
Adaptive Monitoring of Complex

Software Systems

using Management Metrics

by

Mohammad Ahmad Munawar

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2009

c© Mohammad Ahmad Munawar 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Software systems supporting networked, transaction-oriented services are large

and complex; they comprise a multitude of inter-dependent layers and compo-

nents, and they implement many dynamic optimization mechanisms. In addition,

these systems are subject to workload that is hard to predict. These factors make

monitoring these systems as well as performing problem determination challeng-

ing and costly. In this thesis we tackle these challenges with the goal of lowering

the cost and improving the effectiveness of monitoring and problem determination

by reducing the dependence on human operators. Specifically, this thesis presents

and demonstrates the effectiveness of an efficient, automated monitoring approach

which enables detection of errors and failures, and which assists in localizing faults.

Software systems expose various types of monitoring data; this thesis focuses on

the use of management metrics to monitor a system’s health. We devise a system

modeling approach which entails modeling stable, statistical correlations among

management metrics; these correlations characterize a system’s normal behaviour

This approach allows a system model to be built automatically and efficiently using

the monitoring data alone.

In order to control the monitoring overhead, and yet allow a system’s health

to be assessed reliably, we design an adaptive monitoring approach. This adaptive

capability builds on the flexible nature of our system modeling approach, which

allows the set of monitored metrics to be altered at runtime. We develop methods

to automatically select management metrics to collect at the minimal monitoring

level, without any domain knowledge. In addition, we devise an automated fault lo-

calization approach, which leverages the ability of the monitoring system to analyze

individual metrics.

Using a realistic, multi-tier software system, including different applications

based on Java Enterprise Edition and industrial-strength products, we evaluate our

system modeling approach. We show that stable metric correlations exist in com-

plex software systems and that many of these correlations can be modeled using

simple, efficient techniques. We investigate the effect of the collection of manage-

ment metrics on system performance. We show that the monitoring overhead can

be high and thus needs to be controlled. We employ fault injection experiments

to evaluate the effectiveness of our adaptive monitoring and fault localization ap-

proach. We demonstrate that our approach is cost-effective, has high fault coverage

and, in the majority of the cases studied, provides pertinent diagnosis information.

iii

The main contribution of this work is to show how to monitor complex soft-

ware systems and determine problems in them automatically and efficiently. Our

solution approach has wide applicability and the techniques we use are simple and

yet effective. Our work suggests that the cost of monitoring software systems is

not necessarily a function of their complexity, providing hope that the health of

increasingly large and complex systems can be tracked with a limited amount of

human resources and without sacrificing much system performance.

iv

Acknowledgements

In the name of Allah, the Gracious, the Merciful. I am most grateful to God for

giving me the opportunity to pursue advanced studies in spite of my little abilities.

I would like to express my sincere gratitude to my academic advisor, Paul A. S.

Ward, for allowing me to pursue my research interests and for providing continuous

guidance and financial support throughout my doctoral studies. I am grateful to

my PhD committee members, Dr. Ajit Singh, Dr. Marin Litoiu, Dr. James P.

Black, and Dr. Priya Narasimhan for their effort in evaluating this work and for

their recommendations for improving it.

I am thankful to Miao Jiang and Thomas Reidemeister for their help in improv-

ing various aspects of this work. I am grateful to colleagues and faculty members

of the Network and Distributed System Laboratory, in particular the Shoshin Lab-

oratory, for their assistance and enriching discussions.

I would like to acknowledge the IBM Centre of Advanced Studies, Toronto,

for supporting my research financially through a four-year PhD fellowship and for

making it possible to validate my work using industry-leading products.

I would like to express my appreciation to my family, especially my wife and

parents (both in Pakistan and in Mauritius) for constantly encouraging me, for

praying for my success, and for their patience. There are many other people who

have helped me directly or indirectly for studies or otherwise during my time at

the University of Waterloo – Thank you all!

v

Contents

List of Tables xi

List of Figures xiii

1 Introduction and Motivation 1

1.1 Problem Overview . 3

1.1.1 Enabling Automated Monitoring 4

1.1.2 Accelerating Problem Determination 5

1.1.3 Reducing Resource Requirements 5

1.2 Scope and Assumptions . 6

1.3 Thesis Contributions . 6

1.4 Thesis Organization . 8

2 Background 10

2.1 Basic Terminology . 10

2.2 Management Metrics . 12

2.3 Metric-Collection Mechanisms . 13

2.4 Metric-Collection Overhead . 13

2.5 Component-Based Distributed Software Systems 15

2.5.1 The Java Platform, Enterprise Edition 15

2.5.2 Monitoring Infrastructure 17

vi

3 Literature Review 21

3.1 Monitoring Infrastructure . 22

3.2 Basic Approaches to Systems Monitoring 23

3.3 Software System Modeling . 24

3.3.1 Modeling Performance . 25

3.3.2 Modeling Normal Behaviour 26

3.3.3 Modeling Anomalous Behaviour or Performance 30

3.4 Diagnosis . 31

3.5 Reducing the Cost of Monitoring 33

3.5.1 Efficient Monitoring Mechanisms 34

3.5.2 Adaptive Monitoring . 34

3.6 Prior Work Limitations . 37

4 Solution Overview 39

4.1 System Abstraction . 39

4.2 The Problem . 40

4.3 Solution Overview . 41

4.3.1 Modeling the Target System 42

4.3.2 Reducing the Monitoring Overhead 44

4.3.3 Detecting Errors and Failures 45

4.3.4 Diagnosing Faulty Components 46

4.4 Monitoring System Overview . 46

5 Evaluation Approach 48

5.1 Evaluation Setup . 48

5.1.1 Target Platform . 49

5.1.2 Applications . 49

5.1.3 Workload . 52

5.1.4 Monitoring Engine . 52

vii

5.1.5 Monitoring Data . 53

5.1.6 Experiment Framework . 54

5.2 Methodology . 54

5.3 Fault Injection . 54

5.3.1 Application Faults . 55

5.3.2 Operator Faults . 57

6 Cost of Monitoring 59

6.1 Measuring the Performance Overhead 60

6.1.1 Analytical Approach . 60

6.1.2 Empirical Approach . 61

6.2 Experiments and Analysis . 62

6.3 Summary . 64

7 System Modeling 66

7.1 Using an Ensemble of Metric Correlation Models 68

7.2 Identifying Stable Metric Correlations 70

7.2.1 Correlation Identification . 72

7.2.2 Model Validation . 72

7.2.3 Simple Linear Regression . 73

7.2.4 Extensions and Variations 78

7.3 Suitability for Adaptive Monitoring 81

7.4 Experiments and Analysis . 82

7.4.1 Data for Model Learning . 82

7.4.2 Calibration for Model Identification and Cost 82

7.4.3 Setting R2
min . 86

7.4.4 Existence of Stable Metric Correlations 87

7.4.5 Error Detection with Metric Correlations 90

7.5 Summary . 93

viii

8 Adaptive Monitoring 95

8.1 Metric Selection . 98

8.1.1 Manual Selection . 98

8.1.2 Automated Selection . 99

8.2 Minimal Monitoring . 104

8.2.1 Using Metric Correlation Models 104

8.2.2 Using Threshold-based Models 105

8.3 Detailed Monitoring . 107

8.4 Experiments and Analysis . 110

8.4.1 Minimal Monitoring: Manual Selection 110

8.4.2 Minimal Monitoring: Automated Selection 113

8.4.3 Detailed Monitoring . 117

8.4.4 Adaptive Monitoring . 119

8.5 Adaptive Monitoring: Further Considerations 121

8.5.1 Combining Manual and Automated Metric Selection 122

8.5.2 Using an Intermediate Monitoring Level 122

8.5.3 An Alternative Adaptive Monitoring Approach 124

8.5.4 Dealing with Slow Fault Resolution 125

8.5.5 Keeping Metric Correlation Models Up-to-date 126

8.6 Summary . 126

9 Diagnosis 128

9.1 Analyzing Regression Models . 130

9.2 Model-Level Anomaly Scores . 131

9.3 Metric-Level Anomaly Scores . 133

9.4 Component-Level Anomaly Scores 133

9.5 Reporting Diagnosis Information 135

9.6 Experiments and Analysis . 136

9.6.1 Nature of Faults and Diagnosis Accuracy 140

ix

9.6.2 Diagnosis with Alternative Modeling Techniques 141

9.6.3 Difficulty of Evaluating Diagnosis 144

9.7 Summary . 146

10 Discussion 148

10.1 General Applicability . 148

10.2 Limitations . 150

10.3 Extending the Basic Solution Approach 152

11 Conclusions and Future Research 155

11.1 System Modeling . 156

11.2 Fine-Grained Adaptive Monitoring 157

11.3 Diagnosis . 158

11.3.1 Correlation-Friendly Instrumentation 160

11.3.2 Other Applications of Metric Correlations 160

References 163

x

List of Tables

5.1 Examples of metrics collected . 53

5.2 Summary of the faults injected . 55

5.3 Fault parameters . 57

6.1 Service demand with different monitoring configurations 63

7.1 Parameters used to compute and validate correlation models 83

7.2 Data transformations considered . 84

7.3 SLR modeling results . 88

7.4 SLR-T modeling results . 89

7.5 Metric correlation models from the Trade system 89

7.6 Comparison of fault coverage and false alarms 92

8.1 HAC clustering methods used . 101

8.2 Minimal monitoring detection results 111

8.3 Detailed monitoring detection results 118

8.4 Detection results with adaptive monitoring 121

9.1 Results from the monitoring of the Trade system using SLR models 137

xi

List of Figures

2.1 Overview of a Java EE-based architecture 16

2.2 Monitoring infrastructure of a Java EE-based system 18

4.1 System abstraction . 40

4.2 System architecture . 47

5.1 Experimental setup . 50

5.2 Overall structure of the Trade application 51

6.1 Effect of monitoring configurations on mean service demand 64

7.1 Using simple thresholds to track metrics 67

7.2 Using correlations to track metrics 68

7.3 Capturing complexity through metric correlations 69

7.4 Approach to system modeling . 71

7.5 System modeling and tracking workflow 72

7.6 A linear relationship modeled by simple linear regression 74

7.7 Sample fault: Effect on a correlated metric pair 78

7.8 Applying data transformation: An example 79

7.9 A relationship modeled by locally-weighted regression 82

7.10 Correlation models and metric coverage 87

7.11 Sensitivity to faults . 88

7.12 Comparison of modeling techniques per type of metric pairs covered 91

8.1 Available metrics and the subset of modeled metrics 96

xii

8.2 Adaptation in the context of two levels of monitoring 97

8.3 An example of a correlation network and an MST derived from it . 103

8.4 Effect of varying SLO markup on fault coverage 112

8.5 Effect of varying SLO markup on false alarms 113

8.6 Single-linkage clustering vs. näıve selection 115

8.7 Complete-linkage clustering vs. näıve selection 116

8.8 Average-linkage clustering vs. näıve selection 117

8.9 MST vs. näıve selection . 118

8.10 MST vs. Clustering-based Selection 119

8.11 Single-linkage with cutoff distance selected by the Silhouette score . 120

8.12 Varying the cut-off distance with single-linkage clustering 121

8.13 Effect of varying FDM
max on fault coverage 122

8.14 Effect of varying FDM
max on false alarms 123

8.15 Metric correlation distribution . 124

9.1 Relationship between components, metrics, and models 130

9.2 Approach to diagnosis . 131

9.3 Types of component-level scores . 134

9.4 Diagnosis with Max-score and CR-MS 138

9.5 Diagnosis with Max-score and CR-CS 139

9.6 Diagnosis with Ratio-score and CR-MS 140

9.7 Diagnosis with Ratio-score and CR-CS 141

9.8 Overall comparison of diagnosis methods 142

9.9 Example: component dependencies in a simple system 142

9.10 Example: component dependencies and broken correlations 143

9.11 Diagnosis per fault category . 143

9.12 Example of a performance fault that does not affect correlations . . 144

9.13 Diagnosis with alternative modeling techniques 144

9.14 Diagnosis of execution-flow related faults 145

9.15 Diagnosis of performance-related faults 146

xiii

Chapter 1

Introduction and Motivation

Computer-based services play a critical role in our society. Many essential tasks

in our daily life require use of online services offered by governments, businesses,

and other organizations. Examples include e-mail, banking, e-commence, public

e-services, etc. Likewise, organizations depend on their computer systems to sup-

port operations and provide services to users and other organizations. Today, many

businesses only offer online services, making them completely dependent on their

computer systems. As more-elaborate and more-accessible services become avail-

able, the reliance on computer-based services continues to grow. The effect is that

the size and complexity of the computer systems needed to support these services,

and in particular the software, is increasing.

