 

direction have a better mental representations of environments. In this study, participants were 

presented with a partial map of a university campus and asked to complete the map based on 

their cognitive map of the university. Individuals with a good sense of direction outperformed 

poor wayfinders (Kozlowski & Bryant, 1977). 

Internal Neural Mechanisms: 

         Not only do external factors affect navigational ability, but internal neural mechanisms 

have an influence on individual differences as well. The neural networks supporting human 

wayfinding ability mainly involve the hippocampus, and prefrontal cortex.  Individual 

differences due to sex may be attributed to the fact that men show activation in the left 

hippocampal region, whereas women show activation in the right parietal and right prefrontal 

areas during spatial navigation (Gron et al., 2000).  

         The ability to navigate effectively depends on the ability to successfully store 

navigationally relevant information. Differences in memory consolidation are also associated 

with variability in navigational ability.  A study by Janzen, Jansen & Turennout (2008), suggests 
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that the bilateral hippocampus, and parahippocampal gyrus are more active in good navigators in 

the presence of navigationally relevant information. In this study, memory consolidation of 

navigationally relevant landmarks after a route learning task was examined using event-related 

fMRI. The results indicate that there was increased activity in the bilateral hippocampus and 

parahippocampal gyrus in good navigators compared to poor wayfinders. The results from this 

study provide some evidence of the connection between memory consolidation and wayfinding 

ability (Janzen et al., 2008). 

         Functional magnetic resonance imaging studies have demonstrated differential neural 

activity in good and poor wayfinders. Findings one’s way engages different cognitive processes 

than following a familiar route.  A study by Hartley, Maguire, Spiers, and Burgess (2003), 

provides evidence of the importance of the anterio hippocampus and head of the caudate in 

wayfinding. Good navigators appear to have increased activation compared to poor wayfinders 

in the anterior hippocampus during wayfinding and the head of the caudate when following 

routes (Hartley et al., 2003). 

Applications: 

Understanding strategies used by good wayfinders can also have implications for 

behavioural geographers and cartographers. The construct of a sense of direction may play an 

important role in models of spatial decision making. The construct of sense of direction may also 

be important to models of spatial action and activity. It may be an explanation for why drivers 

prefer certain routes to others that are aligned within a cardinal grid. Lastly, greater insight of 

cognitive mechanisms involved in wayfinding may be important in assessing the aesthetics and 

effectiveness of maps (Cornell et al., 2003). 
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A greater understanding of sources of individual differences in navigational ability can be 

particularly helpful for establishing guidelines on designing buildings effectively. For example, 

routes can be designed to make navigating easier. This knowledge can provide insight into the 

type of environments that can be learned most quickly. Poor navigators may utilize an 

environment differently than poor wayfinders. A greater understanding of the strategies used by 

good and poor navigators is vital for a planner when designing environments suitable for both 

populations. Considering how good and poor wayfinders learn about space and how they handle 

spatial aspects of environments will also allow planners to develop maps that incorporate 

strategies used by both groups (Kitchin, 1994).  

Research has found that poor hospital design is associated with increased environmental 

stress (Kitchin, 1994). This can be avoided by the application of navigational knowledge to 

designing clearer maps, and having directions at key decision points. Research concerning how 

good wayfinders navigate can provide information concerning the environmental needs of the 

elderly. Age-related decrements in navigational ability have an impact on quality of life. 

Environments can be designed to allow elderly individuals to learn their environments more 

quickly and with greater ease. These “optimum” environments may be more suitable as a living 

area and can be useful to architects creating spaces used mainly by elderly such as residential 

homes and hospitals (Kitchin, 1994).  
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Study 1: Examination of navigational differences between good and poor wayfinders in  

large-scale environments 

Introduction: 

The present study attempted to determine whether people’s appraisals of their sense of 

direction is a valid index of their ability to find their way in large-scale environments. This 

experiment examined individual difference variables that may be linked with self-ratings of 

sense of direction. Most research to date on large-scale spaces has focused on navigation in the 

horizontal plane. Vertical travel can disturb spatial cognition and often results in disorientation. 

Segmenting a building mentally into regions reduces cognitive effort and permits hierarchical 

planning.  There have only been a few studies to date that have examined wayfinding in 3-

dimensional large-scale environments (Passini, 1984; Foley & Cohen, 1984). Passini (1984), 

collected verbal protocols from individual’s while navigating in a multilevel shopping center. 

Foley & Cohen, (1984), had participants determine distances between locations on various floors 

of a five-story building. In the current study, various components involved in navigating were 

examined in a 4-storey building. Participants were asked to construct and integrate 

representations of space located at different levels. A greater understanding of how individuals 

navigate in 3-dimensional spaces can provide useful insight into the optimal design of high-rise 

buildings.  

Wayfinding errors can occur for a number of reasons and can be manifested in various 

forms. Movement errors can occur resulting from incorrect sensing of time, distance or velocity, 

which can result in an over or underestimate of distance. Errors can also occur due to a frame of 

reference that is distorted or poor perceptual recoding which can results in turn errors, direction 

errors or can cause a mismatch in choice points and turn angles. Navigational errors can also 
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occur due to incorrect internal manipulations such as incorrectly integrating routes to form a 

layout, recognition errors such as incorrectly identifying a cue due to perspective changes or 

inadequate familiarity. Lastly, wayfindings errors can also occur due to the use of a distorted 

cognitive map, incorrectly implementing a correctly encoded behavior such as an angle or 

incorrectly decoding sets of spatial relations (Allen & Golledge, 1999). 

This study was conducted to gain a broad idea of various factors that may influence 

navigational performance. Participants were guided through a building and then asked to find 

their way to a destination.  In order to examine navigational strategies used by good and poor 

wayfinders, participants were asked to think aloud as they found their way to a target location. 

Participants also completed a series of questionnaires to assess their ability to (1) recognize 

landmarks,  (2) remember directional information, (3) determine spatial relationships between 

landmarks and (4) form cognitive maps of environments. It was hypothesized that good 

navigators would outperform poor wayfinders at these questionnaires. 

A think out loud method was used because it allows the simultaneous monitoring of a 

subject’s mental activity as they navigate through an environment (Kato & Takeuchi, 2003). The 

ability to examine wayfinding behaviour on a temporal basis can provide important insight into 

wayfinding. The contents of verbal reports are analyzed by placing them in several different 

categories. These categories are based on commonalities in the statements to derive various 

similar “thought” categories.  Examining these categories and their contents is a useful way of 

understanding a cognitive task and the strategies used.  A drawback of verbal protocols is that 

they only give insight into processes that subjects are aware of or verbalize.  Despite this 

disadvantage, verbal reports can assist in providing evidence to distinguish between competing 
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models, such as psychometric tests, seeking to explain spatial cognition. The use of verbal 

reports as an attempt to acquire navigational information has been largely ignored in previous 

work (Spiers & Maguire, 2008). 

In order to determine differences between good and poor navigators, the Santa Barbara 

Sense of Direction Scale was used to select participants that are skilled at navigating and those 

that have difficulty. Self-report measures such as the Santa Barbara Sense of Direction (SBSOD) 

scale are a more accurate approach of predicting spatial ability than paper-and-pencil tests of 

spatial ability. One likely reason for this may be due to the fact that their environmental 

cognitive abilities are utilized on a daily basis and there are real costs associated with having 

poor spatial abilities so people can easily think of situations in which these abilities (or the lack 

of these abilities) have come into play.   

Examination of items loaded on this scale suggest that people rate their sense of direction 

based on judgments of their ability to remain oriented in an environment, learning layouts, using 

maps and by the ability to give and follow directions.  Most items loaded on this scale involve 

ratings of the individual’s own competency on navigational tasks that rely on survey or 

configurationally knowledge of environments.  This self-report measure appears to be highly 

correlated with environmental knowledge that requires the ability to represent one’s current 

orientation or heading in an environment. 

Sense of direction and wayfinding are related notions, however they have different 

meanings. A sense of direction involves the ability to form an accurate cognitive map of an 

environment and to be able to orient oneself within this representation. Wayfinding refers to 

problem-solving abilities that are required to reach a destination. Orientating oneself with the use 
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of a cognitive map is considered a source of information that is often used in this problem-

solving process while wayfinding (Passini et al., 1998). The SBSD is a test of sense of direction 

and is related to tasks that involve updating location in space as a result of self-motion (Hegarty 

et al., 2002). This scale was used to examine wayfinding ability since orientating oneself with the 

use of a cognitive map is an important element of the wayfinding process (Allen & Golledge, 

1999). 

Participants: 

Participants were undergraduate psychology students from the University of Waterloo. 

Participants had an average age of 20.25 (SD 1.42) and consisted of 20 females and 20 males. 

Sample sizes were determined using statistical power. Power calculations were conducted using 

π = 0.80 and a significance criterion of α = 0.05. 

 Participants were selected based on their performance on the Santa Barbara Sense of 

Direction Scale (SBSD). An equal number of males and females with good and poor sense of 

direction were selected to eliminate a sampling bias since there appears to be a smaller sample of 

males with low SBSD scores in this population. The Santa Barbara Sense of Direction scale has 

been shown to predict actual wayfinding ability with reasonable accuracy and is internally 

consistent with good test-retest reliability (Hegarty et al., 2002). This is a 15-item scale that 

contains self-estimates of spatial ability, direction giving/ taking styles, and styles of exploration 

(Appendix A).  In the SBSOD participants provide a rating of their agreement (on a scale 1-7) 

with various statements about their spatial skills (Epstein et al., 2005).  

Items on the scale are phrased in such a way that half of the items are stated positively 

while the other half are stated negatively.  An example of a positively stated phrase would be the 
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following: “I am very good at judging distances” and an example of a negatively stated item 

consists of the following “ I easily get lost in a new city”. In this study and all subsequent 

studies, items on the scale were scored such that a higher rating indicates a good sense of 

direction  (i.e. the scores of positively rated items were reversed). Studies have shown that 

people are fairly truthful and accurate in estimating their navigational ability. Participants that 

scored at least one standard deviation above the mean of 1751 students were part of the good 

sense of direction group and those that scored one standard deviation below the mean were part 

of the poor sense of direction group. The focus of this dissertation was to examine differences 

between good and poor navigators, rather than average wayfinders and consequently only the 

extreme groups were selected. A double-blind procedure was used and the experimenter was not 

aware if the participant was part of the good or poor sense of direction group. Participants were 

given a participation course credit for taking part in the study. 

Method and Materials: 

The study took place at the Environment and Information Technology (EIT) building 

located at the University of Waterloo. This building was chosen because it had several landmarks 

and pathways to detect individual differences in wayfinding. If this environment had very few 

pathways even participants in the poor sense of direction group may not have committed any 

route errors, thus making it difficult to detect differences between the groups. This building 

contained numerous pathways and as a result the difficulty level of this task was appropriate for 

this type of study. This environment was also chosen because of a large foyer located in the 

center of the building, which can make it easier to form a cognitive map linking the different 

floors. Another aim of this study was to examine whether good and poor navigators differ in 

their ability to determine spatial relationships between landmarks located on multiple floors. 
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Determining spatial relationships of landmarks positioned on different floors requires an ability 

to synthesize information from various levels. The foyer in this building can facilitate 

participants in determining these spatial relationships since landmarks located on different floors 

can be viewed from a foyer. Lastly, this building was also suitable since most psychology 

participants had very little exposure to the building. Participants were asked to rate their 

familiarity with the building from 1-5 (1 not familiar, 5 familiar). Participant’s who rated 

themselves 3 or below were included in the study. Results from a questionnaire confirmed that 

most participants were not familiar with the building. Data from the few participants who were 

familiar with the building were excluded from the analyses.  

Method: 

Participants were taken to an adjacent building on campus and upon arrival they were 

provided with a consent form. The meeting location was a place on campus adequately distant 

from the EIT building to prevent participants from visiting the building prior to the experiment.  

After completing consent forms participants were lead to the origin of a path through an alternate 

route so they could not acquire route information until they reached the starting location. 

Participants were then lead to the starting point of a route through tunnels on campus from a 

nearby building. The tunnels avoided the problem of bad weather and the reduced the ability of 

participants to determine their position by referring to exterior landmarks such as campus 

architecture or the sun. The route was arranged so it started at one exit on the north side and 

ended at another exit in the southern end of the building. The diagrams below illustrate the floor 

plan of each of the 4 floors (Figure 1, 2, 3, and 4). The line indicates the path, the starting 

positions are indicated by the arrows and each of the landmarks have been labeled.  
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Figure 1: 1st floor layout 

 

Figure 2: 2nd floor layout 
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Figure 3: 3rd floor layout 

 

Figure 4: 4th floor layout 
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Upon entrance to the EIT building participants were asked to rate their familiarity with 

the building on a scale of 1-5, 1 being not familiar and 5 being very familiar (Appendix B). 