Software systems are complex because they comprise many inter-dependent

components and layers, they implement many dynamic optimization mechanisms,

and they are subject to workload that is hard to predict. While the size and com-

plexity of these systems are hidden from the end users, they are visible to those

who operate them. The system operators have to ensure that the end users are

satisfied irrespective of how large or complex the systems are.

Software systems are especially critical for business entities. In this context,

software systems are typically large, complex, distributed, and subject to stringent

reliability requirements. They are required to be highly available, operate cor-

rectly around the clock, and offer the best level of performance. However, because

software systems are not perfect and fault-protection mechanisms are not always

present, failures occur. The major manifestations of failure are unavailable systems,

exceptions and access violations, incorrect answers, data loss and corruption, and

poor performance [117]. The cost of failure is generally high, as it can cause loss

of revenues, damage goodwill, even incur penalties for failing to meet service-level

1

agreements. Therefore, businesses spend a significant portion of their information

technology budget on managing their computing infrastructure.

Organizations have traditionally relied on human operators to oversee their com-

puting infrastructure, identifying problems, diagnosing their causes, and restoring

the system to the desired state. This heavy reliance on human operators is prob-

lematic in several ways.

1. It is expensive. System operators that have the knowledge and abilities to

cope with large and complex software systems are in short supply and thus

expensive to hire. Furthermore, for this solution to continue to work, we

need an increasing number of system operators that are more knowledgeable

and better-skilled. This is an expensive solution. Statistics show that in

2004 in America, the number of such system operators was approximately

900,000, with the number expected to grow by more than 30% by 2014 [49].

This implies that the annual human-resource cost in America alone is roughly

$100 billion and growing.

2. It does not scale. Increasing the number of operators does not make systems

management tasks easier. On the contrary, with more people, proper coordi-

nation and communication become more difficult, especially in the presence

of individuals with varying abilities and degrees of knowledge.

3. It is ineffective. While this solution may provide short-term relief, it fails

to address the long-term concern that the complexity of software systems is

reaching a level that eludes many human operators [76]. Managing these sys-

tems becomes more challenging, as it becomes more difficult to grasp how they

work and what the effects of an operator’s actions are. Even now, the effec-

tiveness of human operators is questionable: in a recent research study [139],

it was found that 40% of system failures are attributable to operator errors.

4. It is not efficient. An operator-driven approach to detecting and resolving

errors and failures can be slow. Because of limited resources, it is generally

not possible to have human operators maintain permanent, detailed oversight

of a system. In addition, manual oversight is time-consuming because of the

need to find relevant information in a potentially large amount of complex

monitoring data. As a result, it is not unusual for errors and failures to go

unnoticed for long periods of time [24], often coming to light only through

frustrated users. The end result is reduced system availability, which in turn

leads to undesirable business consequences.

2

It is therefore critical that automated approaches to monitor and manage these

systems be developed. This will allow the cost of system management to be reduced,

as fewer human operators will be needed, and it will allow larger systems to be built

with the assurance that those systems can be managed effectively.

To address this challenge, the idea of self-managing systems has received much

attention both from the research community and the industry [18, 40, 54, 94]. The

term autonomic computing [76] has been coined to refer to self-managed systems.

The end goal is to make software systems manage themselves, eliminating or reduc-

ing the need for human involvement. System management spans a wide range of

activities related to system operation including configuration (e.g., keeping software

and hardware inventory and component dependencies up-to-date), performance

(e.g., ensuring performance targets are met), security (e.g., access control), account-

ing (e.g., billing), and problem determination. While the idea of self-management

can be applied to all these activities, our work focuses on monitoring and problem

determination.

1.1 Problem Overview

System monitoring is essential to ensuring proper operation and adequate perfor-

mance. Effective monitoring allows errors and failures to be promptly detected

and their causes identified. We face several challenges in trying to replace human

operators by an automated monitoring system. These challenges include:

• Software systems comprise many components and layers with complex inter-

actions between them. Furthermore, the components together may display

emergent behaviour, which is not necessarily evident from the properties of

the individual components.

• Software systems are dynamic. In particular, their software is often adaptive.

In addition, many systems, especially those that are accessible via the Inter-

net, are subject an open-ended workload, which is hard to predict accurately.

• The expected behaviour of software systems is often only defined loosely, ex-

cept when safety and very high costs are at stake. System operators have

some intuition as to what represents acceptable behaviour and performance.

However, such knowledge can be difficult to obtain, verify, and encode for-

mally.

3

• Software systems typically comprise off-the-shelf, generic subsystems (e.g., a

database management system, an application server, etc.) purchased from

independent vendors. Knowledge of the internal structure and inner work-

ings of these subsystems is not accessible in most cases. Even for internally-

developed software, the required information may not be documented or may

be out-of-date.

• In general, collecting monitoring data is not free. The more data we collect,

and the more frequently we collect it, the higher the cost. This cost takes the

form of system slow down or data-management overhead.

The goal of this work is to enable automated monitoring and problem determi-

nation despite these challenges. A key requirement for such an automated moni-

toring system is that it should be aware of the cost of monitoring and be capable

of controlling this cost while maintaining its effectiveness.

Two important costs are associated with monitoring: human resources and

system resources. The heavier the reliance on human operators, the costlier is the

solution. Likewise, the more system resources (i.e., computation, memory, storage,

and bandwidth) are required, the costlier is the monitoring. Given the large size

and complexity of present day systems, both these costs can be high. The aim of

this thesis to develop a cost-aware automated monitoring system, which can

reduce these costs while ensuring that system monitoring remains effective.

1.1.1 Enabling Automated Monitoring

Traditionally, several aspects of system monitoring have necessitated human in-

volvement, including configuring and adapting what monitoring data is collected,

analyzing the collected data, and from the analysis making inferences about the

system’s health and faults. It is not practical for human operators to continuously

track the system’s behaviour and performance (e.g., by continuously visualizing

and reading summaries of critical aspects of system operation). In practice, sys-

tem operators put in place triggers to alert them of conditions that require manual

oversight. These triggers are typically based on rules of thumb, which are not

necessarily effective. In cases where these triggers work, the remaining tasks still

require much time to perform.

Our goal is to reduce human involvement in monitoring and problem determi-

nation tasks by having an automated system carry them out or assist in them.

4

In addition to reducing costs, this approach will increase the effectiveness of the

monitoring system by avoiding limitations of the manual approach (e.g., wrong

judgment) and ensuring that the system’s health is tracked on a permanent basis.

In order to detect errors and failures automatically, the monitoring system needs

a way to gauge the target system’s health. What is needed is a system model, a

characterization of the target system, which can be used to predict its behaviour

and/or performance. Building a system model should not necessitate undue effort,

expert knowledge, or information that is not available or difficult to obtain.

1.1.2 Accelerating Problem Determination

Comparing system behaviour and performance with a system model gives the mon-

itoring system the ability to detect errors and failures. When such anomalous con-

ditions occur, there is a need to pinpoint quickly the cause. The manual approach

is often time-consuming, as it involves making sense of complex and potentially

large amounts of data. In addition to detection, an automated monitoring system

should assist in quickly diagnosing faults in the system. Ideally, the ability to de-

termine problems should not depend on information or expertise that is not readily

available.

1.1.3 Reducing Resource Requirements

Monitoring comes at a cost. Obtaining monitoring data from a system demands ex-

tra resources, including computing power, memory, storage space, and bandwidth.

These resources fulfill non-functional requirements and thus need to be minimized.

An automated monitoring system has to be cost-aware and yet effective. The level

of extra resources utilized needs to kept low while ensuring that the system’s health

can be assessed reliably and causes of problems determined accurately.

Among the various overheads monitoring entails, the performance overhead is

the most critical. It arises from the extra computation needed to measure and

capture the monitoring data. Because this overhead directly impairs a system’s

performance, it is crucial to restrict it to a level that is acceptable.

5

1.2 Scope and Assumptions

A rich variety of computer systems exist, ranging from real-time, safety-critical

systems to those created for pure entertainment. Though the solution approach

developed in this thesis has wide applicability, we focus on software systems that

are component-based and that service short-lived work requests or transactions to

a large user base. Examples of such systems abound, including online transaction

processing (OLTP) systems, systems providing e-mail and messaging services, stock

trading systems, etc. These systems are large and complex, making them the right

target for evaluating the ideas presented in this thesis.

Software systems make various types of monitoring data available, including

log files, execution traces, and management metrics. The focus of this work is on

numeric management metrics, which are variables that reflect the state, behaviour,

and performance of the target system. We use management metrics to monitor a

system. Our system model thus needs to be built with metric data. We rely on

the analysis of management metrics to perform both error and failure detection as

well as diagnosis. Management metrics may not always suffice for completing these

tasks successfully. Nevertheless, as we will show in this thesis, for many problems,

they provide pertinent information to speed up these tasks.

In this work the monitoring overhead relates to the measurement and collection

of management metrics. We assume that the software systems expose interfaces

that allow metric collection to be dynamically controlled. We further assume that

the system to be monitored operates under a single administrative domain. As

such, the managing system has the privileges to retrieve and control the collection

of metrics from the target system.

1.3 Thesis Contributions

This work tackles the problem of tracking the health of complex software systems

and determining the source of problems that arise in these systems. Specifically,

this thesis makes the following novel and significant contribution.

• We solve the problem of monitoring a software system using the management

metrics it exposes in an automated way, which reduces human involvement,

and in an adaptive way, which reduces the impact on system performance.

6

– We present a solution to the problem of how to automatically analyze a

system’s health without knowing its internal structure or inner workings

by devising a system model based on an ensemble of stable statistical

correlations between the system’s metrics. This modeling approach is

suitable for adaptive monitoring, requires little or no human input, is

capable of capturing the complex dynamics of software systems, and is

efficient to implement.

We perform an in-depth study of our modeling approach and evaluate

alternative options for its implementation, showing the advantages of

our approach.

– We address the problem of how to select a subset of the system’s metrics

to enable adaptive monitoring using only the metric correlation informa-

tion. In particular, we present a Minimum Spanning Tree-based metric

selection algorithm which, when combined with metric correlation mod-

els, enables effective monitoring.

• We devise a diagnosis approach to address the problem of localizing faults

using the system’s metrics with no a priori knowledge of system structure,

faults, and metric semantics. Our approach leverages the same system model

based on metric correlations which is used to track the system health.

• In order to support our claims, we experimentally validate our solution ap-

proach using a realistic test-bed implementing a multi-tier information sys-

tem, multiple benchmarking applications, and a wide range of faults.

We show that our approach is effective in detecting faults and, in a majority

of cases, provides information that would enable system operators to quickly

isolate faults. Further, we provide evidence that metric collection can have a

significant impact on system performance, and we show that adaptive moni-

toring can limit this impact.

The existing work in the area of systems monitoring and problem determina-

tion is limited in many respects. In many instances, prior work focuses on tracking

specific aspects of a system (e.g., system response time). Often, the problem of

error and failure detection is addressed separately from that of diagnosis. Diag-

nosis approaches are devised by making simplistic assumptions about error and

failure detection. For example, there is heavy reliance on basic monitors such as

performance thresholds; finding appropriate thresholds without excessive slack is

not trivial. Many useful approaches rely on monitoring data that is costly to obtain

7

(e.g., traces); such data is not collected continuously in production systems. Other

approaches leverage metric data that is collected by default in production systems

for detecting errors and performing diagnosis. The choice of default data is partly

motivated by the need to keep the overhead low. While this data is generally insuf-

ficient for problem determination, it may even be inadequate for error and failure

detection. This thesis develops a solution approach that overcomes these shortcom-

ings. Our work does not assume availability of any pre-existing monitors to detect

problems; it entails an integrated approach to detecting problems and determining

their causes.

Much of the prior work emphasizes the reduction of the communication overhead

of monitoring. Although in recent work mechanisms to reduce the measurement

and collection overhead have been proposed, little work exists on how to leverage

these mechanisms automatically.

In this work we devise a monitoring approach that automatically controls the

collection of the monitoring data while detecting errors and failures effectively,

and determining the source of problems when necessary. Our approach can be

implemented easily and deployed readily to monitor a large class of existing software

systems. Our work makes it possible to create automated monitoring solutions that

cost much less than operator-centered solutions and that can significantly improve

system reliability.

1.4 Thesis Organization

This thesis is organized as follows:

• Chapter 2: provides the basic information needed to the understand this

dissertation. In particular, it contains definitions of terms that are used in

the thesis, covers the basics of management metrics, and gives an overview of

distributed component-based software systems.