Participants were then guided through a multi-level (4 floor) route and asked to follow the 

experimenter in order to learn the route so they could retrace the path themselves in a second 

trial.  Participants were asked to pay attention to the location of landmarks pointed out along the 

path. Each floor had 3 landmarks that participants were asked to remember (total # landmarks (4 

floors x 3) =12). A picture of each of the 12 landmarks are provided in Appendix B. Participants 

were then asked to retrace the path taken without asking passers-by for assistance or referring to 

maps. As participants retraced the route they were asked to think aloud and verbalize anything 

that came to mind. As participants retraced the route they were video taped from behind. After 

retracing the route participants were asked to complete a series of questionnaires to assess their 

ability to  (1) recognize landmarks,  (2) remember directional information, (3) position 

landmarks on a map (4) assess spatial relationships between landmarks and (5) form cognitive 

maps of environments. Each participant completed the experiment in the same sequence. Firstly, 

participants learned the route of the 4th floor by following the experimenter and then drew the 

route of the 4th floor. After learning and drawing the 4th floor, participants then learned and drew 

the 3rd floor, 2nd floor and lastly the 1st floor. After learning and drawing each of the floors, 

participants were asked to retrace the entire route starting from the 4th floor to the 1st floor, 

without asking people for directions or the use of maps.  After retracing the route, participants 

completed several questionnaires. 

An area in an adjacent building was used to provide a quiet place to complete the 

questionnaires. The questionnaires were also completed in a different building to prevent 

participants from using environmental cues to answer the questions. Explanations and examples 
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were provided to each participant to familiarize themselves with the questions being asked. The 

experiment took approximately 60 minutes to complete.  

Tasks: 

Route Drawing Task: 

Participants were asked to draw the route taken on each floor (Appendix C). Maps were 

drawn on a 8.5 x 11 paper. Performance was measured by determining the percentage of paths 

that were drawn in the correct position. Paths had to be drawn according to the correct angle 

relative to other paths to be considered accurate (see appendix D for an example). 

Path Pattern Identification: 

The path on the 3rd and 4th floor are the same, but in the reverse direction. Participants 

were asked in an open-ended question if they noticed any similarities between the path taken on 

the 3rd and 4th floor (Appendix E). This question was designed to assess whether both good and 

poor navigators integrate spatial information by keeping track of spatial patterns of paths along 

different floors. 

Landmark Recognition Questionnaire: 

This questionnaire assessed participant’s ability to recognize landmarks. Each question 

contained 3 photographs and participants were required to select 1 photograph that illustrates a 

landmark presented along a given path. The backgrounds behind all landmark photographs were 

cut out to prevent participants from using surrounding environmental cues to determine the 

correct landmark. The data were analyzed by determining the frequency of correct responses of 

each landmark. 
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Directional Information Questionnaire: 

This questionnaire assessed participant’s performance at keeping track of turns from 

landmarks while navigating (Appendix F). Participants were asked to indicate if they turned left, 

right or went straight once arriving at each of the 12 landmarks. The data were analyzed by 

determining the frequency of correct responses associated with each landmark. 

Landmark Positioning Task: 

Participants were presented with a map and they were required to indicate the position of 

each landmark on the map. The path taken on each floor was drawn on the map to reduce the 

influence of path memory in determining positional information of landmarks. 

Spatial Relationship Questionnaire: 

Participants were asked to identify a landmark’s location relative to the other 2 landmarks 

positions by circling the “X” that best represents its location (Appendix G). Not all landmarks 

were on the same floor. The labeled “X’’s represent the approximate position of 2 landmarks 

presented along the path.   
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Sample question: 

 

1) Please circle the mammoth’s position                     

          X   

                  X (Nanotechnology Institute) 

X                      X (balcony)         X 

  X  

Verbal statements: 

Participants were asked to verbalize their thoughts as they retraced the path. Verbal statements 

made were classified into 5 categories: 

1) Landmark: Statements that make reference to landmarks.  

2) Direction: Statements that make reference to turns. 

3) Planning: Statements that make reference to planning a route before arriving at a destination. 

For example, “I’ll turn left when I arrive at the 2nd landmark” This sentence would also be 

considered a “landmark”, “direction” and “planning” statement.  

4) Spatial Relationship: Statements that make reference to spatial relationships between paths, 

landmarks or the participant. For example “This path is parallel to the path I started from”  

5) Uncertainty: Statements that indicate uncertainty. For example: “I’m not sure if I’m supposed 

to turn left from here”. 
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Verbal statements made were only coded based on the words rather than intonation. Two 

raters categorized the statements and inter-rater reliability was determined.  

Wayfinding Performance: 

The frequency of wrong turns was used to determine wayfinding performance. If 

participants took a wrong turn, they were directed back to the correct turn in order to prevent a 

subsequent compounding of errors from the initial incorrect turn. 
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Results and Discussion: 

Performance:           

 These results of this study indicate that the Santa Barbara Sense of Direction Scale is an 

accurate predictor of navigational ability (Figure 5). Poor navigators made more route errors 

(F(1, 36) = 8.21, p = 0.007, η2
partial = 0.186). No significant sex differences in the average 

number of route errors were found (F(1, 36) = 0.14, p = 0.705, η2
partial = 0.004) and there also 

was not a sex x ability (good vs. poor) interaction (F(1, 36) = 0.04, p = 0.850, η2
partial = 0.001). 

Poor navigators also made more pauses (F(1, 36) = 9.26, p = 0.004, η2
partial = 0.204) than 

good navigators. No significant sex differences in the average number of pauses were found 

(F(1, 36) = 2.5, p = 0.124, η2
partial = 0.064), and there also was not a sex x ability interaction (F(1, 

36) = 0.27, p = 0.603, η2
partial = 0.007). Pauses were noted when a participant made a complete 

stop of at least 2 seconds.  

 

Figure 5: Average frequency of errors and pauses in good and poor wayfinders with standard 

error. 
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Landmark Recognition Task: 

Good navigators outperformed poor wayfinders on the landmark recognition task (Figure 

6). Results from the landmark recognition task indicate that good navigators were better at 

recognizing landmarks (F(1, 36) = 6.6, p = 0.015, η2
partial = 0.155). No significant sex differences 

on this task were found (F(1, 36) = 0.08, p = 0.777, η2
partial = 0.002 ) and there also was not a sex 

x ability interaction (F(1, 36) = 0, p = 1.0, η2
partial = 0). 

 

Figure 6: Average score on the landmark recognition task in good and poor navigators. Error 

bars represent standard errors of the mean.  
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Directional Information Questionnaire: 

 The results also indicate that good navigators are more skilled at assessing directional 

information from landmarks (F(1, 36) = 4.80, p = 0.035, η2
partial = 0.117). Not only are good 

navigators better at remembering landmarks visually along a path, but they are also skilled at 

determining the direction they turned at these landmarks (Figure 7). No significant sex 

differences on this task were found (F(1, 36) = 0.74, p = 0.397, η2
partial = 0.021) and there also 

was not a sex x ability interaction (F(1, 36) = 1.099, p = 0.301, η2
partial = 0.029). 

 

Figure 7: Average score on the directional task in good and poor navigators with standard error. 
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Landmark Positioning Task: 

Results from the landmark positioning task (Figure 8) indicate that good and poor 

navigators did not significantly differ in their performance on this task. (F(1, 36) = 3.29, p = 

0.078, η2
partial = 0.083). No significant sex differences on this task were found (F(1, 36) = 0.03, p 

= 0.857, η2
partial = 0.0009) and there also was not a sex x ability interaction (F(1, 36) = 0.03, p = 

0.857, η2
partial = 0.0009).  

 

Figure 8: Average score on the landmark positioning task in good and poor navigators with 

standard error. A response was considered correct if the chosen location was within 2 cm of the 

actual landmark position on the map. 
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Map Drawing Task: 

As illustrated in Figure 9, the findings from the map drawing task confirm that good 

navigators form more accurate cognitive maps than poor wayfinders (F(1, 36) = 31.71, p < 

0.001, η2
partial = 0.468). Performance on the map drawing task was quantified by the number of 

correct pathways drawn in the correct direction and angle relative to adjacent pathways. No 

significant sex differences on this task were found (F(1, 36) = 0.81, p = 0.374, η2
partial = 0.022) 

and there also was not a sex x ability interaction (F(1, 36) = 0.01, p = 0.941, η2
partial = 0.0001). 

 

Figure 9: Average map drawing score in good and poor navigators with standard error. 
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Verbal Protocols: 

Inter-rater reliability between the two raters was quite high (r = 0.998, p < 0.001). Poor 

navigators made significantly more uncertainty statements than good wayfinders (Figure 10: 

uncertainty: F(1,36) = 47.80, p = 0.020, n2
partial = 0.111). No other differences between good and 

poor navigators were found in the other verbal categories (landmark: F(1,36) = 23.51, p = 0.180, 

n2
partial = 0.058; direction: F(1,36) = 22.01, p = 0.215, n2

partial = 0.0547; planning: F(1,36) = 17.65, 

p = 0.340, n2
partial = 0.044; relationship: F(1,36) = 14.22, p = 0.500, n2

partial = 0.036). These 

uncertainty statements demonstrate poor navigators low self-confidence in their navigational 

abilities and insufficient knowledge of the route.  

 

Figure 10: Average number of verbal statements in each category by good and poor wayfinders 

with standard error. 
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Cognitive strategies may not have been verbalized which may account for the lack of 

significant differences in some verbal statement categories. If an individual fails to make a verbal 

statement it may be that they are thinking, but just not verbalizing their thoughts. A disadvantage 

of verbal protocols is that certain individuals may be more talkative than others and may 

verbalize their thoughts more. In order to determine whether this may have had an influence, the 

number of verbal statements in each group was determined to examine if good and poor 

navigators made a significantly different number of total verbal statements. The total number of 

verbal statements made by good and poor navigators was not significantly different (F(1, 36) = 

0.01, p = 0.92). These results indicate that the differences in verbal statements made were not 

due to the fact that good and poor wayfinders differed in how talkative they were.  
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Spatial Relationship Task: 

As illustrated in Figure 11, good navigators also outperformed poor navigators at the 

landmark relationship task (F(1, 36) = 51.78, p < 0.001, η2
partial = 0.589). No significant sex 

differences on this task were found (F(1, 36) = 0.73, p = 0.399, η2
partial = 0.019) and there also 

was not a sex x ability interaction (F(1, 36) = 0.134, p = 0.717, η2
partial = 0.004). These results 

suggest that participants with a good sense of direction are skilled at recalling several landmarks 

and use these objects effectively as landmarks for organizing successive environmental 

experiences into an overall configuration. Participants with a poor sense of direction appear to 

have difficulty in this area which may partly account for the greater number of route errors in 

this group.     

 

Figure 11: Average score on the spatial relationship task in good and poor navigators with 

standard error. 
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Path Pattern Recognition Task: 

Participants indicated that the paths were similar because they were 1) the same but 

reversed, 2) both paths formed a square shape, or 3) they had similar landmarks. Alternatively, 

participants could indicate that there were no similarities between the paths. The results shown in 

Figure 12 indicate that good navigators are not better than poor navigators at integrating spatial 

information by keeping track of spatial patterns. No significant differences were found between 

good and poor navigators in their responses (reversed: X2 = 10.4, df = 1, p = 0.40; square: X2 = 

0.36, df = 1, p = 3.04; landmark: X2 = 22.5, df = 1, p = 0.12; none: X2 = 1.6, df = 1, p = 2.12).  

 

Figure 12: Frequency of statements in each type of response category on the path pattern 

recognition task. 
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A Discriminant Function Analysis was performed to determine whether any navigational 

tests in which significant differences were found could predict if individuals fall into a good or 

poor sense of direction group. Alpha levels were adjusted downward for multiple comparisons to 

ensure that the alpha level remains at 0.05. A discriminant analysis was used instead of a 

regression since the dependent variables (good vs. poor navigators) are categorical variables rater 

than continuous variables, which are required in a regression.  The discriminant analysis was also 

used since it is a useful way of determining group category based on several independent 

variables. A stepwise procedure in SPSS (version 20) was used for entering the data in the 

discriminant analysis, which involves first selecting variables with the largest value of 

acceptance criteria. The discriminant analysis suggests the following predictive equation: E = 

0.732a + 0.576b + 0.222c + 0.067d  (a = spatial relationship task score, b = map drawing score c 

= landmark recognition score, d = directional task score). The values indicate the relative 

importance of each factor. As illustrated, performance on the spatial relationship questionnaire 

was the most effective variable at discriminating between good and poor navigators.  

Correlations between wayfinding performance and the various spatial tasks were also 

examined. The results indicate that there were individual differences between the groups. 