• Chapter 3: discusses the prior research in the area of systems monitoring,

adaptive monitoring, and diagnosis.

• Chapter 4: presents a high-level overview of how we model the system and

how we leverage the system model to reduce the cost of monitoring, to detect

errors and failures, and to perform diagnosis.

8

• Chapter 5: describes our experimental setup and our evaluation method-

ology. It contains a detailed description of the test-bed, the applications, the

faults, and the data we use in our experiments.

• Chapter 6: contains an assessment the impact of metric collection on

system performance and motivates the need for adaptive monitoring.

• Chapter 7: presents our approach to characterize the system health for

the purpose of automated monitoring. It contains a detailed treatment of the

modeling approach, its implementation, and its parametrization.

• Chapter 8: provides details on how we assess a system’s health. It elab-

orates on our approach to adaptive monitoring. It presents methods for se-

lecting metrics to track on a continuous basis.

• Chapter 9: expounds on our diagnosis approach. It discusses how low-level

anomaly data can be combined into useful problem determination informa-

tion.

• Chapter 10: discusses the wider applicability of the solution approach

presented in this work, it describes some of its limitations, and presents a

summary of other works that extend it.

• Chapter 11: outlines the lessons learned in this work and points to promis-

ing directions for future work.

9

Chapter 2

Background

In this chapter we provide some background information needed to understand this

work. In addition to presenting the terminology used, we cover important aspects

of management metrics and provide a brief introduction to systems based on the

Java Enterprise Edition framework.

2.1 Basic Terminology

The terminology used throughout this thesis follows that of Avizienis et al. [10].

For completeness, we reproduce the relevant definitions below.

• A system is an entity that interacts with other entities (i.e., other systems such

as software, humans, the physical environment, etc.). These other entities

define the environment of the given system. A system is composed of a set

of components put together in order to interact, where each component is

another system. This recursive definition stops when further decomposition

is either not possible or not of interest.

• The total state of a system is the set of the states of its components. The

behaviour of a system is a sequence of states through which the system im-

plements its function.

• The structure of a system is what enables it to generate its behaviour.

• The service delivered by a system is its behaviour as it is perceived by its

user(s). The part of the system boundary where service delivery takes place

10

is the service interface. The part of the system’s total state that is perceivable

at the service interface is its external state; the remaining part is its internal

state.

• The function of a system is what it is intended to do and is described by the

functional specification in terms of functionality and performance.

• A service failure is an event that occurs when the delivered service either

does not comply with the functional specification, or when the specification

did not adequately describe the system function.

• An error is the part of the total state of the system that may lead to its

subsequent service failure.

• A fault is the cause of an error.

• A partial failure occurs when a subset of several functions implemented by the

system fails; the system still offers services that have not failed to the user(s).

A component failure represents a fault for its parent system and from the

perspective of interacting components [87].

In addition to the standard definitions above, we use the following terminology

throughout this thesis.

• A model is a description of some characteristics of a system that can be used

to study or predict those characteristics.

• An anomaly is a departure or deviation from the normal or the expected char-

acteristics as determined by a model. It is important to note that anomalies

do not always reflect errors or failures in a system, they may also happen

because of normal, albeit uncommon, events (e.g., a sudden change in user

behaviour).

• The health of a system is the degree to which its observed behaviour and

performance conform with the expected behaviour and performance.

• Monitoring is the act of observing a system for the purpose of ensuring that

certain properties are maintained. In our case the purpose is to make sure

that the system is free of errors and failures.

11

• Diagnosis is the process of identifying causal factors underlying some ob-

served anomaly. We use the terms diagnosis, problem determination, fault

localization, and root cause analysis interchangeably.

• The target system is the system to be monitored.

• A monitoring system is the entity that monitors the target system. A mon-

itoring system is often part of a larger managing system, whose role extends

to other system management functions.

2.2 Management Metrics

A management metric is a variable measuring an attribute or a parameter of a

managed entity. An attribute either represents an instantaneous property of the

monitored entity (e.g., free memory size) or an aggregation of the underlying

measure over a specified time interval (e.g., CPU utilization).

Metrics differ according to the scale in which they are measured. A variable

with nominal or categorical scale takes values from a set of exclusive, unordered

values (e.g., male/female). A variable with ordinal scale takes a value from a set of

exclusive, ordered values (e.g., low/medium/high). We can determine the relative

order of the values, but the difference between any two values is undefined. A

variable with interval scale takes values for which differences can be computed.

However, the values start from an arbitrary point (i.e., there is no notion of a

zero value). Temperature measured in Fahrenheit is an example for an interval-

scale variable. A ratio variable is similar to an interval variable with the added

property that zero means that the underlying attribute or parameter is nil (e.g.,

travel speed). Our work focuses on metrics which have an interval or a ratio scale;

these metrics represent the majority of metrics exposed by software systems.

Management frameworks such as the Simple Network Management Protocol

(SNMP) [20] refine the classification of metrics. In SNMP, for example, a counter

is a non-negative integer that increments to a maximum and rolls over to zero. A

gauge, on the other hand, is a variable that can increase or decrease subject to a

minimum and a maximum. In addition, it is not necessary for the measurement

of a metric to only be described by a single numeric value. The measurement

may be represented as an object with several attributes. The Java Enterprise

Edition Management Specification [130] defines various types of objects to represent

performance data. A TimeStatistic object, for example, reports the number

12

of times an operation occurs, the total time taken for the occurrences, and the

minimum and maximum times observed.

2.3 Metric-Collection Mechanisms

Metric measurements are recorded in variables which may be read and updated

either by the managed or the managing entity. The monitoring logic or instrumen-

tation that updates these variables is often part of the system structure. In cases

where such instrumentation does not exist, it is possible to statically or dynamically

instrument components of a software system (see related work in Chapter 3).

Management frameworks such as SNMP [20] and JMX [131] specify encoding,

transport protocols, and mechanisms to collect metric measurements. In general,

two mechanisms exist to collect the metrics. A managing entity can use polling

(pull mechanism) to read the variables when needed. Alternatively, the managed

entity can send notifications (push mechanism) containing the measurements to the

managing entity.

2.4 Metric-Collection Overhead

The computation required to update a variable when the underlying measure changes

depends on what is being measured. For example, to count how many times an

operation occurs, we can instrument Java code as shown in Listing 2.1. At each

occurrence of the operation, a counter is incremented. For a remote managing sys-

tem to collect the counter, additional logic is needed to read, encode, and send the

measurement. Similarly, if we need to compute the average time taken by an oper-

ation, the instrumentation would resemble that in Listing 2.2; for each operation,

two system calls (hence, context-switches) are needed to get the current time. In

addition, two variables are needed to record the number of occurrences and the

total time taken by a set of operations. If we want to read a metric related to a

group of objects (e.g., object pool), the instrumentation would consist of iterating

over the objects to compute the measure of interest. Additional overhead arises

when mutual exclusion is ensured when updating the variables.

13

Listing 2.1: Counting occurrences

1 void process() {

3 // processing logic ...

5 if (metricEnabled)

6 operationCounter++;

7 }

Listing 2.2: Measuring average response time

1 void process() {
2 if (!metricEnabled){

4 // processing logic ...

6 } else {

8 // get current time

9 long start = System.currentTimeMillis();

11 // processing logic ...

13 // get current time

14 long end = System.currentTimeMillis();

15 cumulativeTime += end − start;

16 operationCounter++;

18 }
19 }

Two critical factors determine the overall overhead of metric measurement and

collection: first, the quantity being measured (e.g., count, timing, etc.) and the

number of times the quantity is measured; second, the frequency at which the

measured quantities are read and fetched by the managing system. While the first

is a function of the amount of work done by the system, the second depends on the

managing system.

14

2.5 Component-Based Distributed Software Sys-

tems

To facilitate development and enable scalability, software systems for network-based

services are typically built using component-based frameworks. Many standards

for implementing component-based distributed systems exist, including Common

Object Request Broker Architecture (CORBA) [114], Java Platform Enterprise

Edition (Java EE) [136], Distributed Component Object Model (DCOM) [95], and

.Net [96]. These frameworks allow components of the same system to be distributed

across different machines. These frameworks entail the use of middleware that

takes care of issues such as remote communication, data exchange, object naming,

registration, discovery, object life-cycle management, security, etc.

These component-based software systems are typically organized in tiers, each

addressing specific needs. For example, a basic system to support an online store

includes a data tier comprising a database management system for persisting data,

a business logic tier comprising an end-user application and an application server

providing the execution environment for the application, and a presentation tier

comprising an HTTP server and other software to render results of service invoca-

tions. In addition, each tier may be hosted on separate machines, each running its

own operating system.

2.5.1 The Java Platform, Enterprise Edition

One of the most popular frameworks to implement distributed, component-based

software systems is Java EE. The experimental aspect of this work only involves

Java EE; nevertheless, we believe that the insights that our work provides extend

to the other component-based frameworks.

Java EE specifies application program interfaces (APIs) and interactions for

basic services needed for distributed and enterprise computing. It also defines in-

terfaces, roles, and deployment details of components in the framework. A simple

Java EE-based system is illustrated in Figure 2.1. A Java EE server is a runtime en-

vironment for executing Java EE applications. It consists of component containers,

which take care of the components’ lifecycle, thread management, concurrency con-

trol, resource pooling, replication, access control, etc. It also implements various

common services and libraries. A Java EE server allows the execution of multi-

ple applications or many instances of the same application concurrently. Many

15

Figure 2.1: Overview of a Java EE-based architecture

such servers exist on the market, e.g., IBM WebSphere, BEA WebLogic, Oracle

Application Server, JBoss, and Jonas.

A Java EE application is a combination of many specialized components. A

typical Java EE application can be accessed via its web interface by making HTTP

requests, by using native Java calls, or by employing other means such as web-

service calls. On the server side, HTTP requests for dynamic content are handled

by web components such as Java Servlets or Java Server Pages (JSP), which are

managed by a web container. The application logic concerned with the processing

of business data is implemented in Enterprise Java Beans (EJBs). These EJBs

can be accessed using a remote method invocation (RMI) protocol. The Java EE

specification classifies EJBs into three different types. A session bean is a compo-

nent that acts temporarily on behalf of a client. This component can be stateful

(e.g., keeping track of a customer’s shopping cart) or it can be stateless (e.g., only

computing a formula given some input). An entity bean is an EJB that provides a

mapping to persistent data, typically a row in a database table. A message-driven

bean allows an application to provide asynchronous functionality. For example, such

a component can accept a customer order, adding it to a queue of pending orders;

when resources become available, the orders are removed from the queue for pro-

cessing. Web components and enterprise beans execute in containers, which provide

the linkage between components and services and functionality implemented by the

underlying runtime. Java EE applications typically require connection to back-end

data sources, which may include database servers or legacy systems.

16

Servicing user requests in a typical Java EE-based system entails processing by

many components of different types. A typical flow of execution may include the

following: a client requests a service through a web page; the request is assigned

to a thread at the server, which executes a Servlet. The Servlet code retrieves a

reference to a Session EJB component and executes one of its methods; the Session

EJB causes one or more Entity EJBs to either be instantiated or fetched; the data

mapped to the Entity EJBs is retrieved by using a connection to the back-end

database; once the data is fetched at the session EJB, it is processed, and then

returned to a JSP component; in the JSP, the results are put in HTML format and

sent to the client. While servicing the request, the components involved may utilize

common services such as transactions or logging.

2.5.2 Monitoring Infrastructure

Software systems expose much data to enable their monitoring and management.

Each subsystem can be monitored via a multitude of metrics and events, each

detailing some aspect of its state, behaviour, or performance. Much of the available

data can be accessed through predefined mechanisms such as logging, tracing, or

polling of management interfaces. Additional data can be collected on-demand

at runtime by instrumenting parts of the system. Monitoring a software system,

therefore, entails dealing with potentially large volumes of data. A glimpse of

the amount of the data available can be illustrated by considering the monitoring

infrastructure of a basic Java EE-based system. Figure 2.2 presents an overview

of some important sources of information available from various parts of such a

system. Below, we describe the main subsystems, the type of data they provide,

and how such data can be collected.

A software system requires an operating system to function. When distributed,

multiple operating systems support the software system. Most commodity operat-

ing systems provide mechanisms and tools to monitor resource usage, user activity,

process behaviour, etc. In Unix, for example, metrics are exposed through a virtual

file system mounted at /proc. Utilities such ps, vmstat, iostat, and netstat

make access to the data even more convenient. Similarly, the Windows Manage-

ment Instrumentation (WMI) [97] allows for the monitoring of many aspects of

a system when using Windows. Besides these conventional monitoring facilities,

much more data can be collected via dynamic instrumentation [19, 101, 138] and

dynamic insertion of interceptors between components via hot-swapping [127].