Wayfinding performance of good navigators was not significantly correlated with any of the 

spatial tasks (map drawing task: r = -0.272, p = 0.221; landmark recognition task: r = 0.021, p = 

0.926; landmark positioning task: r = -0.345, p = 0.116; directional information task: r = -0.285, 

p = 0.198; spatial relationship task: r = -0.017, p = 0.941). Poor navigators differed from good 

navigators, and various significant correlations between wayfinding performance and several 

tasks were found. Significant correlations in poor wayfinders were found between wayfinding 

performance and the landmark recognition task (r = 0.422, p = 0.064), as well as in the landmark 
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positioning task (r = 0.581, p = 0.007). Significant correlations were not found in the remaining 

tasks in poor navigators (map drawing task: r = -0.320, p = 0.169; directional information task 

(r= -0.375, p = 0.103; spatial relationship task: r = -0.075, p = 0.754). These results suggest that 

the ability to recognize landmarks and its position is associated with wayfinding performance in 

poor navigators, but not in good wayfinders.  

Discussion: 

Dividing participants into a good and poor sense of direction group gives an idea of the 

magnitude of performance effects. Selecting participants at least 1 standard deviations above and 

below the mean provided a suitable sample size and was an extreme enough criterion in selecting 

good and poor navigators. The results from this first experiment suggest that the lower and upper 

bounds chosen in this study were an accurate way of selecting good and poor navigators since 

good navigators performed better on most spatial tasks. It is unlikely that sampling participants 

using a more extreme criterion would have yielded different results since even with this selection 

good navigators outperformed poor wayfinders on several wayfinding abilities. Results from 

other studies also suggest that selecting participants 1 standard deviation above and below the 

mean is an extreme enough criterion. A study by Kato & Takeuchi (2003), also selected 

participants using this criterion, and found differences between good and poor navigators. 

According to Kato & Takeuchi (2003), good navigators show much better performance on route 

learning tasks compared to poor wayfinders. 

The results from this study suggest that within the group of good wayfinders these spatial 

questionnaires do not account for variance in wayfinding ability. These findings also indicate 

that in poor wayfinders, the poorer the performance on these abilities the worse individuals are at 
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navigating. Good wayfinders appear to be more skilled at recognizing the way landmarks look, 

and keeping track of the direction turned from them. These are important skills since simply 

recognizing a landmark is not sufficient for using it as a reference point, directional information 

is required to orient effectively while navigating. Good wayfinders accurate drawings of the 

paths also illustrate their accurate cognitive maps. Results from the spatial relationship task 

suggest that good wayfinders are also better at determining spatial relationships between 

landmarks.  

A key finding from this study suggests that despite good wayfinders being more skilled at 

a wide range of navigational abilities, the ability to form spatial relationships between landmarks 

appears to be the strongest predictor of navigational ability. These results are unlikely to be 

attributed to the fact that poor navigators were bad subjects with low intelligence. Previous 

research suggests that there does not appear to be a significant association between wayfinding 

performance and intelligence. A study by Juan-Espinosa, Abad, Colom, & Fernandez-Truchaud, 

(2000) examined the relationship between intelligence and general processes in wayfinding 

(updating position, survey representation and route representation). The results suggest that 

wayfinding performance is not influenced by intelligence (Juan-Espinosa, 2000).  

This study provides a greater understanding of how good and poor wayfinders navigate in 

3D large-scale environments. One limitation of most controlled studies that have been conducted 

on wayfinding performance is that they have limited themselves to navigation in the horizontal 

plane on an isolated floor. Vertical travel can disturb spatial cognition and can often result in 

disorientation. Navigators often assume that different levels in a building have identical 

topology, which can lead to wayfinding impairments. It can also be difficult for wayfinders to 
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properly align vertical spaces. There have only been a few studies to date that have examined 

wayfinding in 3-dimensional large-scale environments (Holscher et al., 2006). 

The results from this study also replicate and extend research establishing the validity of 

self-ratings of sense of direction. Self-ratings of sense of direction were related to several 

different measures of route learning and wayfinding. The findings of this study suggest that a 

simple and inexpensive administration of the Santa Barbara Sense of Direction Scale can be used 

to accurately predict wayfinding performance (Cornell et al., 2003). 

The results from this study can be used to assist with the design of training programs to 

boost wayfinding performance of poor wayfinders. Observations of hunter-gatherer cultures 

suggest that novice navigators are often instructed to look back when experienced travelers show 

them a route leading away from an important location. Pathfinders also look back in order to 

become more familiar with the locations and perspective of landmarks they encounter once they 

return along a route. Interesting experimental studies of modern urban children and adults that 

were trained on using this look-back strategy used by hunter-gatherers cultures have been 

conducted. The results indicate they were less likely to make errors at intersections when 

reversing a novel route than the group not trained (Cornell et al., 2003). The results of these  

studies suggest that poor wayfinders can be trained to navigate effectively and consequently the 

results of this study can be used to design appropriate training programs. Poor navigators should 

be trained to learn the relative locations of objects and paths rather than their absolute positions. 

The current study provides a greater understanding of navigating and spatial learning in 

naturalistic environments. It is evident that further research is required to confirm the 

interpretation of the results described. For example, an important factor that may have influenced 
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the results is the amount of information provided to participants before navigating through the 

environment. In the present study, participants were not given any prior information about the 

routes through which they had to navigate. In contrast, if participants were initially given some 

information about the routes they were to take, they may have employed different strategies 

(cognitive map versus route based strategies) to optimize their performance.  
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Study 2: Examination of distance and angular information in the assessment of landmark  

configurations 

Introduction: 

Landmarks are an important part of an individual’s cognitive map. Good navigation 

depends on developing an understanding of the environment and planning routes to locations that 

are not in an individual’s immediate surrounding. The use of landmarks is imperative when 

navigating through environments. Landmarks are distinctive features in an environment that 

provide a wayfinder with a way of locating themselves and forming goals. According to Heft et 

al. (1979), there are two main ways landmarks can be used when navigating. Landmarks are 

memorable cues that are selected usually for recalling and remembering turns along a path. 

Landmarks also facilitate encoding of spatial relationships between paths and objects, which aid 

the formation of cognitive maps. In various types of environments, landmarks provide essential 

information about the relationship of objects, locations and paths.  As illustrated landmarks 

provide vital navigational information and consequently a greater understanding of the use of 

landmarks can facilitate urban planners in designing appropriate environments (Heft, 1979). 

Various spatial tasks require people to use landmarks to form a memory of their location 

(place memory) (Waller et al., 2002).  A common place finding mechanism involves encoding 

entire arrays of landmarks as a configuration and to learn a location relative to this configuration 

(MacDonald et al., 2004). For example, an individual may establish a memory of a particular 

location by learning spatial relationships of several nearby landmarks (MacDonald et al., 2004).  

A location (cross in Figure 13 below) can be remembered in terms of its distance (Figure 13: 

d1,d2, d3) to nearby landmarks or by the relative angles (Figure 13: α1, α2 and α3) in which 

those landmarks are positioned, or both (Waller et al., 2002). The focus of this study was to gain 
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a greater understanding of the degree to which directional and angular information are used by 

good and poor navigators in determining spatial relationships between landmarks. 

 

Figure 13: Target location (cross) determined by relative distances (d1, d2, d3) or relative angles  

(α1, α2 and α3). 

 

The examination of place learning and landmark-based wayfinding in animals has been 

examined extensively. Cartwright and Collett (1983), trained bees to locate a food source that 

was posited at a particular distance and direction from an array of 3 landmarks.  They then 

contracted and expanded the array. The bees searched closer to landmarks when the array was 

contracted and further away when the array was expanded, thereby maintaining the same 

compass direction from the landmarks. These results suggest that bees primarily use angular 

differences rather than distances between targets and landmarks (Cartwright & Collett, 1983). 
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This evidence suggests that animals can use distance information of landmarks, but it is of 

secondary importance and is only used when other information is ambiguous.  

In humans however, it appears that distance information is more essential in place 

learning. Individuals often take distance information into consideration when learning locations.  

In an experiment by Spetch et al., (1997), participants were required to locate objects in a large 

grassy field that had been hidden in the center of an array consisting of 4 landmarks. In the 

learning phase this array of landmarks formed a square. The array was then altered after learning 

the location of the object and the array was expanded into an elongated rectangle. Rather than 

searching for the objects in locations that correspond to the absolute distances to the landmarks, 

people searched the center of the new rectangular array. Choosing the center of the array 

suggests that the relative distances rather than absolute distances from the landmarks were used 

by participants (Spetch et al., 1997).  

Recently, several experiments (Bulthoff et al., 2008; Foo & Warren, 2007) have begun to 

examine place learning and landmark use, using virtual reality. These experiments have 

demonstrated that place leaning can occur in computer-simulated environments and this learning 

is similar to the principles of place learning that occur in animals. The development of virtual 

reality technology has allowed for a systematic and laboratory-based evaluation of navigational 

behaviour. A major advantage of virtual reality is that it allows an experimenter considerable 

control over visual features of an environment and allows route and landmarks to be perturbed 

(to assess the key features that participants use in wayfinding) – perturbations which would be 

difficult to effect in real world environments. A drawback of virtual reality is that it does not 

allow actual movement through space and consequently prevents participants from using 

kinesthetic, vestibular, and proprioceptive cues. Virtual reality only allows the assessment of 
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navigational abilities that are visually based and does not allow input from other sensory 

systems. Despite the limitation of this technology, studies have shown that spatial knowledge 

acquired in virtual reality transfers well to real world environments (Moffat et al, 2001). Virtual 

reality studies on landmarks have been conducted to examine mental rotation and the ability to 

form cognitive maps (Bulthoff et. al, 2008; Foo & Warren, 2007).  According to Bulthoff et al., 

(2008), cognitive costs of mental rotations are reduced when the viewpoint changes are caused 

from the observer’s motion rather than the spatial layout or objects location. Foo & Warren 

(2007), conducted a virtual reality study examining the ability to form metric cognitive maps 

from path integration using landmarks. The results indicate wayfinders take novel shortcuts 

based on visual landmarks whenever they are available and reliable. 

A study by Waller et al. (2000), examined the degree to which spatial relationships 

between landmark distances and angles are used. In this experiment, participants learned several 

locations, each relative to a different configuration of 3 distinct landmarks. They were then tested 

in an altered configuration of these landmarks and asked to return to the original location. 

Alterations were made such that one location preserved relative distance information and another 

location preserved angular differences. The altered configuration allowed an assessment of 

whether there was a preference for using relative distances or angles. The results indicate that 

relative distances between landmarks are used more than angular information.  

Results from the first study demonstrated that good navigators were better at determining 

spatial relationships between landmarks, but it did not address whether this was due to the 

distances between landmarks and/or the angles between these landmarks.  It is currently not 

known whether good navigators are better at assessing distances, angles, or both.  It may well be 
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that if one feature is particularly effective, good navigators may selectively focus on this 

particular feature and ignore the less effective metric.  

Although distance information can provide useful information, angular information may 

be even more useful in certain circumstances. When 2 landmarks are separated by 180-degrees 

from a target location, encoding a line may be easier to encode in memory than distances. 

Individuals often determine their location by locating landmarks that are collinear with each 

other. Landmarks that are arranged linearly appear to be easily encoded and used (Franklin & 

Tversky, 1990). According to Franklin & Tversky, (1990), 90-degree angles are extremely well 

learned and are represented by the body’s axes and thus easier to remember (Franklin & Tversky, 

1990). 

The current study manipulated the saliency of configurations that contain right angles and 

straight lines by altering the orthogonality of a learning configuration. Orthogonality in the 

current experiment was defined as the number of angle differences between adjacent landmarks 

that form a right or straight angle. We proposed that the orthogonality of a learning configuration 

may bias participants to either engage or avoid an angular based strategy. It was predicted that 

greater orthogonal angles would result in a preference for an angular strategy since they are 

easier to remember. 

Good and poor navigators may also differ in their ability to determine spatial 

relationships because they focus on distance and angular information in different contexts. 

Previous studies have shown that individuals tend to use distance information when a target 

location is surrounded by 3 landmarks (Waller et al., 2003). This may not be the best approach in 

configurations with a greater number of surrounding landmarks. A large number of landmarks 
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may make it difficult to remember several distances and perhaps keeping track of a configuration 

of angles may be a more efficient approach since it can be visualized easily. This study will also 

examine whether the number of landmarks surrounding a target location may influence the 

degree to which distance and angular information are preferred in good and poor navigators. In 

the present study the number of landmarks surrounding the target consisted of 3, 4, or 5 

landmarks. Participants were then tested in an altered configuration in which one location 

preserved relative distances and the other angular differences. A preference for a location that 

preserves distance or directional information would provide an indication of the type of strategy 

preferred in good and poor navigators.  This study also provided a greater understanding of the 

degree to which orthogonality may influence this preference in good and poor navigators. 
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Method and Materials: 

Participants: 

Participants were selected from a group of undergraduate psychology students from the 

University of Waterloo. 56 subjects participated in the study and they consisted of 28 females 

and 28 males with an average age of 20.19 (SD 0.98). Subjects were given a participation course 

credit for taking part in the study.  Subjects were selected based on their performance on the 

Santa Barbara Sense of Direction Scale. Participants who scored at least one standard deviation 

above the mean of 1449 students were part of the good sense of direction group and those who 

scored one standard deviation below the mean as part of the poor sense of direction group. A 

double-blind procedure was also used for this study and the experimenter was not aware if the 

participant was part of the good or poor sense of direction group.   