Software systems commonly rely on runtime environments executing above

17

Figure 2.2: Monitoring infrastructure of a Java EE-based system

the operating system layer. These runtimes not only make it possible to de-

velop portable software but also implement features to improve robustness and

performance. Examples of these features include sandboxing, automatic memory

management and exception handling, runtime code optimization and replacement,

etc. Such runtimes include the Java Virtual Machine (JVM) [132] and Microsoft’s

Common Language Runtime (CLR) [98]. A Java EE-based system requires a JVM

to execute. The JVM provides different interfaces for monitoring. The JVM Tool

Interface (JVMTI) [133] enables debugging as well as profiling of Java applications.

A JVM can also be monitored via a standardized management interface, namely

the Java Management Extensions (JMX) [134] interface. JMX allows data related

to various aspects of the JVM, including the number and state of threads, memory

usage, classes instantiated, and garbage collection to be accessed easily. The JMX

technology is much more generic, as it provides a common management interface

for Java applications to make monitoring data available and expose configuration

interfaces. It also defines a scalable notification-based architecture for monitoring.

In addition, it is possible to instrument Java bytecode dynamically at runtime (see,

e.g., [135]). Monitoring probes that were not considered at design and implementa-

tion time can now be retrofitted when the need arises. The availability of runtime

bytecode instrumentation in the JVM allows Java applications to take advantage

of approaches like dynamic aspect-oriented programming (see, e.g., [64]), whereby

18

monitoring aspects can be added dynamically. This represents another potential

source of monitoring data.

Most Java EE-based systems require a database management system (DMBS)

to manage persistent data. These DBMS expose a rich set of monitoring data to

facilitate their tuning and maintenance (see, e.g., [55]). Examples of the available

data include details on query execution, table activity, application connections,

I/O, threads, memory, storage, and locking.

Java EE applications are typically accessed via their web front-end. As such,

HTTP servers are the first subsystems to handle user-requests. They usually serve

static content (e.g., images) directly, but redirect requests for dynamic content to

an application server. They may also provide authentication and encryption ser-

vices. HTTP servers also make state, performance, and error-related data available

through log files or monitoring interfaces. An HTTP server usually logs requests

received, return codes, execution time, etc. It is also possible to query the server’s

state (e.g., to find the number of active worker threads, number of connections alive,

CPU usage per worker thread, etc.). For example, the mod status module [7] of

the Apache HTTP server provides a mechanism for collecting such data.

The application server lies at the centre of a Java EE-based system, as it pro-

vides the middleware and the runtime environment to execute the application logic.

Significant events (e.g., exceptions) which occur during a server’s execution are typ-

ically logged or sent in the form of notifications to registered listeners. There is

a wide range of state, performance, and error-related data that can be collected

by querying provided interfaces (e.g., see [56]). Most Java EE servers are JMX-

enabled [131], which allows a management entity to monitor and manage them.

Many subsystems of a Java EE-based system may be shipped with embedded in-

strumentation that makes more detailed information available on a per-request

basis (e.g., using the ARM API [73]).

A Java EE server is itself organized into multiple subsystems, which include

component containers (e.g., web and EJB) and modules for transactions manage-

ment, database connection management, thread pool and object pool management,

etc. Each such subsystem exposes data related to the state, behaviour, and per-

formance of the subsystem. A Java EE application and its components can also

make fine-grained monitoring data available. Because of standardization, much

monitoring data related to applications is generic (i.e., applies to all applications

that conform to the Java EE specification). Still, application-specific monitoring

can be made available by instrumenting the application. Data on web components,

19

such as Servlets, may comprise the number of requests being served over time or at

any time instant, number of errors encountered, response time, etc. As with EJBs,

depending on the type of bean, different aspects can be observed. For example,

one could monitor how many instances of each bean type have been created, the

number of active beans, the number of free beans available in various pools, average

response time per bean, the number of times the various methods of a bean are

called, etc. For entity beans, which are usually mapped to table rows, one could

check the number of times bean data is stored to or loaded from the database and

the time taken for storing or loading the bean. Similarly, for message beans, one

could keep track of the number of messages handled by the bean. Data as detailed

as the time taken by a particular remote method of an EJB can be collected.

As illustrated above, even a basic Java EE-based system can produce a large

amount of monitoring data. A few hundred metrics may be available from the appli-

cation server and the DBMS for an application such as an online store. Production-

level Java EE-based systems are generally larger and more complex, comprising

clustered web and application servers, replicated databases, load balancers, etc. Ef-

fectively monitoring such systems is very challenging. The difficulty lies in using the

data generated by these systems to good effect; that is, for quickly detecting errors

and failures and for localizing their causes. Furthermore, collecting all this data

would not only adversely affect performance, but would create significant overhead

for handling the collected data. An important aspect of the challenge is to contain

this overhead, while not sacrificing effectiveness of problem determination.

With this background information, in the next chapter we provide an overview of

the prior research on monitoring complex softwate systems and diagnosing problems

in them. Much of the prior work has been applied to systems built using component-

based frameworks such as Java EE.

20

Chapter 3

Literature Review

A large volume of literature exists on system monitoring, spanning a wide range

of application domains, including devices, machines, processes, environmental and

social phenomena, etc. In this review we concentrate on the monitoring of software

systems; in particular, we focus on transaction-oriented software systems that serve

large user populations.

The work on software systems monitoring can be organized according to the

concerns which monitoring addresses. Two main concerns are ensuring that the

target system achieves and maintains a desired level of performance and depend-

ability. The performance of a system is a measure of how well it delivers the correct

service. Much work has gone into developing models to track the performance of

software systems. We discuss such models later in this chapter.

The dependability of a system is assessed through the attributes of reliability,

availability, safety, and security. Reliability is the ability of a system to continuously

deliver correct service. Availability is the ability of a system to deliver correct service

when required. Safety is the non-occurrence of catastrophic consequences on the

user(s) and the environment. Security is the ability to avoid improper system

alterations, unauthorized disclosure of information, and ensuring the delivery of

correct service when needed.

Reliability and availability are important concerns for most long-running soft-

ware systems. Safety, on the other hand, is most applicable in the context of

mission- or life-critical systems. The behaviour and performance of safety-critical

systems are generally prescribed by formal specifications, and much effort goes into

making sure that the system meets these specifications. In contrast, it is common

for software systems for general use, such as distributed information systems, to

21

have more loosely-defined specifications. These systems are often subject to chang-

ing, evolving requirements (e.g., because of a competitive business environment).

Because of the different nature of safety-critical systems, we do not discuss safety

further in this work.

Ensuring security is crucial for most computer systems. Addressing the security

challenge is a complex undertaking in its own right, and as such, we view it to be

outside the scope of this work. We should, nevertheless, point out that monitoring

system behaviour and performance may allow detection of certain forms of secu-

rity attacks such as denial of service and break-ins accompanied by unauthorized

activity. While interesting, this synergy is not explored further.

In order to oversee software systems we require a monitoring infrastructure. We

start by providing an overview of prior work in this area.

3.1 Monitoring Infrastructure

System management standards typically address monitoring issues such as data

representation, communication protocol, programming interfaces, and architec-

ture. For example, standards related to the Simple Network Management Protocol

(SNMP) [20] and the Web-based Enterprise Management (WBEM) [37] mandate

specific data representation and collection mechanisms. Some standards such as

JMX [131] address similar issues in the context of a specific technology (e.g., Java

in the case of JMX).

Besides standardization, researchers have developed architectures to facilitate

the monitoring of large-scale distributed systems and high-performance computing

clusters. Because such systems generate large volumes of data, monitoring needs to

be as efficient as possible. For example, NetLogger [44] is a methodology including a

set of data collection, analysis, and visualization tools for the end-to-end monitoring

of the performance of a distributed system. To reduce network traffic, NetLogger

uses a binary event format and provides mechanisms to control the data collection

rate. Astrolabe [143] is a general approach to monitoring and managing large-

scale systems. Astrolabe organizes nodes into a hierarchy of zones. The amount

of monitoring data collected is reduced by aggregating data from the child nodes

at the level of the parents. In addition, a peer-to-peer gossip-based protocol is

used to share the collected data among the zones. Ganglia [90] is a distributed-

monitoring system for clusters and grids that has been adapted for use on wide-area

22

distributed systems. Ganglia is organized as clusters of nodes, and a multicast-

based listen-announce protocol is used within each cluster. Representative nodes

from the clusters are connected into a tree hierarchy. Aggregation points along

the tree periodically poll data from individual clusters and report it to a managing

system. Ganglia allows one to specify collection parameters for each metric such

as the rate of collection, change-point thresholds, and timeout values.

NetLogger, Astrolabe, and Ganglia focus on reducing communication and stor-

age overheads in a distributed environment. Even though these systems provide

visualization tools to facilitate system observation, the onus of reasoning about the

target system and configuring the data collected is on the human operators.

Enterprises typically employ centralized monitoring solutions to monitor their

computing infrastructure. Examples of such solutions include HP OpenView [52]

and IBM Tivoli Monitoring [57]. These solutions provide system operators a control

centre from which they can oversee the target system and control what monitoring

data gets collected. These solutions also provide facilities to automate monitoring

(e.g., setting resource utilization thresholds to trigger alarms). However, configur-

ing and effectively using the tools provided by these solutions is the responsibility

of human operators.

Software systems are commonly built using complex software (e.g., database

management systems, application servers, and special-purpose applications) from

different vendors. These systems are shipped with monitoring tools that can be

used independently, without the need for any pre-existing infrastructure. Such

tools feature advanced monitoring facilities, since they benefit from the intricate

knowledge that vendors have of their products. In spite of their sophistication,

leveraging and configuring these tools is still a manual task.

The solutions covered above rely on human operators to analyze the monitoring

data and to collect additional data if necessary. This presumes that the operators

understand the system and the data exposed. However, because of the system’s

size and complexity, the operators may fail to understand its functioning and char-

acteristics. Moreover, the amount of available data may overwhelm the operators,

thereby reducing their effectiveness and their ability to react in an timely manner.

3.2 Basic Approaches to Systems Monitoring

An effective approach to monitoring a software system would be to compare its

behaviour and performance against its design-time specification. However, specifi-

23

cations are often loosely defined, incomplete, and not described in terms that can

readily be used to monitor the system, making this approach impractical. An al-

ternative approach is to encode expectations of system behaviour and performance.

Pip [120] is a monitoring system, that automatically checks whether the expecta-

tions spelled out are met during system operation. This approach presumes that

the expected behaviour or performance of the system is known. But in complex

systems, it can be difficult to know what to expect, even for experts.

In practice, system operators resort to various basic monitors to oversee a sys-

tem [77]. The most common are low-level monitors such as liveness tests (e.g.,

pings), periodic log file analysis (e.g., checking for error entries), resource utilization

threshold-based alarms, etc. Other monitors are system-specific, often tracking as-

pects that are relevant to the organization. For example, enterprises are interested

in the distribution of the types of requests received from their customers that are

critical to their businesses. The basic monitors suffer from a number of shortcom-

ings. First, they can be hard to configure. Many of them require domain knowledge

and experience with the target system, limiting their general applicability. Second,

they have limited detection capabilities not only in terms of the types of errors

and failures they can detect but also their severity. Third, they lack the expressive

richness to capture the complexity that is characteristic of many software systems.

The ability to monitor a system’s health requires a way to determine what the

expected behaviour and performance of the system should be under different con-

ditions. It is typical to capture such expectations in the form of a queriable model.

We next overview different kinds of approaches for modeling software systems.

3.3 Software System Modeling

A model is an abstraction of the system, which allows some aspect of it to be

predicted based on relevant observations. A model can be used for monitoring by

comparing its output to actual observations and taking unexpected deviations as

indication of possible errors and failures.

Prior work in the area of software system modeling can be classified along three

axes:

1. What is modeled: system behaviour or performance?

2. In what health state is the system modeled: normal state or anomalous state?

24

3. What knowledge is assumed about the system: is system structure known or

unknown?

3.3.1 Modeling Performance

A performance model predicts some attribute related to the performance of a sys-

tem or its components. Examples of such attributes include resource utilization,

throughput, and response time. In addition to their use in capacity planning and

provisioning, performance models can help detect performance anomalies.