Apparatus: 

Nine experimental stimuli were used along with nine control environments. Each 

stimulus consisted of a pair of configurations: a learning phase which consisted of a target 

location surrounded by 3, 4, or 5 landmarks, and an altered testing configuration that only 

contained the surrounding landmarks with the target removed. The diagram below (Figure 14), 

illustrates the environmental set up: 
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Figure 14: Learning and testing environments. 

The testing configuration was altered so that one location preserved distance relationships 

and the other angular differences.  In other words, at one particular location (D) in the testing 

configuration, the distances to the surrounding landmarks were the same as the distances from 

the target location to the surrounding landmarks in the learning configuration. Another location 

(A) preserved the same angular differences between the landmarks in the learning configuration.   

Orthogonality and the number of surrounding landmarks were varied in the trials. 

Orthogonality was determined by the number of 90 or 180-degree angles. The learning 

configurations contained either 0, 1 or 3, 90 or 180-degree angles. The diagram below illustrates 

the number of orthogonal angles in each testing environment (Figure 15: 0 orthogonal angles; 1 

orthogonal angle; 3 orthogonal angles).  
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    no orthogonal angles                 1 orthogonal angle                       3 orthogonal angles 
                           

Figure 15: Configurations with 0, 1 and 3 orthogonal angles. The black pole represents the  
 
target location. 
 

The number of landmarks surrounding the target was also manipulated so that each 

configuration consisted of 3, 4, or 5 landmarks. Nine additional control trials were used as foils 

and were not expanded or contracted. The control configurations were only rotated from the 

center of the landmark configuration. These control trials were blended with the experimental 

trials to reduce the likelihood that participants realize that the learning and testing configurations 

differed from the expansions and contractions. Figure 16, illustrates the environmental setup. 

         3objects                                     4 objects                                       5 objects        
          

  
Figure 16: Configurations with 3, 4 and 5 surrounding landmarks. The black pole represents the  
 
target location. 
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The surrounding landmarks consisted of 3D cylinders (0.12 meter radius, 1.82 height) 

with 5 different colours (red, blue, green, orange and purple). The target location was marked 

using a black cylinder of the same dimensions as the surrounding landmarks. The environment 

consisted of a circular arena (2.5 meters in diameter) with a grey floor in order to create 

sufficient contrast between the landmarks and target pole. The ground and sky did not contain 

any patterns that could provide any location or directional information to participants.  An 

immersive virtual environment was created using Google SketchUp 7.1 software. This program 

was exported to Vizard software. An optical tracker was used to monitor orientation and head 

position. Orientation and head position were sampled every 15 milliseconds. Participants 

interacted with the virtual environment using a nVIS head mounted display (HMD). The HMD 

had a 44 degree horizontal/35 degree vertical field-of-view. It had a video resolution of 1280 x 

1024 pixels and a 60 Hz image refresh rate. The presentation of stimuli and the recording of 

positional and orientation information of participants were controlled using a Python 

programming script. 

Method:  

The experiment consisted of 18 trials  (9 control and 9 experimental), which were 

comprised of a learning and a testing phase (36 total environments). Landmark configurations in 

the testing trials of the experimental conditions were rotated (30 or 50 degrees) from the center 

of the arena to ensure that the landmarks are placed in different positions from the learning trial. 

Table 1 indicates degree rotations in all the testing trials. 
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Table 1: Landmark configuration degreed rotations in each of the 18 experimental trials (A) and  

control trials (B).  

A (Experimental Trials): 
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    3 objects 4 objects 5 objects 

0  ∠  30 30 30 

1 ∠  30 30 30 

3 ∠  30 30 30 

 

 

 

 

 

 

B (Control Trials): 
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3 ∠  50 50 50 
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Each trial began with a learning environment followed by a testing phase in which 

participants were asked to determine the location they believed matched the target location in the 

learning trial. The order of the trials was randomized for each participant. The first two trials 

consisted of practice trials and data from them was not collected. Participants entered the 

environment from a fixed starting position in the physical room and walked directly to the target. 

Participants moved in the virtual environment by walking with a head mounted display on. The 

headgear was attached to a computer by a cord, which prevented participants from walking into 

walls. 

In the testing phase participants also entered the environment from a fixed starting 

position and were asked to determine the missing target location. Participants began each trial 

from a fixed starting position in the physical room and the virtual environment was rotated.  

Participants were told that they were viewing the learning configuration from a different 

viewpoint. In the control trials, the configuration of the test environment was only rotated and in 

the experimental trials they were rotated and altered. Rotating the configuration ensures that 

surrounding landmarks are not in the same positions as the learning condition, forcing 

participants to use target-to-landmark(s) relationships to complete the task (Waller et al., 2002). 

An equal number of landmark configurations were rotated clockwise and anticlockwise. 

Participants were asked to say the word “target” when they believed they had reached the 

missing target location. This target position was then recorded by the experimenter. At the end of 

the experiment, participants completed a simulator sickness questionnaire and they were asked if 

they noticed anything different about the learning and testing configurations (Appendix H). 

The dependent variable in this study was determined using an approach by Waller et al. 

2002.  A preference for the distance location (PD) was defined as (DX – AX)/ DA. DX is the 
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difference between the distance from X (chosen target location) to D (location that preserves 

distance relationships) and AX the distance from X to A (location that preserves angular 

differences). DA represents the distance between X (chosen target location) and A (location that 

preserves angular differences).  The dependent variable (PD) can range from – 1 to 1. Positive 

values indicate an estimation of the target location closer to A and negative values an estimation 

closer to D. PD scores were compared to 0 (which indices no preference for either angles or 

distances) using a t-test in both groups.  
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Results and Discussion: 

The results indicate that there were no significant differences in PD scores between good 

and poor wayfinders (t(54) = 0.32, p = 0.75) (Figure 17). Significant differences of PD scores 

from zero were tested in the analysis in good and poor wayfinders to determine if each group 

used a certain strategy. A score of zero indicates an equal preference for the distance and angular 

location. The results indicate that both good and poor navigators PD scores significantly differed 

from 0 in the negative direction, indicating a preference for a distance strategy in both groups 

(good: t(27) = -4.31, p = 0; poor: t(27) = -3.90, p = 0.01).  

 

Figure 17: PD scores in good and poor navigators. The dependent variable (PD) can range from 

– 1 to 1. Positive values indicate an estimation of the target location closer to A and negative 

values an estimation closer to D. PD scores were compared to 0 (which indices no preference for 

either angles or distances). Error bars represent standard errors of the mean. 
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A repeated measures ANOVA was conducted do determine whether there was an effect 

of navigational ability (good vs. poor), number of objects (3, 4, or 5 objects), and orthogonal 

angles (0,1,3) on PD scores in the experimental trials. The results indicate an object x angle 

interaction (F(4, 49) = 5.80, p < 0.001, η2
partial = 0.100), as illustrated in Figure 18 below. 

 

Figure 18: Average PD scores in configurations with 3, 4 and 5 objects and each of the 

orthogonal angles (0,1,3) with standard error. 

The interaction suggests that in configuration with 3 objects, there was not a difference in 

strategy preference across the different angles (3 objects (0 vs. 1 angle: F(1, 55) = 0.89, p = 

0.351, η2
partial = 0.016; 1 vs. 3 angles: F(1, 55) = 0.97, p = 0.329, η2

partial = 0.017; 3 vs. 0 angles: 

F(1, 55) = 3.72, p = 0.099, η2
partial = 0.063). Strategy preference in configurations with 4 and 5 

objects varied across different orthogonal angles (4 objects (0 vs. 1 angle: F(1, 55) = 12.09, p = 

0.001, η2
partial = 0.180; 1 vs. 3 angles: F(1, 55) = 13.28, p = 0.001, η2
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F(1, 55) = 35.79, p < 0.001, η2
partial = 0.394); 5 objects (0 vs. 1 angle: F(1, 55) = 5.22, p = 0.026, 

η2
partial = 0.086; 1 vs. 3 angles: F(1, 55) = 26.72, p < 0.001, η2

partial = 0.327; 3 vs. 0 angles: F(1, 

55) = 4.68, p = 0.035, η2
partial = 0.078).  

No other effects or were found (number of objects: F(2, 51) = 29.60, p < 0.001, η2
partial = 

0.362; orthogonal angles: F(2, 51) = 23.94, p < 0.001, η2
partial = 0.315; ability: F(1, 52) = 0.09, p 

= 0.754, η2
partial = 0.001; sex: F(1, 52) = 0, p = 0.99, η2

partial = 1.344; object x ability: F(2, 51) = 

2.12, p = 0.125, η2
partial = 0.039; object x sex: F(2, 51) = 1.76, p = 0.18, η2

partial = 0.032; object x 

ability x sex: F(2, 51) = 0.71, p = 0.495, η2
partial = 0.013; angle x ability: F(2, 51) = 1.71, p = 

0.19, η2
partial = 0.031; angle x sex: F(1, 52) = 0.404, p = 0.67, η2

partial = 0.007; angle x ability x 

sex: F(2, 51) = 3.30, p = 0.076, η2
partial = 0.059; object x angle x ability: F(4, 49) = 1.04, p = 0.39, 

η2
partial = 0.019; object x angle x sex: F(4, 49) = 1.43, p = 0.226, η2

partial = 0.026; object x angle x 

ability x sex: F(4, 49) = 1.01, p = 0.401, η2
partial = 0.019). 

According to Waller (2000), individuals use an angular strategy in configurations 

containing orthogonal angles; however the results from the current experiment differ (Waller, 

2000). It was predicted that an increase in the number of orthogonal angles would result in a 

preference for an angular strategy as opposed to using distances, however the opposite was 

found. A distance strategy was preferred instead in configurations with more orthogonal angles. 

Differences between good and poor wayfinders were also not found. There may not have been an 

expected use of strategies because of the small environment.  In this environment, the field was 

only 2.5 meters in diameter and consequently the locations that preserved distance and angular 

relationships were not very far apart. Expected differences in strategies may have also not been 

found because of the simple testing environment. These landmark configurations were fairly 
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simple and only contained a few surrounding landmarks. Due to the simplicity of the 

environments, judging distances or angles can easily be determined. Previous research (Waller, 

2000), and the current study suggest a distance strategy is preferred, and consequently there may 

not have been a switch to an angular strategy in configurations with more orthogonal angles 

because of the small scale of the environment in which distances can be easily judged. 

Experiment 1 demonstrated that good wayfinders are better at determining spatial 

relationships among landmarks. It was initially hypothesized that good wayfinders may 

outperform poor wayfinders at this landmark task because they may rely on orthogonal angles 

in determining spatial relationships among landmarks; however this does not appear to be the 

case. Rather, it may well be that good wayfinders outperform poor navigators at determining 

spatial relationships due to a more accurate cognitive map (which was demonstrated by the 

accuracy in determining the target location), as opposed to using a more effective strategy of 

using orthogonal angles.  

The control (non-altered) trials were examined to determine good and poor navigators 

performance at determining target locations. Participants may have chosen a target location 

because they prefer moving left or right. The data was also analyzed to determine if participants 

had a preference for turning in either direction. There does not appear to be any turning biases in 

the initial heading direction. An equal number of clockwise and counterclockwise turns in the 

initial heading direction were made (X2 = 1.75, df = 1, p = 0.2).  The results also indicate that 

good navigators were more accurate at determining the target location than poor wayfinders. For 

the control trials, a repeated measures ANOVA was also conducted to determine whether there 

was an effect of navigational ability (good vs. poor), number of objects (3, 4, or 5 objects), and 

orthogonal angles (0,1,3) on the error distance to the target location. The results indicate that 
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there was an effect of ability (F(1, 52) = 6.70, p = 0.012, η2
partial = 0.114), and an object x angle 

interaction was found (F(4, 49) = 12.64, p < 0.001, η2
partial = 0.273).  

The interaction (Figure 19) suggests that in configurations with 4 and 5 objects there is a 

decline in distance error to the target as the number of orthogonal angles increase (4 objects (0 

vs. 1 angle: F(1, 55) = 84.81, p < 0.001, η2
partial = 0.606; 1 vs. 3 angles: F(1, 55) = 0.15, p = 

0.696, η2
partial = 0.027; 3 vs. 0 angles: F(1, 55) = 62.21, p < 0.001, η2

partial = 0.530); 5 objects (0 

vs. 1 angle: F(1, 55) = 2.44, p = 0. 123, η2
partial = 0.043; 1 vs. 3 angles: F(1, 55) = 12.05, p = 

0.001, η2
partial = 0.179; 3 vs. 0 angles: F(1, 55) = 3.21, p = 0.079, η2

partial = 0.055). In 

configurations with 5 objects there is an increase (5 objects (0 vs. 1 angle: F(1, 55) = 2.44, p = 0. 