With knowledge of the system’s internals, one can develop analytical models

based on first principles. For example, the time taken to execute a program can

be computed by adding the time spent in all the functions it invokes. Uysal et

al. [142] have proposed a simulation-based framework that uses knowledge of the

data flow to create such an analytical model to predict performance. Stewart and

Chen [129] describe a profiling-based analytical performance model of a multi-

component clustered system. Similarly, Shen et al. [126] developed and used an

analytical model to predict performance of an I/O subsystem. In general, we need

to know low-level details such as resource consumption, internal algorithms and

associated parameters to build such models. Such information, however, may not

be available or may be difficult to obtain. Also, creating empirical analytical models

for complex systems is a manual, difficult, and time-consuming task.

Other analytical approaches rely on theoretical principles to model performance.

The most common approach for systems shared by multiple users is to apply queu-

ing theory. A queuing model is an abstraction of a system as a set of interconnected

queues. A service or a resource is associated with a queue, which holds requests

that are waiting to be serviced. Queuing models allow representation of the target

system with varying levels of details. For example, one could model a web server

using a single queue (e.g., [141]) or model it with elements as detailed as disks and

CPUs (e.g., [36, 91]). Queuing models of server software such as HTTP servers are

very common (e.g., [34, 91]). Urgaonkar et al. [141] have used queuing models to

represent multi-tier applications while taking into account user sessions, caching

between tiers, and exhaustion of resources. These models are used to tune server

configuration parameters such as the maximum number of processes or connections

to maximize performance [33] or guarantee a certain level of service [86].

Performance models have a number of limitations. First, they only allow the

performance of the modeled part of the system to be monitored. Second, they

25

require manual effort to create. Also, they typically necessitate profiling to estimate

model parameters such as service times. However, recent work [128, 149, 151]

alleviates this problem by proposing means to estimate these parameters without

resorting to profiling. Third, the diagnosis capabilities of such models are limited

by the level of details of the target system they capture. In the case of queuing

models, the difficulty of solving the models efficiently is a function of the level of

details represented.

Some approaches to system modeling do not assume any knowledge of the sys-

tem’s internal structure. We refer to these as black box modeling approaches. A

black-box model is built by observing a system in operation through its external

interface. Here, we are interested in models that are created by using the moni-

toring data a system provides. Techniques to build such a model pertain to areas

of data mining, statistical and machine learning, etc. Different types of black box

models exist and can be categorized according to what they predict.

Some prior work applies black box approaches to modeling performance. Pow-

ers et al. [118] study the application of statistical and machine learning tech-

niques, namely auto-regressive and multivariate regression, Näıve Bayes, and tree-

augmented Näıve Bayes models, to predict violations of performance targets. Using

historical data related to resource utilization, workload characteristics, and perfor-

mance metrics, they predict future SLO violations or excessive resource utilization.

Similarly, Li et al. [84] study and compare different time-series modeling techniques

for predicting resource exhaustion times in the context of software rejuvenation.

The authors use resource and activity data collected from a web server and apply

auto-regressive moving average (ARMA) models to predict resource (free memory

and swap space) availability. Also, Sahoo et al. [123] investigated the use of statis-

tical and machine learning models to predict future failures in machine clusters. In

particular, they investigated the use of models such as mean, sliding-window-based

mean, autoregressive (AR), moving average (MA), and ARMA.

To apply such black-box modeling, we need to know beforehand what metric is

to be predicted. In addition, some domain knowledge is needed to identify the set

variables from which predictor variables can be chosen.

3.3.2 Modeling Normal Behaviour

Modeling behaviour entails characterizing how a system performs its function. In

this work we extend this definition to also include capturing invariant properties

26

of the system while it performs its function. As with modeling performance, there

exist two broad categories of modeling approaches: (1) approaches that assume

knowledge of a system’s internal structure, and (2) approaches that view the system

as a black box.

Structure-Based Approaches

These approaches rely on knowledge of the internal organization and dynamics of

a system, including the control or data flow within the system. Such information

may be available in a system’s design-time documentation, source code, and/or

configuration artifacts. When no such information is available or when there is

concern regarding how current it is, the system’s structure could be inferred from

a system’s monitoring data. The simplest way to obtain structural information

is to trace operations as they execute in the system. Information thus collected

may include the components and called operations, timing details, and resources

consumed. A standard mechanism to obtain such information in request-oriented

systems is the ARM API [73]. Researchers often use custom instrumentation to

obtain request traces [23, 24, 25, 83, 78]. Other techniques entail inferring system

structure from periodically collected aggregate metrics by applying statistical tech-

niques such as correlation analysis (see, e.g., [5, 11, 17]), containment relationships

in response-time metrics (see, e.g., [46]) and time-stamped messages (see, e.g., [5]).

With the availability of structural information, some researchers [13, 24, 78] have

used probabilistic finite state machines to describe systems’ execution flow. Such

a representation allows anomalous execution behaviour to be detected. Barhan et

al. [13] describe a tool to reconstruct request execution paths along with resource

usage information. The authors propose using a probabilistic context-free gram-

mar (PCFG) to represent the execution paths concisely. Symbols of the grammar

are components used in servicing user requests. Rules of the grammar correspond

to transitions between components, which are assigned probabilities. Barhamet

al. [12] employs clustering to group request paths using a string-edit distance; re-

quests whose path do not fit existing clusters are viewed as potentially anomalous.

Chen et al. evaluate the use of PCFG for detecting anomalous paths in [24]; anoma-

lous paths are those which fail to be parsed by the learned grammar. Kiciman and

Fox [78] also use PCFG and describe an anomaly score based on the learned gram-

mar to detect anomalous behaviour.

Besides execution paths, request traces allow local component interactions to

be analyzed. Kiciman and Fox [78] describe the modeling of interactions between

27

system components. Each component’s interactions with other component classes

(i.e., in-calls and out-calls) are tracked to create a model of normal behaviour. The

interactions of each component instance with other components are periodically

compared to a reference distribution using the χ2 test; significant deviations indicate

a possible failure. Chen et al. [21] also employ the distribution of component

interactions to identify anomalous components.

Structure-based behaviour modeling not only allows detection of errors and

failures, but it can also aid in fault localization. Nevertheless, it suffers from two

main shortcomings: reliance on information that may not be available and/or the

requirement of collecting traces, which in general incurs high overhead.

Black Box Approaches

These approaches to modeling system behaviour do not assume knowledge of the

system’s internal structure. Hellerstein et al. [50] have used time-series models to

characterize metrics of interest in a web server (e.g., HTTP request load). This

work entails transforming the observed data series into stationary ones by remov-

ing trends and cycles (e.g., day-of-week effect). Potential failures are detected by

tracking changes in the mean and variance of the processed metrics. The proposed

approach is general and can be applied to any metric, provided its behaviour re-

mains in line with the past. In practice, however, systems evolve and the load is at

times unpredictable.

Software systems expose many metrics. Not all of these metrics are relevant

to every modeling task at hand. Diao et al. [35] proposes an architecture and

an algorithm to automatically create a quantitative model of a metric of interest.

The proposed algorithm discovers relevant metrics by using stepwise regression and

outputs a multiple linear regression model. This approach is applicable to cases

where metrics of interest are known. Creating models for all available metrics would

be computationally expensive.

Bodic et al. [14] describes the use of statistical and machine-learning techniques

in conjunction with visualization techniques to promptly warn system operators

about existing or impending failures. The authors compute page hit counts and

page failures periodically, and apply the χ2 test and Näıve Bayes models to this

data to detect deviations from the normal behaviour. They describe an anomaly

score for each modeled feature (e.g., page hit count); these scores can be visualized

using different colour schemes to direct the attention of system operators.

28

Chen et al. [21] proposes a multi-variate statistical approach whereby the high-

dimensional metric data is reduced and tracked via one dimensional statistics. They

extract the signal and noise components from the metric data and track the two

components using the Hotelling T 2 and Squared Prediction Error (SPE) statistics

respectively. Anomalies are detected when the statistics deviate significantly from

their expected range. The approach proposed in [21] is not robust in the presence of

workload variations. To address this shortcoming, Chen et al. [22] proposes a fault

detection approach which uses Canonical Correlation Analysis (CCA) to subdivide

the monitoring variables into two groups: those that vary with the system inputs

(e.g., workload) and those that are less correlated with the inputs. The first group

is monitored by tracking changes in the correlations; significant deviations signal

the possible presence of errors in the system. The second group is assumed to

follow a random uniform distribution, and a statistic based on the distribution of

normalized values of individual variables is used to track the group. Because the

two groups account for all available metrics, this approach allows detection of a wide

variety of failures. One issue with the above multi-variate modeling techniques is

the lack flexibility; they require a set of metrics to be monitored continuously.

Metric Correlation Models

The existence of long-term, stable metric correlations in complex information sys-

tems and the idea of using these correlations for system monitoring was proposed,

during the same time frame, by the author [109] and Jiang et al. [65]. This ap-

proach is black box in that no information about the system structure or its inner

workings is required. Jiang et al. propose the use of autoregressive linear regression

with exogenous input (ARX) models to capture the metric correlations. They use

models with two independent variables and time-lagged versions of two variables.

The authors provide an assessment of the error detection capabilities of metric cor-

relations in [66]. ARX models can be hard to interpret, especially when the model

coefficients have opposite signs. The authors do not provide any intuition as to why

ARX models are preferred over simpler models in all cases. The authors assume

the continuous availability of a fixed set of metrics, which are deemed sufficient

for problem determination. However, the granularity of the metrics collected by

default by system operators limits the extent to which faults can be localized. In

Guo et al. [45] the authors investigate the use of Gaussian Mixture Models (GMM)

to model metric correlations. Though powerful, GMM is expensive, as the model

parameters are estimated using the expectation maximization algorithm. The cost

29

of searching for two-variable correlations is O(n2). In follow-up work [67] Jiang et

al. discuss two algorithms to speed up the discovery of stable metric correlations at

the cost of missing some. The first algorithm groups correlated metrics in clusters,

and only searches for stable correlations within each cluster. The second algorithm

optimizes model learning by taking advantage of the transitivity of metric correla-

tions; the algorithm approximates model parameters from those that have already

been estimated.

Researchers have often used statistical correlations among metrics to understand

system behaviour and to locate faults. Brown et al. [17] use correlations among

metrics to infer dependencies between components of a system. Their approach en-

tails intentionally perturbing the system and the induced statistical correlations are

used to analyze potential dependencies. Hauswirth et al. [48] leverage correlation

information to carry out root-cause analysis. ADMiRe [124] is a tool to analyze

system performance. It applies regression analysis to performance data and encodes

metric correlation in the form of rules. The tool allows evaluation of expressions

involving combination, commonality, and difference between correlation rules from

different system configurations. The authors also propose a way to rank regression

rules (e.g., new rules that have appeared) to make it easier to spot significant differ-

ences. This work is not intended for system modeling; instead, its goal is to enable

differential analysis for performance tuning, in particular to identify bottlenecks.

Agarwal et al. [2] described how correlation among change-points in time-series of

different metrics can allow the creation of problem signatures. The presumption

in these works is that faults induce correlations, which differs from the view that

correlations exist among metrics in a well-behaved system and faults disturb these

correlations. We view the two perspectives as complementary.

3.3.3 Modeling Anomalous Behaviour or Performance

Rather than modeling the normal behaviour or performance of a system, we can

build models to detect anomalous conditions or events. A common example of

such conditions is violations of pre-defined performance targets. Sahoo et al. [123]

propose a rule-based classification approach to predict anomalous events. The rules

are inferred by analyzing the most frequently occurring events preceding an event

of interest. In a similar effort, Malek et al. [88] propose two approaches to predict

future failure events with the goal of rejuvenating the system with a complete or

a partial reboot. For event data, the authors use a Markov model which takes

clusters of events as input and predicts specific failure events. They also employ a

30

non-linear statistical modeling technique named Universal Basis Functions (UBF)

to predict failure using time-continuous metrics.

Cohen et al. [26] studied the use of machine learning techniques to automat-

ically learn models for performance failure prediction using commonly-collected,

low-level system metrics. Their approach entails learning Tree-augmented Näıve

Bayes (TAN) models based on small subsets of the available metrics. Learning

these models consists of selecting the subset of variables that correlates most with

SLO violations and learning the model structure (i.e., dependency relationships be-

tween the metrics). The learned models are sensitive to changes in the workload; to

remedy this problem, Zhang et al. [150] propose extensions whereby, instead of one,

a set of models is learned for each type of violation. At any time, the model whose

predictions most closely match observations is used. These efforts focus on pre-

dicting performance-target violations, which are discrete variables. This approach

cannot be readily extended to the prediction of time-continuous metrics because of

restrictive assumptions made by basic Bayes models [41].

Other researchers have developed models to detect symptoms of specific faults.

Ghanbari and Amza [43] propose the use of Bayesian models to identify specific

faults based on results from a mix of models, including metric correlation models.

This approach requires that system components and their dependencies be en-

coded in a Bayesian network. Agarwal et al. [3] describe an approach to associate

with faults a unique pattern of events, in particular abrupt changes and correlated

changes in performance metrics. The work in [26, 150] has been further extended

in [27] to define signatures for recurring failures. The presumption is that every

unique combination of metrics found to correlate with SLO violations indicates a

different type of failure. These signatures can subsequently be used to retrieve past

occurrences and associated corrective measures.

3.4 Diagnosis

The goal of the diagnosis task is to find the cause of some observed, unexpected

phenomenon. In particular, the goal of fault diagnosis is to pinpoint the cause of

an observed error or failure. It is not always possible to identify the precise cause

automatically because of the limited visibility into and understanding of the target

system. However, even in such cases, automated diagnosis can provide pertinent

information to help pinpoint the fault location and, in doing so, speed up the

manual task of identifying and resolving the underlying cause.

31

As discussed earlier, one approach to identifying faults is to create signatures

leveraging relevant events and metric behaviour that are unique to the faults. This

is the approach traditionally taken in the area of network management, where di-

agnosis has received much attention. For example, Yemini et al. [148] propose an

approach that requires all managed entities, events they generate, and the depen-

dencies between the entities to be specified in advance. The approach consists

of building codes representing events that occur with each known failure. Moni-

toring entails matching observed events against the pre-identified codes. Such an

approach is impractical for modern software systems, because the required infor-

mation is generally not available. In this section we discuss alternative diagnosis

approaches, which do not rely on such information and prior knowledge of faults.

Recent approaches to diagnosis leverage data that is readily available and pro-

cess this data using statistical and machine learning techniques. For example,

models based on execution paths can be used to find components or features that

correlate with failed requests using techniques such as clustering [25] and decision

trees [23, 78]. It is also possible to diagnose faulty components based on their

interaction with other components [21, 78].

Agarwal et al. [1] propose an approach that relies on pre-defined application

service-level objectives (SLO) to classify the system state as good or bad. Metrics

collected during the good state are used to model the expected performance of

individual components. When failure occurs, this characterization together with

knowledge of the execution flow is used to pinpoint components whose performance

deviates from their expected levels.

The Näıve Bayes-based approach of Cohen et al. [26] to predict SLO violations,

which we described earlier, is particularly useful for diagnosis. It entails correlating

low-level system metrics with SLO violations and determining the degree to which

each metric contributes to the SLO violations. The identified metrics can help

guide system operators to the faulty component.

Diagnosis information can often be inferred from the anomaly detection tech-

nique employed. To this effect, we can estimate the contribution of each component

found to be anomalous in the total anomaly score computed at the time of detec-

tion [14, 78]. A similar approach is to compare a sample of metrics considered

anomalous to previous samples that were deemed normal [21, 22]. In this case,

diagnosis can be performed by inspecting the degree of change for each metric be-

tween normal and anomalous samples. For this approach to work, it is necessary

that the samples compared were obtained under the same workload conditions.

32

Jiang et al. [66] propose a technique for fault localization based on metric corre-

lations, whereby components are scored based on the number of perturbed models

to which they are associated. However, the authors do not evaluate their diagnosis

approach.

In replicated systems it is possible to perform diagnosis by identifying entities

whose state or behaviour differs from the norm defined by the majority. Such

an approach is discussed in Kiciman and Fox [78] and Pertet et al. [116]. Pertet

et al. combine local, threshold-based anomaly detection with global differential

analysis to identify faulty nodes in group communication systems. Kiciman and

Fox compare execution paths on different peers to identify application-level faults in

multi-tier applications. Similar ideas have been used to carry out offline diagnosis

of configuration faults [93, 144].

3.5 Reducing the Cost of Monitoring

Monitoring introduces various overheads, which arise from the measurement, col-

lection, handling, and processing of the monitoring data. Existing approaches to

systems monitoring differ according to the degree to which they attempt to reduce

these overheads. The cost of monitoring is a function of the type of data collected

and the collection rate.

It is common for researchers to report the measurement overhead (i.e., the

slowdown caused by the extra computation of the monitoring logic)(see, e.g., [39,

19, 101]). However, such information is more difficult to find for industrial software

products. In the context of Java EE applications, some figures show that the

overhead of monitoring can be high (see, e.g. [63]). Lahmadi et al. [81] studied

the impact of management requests (e.g., requests to retrieve monitoring data) on

system performance. Their assessment in the context of JMX and Java EE-based

systems shows that the rate of collection can impair performance significantly.

There are two broad categories of work that tackle the reduction of the moni-

toring overhead, including the adverse effect on system performance. First, most

monitoring solutions employ mechanisms to make monitoring as efficient as possi-

ble. Second, some monitoring solutions entail dynamically adapting what data is

measured and collected. We review this work next.

33

3.5.1 Efficient Monitoring Mechanisms

The most common approach taken to reduce storage overhead involves summariza-

tion and pruning. Summarizing consists of aggregating raw data at different time

horizons (e.g., day, week, month, etc.). Pruning entails discarding data that is no

longer of interest. For example, a system operator may be interested in keeping

the current week’s detailed data, but only want aggregates for periods further in

the past. Note that pruning can also be applied to summarized data (e.g., the op-

erator may only want to keep aggregated monitoring data for a year). Monitoring

systems such as IBM Tivoli Monitoring [57] provide summarization and pruning

capabilities. Other tools such as the Round Robin database tool (RRDtool) [115]

also provide such capabilities.

We can reduce the communication or network overhead of monitoring by using

compact data representation (see, e.g., NetLogger [44]), by resorting to in situ

aggregation (see, e.g., Astrolable [143]), and by leveraging efficient communication

protocols (see, e.g., the gossip-based protocol in Astrolabe [143]).

We can contain the effects of monitoring on system performance by measuring

and collecting less data (e.g., fewer metrics) or by employing sampling. Sampling

involves observing a subset of events of interest in order to make inference about the

overall population. For example, frequently executed procedures can be identified

by checking the call stack using periodic timer interrupts; the alternative is to

instrument all procedures to obtain the exact call frequencies. Sampling has been

used for code profiling with hardware support [6] and without it [8]. This is also

the main approach used to limit the overhead of collecting ARM traces [73].

3.5.2 Adaptive Monitoring

Adaptation can be implemented at different levels in the monitoring process. Most

commonly, we find work on adaptation at the data collection level and at the

measurement level.

Adaptation at the data collection level is typically used to reduce the communi-

cation overhead. One approach entails adjusting the rate at which data is collected

while satisfying given accuracy objectives. This approach has mostly been used for

network traffic analysis [42, 51, 119]. Another approach to control the communi-

cation overhead is to define conditions under which the monitoring data should be

transferred to the managing system. Diaconescu et al. [32] describes a proxy-based

34

adaptive framework for monitoring the performance of Java EE applications. In

their approach, component proxies collaborate to decide the most relevant compo-

nent that should report to the managing system when failure occurs. Agarwala et

al. [4] investigated the notion of quality of service (QoS) in the context of system

monitoring. To support QoS, they propose different classes of monitoring channels,

each with different level of details, precision, rate of information, etc. Consumers

can dynamically subscribe to these channels, thus adapting monitoring data they

receive. While the above works make it possible to reduce the communication over-

head, they mostly ignore the measurement overhead; the monitoring logic continues

to execute in the target system, even though not all of the data is fetched.

The goal of controlling the measurement overhead is to reduce the impact of the

monitoring logic on system performance. The instrumentation needed to measure

and collect metrics is typically added when the system is implemented. However,

current technology allows instrumentation to be retrofitted into an existing system,

either offline or at runtime. Such instrumentation can be applied to binary machine

code [19, 101], intermediate forms (e.g., Java bytecode [39]), and to higher-level

languages (e.g., Java Script [79]).

Traditionally, the onus of configuring what is monitored has been on human

operators. There is little work on automatically adjusting what information is

measured and collected in order to improve monitoring and fault localization. Some

approaches rely on knowledge bases, which have been set up a priori by domain

experts. The Paradyn performance measurement tool [99], developed by Miller et

al., features adaptive, dynamic instrumentation to locate bottlenecks in parallel

programs. The tool relies on pre-defined hierarchies of hypotheses to uncover the

cause of performance issues. More recently, Kiciman and Wang [80] proposed a

framework to adaptively monitor AJAX-based web applications, and which takes

advantage of the ability to re-deploy the applications quickly. The authors propose

the adaptive instrumentation of client applications to diagnose bugs and bottlenecks

based on pre-defined policies.

Some adaptation policies do not require human input. A common form of

adaptation policy for analyzing program behaviour and performance is to add in-

strumentation dynamically by following the flow of control [39, 101]. The idea is to

instrument by starting with a given function and recursively instrument the callees.

These works, however, only deal with collecting data that is potentially relevant.

Analyzing the data is left to humans.

Symantec Indepth [137] is a tool that features the ability to adaptively instru-

35

ment Java EE applications based on a performance budget, given a pre-defined

instrumentation policy. The budget, set as a percentage of the application’s re-

sponse time, controls the amount of instrumentation introduced. The tool provides

a number of pre-defined instrumentation policies. Examples include instrumenting

methods of standard Java EE components, instrumenting methods that take the

longest time to complete and their execution paths, instrumenting the longest run-

ning, active execution path(s), and not instrumenting methods that are executed

very frequently. Such tools focus on identifying performance problems only. While

they may make it easier to find the relevant data, the analysis is left for the system

operator.

For network monitoring, the metric sampling rate can be adjusted automatically

to meet some accuracy objectives (e.g., to keep prediction errors and variance within

acceptable levels) [42, 51, 119]. In the context of operating system monitoring,

Seltzer and Small [125] describe an approach to adjust the rate of collection based

on the variance analysis of data collected periodically at a fine resolution during

the previous day. However, such policies require a computable objective function,

whose optimization determines an appropriate sampling rate. This requirement

limits the applicability of such policies. In transaction-oriented software systems it

is generally sufficient to fix the metric collection rate such that the cost is acceptable

and the collected data has sufficient resolution to capture dynamics of interest. In

this context, instead of the collection rate, the issue of what metrics to collect is

more critical.

A general framework for adaptation entails taking account of what is known

about the system health and dynamically configuring monitoring to improve the

available information. Irina et al. [122] discuss such an approach whereby test

probes are dynamically selected to diagnose faulty components. The authors em-

ploy Bayesian networks to model probabilistic relationships between test outcomes

and states of the entities in the system. Test results are used to update the model

and select the most informative tests to execute next. A similar approach to prob-

ing a system adaptively is described by Natu and Sethi [112]. This approach relies

on a simplified notion of system state (i.e., a node is either up or down) and as-

sumes knowledge of the mapping between probe outcomes and system state. It is

non-trivial to extend this approach to management metrics, since it requires defin-

ing the system state in terms of the behaviour of the system metrics, which are

highly dynamic. In addition, it requires a way to determine how the collection of

each metric improves the assessment of the system’s state.

36

3.6 Prior Work Limitations

In this chapter we provided an overview of prior efforts in the area of software

system monitoring and diagnosis. We discussed various limitations of prior work.

A summary of the main points is given below:

• Existing monitoring solutions only provide the infrastructure needed for effi-

cient monitoring. Analyzing and configuring the collection of the monitoring

data is the responsibility of human operators.

• A number of monitoring architectures target the reduction of the network

traffic generated by monitoring. However, large software systems are often

completely hosted in data centres having high speed networks. In such sys-

tems, tackling performance overhead on the target system is more important.

• Approaches that involve modeling anomalous behaviour or performance re-

quire a priori knowledge of these anomalies, which limits their general appli-

cability.

• Some approaches entail modeling the target system in the healthy state.

However, much of the existing work either assumes the availability of de-

tailed knowledge of a system’s internals (e.g., component dependencies), or

the availability of data that is costly to obtain (e.g., traces of execution paths).

• Approaches that use knowledge of system structure often require manual ef-

fort to create the system model (e.g., analytical models based on low-level

resource usage profiles). On the other hand, black box models tend to ab-

stract too much of the underlying system, and thus they are less useful for

fault localization.

• Most approaches for metric-based system modeling do not readily lend them-

selves to adaptive monitoring; they assume that a fixed set of metrics is

always collected. After a model is learned, changing the set of input metrics

necessitates that the system model be re-learned.

• Most work on adaptive monitoring focuses on mechanisms (e.g., dynamic in-

strumentation). Adaptation policies proposed so far are created manually by

human experts, are very basic (e.g., instrumentation driven by the execution

flow), or have limited applicability (e.g., adapting the collection rate based

on an accuracy objective function). There is no prior work on adapting the

set of metrics that are tracked to monitor a software system.