123, η2
partial = 0.043; 1 vs. 3 angles: F(1, 55) = 12.05, p = 0.001, η2

partial = 0.179; 3 vs. 0 angles: 

F(1, 55) = 3.21, p = 0.079, η2
partial = 0.055). 
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 As demonstrated previously, there is a preference for an angular strategy in configuration 

with 5 objects compared to landmark arrays with 3 or 4 objects. It may be that using an angular 

strategy may not be as accurate, and may account for the increase in distance error as orthogonal 

angles increase

 

Figure 19: Average distance error in configurations with 3, 4 and 5 objects and each of the 

orthogonal angles (0,1,3) with standard error. 
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object x angle x ability: F(4, 49) = 1.66, p = 0.162, η2
partial = 0.047; object x angle x sex: F(4, 49) 

= 1.55, p = 0.188, η2
partial = 0.047; object x angle x ability x sex: F(4, 49) = 0.75, p = 0.558, 

η2
partial = 0.021) 

As illustrated in Figure 20, good navigators were more accurate at determining the target 

location than poor wayfinders (ability: (F(1, 52) = 6.70, p = 0.012, η2
partial = 0.114) . These 

results suggest good wayfinders are better at forming a cognitive map and determining spatial 

relationships between landmarks. The results from the first study indicate that poor navigators 

are not as skilled as good navigators at determining spatial relationships between landmarks on 

multiple floors. The results from this study indicate that poor wayfinders are also not as skilled at 

determining spatial relationships between landmarks at a smaller scale and on the same 

horizontal plane. 

 

Figure 20: Average distance error (m) to the target location in good and poor wayfinders.  Error 

bars represent standard error of the mean. 
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 The diagrams below illustrate paths taken to reach the target (black pole) in good (Figure 

21) and poor wayfinders (Figure 22) in a sample environment. As illustrated, the path taken by 

good wayfinders appears to be in the direction of the target location unlike in poor wayfinders. 

                                      

Figure 21: Path taken to reach the target (black pole) in good wayfinders. 

                                     

Figure 22: Path taken to reach the target (black pole) in poor wayfinders. 
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The standard deviation of the chosen target location was also determined to examine if 

there were any differences in variability between good and poor wayfinders. The data suggests 

that there were no significant differences in variability between good and poor wayfinders 

(Levene's test: F(1,54) = 0.24, p = 0.625). The scatterplot below (Figure 23), provides an 

illustration of the chosen target locations in a sample environment in good wayfinders (square 

dots) and poor navigators (diamond dots).  

                               

Figure 23: Illustration of the chosen target locations in a sample environment in good 

wayfinders (square dots) and poor navigators (diamond dots). The black point indicates 

the location that preserves the relative angles while the white represents the distance 

location. The numbers represent meters. 
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participants were using body-based coordinates to move to the target location, they would have 

converged to a single incorrect point based on the movements that brought them to the target 

location in the training trial. 

A statistical analysis was also conducted to determine whether participants used the same 

movements to get to the target location on the test trial as they did on the training trial. Distances 

(error distance) of the chosen target location from the body-based location of the target were 

calculated and compared to 0, to determine if there were any differences. Participants do not 

appear to be choosing the same location since a significant difference in the distances was found 

(t(55) = 45.57, p < 0.001). 

The results from the control trials indicate that good wayfinders were better at 

determining the target location. Good navigators may have been better at determining the target 

location because they oriented themselves toward the target location early on. This strategy is 

referred to as the “least angle strategy” and involves choosing a path that is closest in terms of 

angularity to a direct line between their current position and the goal. 

  Heading direction has been examined by Mou & McNamara (2004), in which spatial 

updating in a familiar environment was investigated.  Participants learned locations of objects in 

a room and then walked to the center and turned to appropriate facing directions prior to making 

judgments of relative direction (e.g. “Imagine you are standing at X and facing Y”) or egocentric 

pointing judgments (“You are facing Y. Point to Z”). The results indicate that pointing 

performance was best when the imagined heading was parallel to the learning view. The results 

from McNamara (2004) suggest that individuals are capable of updating their position and 
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determining heading direction, however the results from the current study indicate how good and 

poor navigators differ in this ability.  

In order to determine initial heading orientation, the angle of the path within the first 0.5 

meters was determined in both good and poor wayfinders. Heading angle error was also 

examined by determining if there was an effect of navigational ability (good vs. poor), number of 

objects (3, 4, or 5 objects), and orthogonal angles (0,1,3). The results indicate that the following 

interactions were found: object x ability (F(2, 51) = 22.04, p < 0.001, η2
partial = 0.297); angle x 

ability (F(2, 51) = 8.90, p < 0.001, η2
partial = 0.146) and an angle x object interaction (F(4, 49) = 

26.55, p < 0.001, η2
partial = 0.337).  

No other effects were found (ability (F(1, 52) = 100.62, p < 0.001, η2
partial = 0.659; 

number of objects (F(2, 51) = 6.56, p = 0.002, η2
partial = 0.112; orthogonal angles (F(2, 51) = 

33.51, p < 0.001, η2
partial = 0.391; sex: F(1, 52) = 0.17, p = 0.682, η2

partial = 0.003; object x sex: 

F(2, 51) = 0.47, p = 0.627, η2
partial = 0.008; object x ability x sex: F(2, 51) = 0.23, p = 0.774, 

η2
partial = 0.004; angle x sex: F(2, 51) = 1.20, p = 0.309, η2

partial = 0.022; angle x ability x sex: F(2, 

51) = 0.69, p = 0.500, η2
partial = 0.013; object x angle x sex: F(4, 49) = 0.63, p = 0.640, η2

partial = 

0.012; object x angle x ability x sex: F(4, 49) = 0.77, p = 0.542, η2
partial = 0.014). 

Figure 24 suggests that in configurations with 4 and 5 objects, as the number of 

orthogonal angles increases, heading angle decreases (4 objects (0 vs. 1 angle: F(1, 55) = 12.11, 

p = 0.001, η2
partial = 0.180; 1 vs. 3 angles: F(1, 55) = 22.33, p < 0.001, η2

partial = 0.289; 3 vs. 0 

angles: F(1, 55) = 10.60, p = 0.002, η2
partial = 0.161); 5 objects (0 vs. 1 angle: F(1, 55) = 3.70, p = 

0.060, η2
partial = 0.063; 1 vs. 3 angles: F(1, 55) = 18.50, p < 0.001, η2

partial = 0.251; 3 vs. 0 angles: 

F(1, 55) = 6.36, p = 0.015 , η2
partial = 0.103). There was an increase in landmark arrays with 3 
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objects (3 objects (0 vs. 1 angle: F(1, 55) = 67.84, p < 0.001, η2
partial = 0.552; 1 vs. 3 angles: F(1, 

55) = 29.32, p < 0.001, η2
partial = 0.347; 3 vs. 0 angles: F(1, 55) = 19.23, p < 0.001, η2

partial = 

0.259). 

 

Figure 24: Average heading error in configurations with 3, 4 and 5 objects an8d each of the 

orthogonal angles (0,1,3) with standard error. 

The ability x angle interaction (Figure 25: F(2, 51) = 8.90, p < 0.001, η2
partial = 0.146) 

suggests that in good navigators, an increase in orthogonal angles is associated with a decline in 

heading error (good navigators: (0 vs. 1 angle: F(1, 27) = 1.43, p = 0.295, η2
partial = 0.041; 1 vs. 3 

angles: F(1, 27) = 28.50, p < 0.001, η2
partial = 0.513; 3 vs. 0 angles: F(1, 27) = 53.31, p < 0.001, 

η2
partial = 0.663). In poor navigators, there is an increase in heading error with 1 orthogonal angle 

and then a decline in heading error with 3 orthogonal angles (poor navigators: (0 vs. 1 angle: F(1, 

27) = 28.75, p < 0.001, η2
partial = 0.515; 1 vs. 3 angles: F(1, 27) = 90.79, p < 0.001, η2

partial = 
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0.770; 3 vs. 0 angles: F(1, 27) = 6.54, p = 0.016, η2
partial = 0.194). It may be that poor navigators 

are not acknowledging the orthogonal angles until there are at least 3 of them. Heading error 

improves in poor navigators when there are at least 3 orthogonal angles.  

 

Figure 25: Average heading error in configurations with 0, 1 and 3 orthogonal angles in good 

and poor navigators, with standard error. 

                 The ability x object interaction (Figure 26: F(2, 51) = 22.04, p < 0.001, η2
partial = 

0.297),  suggests that in good navigators an increase in the number of objects is associated with 

an increase in heading angle error (good navigators: (3 vs. 4 objects: F(1, 27) = 2.90, p = 0.100, 

η2
partial = 0.097; 4 vs. 5 objects: F(1, 27) = 2.21, p = 0.075, η2

partial = 0.148; 5 vs. 3 objects: F(1, 

27) = 9.149, p = 0.005, η2
partial = 0.253). In poor navigators, it is the opposite and an increase in 

the number of objects is associated with a decrease in heading angle (poor navigators: (3 vs. 4 

objects: F(1, 27) = 13.88, p = 0.001, η2
partial = 0.339; 4 vs. 5 objects: F(1, 27) = 3.07, p = 0.091, 
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η2
partial = 0.102; 5 vs. 3 objects: F(1, 27) = 41.57, p < 0.001, η2

partial = 0.606). These results 

suggest that in good navigators an increase in objects makes it difficult to determine heading 

angle, but in poor wayfinders the objects may be being used as an additional navigational cue in 

determining heading angle.  

  

Figure 26: Average heading error in configurations with 3, 4 and 5 objects in good and poor 

navigators, with standard error. 

As illustrated, good navigators heading error was smaller than poor wayfinders. These 

results suggest that good navigators determine the target location early on and plan their paths 

accordingly. Planning of routes in good navigators suggest that there may be certain areas of the 

brain that are being activated in these wayfinders. A study by Fincham, Carter, Veen, Stenger 

and Anderson, (2001) examined neural mechanisms involved in planning. It appears that regions 

activated during goal-processing operations include the right dorsolateral prefrontal cortex 

[(Brodmann’s area (BA 9)], bilateral parietal (BA 40/7) and bilateral premotor areas (BA 6) 
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(Fincham, et al., 2001). The results of the current study suggest a connection between planning 

and activation of these regions of the brain in good navigators.  

 This “least angle strategy” that involves planning a route can be applied to an unknown 

environment if the target can be seen directly from the navigator at the beginning of a route. In 

these environments, the target pole could easily be viewed from the starting position in the arena. 

If the target cannot be viewed during the navigation process, decisions are based on the believed 

directions, which can cause inaccurate wayfinding decisions. This strategy used by good 

wayfinders may account for their ability to effectively navigate in environments. Good 

navigators appear to be piloting where they are heading in advance and choose an appropriate 

path accordingly. The results also suggest that poor navigators walk aimlessly initially and then 

choose a target location once they get closer to their destination. Planning a path ahead of time 

can be an efficient strategy since it allows navigators to plan shortcuts. When navigators do not 

plan routes ahead of time this can cause them to choose inappropriate paths initially which can 

then make it difficult to get back on track when an incorrect path has been selected. The results 

from this study suggest that good navigators appear to use a least angle strategy when 

determining routes, which may partially account for their ability to successfully navigate in 

environments (Hochmair & Frank, 2002). 

In order to use the least-angle strategy an individual must have a good mental 

representation of their environment. When utilizing the least-angle strategy, a navigator 

constructs a cognitive map, which contains directions, angles and vectors (Hochmair & Frank, 

2002). The use of the least-angle strategy by good navigators further confirms that they are better 

at forming cognitive maps compared to poor wayfinders. Cognitive maps are mental 

representations that are used to make spatial decisions. Essentially, cognitive maps are a mental 
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representation of environmental knowledge. Cognitive maps include knowledge of spatial 

relations and include the integration of information in an environment (Kitchin, 1994). The task 

in these experiments requires the knowledge of spatial relationships between landmarks rather 

than their absolute positions since the landmark configurations were rotated in the test trial. 

Good navigators use of the least angle strategy further confirms that they are better at forming 

cognitive maps than poor wayfinders.  

In summary it appears that both good and poor wayfinders appear to use a distance 

strategy rather than angles. The results from the control trials indicate that good navigators were 

better at determining the target location. The results from the first study indicate that poor 

navigators are not as skilled as good navigators at determining spatial relationships between 

landmarks on multiple floors. The results from the control trials of this study indicate that poor 

wayfinders are also not as skilled at determining spatial relationships between landmarks on the 

same horizontal plane and at a smaller scale. Lastly, the heading error results suggest that good 

navigators appear to plan where they are heading in advance and choose an appropriate path 

accordingly. The use of this least angle strategy used by good wayfinders may partially account 

for their ability to effectively navigate in environments. 
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Study 3: Analysis of the influence of contextual factors on the use of landmarks and streets 

in good and poor wayfinders 

Introduction: 

The ability to determine spatial relationships between landmarks is the strongest predictor 

of determining navigational ability (study 1). Good wayfinders may be more skilled at this task 

because they compute their initial heading direction to target locations in advance (study 2).  

This route planning may be why good navigators are less likely to get lost since choosing an 

appropriate path in advance can prevent taking a wrong turn or a longer route. As illustrated by 

the previous experiments in this thesis, good wayfinders appear to be skilled at using landmark 

information (spatial relationships and computing initial heading direction) when navigating. The 

use of landmark information may be useful in certain contexts, but this may not always be the 

best strategy. The next experiment is aimed at determining whether good navigators alter the 

strategies they use depending on contextual factors. 

Tom and Denis (2004), compared the effectiveness of route directions based on 

references to either landmarks or street names. The results suggest that street-based descriptions 

were less effective during navigation than landmark-based descriptions in several respects. 

Participants following the street-based instructions stopped more frequently to check information 

in the environment, indicating that they experienced more hesitation when they were using 

instructions of this type. Furthermore, each stop or checking episode lasted longer in the street-

based than in the landmark-based condition. As a result, it took longer to reach the end-point 

using street-based instructions compared to using landmarks. Participants using landmark-based 

instructions were also more confident during navigation, since they stopped and checked less 

often and for less time, even when ambiguous landmarks were involved (Tom & Denis, 2004).  
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In the Tom and Denis (2004) study, using landmarks rather than street names was an 

effective approach, but this may not be the most effective strategy in environments rich in 

landmarks. In environments containing several landmarks (e.g. downtown New York City), 

providing route descriptions using landmarks may not be an effective approach because of the 

overwhelming number of landmarks that can be used. Individuals may not rely on one particular 

strategy and may switch between strategies instead. When considering a combination of 

strategies, the reasons why switching occurs is a topic of interest (Lawton, 1996). Individuals 

who use an orientation strategy often use route strategies in environments rich in route 

information and landmark distinctiveness (Bethellfox & Shepard, 1988). Conversely, individuals 

who use route strategies often switch to orientation strategies when route information is lacking 

(Bethellfox & Shepard, 1988). Research on mental rotation performance has further illustrated 

that individuals often alter the strategy they use as they become more familiar with a particular 

type of problem (Kyllonen et al., 1984). It is possible that individuals may also switch strategies 

as they become more familiar with environments. Route knowledge often precedes 

configurational knowledge of an environment and it is likely that individuals shift from a route to 

an orientation strategy as they become more familiar with their surroundings.  In line with the 

assumption that route knowledge often precedes configurational knowledge, research has shown 

there is often a switch from a route strategy to an orientation strategy as people become more 

familiar with an environment (Lawton, 1996). 

Research has been done on differences in strategy use in relation to personal attributes 

such as sex and age.  Sex differences in spatial cognition suggest that males are better than 

females in spatial information processing. Males tend to use Euclidean spatial cues such as 

direction and distance while females are more likely to use landmarks (Kato & Takeuchi, 2003).      
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Euclidean strategies can provide an advantage in contexts in which the navigator has left a 

specified route, such as when a wrong turn has been taken. In these situations, individuals using 

Euclidean strategies can utilize cardinal directions to orient themselves to determine their 

position, whereas navigators using landmarks may become disoriented. This disorientation can 

lead to anxiety, which may persist throughout subsequent navigation (Saucier et al., 2002). 

The above research provides a greater understanding of various aspects of the role of 

strategies, but it does not address the relationships between an individual’s performance in 

navigating and their spontaneous use of strategies. The aim of this study was to examine 

differences in strategies used by participants with good and poor sense of direction. Good 

navigators may continually renew their knowledge of an environment and try to find the best 

strategy at each navigational stage. Unlike the previous experiments, this study is aimed at 

gaining a greater understanding of the use of landmark and street strategies in different contexts. 

This study also differs from previous studies since only a route or landmark strategy can be used 

in these environments, while other extraneous variables such as smells, sounds, elevation are 

excluded unlike in the first real world study. 

The virtual environment in this study consisted of a landmark and street dominant region. 

The landmark dominant region consisted of several landmarks at each intersection (4 landmarks) 

and fewer streets. The street dominant region consisted of several streets, however fewer 

landmarks at the intersections (1 landmark), compared to the landmark dominant region. Using a 

street strategy in the landmark dominant region would be a more efficient strategy due to the 

overwhelming number of landmarks. Conversely, using a landmark strategy would be more 

efficient in the street dominant region due the abundance of streets. It was predicted that good 
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navigators will alter the strategy they use based on the type of region they are in (street or 

landmark dominant), while poor wayfinders would not.  

Dwell times spent at intersections in the landmark and street dominant regions were used 

to determine the type of strategy used. In the learning trials participants learned a route in the 

environment and in the test trials they were transported to intersections and asked whether they 

went left, right or straight. The landmarks were switched in the experimental intersections of the 

test trials to determine the relative reliance of the use of landmarks or streets in each region. If 

participants are relying on a landmark strategy, the switch would cause confusion and result in a 

longer dwell time at the intersection. Landmarks were not switched in the control intersections of 

the test trials. 

If good wayfinders use a landmark strategy in the street dominant environment, there 

would be a difference between dwell times in the control and switch (experimental) conditions 

(longer dwell time in the switch condition). If good navigators use a street strategy in the 

landmark dominant region, there would not be a difference in dwell times between the control 

and switch conditions. Lastly, if poor navigators constantly rely on a street strategy, they would 

show no differences in dwell times between the control and switch trials in either environment. 

Another aim of this study was to examine how wayfinding strategies and anxiety are 

related to spatial ability. Although the goal of navigating is to reach a specific destination, 

navigation speed and accuracy can also play an important role. Navigating quickly and 

accurately can mean the difference between arriving on time or being late for an important 

meeting, which can create anxiety.  



   
 

69	
  

It is predicted that in certain types of environments using one strategy and not switching 

strategies may be associated with higher rates of anxiety when navigating. If an individual who 

only relies on landmarks is in an environment with very few landmarks it’s likely they would 

feel anxious about getting lost since they do not use other strategies based on contextual factors. 

It is predicted that individuals who alter strategies are less likely to feel anxious about finding 

their way in a novel environment since they alternate the strategies they use and can more easily 

find their way in new contexts.  

This study will also examine the possibility that there is an association between 

wayfinding ability and anxiety. The relation between spatial anxiety and performance is unclear. 

Spatial anxiety refers to anxiety caused by uncertainty or failures in wayfinding and was 

measured according to the scale provided in appendix I (Hund & Minarik, 2006). Spatial anxiety 

and wayfinding ability could be linear in nature, or more complex, such as curvilinear relations 

between anxiety and performance. (i.e. optimal performance at midlevel’s of anxiety). It is 

predicted that there will be a linear correlation between wayfinding ability and spatial anxiety 

based on previous findings reported in the literature (Hund & Minarik, 2006). Spatial anxiety 

may have a negative effect on navigational ability by reducing attention to features in an 

environment (Saucier et al., 2002). 

This study was conducted using a virtual environment as opposed to a natural setting due 

to various reasons. Several studies conducted, especially ones in real environments provide 

subjects with a wide range of additional navigational cues, such as geographical slant, and ego 

motion information that can be used to determine metric relations by path integration. Due to the 

wealth of information provided from these environments, it is often difficult to determine 

navigational strategies used. The use of virtual reality controls these extraneous variables and 
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allows a greater understanding of navigational strategies utilized. In this study, the landmark 

dominant and street dominant environment only differed in the number of landmarks and streets 

and other features were not altered. Another key advantage of conducting this study in virtual 

reality is that it allows the creation of inconsistent environments. In this study, landmarks were 

moved around which would be difficult or even impossible in natural environments. 

Method and Materials: 

Participants: 

Participants were selected from a group of undergraduate psychology students from the 

University of Waterloo. 28 participants took part in the study, 14 good navigators and 14 poor 

wayfinders with an average age of 20.5 (SD 1.07). Of the 28 subjects, 14 were given a 

participation course credit and 14 were provided $10 for taking part in the study.  Subjects were 

selected based on their performance on the Santa Barbara Sense of Direction Scale. Participants 

who scored at least one standard deviation above the mean of 1017 students were part of the 

good sense of direction group and those who scored one standard deviation below the mean as 

part of the poor sense of direction group. A double-blind procedure was also used for this study 

and the experimenter was not aware if the participant was part of the good or poor sense of 

direction group.   

Materials: 

Environments created in this experiment were designed using Google Sketchup 7. This is 

a walkabout 3d software that allows users the ability to explore layouts as a full screen real-time 

walkthrough, to simulate walk-paced movement through the simulated environment.  The eye 

level for all trials was set to a height of 1.60 meters. Participants moved in the virtual 
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environment by clicking and holding a mouse button to move forward. Participants were allowed 

to hold the mouse in the hand and position they felt most comfortable with. Heading direction 

was changed by rotating the HMD.  

A rectangular grid was used to create two environments that differed only in the number 

of landmarks/paths rather than by the kinds of intersections (Y, T, X etc.). This layout prevents 

the type of intersections from becoming a confounding variable between the two environments.  

A rectangular grid would also make learning the task a lot easier. A more organic environment 

may make it difficult for poor wayfinders to solve the task, which may result in random 

responses. Figure 27 below, illustrates the virtual environment: 

 

Figure 27: Diagram of the virtual environment. The left region represents the road 

dominant region and the area on the right, the landmark dominant region. 
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Objects that are typically found outdoors were chosen as landmarks. A list of landmarks 

is provided in Appendix J.  Landmarks consisted of objects that were the same height and were 

placed at the same distance from the centre of the intersection. The landmarks were also 

surrounded by a wall to prevent them from being viewed from adjacent intersections. This was 

done to ensure that landmarks in a particular intersection could only be used as local landmarks. 

Local landmarks are only visible from a short distance and are used as reference points to 

intermediate goals along a route. Local landmarks can be used either for guidance, such as 

reference points to intermediate goals or as pointers to direct a navigator onwards from an 

intermediate goal. In contrast, global landmarks provide a large-scale frame of reference and are 

visible from a far distance (Steck & Mallot, 2000). The barriers that encased the landmarks 

ensured that landmarks could only be used as reference points for that particular intersection and 

could not provide additional cues when participants were at other locations.  

All intersections along the path contained street names labeled on a pole. All street names 

were written in black on a white signboard to make it easily visible. The pole was placed in the 

centre of the intersection to make them more noticeable to participants. All street names 

consisted of four letter words. Names were kept brief and consisted of one-syllable words to 

make them easier to remember. Street signs were not considered landmarks since they were not a 

visually distinctive feature in the environment. Every intersection contained the same type of 

street sign, consisting of a white board attached to a grey pole. Street signs also only consisted of 

names of people and did not refer to any objects. 

The spatial anxiety scale measures anxiety levels when navigating in unfamiliar 

environments. This is an 8-item questionnaire designed to assess spatial anxiety in several 

different wayfinding situations (Appendix I). Level of anxiety is rated using a 5-point scale, 
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ranging from Not at All to Very Much. Anxiety levels are determined by summing up the ratings 

for the 8 items.  The higher the total number, the more anxiety the participant reports when 

navigating in unfamiliar environments. A score of 8 is associated with the lowest level of anxiety 

and 40 the highest (Hund & Minarik, 2006). The anxiety scale was administered at the end of the 

experiment, after being immersed in the virtual environment. 

Method: 

Participants learned 4 different routes in a virtual environment by following arrow 

markings on the ground. Each route consisted of 6 turns, 3 in the landmark dominant area of the 

environment and 3 in the street dominant section. Each of the 4 routes consisted of the same 

distance. An equal number of routes began from the landmark dominant area and the street 

dominant region. The stop point of a path was indicated by a red bar positioned on the floor of 

the environment. This approach of following the arrow markings to learn a path allows for 

participants to actively engage in the route learning process. Alternative techniques such as 

presenting participants with a video, allows the opportunity to learn the environment without 

paying much attention. The approach used in this study forces participants to be more aware of 

their environment and where navigation decisions are to be made. Figure 28 illustrates the arrow 

marking participants were asked to follow.   
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Figure 28: 3D view of the virtual environment. 