37

• Much work on fault diagnosis assumes knowledge of a system’s components,

their dependencies, and the events they generate. The information required

by the proposed approaches is often not available in large software systems.

Scaling such approaches to large systems is also impractical.

• Some diagnosis approaches rely on costly monitoring data such as execution

paths. Because of its cost, such data is not collected on a permanent basis in

production systems.

• Many approaches assume the existence of independent error or failure-detection

mechanisms to label the monitoring data. The labeled data is then used to

learn a model using statistical and machine learning techniques. Often, these

works assume the existence of pre-existing performance SLOs. If SLOs are

not mandated by a service-level agreement, setting them correctly is a difficult

task.

• Some diagnosis approaches presume that the data collected by default is suf-

ficient to determine the cause of observed anomalies. However, this is often

not the case, as only critical indicators are collected continuously to limit the

monitoring overhead. As such, diagnosis based on this data can at best only

point in the right direction.

In the next chapter, we present a solution approach that overcomes many of

these limitations of the prior work. Our solution approach assumes very little

about the target system and collects data on a per-need basis.

38

Chapter 4

Solution Overview

In this chapter we provide a more-precise problem statement and highlight our

solution approach. We first present an abstraction of the system to be monitored,

which reflects our basic assumptions. Our solution approach applies to any system

that fits this abstraction.

4.1 System Abstraction

Our basic assumption is that the system comprises components, each of which

exposes management metrics. Knowledge of components and their metrics can

be obtained from a system’s management interfaces, its configuration artifacts, or

documentation. This view of the system is depicted in Figure 4.1. Note that with

this view, we make no assumption about the system’s internal structure.

The visibility of system components through metrics makes it possible to provide

a comprehensive monitoring of the system. Moreover, by analyzing the metrics’

status, we can assess the degree to which components are anomalous.

We assume that when the collection of a metric is enabled, its values are re-

trieved at fixed, regular intervals. The repeated recording of a metric’s values pro-

duces a time-series. Figure 4.1(b) depicts three time series collected at the same

intervals. We presume that the collection interval is configured such that signifi-

cant activity is recorded in each interval and aspects of interest are visible at the

corresponding time resolution. For example, in OLTP systems, a collection interval

in the order of tens of seconds is sufficient to capture system activity and indicate

various trends. In contrast, in a system that services long-running work requests

(e.g., scientific applications), a short sampling interval is only useful if there are

39

Comp(1)

m1 m2

Comp(2)

m1 m2

Comp(3)

m1 m2

Comp(4)

m1 m2

...

Comp(k)

m1 m2

(a)

<Comp(1), m1>

<Comp(2), m1>

<Comp(k), m1>

Time

Time

Time

Not collected

...

...

...

(b)

Figure 4.1: System abstraction

metrics that capture the progress of the running programs and the changing state

of the system.

In the example depicted in Figure 4.1(b), the collection of metric<comp(k), m1>

is disabled for some time, whereas the other two metrics are sampled continuously.

We assume that the measurement and collection of the metrics can be controlled

(i.e., enabled or disabled) by a managing system. However, if the target system

does not provide an interface to enable or disable the measurement of metrics, we

can still control the communication overhead by not fetching the values of those

metrics that are not of interest.

4.2 The Problem

The goal of this thesis is to develop an automated approach to system monitoring

that leverages the rich set of management metrics a software system exposes. The

monitoring approach should satisfy four key requirements: First, it minimizes hu-

man involvement. Second, it is efficient, making it viable for use in a production

system. Third, it yields a correct assessment of the system health. In particular, it

is effective at detecting errors and failures, and is robust to false alarms. Fourth,

it enables fault localization, allowing fast identification of the root cause of errors

and failures.

A näıve solution to fulfill these requirements is to collect and analyze all metrics

exposed by a software system continuously. This solution, however, is not practi-

cal. First, collecting these metrics impairs system performance and imposes other

resource demands. Second, this requires means to analyze the collected metrics,

without which the collection would be of no avail.

40

To make monitoring efficient, we adopt a solution approach that entails adapting

what is monitored, while ensuring that the ability to determine the health of the

system and its components is maintained. In particular, this solution approach

consists of changing the set of metrics that are measured and collected dynamically.

We discuss the reasons for preferring this solution approach in subsequent chapters.

For adaptive monitoring to work, we need to address the following challenges:

• We need an approach to modeling the system based on management metrics,

which:

– is able to capture complex system dynamics that are reflected in the

metrics; covers as many dynamics in the system as possible to provide

broad coverage of errors and failures;

– can be built automatically, without human assistance;

– can be learned and applied efficiently;

– enables adaptive monitoring, and can be used with different subsets of

the available metrics; and

– allows the health of individual components to be determined.

• We require an approach to tracking the system’s metrics in an adaptive way

with the goal of containing the monitoring overhead. Specifically, we need a

way to determine what metrics to collect when.

• We need an approach to analyzing the metric data with the goal of localizing

faults when errors and failures are detected.

• We need a method to estimate the overhead of measuring and collecting the

monitoring data. The cost estimation method has to be practical, requiring

little time and effort to apply. It should make use of data that is commonly

available. Moreover, the method should be robust to workload variations.

We now outline our solution approach; we provide a detailed treatment of each

aspect of the solution approach in subsequent chapters.

4.3 Solution Overview

Central to our solution approach is how we model the target system, as it not only

determines the extent to which the system’s health can be assessed automatically,

but it also establishes what level of adaptation of monitoring is possible.

41

4.3.1 Modeling the Target System

In general, there exist two ways to model a system: we can either model the system

in the healthy state or model it in the presence of faults. If the non-healthy state

is modeled, then the faults need to be known a priori, and the monitoring can only

check whether those faults have occurred. Learning fault signatures often requires

fault injection, which may not always be possible. Because of these limitations,

we take the alternative modeling approach of modeling the system in the healthy

state.

Modeling the system in the healthy state has several advantages: first, this

allows us to ascertain the healthy state of the system at any time by collecting

the available metrics; second, data to learn the normal state is readily available; it

does not require fault injection and it can be collected from a system in production;

third, we can vary the scope of monitoring to ascertain the system’s healthy state

with different levels of confidence. These advantages make modeling the normal

health of the system better suited to adaptive monitoring.

A variety of modeling approaches exists to capture specific characteristics of

a system. For example, we can model the behaviour using finite state machines,

the state using Petri nets, and the performance using queuing models. These ap-

proaches generally require knowledge of the inner workings of the target system.

But, such knowledge may not be available; even if it is available, expertise and

considerable effort is required to create and parameterize the models. To overcome

these challenges, researchers are resorting increasingly to statistical and machine

learning techniques to model system characteristics. By leveraging these techniques,

we can create models automatically using the available monitoring data, without

much involvement of human experts or knowledge of a system’s inner workings.

This enables larger, more complex systems to be modeled and tracked. We avail

ourselves of these benefits by following this modeling approach in our work.

Our goal is to monitor the overall health of a system regardless of specific con-

siderations (i.e., specific states, state transitions, or performance metrics). What

we need is to ensure that observations obtained from a system in operation are

characteristic of observations we would expect from the system when it is healthy.

This allows us to simplify the problem of modeling the system by focusing on dy-

namics that are indicative of the system’s healthy state and that can be captured

easily.

A software system has an internal structure, is determined by the logic its

software implements and its configuration. Many parts of the system do not change

42

for relatively long periods (e.g., system software). Such systems exhibit stable,

long-term correlations among their management metrics. These correlations are

invariant; that is, they are not affected by workload variations or the passage of

time. Our modeling approach entails creating a signature of the system’s normal

behaviour by modeling these correlations. We employ regression models to capture

the correlations. Software systems expose large numbers of metrics; as such, our

global system model is an ensemble of regression models, which represent metric

correlations. By combining analyses from the ensemble of correlation models, we

can assess the overall health of the system.

In order to check the status of the metrics involved in a correlation, we make

predictions with the regression model and compute the residuals with current ob-

servations. When the residuals are unexpectedly large, anomalies are detected.

While the fact that a correlation continues to hold is not necessarily indicative of

the healthy state, its breaking is a sign of disturbance in the system.

Our modeling approach does not allow prediction of specific dynamics in the

system (i.e., we cannot explain why specific metrics display a particular behaviour).

Creating models to explain the behaviour of individual metrics is generally hard,

as it involves understanding and considering the factors that contribute to their be-

haviour. Instead, our approach involves searching for stable correlations regardless

of what induces them. By focusing on correlations, we significantly constrain the

complexity that has to be modeled. Our approach only allows us to check whether

the modeled metrics are deviating from their normal behaviour.

Besides its simplicity, our modeling approach offers many benefits, including the

following:

• Complex system behaviour can be captured using many metric correlations,

each of which is characterized easily and efficiently.

• The correlation models are robust; they hold in the presence of varying work-

load.

• The metric correlations can be identified automatically and modeled by only

analyzing the monitoring data. Detailed information about the system’s

structure, which may not always be available or up-to-date, is thus not re-

quired.

• Each model can be used on its own without others. As such, different subsets

of the models can be used at different times, making the modeling approach

well suited to adaptive monitoring.

43

• Each individual model allows the status of the associated metrics to be

checked. By combining information from different models, it is possible to

gauge the overall health of the system.

• As the modeled metrics belong to components, by analyzing results of the

ensemble of models, we can localize faulty components.

4.3.2 Reducing the Monitoring Overhead

To minimize the monitoring overhead, we have to reduce the amount of metric data

that is collected. One approach is to mimic the actions system administrators would

take when monitoring a system. Using an approach similar to case-based reasoning,

we could determine what data to collect if a fault encountered previously occurred

again. Implementing this solution, however, requires a systematic approach to

recording and encoding how human operators detect and resolve problems in a

system. In addition, this approach only applies to faults that have occurred in the

past; unseen faults cannot be handled. In practice, it is only possible to encode

a few rules of thumb. Such rules fall short of adequately handling the complexity

inherent in the target software systems.

Because of the dependencies in a system, faults tend to affect the behaviour

of many metrics. Therefore, to detect anomalous behaviour, it is not necessary to

collect and analyze all the metrics exposed by a software system; a small subset

of the metrics is often sufficient to notice anomalies. We leverage this insight to

devise an adaptive monitoring approach to control the monitoring overhead. Our

approach is to adapt monitoring to meet the information needs dictated by our

assessment of the system’s health. At any point in time, we classify the system

health into one of three states: healthy, suspect, or failing. The suspect state is

when errors or failures are suspected, while the failing state is when we are confident

that errors or failures have indeed occurred. The data we collect is a function of

the state in which we believe the system to be. When the system is healthy, we

collect a small number of metrics, which together give a reasonable indication of the

system’s healthy state. Since this small set of metrics may not provide a reliable

assessment of the system’s health, when anomalies are detected with these metrics,

we suspect errors to exist or failures to have occurred. In case of such suspicion,

we augment monitoring by collecting and analyzing additional metrics to evaluate

the system’s health in detail.

Ensuring that a system is in the healthy state constitutes a permanent concern.

44

We address this concern by tracking a minimal set of metrics continuously. This

minimal level of monitoring remains in effect so long as the tracked metrics do not

display anomalies. The minimal set is chosen to cover key aspects of the system

behaviour and performance. Ideally, metrics in the set should be those that are

the most sensitive to faults. System operators may have some intuition as to which

metrics meet these criteria. In the absence of such intuition or insight, we can

analyze the metric data automatically to select metrics that are most likely to be

affected by faults.

When metrics in the minimal monitoring exhibit anomalous behaviour, we sus-

pect errors or failures. At this point, we need to gather additional evidence to

validate our suspicion. We thus enlarge the set of monitored metrics to perform a

more-extensive analysis of the system’s health. This is achieved by analyzing the

extent to which the modeled metrics are disturbed. The more widespread the dis-

turbance, the more likely faults exist in the system. If the analysis at the detailed

level does not confirm the suspicion, we revert to monitoring at the minimal level

to contain costs.

Two factors contribute to the low monitoring cost of our monitoring approach:

first, we expect the system to be healthy most of the time, wherein we only incur the

low overhead of minimal monitoring; second, although detailed monitoring incurs

the high overhead of collecting a potentially large set of metrics, it is only enabled

temporarily. The same detailed data is used both for gauging the system’s global

health and, if needed, for performing fault localization. The high overhead is only

incurred for short periods, which when amortized over the duration of the system’s

execution represents only a small increase in overhead.