Upon completion of learning one route, participants engaged in a series of test trials.  On 

the test trials participants were transported to 4 out of the 6 turns along the route, and asked to 

turn either left or right.  Two turns were in the landmark dominant area and two in the street 

dominant section. Participants were transported to one intersection prior to the turning position 

so they could locate themselves within the environment. At that starting point participants were 

asked to walk straight to the next intersection, and then to go either left, right or straight 

depending on the arrow marking. The turns made and the dwell time at the testing intersections 

were recorded. A turn decision was recorded once a participant passed a barrier wall of the 

intersection to turn into a road. The routes contained an equal number of left and right turns.  
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In the testing trials, the landmarks were switched to create a discrepancy in the turn 

decision points. The discrepancy was made to gain insight into the type of strategies used by 

good and poor wayfinders. If participants use a landmark strategy their decision time at the 

testing intersections could be delayed due to confusion from the switched landmarks. If 

participants were using a route strategy their dwell time would be reduced since the switch in 

landmarks would not have an influence on their decision speed since they are focusing on the 

roads as opposed to the landmarks. In 2 out of the 4 experimental test trials, the landmarks were 

switched while in the other 2 control trials the landmarks were not switched.  

In the experimental switch trials the landmarks were replaced with previously viewed 

landmarks that were encountered during learning trials rather than with a novel landmark. This 

was done to reduce the likelihood that participants noticed the switch. Landmarks within the 

landmark dominant environment were switched with landmarks also within the landmark 

dominant area and landmarks within the street dominant environment were switched with 

landmarks in the street dominant area. This was done since the number of landmarks in the 

landmark dominant environment consisted of 4 landmarks per intersection and only 1 in the 

street dominant environment. Switching 1 landmark in the street dominant environment with 4 

landmarks in the landmark environment would make the switch fairly noticeable, and 

consequently landmarks were switched within the same environment type. 

Dwell time at each intersection was determined by the duration spent within the barrier 

walls by the software. The time interval began once a participant passed a barrier wall at an 

intersection and ended once they exited the intersection by walking past another wall.  
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The study took approximately 60 minutes to complete and at the end of the experiment 

participants were asked to complete a simulator sickness questionnaire. Participants were also 

asked if they noticed a discrepancy between the learning and testing trials. Any participants that 

noticed that the landmarks were replaced were excluded in the analysis since no proper decision 

can be made if this difference is observed. 
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Results and Discussion: 

 A repeated measures ANOVA was conducted to examine whether there was an effect of 

navigational ability (between variable: good vs. poor), sex (between variable), region (within 

variable: landmark vs. street dominant) and condition (within variable: control vs. experimental) 

on dwell time at the intersections.  

The result indicate a significant condition x region interaction (F(1, 24) = 4.66, p = 0.041, 

η2
partial = 0.162). There was also a significant difference in ability (F(1, 24) = 8.95, p = 0.006, 

η2
partial = 0.271). There were no other effects or interactions that were found (condition (F(1, 24) 

= 4.03, p = 0.056, η2
partial = 0.143); sex: F(1, 24) = 0.64, p = 0.431, η2

partial = 0.026; region: F(1, 

24) = 0.43, p = 0.517, η2
partial = 0.017; condition x ability: F(1, 24) = 2.11, p = 0.159, η2

partial = 

0.081; condition x sex: F(1, 24) = 0.86, p = 0.363, η2
partial = 0.034; condition x ability x sex: F(1, 

24) = 0.03, p = 0.873, η2
partial = 0.001; region x ability: F(1, 24) = 2.66, p = 0.116, η2

partial = 0.099; 

region x sex: F(1, 24) = 0.38, p = 0.542, η2
partial = 0.015; condition x region x sex: F(1, 24) = 

0.03, p = 0.873, η2
partial = 0.001; condition x region x ability x sex: F(1, 24) = 0.26, p = 0.618, 

η2
partial = 0.011)         

The results indicate that good wayfinders did not switch strategies as was predicted since 

an ability x condition interaction was not found (F(1, 24) = 2.11, p=0.159, η2
partial = 0.081). If 

good wayfinders used a landmark strategy in the street dominant environment, there would be a 

difference between dwell times in the control and switch (experimental) conditions (longer dwell 

time in the switch condition). If good navigators used a street strategy in the landmark dominant 

region, there would not be a difference in dwell times between the control and switch conditions. 
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Lastly, if poor navigators constantly relied on a street strategy, they would show no differences 

in dwell times between the control and switch trials in either environment.  

These results do not provide evidence that good and poor navigators differ in their ability 

due to the switching of strategies in environments dominant in streets or landmarks. There are 

various strategies that are used when navigating, such as the use of cardinal directions. Even 

though good and poor navigators did not differ in the use of street or landmark strategies in this 

environment, there may be other strategies that good wayfinders are using that poor navigators 

may not be.  

Good navigators’ overall longer dwell times compared to poor wayfinders suggest that 

they may take a longer time to make a decision because they may be observing their 

surroundings more thoroughly (ability (F(1, 24) = 8.95, p = 0.006, η2
partial = 0.271). In the first 

experiment pauses were considered to be a sign of wayfinding difficulty, however in this 

experiment longer dwell times is a sign of wayfinding finesse. In the first experiment there were 

no discrepancies between the learning and testing environments, however in the third experiment 

there were alterations. Longer pauses in the first experiment were associated with wayfinding 

difficulty since participants are taking longer to process the same spatial information presented in 

the learning trial. In this experiment in which the environment is altered, confusion is associated 

with recognizing a discrepancy between the learning and testing environments, and thus a sign of 

wayfinding finesse.  

There was also a significant condition x region interaction (F(1, 24) = 4.66, p = 0.041, 

η2
partial = 0.162) (Figure 29 below). These results suggest that in the landmark dominant 

environment there were no differences in dwell time between the control and experimental 
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conditions (landmark (control vs. experimental: F(1, 27) = 0.222, p = 0.642, η2
partial = 0.0089). In 

the street dominant environment however, there was an increase in dwell time in the 

experimental intersection from the control trial (street (control vs. experimental: F(1, 27) = 4.37, 

p = 0.046, η2
partial = 0.139). These results suggest that even though there was not an effect of 

ability (good versus poor), overall individuals appear to be using a landmark strategy in the street 

dominant environment. Both good and poor individuals are capable of using appropriate 

strategies. 

 

Figure 29: Average dwell time (seconds) in the landmark and street dominant regions, with 

standard error. 

A repeated measures ANOVA was conducted to examine whether the average number of 

correct turns in the control trials (non-switched trials) were affected by navigational ability (good 

vs. poor), sex, and region (landmark vs. street dominant). 
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An ability x region interaction (F(1, 24) = 5.76, p = 0.025, η2
partial = 0.193) was also found 

(Figure 30). Good navigators made significantly more correct turns than poor navigators in the 

street dominant region (street: (good vs. poor: F(1, 27) = 13.00, p = 0.001, η2
partial = 0.666), 

however good and poor navigators made the same number of correct turns in the landmark 

dominant areas (landmark: (good vs. poor: F(1, 27) = 0.183, p = 0.672, η2
partial = 0.993). These 

results suggest that good navigators appear to be more skilled at handing an overwhelming 

number of streets compared to poor wayfinders. Good and poor navigators are equally skilled at 

navigating in environments rich in landmarks. 

 

Figure 30: Average correct number of turns by good and poor navigators in the street and 

landmark dominant regions, with standard error. 
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The were no other significant main effects or interactions (ability: F(1, 24) = 5.87, p = 

0.023, η2
partial = 0.196; sex: F(1, 24) = 0.02, p = 0.90, η2

partial = 0.001; region x sex: F(1, 24) = 

1.13, p = 0.298, η2
partial = 0.045; region x sex x ability: F(1, 24) = 1.60, p = 0.219, η2

partial = 0.062) 

Good and poor navigators did not differ in their self-reports of anxiety (F(1, 24) = 0.42, p 

= 0.520, η2
partial = 0.017). It was initially expected that good navigators would report less anxiety 

since they are less likely to get lost because of their ability to alter strategies. It may be that poor 

navigators have become adapted to becoming lost, and it no longer is a source of anxiety. There 

also does not appear to be a significant effect of sex on anxiety (F(1, 24) = 0.22, p = 0.642, 

η2
partial = 0.009). A sex x ability interaction was also not found (F(1, 24) = 0.34, p = 0.568, η2

partial 

= 0.013). 

Good and poor wayfinders did not have varying levels of simulator sickness (F(1, 24) = 

0.80, p = 0.378, η2
partial = 0.003).  Males and females also did not report different levels of 

simulator sickness (F(1, 24) = 1.81, p = 0.191, η2
partial = 0.007). There was also not an ability x 

sex interaction of simulator sickness (F(1, 24) = 0.02, p = 0.894, η2
partial  < 0.001). These results 

indicate that the findings from this study were not influenced by varying levels of anxiety or 

simulator sickness.  
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Discussion: 

Few studies to date have examined wayfinding in large-scale spaces in terms of the 

strategies participants use to navigate. In Heft’s (1979) field study, participants were taken for a 

walk along a route consisting of 22 intersections and after completing the walk they were 

instructed to retrace the route and asked to indicate the type of strategy they used at each 

intersection point. The results suggest that participants alter the strategy they use depending on 

the characteristics of the environment. Participant’s level of performance must be closely related 

to their ability to flexibly use different strategies (Heft, 1979; Kato & Takeuchi, 2003). The 

current experiment unlike Heft’s (1979) study, provides a greater understanding of the way in 

which two particular strategies (landmark versus road information) are used and whether 

switching of these strategies occurs in good and poor wayfinders. The results of this study 

indicate that landmark and street strategies are not ways good and poor navigators differ in their 

strategy selection. Even though good and poor navigators did not differ in the use of street or 

landmark strategies in this environment, there may be other strategies that good wayfinders are 

utilizing that poor navigators may not be.  

The results from this experiment also further expand on the findings from Tom & Denis’s 

(2004) study. According to Tom and Dennis (2004), individuals rely more heavily on landmark 

information as opposed to roads. The current study indicates that this does not always occur, and 

strategies used can change depending on contextual factors. Even though there were no 

differences between good and poor navigators, the results from this study indicate that 

individuals switch to a landmark strategy in the street dominant environment, however this does 

not occur in landmark dominant environments.  
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These results from the correct number of turns suggest that good navigators appear to be 

more skilled at handing an overwhelming number of streets compared to poor wayfinders (F(1, 

24) = 5.76, p = 0.025, η2
partial = 0.193). Good and poor navigators are equally skilled at 

navigating in environments rich in landmarks.  
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General Discussion: 

The results indicate that good navigators are skilled at a wide range of abilities compared 

to poor wayfinders. Good wayfinders are better at recognizing landmarks and determining their 

directional and positional information. The results also confirm that good wayfinders form more 

accurate cognitive maps, which is suggested by their performance on the spatial relationship 

tasks. Lastly, the results confirm that the Santa Barbara Sense of Direction Scale is an accurate 

predictor of wayfinding performance, which was demonstrated by good wayfinders path 

retracing performance. Good navigators performance was also verified by their verbal protocols, 

which contained fewer route errors. As illustrated, good navigators appear to be skilled at a wide 

range of navigational abilities. Good navigators appear to be more skilled at recognizing 

landmarks, and determining their directional and positional information.  It also appear that one 

of the best predictors of determining navigational performance is the ability to form spatial 

relationships between landmarks when compared to a wide range of other abilities.  

It also appears that a distance or angular strategy is not preferred over the other in good 

and poor wayfinders. Both strategies are used by both groups and determining distance or 

angular information does not appear to be why good navigators are better at determining spatial 

relationships between landmarks. The results from the control trials indicate that good 

wayfinders were better at determining the correct target location. The results further suggest that 

good wayfinders form more accurate cognitive maps than poor navigators. It appears that good 

wayfinders may be more efficient at finding their way because they appear to plan routes prior to 

initiating self-locomotion. Such pre-planning was confirmed by the fact that good wayfinders’ 

initial heading direction error was significantly less than in poor wayfinders. Poor wayfinders 

appear to head in a random direction and then attempt to determine the target location. Good 
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wayfinders on the other hand, determine an initial heading direction that is in line with the target 

location. This strategy can prevent individuals from taking a wrong turn and getting lost. 

Preplanning routes in advance can assist in taking short cuts, and reduce the chance of taking a 

wrong path. 

Lastly, the results indicate that individuals appear to switch to a landmark strategy in  

street dominant environments, but this does not occur in landmark dominant environments. The 

results from the correct number of turns suggest that good wayfinders appear to be more skilled 

at navigating in environments rich in streets compared to poor navigators. Good and poor 

navigators are equally skilled at navigating in environments rich in landmarks.  

A cognitive map is an internal representation of spatial information (Tolman, 1948). 

Tolman (1948) used rats to describe how humans utilize these mental representations. According 

to Tolman (1948), humans construct a mental representation within the nervous system that is 

used to guide movements. According to Golledge and Timmermans (1990), cognitive maps are 

various knowledge structures that develop with age and education. These knowledge structures 

have different levels of detail and integration. Different knowledge structures are combined 

using process relating to perception, storage and retrieval to form a cognitive map (Golledge & 

Timmermans, 1990). 

The results from these studies indicate that good navigators appear to be better at forming 

cognitive maps since they were able to determine the relative location of landmarks in the first 

study using mental trigonometry, and they were more accurate at determining the target location 

in the second experiment which required the ability to mentally rotate landmark configurations. 
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The ability to determine spatial relationships between landmarks involves the use of 

cognitive maps, which allow individuals to form a holistic view of environments. Such maps 

allow for relative locations of landmarks and pathways to be determined. This ability to 

determine spatial relationships may be one of the main reasons good wayfinders are better at 

navigating while others have considerable difficulty. Using a cognitive map to determine relative 

locations as opposed to remembering locations by their absolute position can have various 

benefits. Use of this configurational knowledge can assist in getting back on track when an 

individual is lost. If poor navigators are only learning the absolute locations of landmarks than it 

can be difficult to get back on track if they get lost since they are not aware of the relative 

positions of other nearby landmarks that could be used to find their way. If good navigators get 

lost, and are unable to find a particular landmark along a route, they can determine the relative 

positions of surrounding landmarks to determine where they are. When individuals determine 

spatial relationships between objects they are able to update their position as they move and 

consequently it makes it easier for them to get back on track if they get lost.  

In all types of environments whether it is a networked space or an open terrain, 

landmarks provide essential information about the relationships of locations and paths. 

According to Heth et al. (1997), there are two ways landmarks can be used when navigating. 

Landmarks are memorable cues that are chosen along a path, particularly when leaning turning 

points along a path. Landmarks also assist in encoding spatial relationships between objects and 

paths. This distinction can also be descried in two kinds of relationships, landmark-goal 

relationships where landmarks are used as cues along a path to a goal, and landmark-landmark 

relationships, which provide a global understanding of the environment. Landmark-goal 
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knowledge can be used in active navigation, and landmark-landmark knowledge may be more 

essential in determining orientation (Heth et al., 1997).  

Good navigators are better at determining both types of the relationships described by 

Heth et al. (1997). Good navigators are better at determining spatial relationships between 

landmarks (study 1: landmark-landmark information) and between landmarks and goals (study 2: 

landmark-goal information). Both these abilities are interrelated and can play an important role 

in navigating. Good navigators may be better at finding their way because they are better at 

active navigation and determining landmark-goal relationships effectively.  This was 

demonstrated by their accuracy at determining the correct target position in the control trials in 

study 2, which required the ability to determine a goal location (target), in reference to a 

landmark (surrounding landmarks in the configuration). When individuals are actively 

navigating through an environment, they also need to orient themselves effectively, which 

landmark-landmark relationships can assist with. Good navigators displayed this ability in study 

1 in which they were required to determine spatial relationships between landmarks. In 

summary, good wayfinders may be better at navigating because they are effective at determining 

target locations in reference to landmarks and they are also better at orienting themselves 

appropriately. 

 The results from these studies suggest that poor navigators have difficulty in 

recognizing landmarks, remembering directional information and determining spatial 

relationships between landmarks. Buildings should have open concept styles, which can facilitate 

poor navigators in learning the relative location of landmarks, rather than their absolute 

positions. Open concept environments may make it easier for individuals to make mental 

connections between landmarks and pathways. Buildings should also be designed with more 
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foyers since they facilitate the ability to determine spatial relationships between landmarks on 

multiple floors. Lastly, buildings and cities can be designed in ways that make it easier for poor 

wayfinders to determine their initial heading direction to a target location more easily. For 

example, tall towers that can be seen from various vantage points can assist in determining initial 

heading direction more easily.  

Designing buildings optimally is a challenging process since individuals with varying 

levels of navigational ability may prefer using certain strategies rather than others. A building 

designer needs to take into consideration the navigational needs of poor wayfinders, average 

navigators and those with superior abilities. As mentioned, the results of these studies suggest 

that there are various ways in which buildings can be designed more effectively to assist poor 

navigators. Buildings should be designed that meet the needs of both poor and good navigators 

by having more foyers and being more open. 
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Appendix A 

Santa Barbara Sense of Direction Scale 
 
This questionnaire consists of several statements about your spatial and navigational 

abilities, preferences and experiences. After each statement, you should circle a number to 

indicate your level of agreement with the statement. Circle “1” if you strongly agree that 

the statement applies to you, “7” if you strongly disagree, or some number in between if 

your agreement is intermediate. Circle “4” if you neither agree nor disagree.  

 
1. I am very good at giving directions.   
strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
2. I have a poor memory for where I left things.   
strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
3. I am very good at judging distances.  
strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
4. My ‘‘sense of direction’’ is very good.  
strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
5. I tend to think of my environment in terms of cardinal directions (N, S, E and W).  
strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
6. I very easily get lost in a new city.   
strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
7. I enjoy reading maps.    
strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
8. I have trouble understanding directions.   
strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
9. I am very good at reading maps.  
strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
10. I do not remember routes very well when driving as a passenger in a car. 
strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
11. I do not enjoy giving directions. 
strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
12. It is not important to me to know where I am.   
strongly agree 1 2 3 4 5 6 7 strongly disagree 
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13. I usually let someone else do the navigational planning for long trips. done 
strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
14. I can usually remember a new route after I have traveled it only once.  
strongly agree 1 2 3 4 5 6 7 strongly disagree   
 
15. I do not have a very good ‘‘mental map’’ of my environment.  
strongly agree 1 2 3 4 5 6 7 strongly disagree 
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Appendix B 

EIT Building Familiarity Rating 

 

Please rate your familiarity with the EIT building from 1 to 5. 

Circle 1 if you are not familiar with the building, and 5 if you are very familiar, or some  

number in between if your agreement is intermediate. 

 

Not at all familiar 1      2    3     4    5   very familiar 
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Appendix C 

Route Drawing Questionnaire 

The route you were asked to learn was a multi-level path over four floors. You began the 
route on the top 4th floor and the route ended on the 1st floor.  Please draw the route taken 
on each floor. On each path also indicate the location of all the landmarks you were 
required to remember with an X and label it with the landmark’s name. Please also label 
the start and end of the path on that floor. 

4th floor path: 

 

 

 

 

 

3rd floor path: 

 

 

 

 

 

2nd floor path: 

 

 

 

 

 

1st floor path: 
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Appendix D 

Example of Route Drawing Task Scoring Procedure: 

 

 

 

Figure 31: Drawing of 4th floor path. All pathways are in the correct position and angle. 
Participant scored 8 out of 8. 
 

 

 

 

Figure 32: Drawing of 4th floor path. Pathways are drawn are in the correct position, however 
some are missing. Participant scored 5 out of 8. 
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Appendix E 

Path Pattern Identification Questionnaire 

 

Did you notice any similarities between the path taken on the 3rd and 4th floor? 

 

Please circle    YES   or    No 

 

 

 

IF YES please explain: 
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Appendix F 

Directional Information Questionnaire 

In this wayfinding task you were asked to remember the location of landmarks along a 
route. Please circle whether you had to turn left, right or go straight from each landmark 
listed below in order to travel from the start to the end of the route. (Please note:  
landmarks listed below are not presented in the same order they are along the path.) 

(1) Landmark: mammoth                 
LEFT                                       RIGHT                                  STRAIGHT 

(2) Landmark: bison skeleton               
LEFT                                       RIGHT                                  STRAIGHT 

(3) Landmark: bench                
LEFT                                       RIGHT                                  STRAIGHT 

(4) Landmark: lounge 

LEFT                                       RIGHT                                  STRAIGHT 

(5) Landmark: face board 

LEFT                                       RIGHT                                  STRAIGHT 

(6) Landmark: train 

LEFT                                       RIGHT                                  STRAIGHT 

(7) Landmark: shelf 

LEFT                                       RIGHT                                  STRAIGHT 

(8) Landmark: snowflake door 

LEFT                                      RIGHT                                  STRAIGHT 

(9) Landmark: dinosaur 

LEFT                                      RIGHT                                  STRAIGHT 

(10) Landmark: Nanotechnology Institute 

LEFT                                       RIGHT                                  STRAIGHT 

(11) Landmark: Center for Wireless Communication 

LEFT                                       RIGHT                                  STRAIGHT 

(12) Landmark: balcony 

LEFT                                       RIGHT                                  STRAIGHT 
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Appendix G 

Spatial Relationship Questionnaire 

The “X”s below represent the approximate position of landmarks presented along the path.  
In each diagram, 2 landmarks are labeled. Please identify the 3rd landmarks location 
relative to the other 2 landmarks position by circling the X that best represents its position. 
(Please note: landmarks in each question may be on different floors) 

  

1) Mammoth?                      

          X   

                  X (Nanotechnology Institute) 

      

X                      X (balcony)        X 

                     

  X  

 

 

2) Train?     

X  

               X           X (Nanotechnology Institute)          X 

     X (dinosaur) 

                    X   

 

 

 

3) Mammoth?           

                      X bison      X 

                                                                       X 

                        X                       X balcony                
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                   X 

 

    

4) Wooden Benches? 

          X      
    

 

              X  bison 

                            X                        X  balcony                                          X 

                                                                             

            X 

 

 

 

 

 

5) Lounge?      X     

                                                                    X dinosaur  

                             X                               X balcony                    X          

 

                                                               X 

 

 

6) Face board?  

   X 

                                    X lounge 

                          



   
 

106	
  

 X  X balcony                  X             

 

                                   X 

 

7) Wooden Benches?   

       X  

                                         X bison 

 

 X           X Snowflake door              X 

                                     

                                        X 

 

 

 

8) Face board?           

                                                        X 

X Center for communication 

      

           X                                              X lounge                   X 

 

                         X  
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Appendix H 

Simulator Sickness Questionnaire 

Instructions: Please provide a rating for each of the symptoms listed below 

 

“Stomach Awareness” is usually used to indicate a feeling of discomfort, which is just short  

of nausea. 

 

 

 

 

 

 

 

Symptom Rating    
General 
Discomfort 

None Slight Moderate Severe 

Fatigue None Slight Moderate Severe 
Headache None Slight Moderate Severe 
Eye Strain None Slight Moderate Severe 
Difficulty 
Focusing 

None Slight Moderate Severe 

Increased 
Salivation 

None Slight Moderate Severe 

Sweating None Slight Moderate Severe 
Nausea None Slight Moderate Severe 
Difficulty 
Concentrating 

None Slight Moderate Severe 

“Fullness of the 
Head” 

None Slight Moderate Severe 

Blurred Vision None Slight Moderate Severe 
Dizzy (eyes open) None Slight Moderate Severe 
Dizzy (eyes 
closed) 

None Slight Moderate Severe 

Vertigo None Slight Moderate Severe 
Stomach 
Awareness 

None Slight Moderate Severe 

Burping None Slight Moderate Severe 
Other: Please 
explain 
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Appendix I 

Spatial Anxiety Scale 

In this questionnaire you will be asked to rate the level of anxiety you think you would feel 
in eight situations pertaining to indoor and outdoor wayfinding tasks. After each 
statement, circle a number to indicate your level of agreement with the statement.  

Circle “1” if the situation would not make you anxious, and “7” if it would make you very 
anxious, or some number in between if your agreement is intermediate.  

 

1) Leaving a store that you have been to for the first time and deciding which way to turn to get 
to a destination.  

Not at all 1 2 3 4 5 6 7 very much 
 

2) Finding your way out of a complex arrangement of offices that you have visited for the first 
time.  

Not at all 1 2 3 4 5 6 7 very much 
 

3) Pointing in the direction of a place outside that someone wants to get to and has asked you for 
directions, when you are in a windowless room.  

Not at all 1 2 3 4 5 6 7 very much 
 

4) Locating your car in a very large parking lot or parking garage.  

Not at all 1 2 3 4 5 6 7 very much 
 

5) Trying a new route that you think will be a shortcut without the benefit of a map.  

Not at all 1 2 3 4 5 6 7 very much 
 

6) Finding your way back to a familiar area after realizing you have made a wrong turn and 
become lost while driving.  

Not at all 1 2 3 4 5 6 7 very much 
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7) Finding your way around in an unfamiliar mall.  

Not at all 1 2 3 4 5 6 7 very much 
 
 
8) Finding your way to an appointment in an area of a city or town with which you are not 
familiar.  

Not at all 1 2 3 4 5 6 7 very much 
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Appendix J 

Study 3 Landmarks  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailbox bike stand 
food stand construction sign 
bench No u-turn sign 
phone booth pedestrian crossing sign 
flower pot swimming pool 

basketball net right-turn sign 

rock yield sign 
parking sign tomb stone  
kangaroo sign tent 
arrow sign traffic lights 
child crossing sign Canadian flag 
garbage dump mailbox 
bus stand water tank 
food sign umbrella 
motor cycle house 

bush flower pot 

highway sign bush 
fire hydrant map board 
gas pump  coffee shop 
garbage can lodge 

crane lighthouse 