We should point out that it is not necessary for the adaptive monitoring ap-

proach to be limited to two monitoring levels. Our approach affords much flexibility,

in that it makes it possible to devise any adaptation scheme that involves individual

metric correlation models.

4.3.3 Detecting Errors and Failures

Because we adopt a solution approach with two monitoring levels, detection takes

place in two steps. We employ metric correlation models in both steps. To achieve

higher sensitivity to faults during minimal monitoring, the output of each correla-

tion model is taken into account. If, for any correlation model, the metric observa-

tions do not conform with predicted values, errors are suspected, and adaptation

45

takes place by enabling detailed monitoring.

During detailed monitoring, more metrics are checked using correlation mod-

els to confirm or refute the error hypothesis. Each correlation model provides an

assessment of the associated metrics. We aggregate results from the available corre-

lation models to gauge the overall health of the system. If corroborative evidence is

found in the form of more correlation perturbance, the monitoring system reports

the information to human operators.

A regression model may not completely characterize the behaviour of the corre-

lated metrics. In addition, many sources of noise exist in complex systems. There-

fore, some of the anomalies reported can be spurious. We allow for this possibility

when performing the global analysis by requiring a minimal number of anomalies

to be observed before a report for the system operators is generated.

4.3.4 Diagnosing Faulty Components

Diagnosis is performed when detailed analysis indicates the likely existence of faults.

We leverage our ensemble of metric correlation models to identify faulty compo-

nents. Correlation models allow tracking of metrics, which belong to components.

We can thus assess the health of individual components using the metric correlation

models.

Our approach to diagnosis involves assigning anomaly scores to the correlation

models and aggregating these scores at the level of metrics or components. The

scores are then used to rank and shortlist anomalous metrics or components. The

final form of the diagnosis is a list of the top-k anomalous items. System operators

can use the list to narrow down the faults quickly.

4.4 Monitoring System Overview

Our solution approach leverages metric data to track a system’s health and to help

localize faults. This approach can be used along with other monitoring solutions

that make use of other sources of data such as log files or execution traces. The

focus of our work is on leveraging management metrics. Approaches that use log

files and execution traces are complementary to our work. They can be useful in

cases where external evidence is needed to corroborate the results of the analysis

of metrics.

46

Figure 4.2: System architecture

Figure 4.2 presents a monitoring system which implements our solution ap-

proach. The monitoring system collects metric data from the target system to

either create a system model or to check newly collected data. Our system model

consists of an ensemble of metric correlation models, which are kept in a model

store. The correlation models are retrieved from the store when relevant data is

available for appraisal. During live monitoring, newly collected data is checked us-

ing the applicable models. If anomalies are suspected, an adaptation engine accesses

the management interface of the target system to change the scope of monitoring.

If adaptation results in more metrics being collected, the applicable models from

the model store are used to evaluate the metrics. When sufficient evidence is avail-

able to support the error hypothesis, the operators are notified. The notification

contains an assessment of the system’s overall health together with a diagnosis re-

port. The latter contains details about the components whose behaviour is deemed

anomalous. If errors or failures do exist, the system operators can use the diagnosis

report to narrow down the fault quickly and take remedial actions.

To evaluate the effectiveness and value proposition of our solution approach,

we build a realistic, multi-tier distributed software system based on the Java EE

technology. The next chapter describes this evaluation setup and explains how we

evaluate our solution approach methodically.

47

Chapter 5

Evaluation Approach

In this chapter we describe the setup we use and the methodology we follow to evalu-

ate the feasibility and effectiveness of our solution approach. The setup essentially

refers to one or more software systems that require monitoring and a managing

system which monitors those systems. We use a systematic approach to study the

algorithms and methods we devise for system modeling, adaptive monitoring, and

diagnosis.

5.1 Evaluation Setup

There are two important premises that underlie or work. First, distributed, trans-

action-oriented software systems are complex. Second, monitoring these systems

is costly both in terms of the monitoring overhead and the human involvement

required. It is thus necessary to choose an evaluation setup that matches these

premises. Two choices are available in this regard: production systems and exper-

imental test-beds.

A system in production is one that is in actual use, providing real services.

Obtaining access to production systems for research purposes is problematic for a

variety of reasons. These systems manage sensitive information and provide critical

functionality to organizations. Access to third parties raises concerns regarding

sensitive and private data. System operators also frown upon any activity that risks

affecting system reliability. Our solution approach requires collecting much more

data than what is collected by default in most software systems. System operators

will be reluctant to subject their systems to the resulting adverse performance

impact.

48

Several organizations have made web server access logs available to the research

community (see, e.g., [82]) However, this data only allows the workload and the

user access patterns to be studied. Moreover, only post-mortem analysis can be

performed on such data. Our work relies on management metrics, which are much

richer than what the access logs contain.

To investigate the effectiveness of our solution approach, we not only need access

to the monitoring data, but we also need to have the ability to control the data

collection. We, therefore, choose to build our own experimental test-bed. This is

described next.

5.1.1 Target Platform

The prevalence and complexity of multi-tier, component-based software systems

make them an ideal target for our research. To this effect, we use a Java EE-based

software system as our target system. This system is built using the WebSphere

application server [58], which provides the execution engine for Java EE applica-

tions. To support long-term data persistence, we make use of the DB2 [59] database

management system. Both WebSphere and DB2 are industrial-strength products

that have significant shares of their respective markets. Our choice is motivated

particularly by the fact that WebSphere provides advanced management interfaces;

in particular, it allows dynamic, fine-grained control of metric collection. DB2 also

provides advanced monitoring facilities, albeit at a coarser granularity. While con-

ceptually simple, our target system displays significant internal complexity. Both

the application server and the database server implement complex functionality

and provide many advanced features.

A simple test-bed based on these products is shown in Figure 5.1. All entities

are connected via a Gigabit LAN. The setup in Figure 5.1 can be scaled up by

adding more application servers or databases, and separate web servers. In related

work [103, 104] we have extended this basic setup to include multiple application

servers.

5.1.2 Applications

We use our target platform to execute several existing applications that mimic

functionality implemented in real transaction-oriented software systems. Although

these applications vary in size and functionality, and have been developed by differ-

ent organizations, they share common characteristics. First, they have been built

49

�������

�����������	
���
���
�������������
��������������������

� !"�
����#!� #

� ��� #��$
%�$���

�� &!�'
��(�)� #

�������

*�!���#)�++ #
������,� ��	
-��
��
�������������
�
������������������.�

�����	

*�!����� #�
������������&�*�/
	��
��
�����/
.�������
����0��" �+���#1�#�	22/

�33��)!�� �
��#1�#

�0�4�3��#��5
2�
*�	

Figure 5.1: Experimental setup

using the Java EE framework and provide a web-based user interface. Second, they

require the use of a database management system. Most of these applications have

been designed for the performance benchmarking of web transaction systems.

PlantsByWebSphere

PlantsByWebSphere [60] is a Java EE application developed by IBM to showcase

the features and capabilities of the WebSphere application server. It implements an

online store, selling plants and gardening tools. It allows users to create accounts,

browse, check items of interest in detail, and purchase items. The application is

built using standard Java EE components such as EJB, Servlet, JSP, and message-

driven beans.

RUBiS

RUBiS [121], originally developed at Rice University, is a performance benchmark-

ing application, which implements an online auction site similar to eBay. Its work-

load consists of web interactions for selling and browsing items, bidding, bids and

ratings tracking, and handling user comments. In our setup we use a servlet-only

implementation of RUBiS.

TPC-W

TPC-W [140] is a performance benchmark specification designed to evaluate web-

based transaction-oriented systems. We use a servlet-based implementation of the

50

���
������

	
���

�
����

	
���
�
�

������������
 ������������

	
���

�
����

	
���
�
���

������
���

�������

�
��

����� �������

!� �������

�����"����

����������	��
��
����������� ���

#��	����

	

�
�
�
�

�

� �
�

Figure 5.2: Overall structure of the Trade application

specification. The application implements the functionality of an online retail store,

allowing users to browse and purchase items. The benchmark can be configured

to use workload profiles, which correspond to different proportions of “browse” to

“buy” web interactions.

Trade

Trade [61] is a Java EE application developed by IBM that implements a stock bro-

kerage system. The application allows end-users to trade securities. For example,

users can register themselves, view stock prices, buy and sell stocks, check their

accounts, and track their orders. It has been designed to exercise many features

of the WebSphere application server. It is built with components such as EJB,

Servlet, and JSP. It also makes use of the Java Database Connectivity (JDBC) to

access the database management system and the Java Messaging Service (JMS) for

asynchronous order processing. The main components of the Trade application are

shown in Figure 5.2. A web interaction in Trade involves many components, even

without taking into account the components of the underlying platform. While it

is possible to access the Trade application via a native or a web service interface,

we only use the web interface, which clients can access via a browser.

We employ Trade as our main target application because of its large size and its

use of the many features of the Java EE technology. Trade comprises many more

components than the other applications; it is thus a better candidate to evaluate

our monitoring and diagnosis solution approach. We use the other applications to

validate our claim that stable metric correlations exist in software systems.

51

5.1.3 Workload

Many aspects of our work depend on observing a system in operation. We create

synthetic workloads by simulating a population of users accessing the functionality

provided by the applications. We use an open-loop workload1 to estimate the effect

of monitoring on system performance. We make use of a closed-loop workload for

all other experiments.

For Trade and PlantsByWebSphere, we use our own workload generators, which

gives us the flexibility to generate different load patterns. By default, we use a

random uniform load pattern, which is configured to cause the system to operate

over a wide range of resource utilization levels. For RUBiS and TPC-W, we use the

emulated clients that are provided with these benchmarks. Our workload generators

execute on a separate machine, and we ensure that enough resources are dedicated

to avoid bottlenecks in the client machine.

5.1.4 Monitoring Engine

Our monitoring engine consists of data-collection and data-analysis engines. It

also contains a model repository. The monitoring engine operates from outside the

target system and executes on a separate host.

The data collection engine manages the collection of metric data from the

target system. This data is either processed online or saved in a local database for

offline analysis.

The metric data originates from the subsystems of the target system. We use

the JMX interface to collect metrics from the WebSphere application server. We

use the DB2 Snapshot interface to collect metrics from the database. The workload

generators also expose metrics, which we collect through log files. For collecting

host-level metrics, we use the WMI interface on windows hosts or the sar utility

on Linux hosts.

We collect metric data at a fixed rate, which we set to 10 seconds. This choice

allows the overhead of collecting a given set of metrics to remain low, while having

sufficient resolution to capture dynamics of interest in the target system. The

1In an open system the arrival of new requests is independent from the completion of other
requests. In a closed system new requests are submitted upon completion of previous requests,
and the load is primarily a function of the clients.

52

Component Metrics

Web Container # Sessions created/invalidated
Thread Pools #Threads created/active, free pool size
JDBC module Response time, #Free connections
Servlet/JSP and EJB #Requests, #Instantiations, Response time
Database #Active connections, #Log writes
Database tables #Rows retrieved/written/deleted

Table 5.1: Examples of metrics collected

transactions in our applications are short-lived; when the system is not overloaded,

most transactions take much less than one second to complete. As such, a 10-

second interval allows significant activity to be captured. Furthermore, our choice

of collection interval allows prompt detection of anomalies in the monitored system.

The data analysis engine is responsible for processing the collected data. The

processing involves either learning models from the collected data or checking new

data using the learned models. Our analysis engine is built in Java. We leverage

the implementation of regression models available in the Weka-3 data mining [146]

package. However, the majority of the analysis engine is custom-built. This includes

tests for checking model assumptions, the correlation identification and validation

logic, the metric selection methods, the diagnosis method, etc.

5.1.5 Monitoring Data

Our data comprises periodically-collected management metrics from WebSphere

and DB2. For example, with the Trade application, the raw data sets consist of

more than 600 metrics collected every 10 seconds. We take some basic filtering

steps to discard metrics that provide little information or are redundant. More

specifically, we check whether the metrics display non-zero variance in a small

window of samples; we use a window of 60 samples in our experiments. Though

not necessary in general, we discard metrics that we find to be redundant based on

naming conventions. For example, if two metrics are collected, we would ignore a

metric that represents their sum. From the metrics we collect from Trade, only 352

metrics remain after the basic filtering. Table 5.1 lists a few examples of metrics

included in our data sets.

53

5.1.6 Experiment Framework

We have developed a scripting framework to coordinate our experiments. It consists

of an experiment controller and daemons running on hosts involved in the experi-

ments. The controller script sends commands for the daemons to execute. These

commands include operations to reset state, to inject faults, to start and stop the

database and the application servers, to enable and disable metric collection, and

to start and stop workload generation.

All our experiments involve preparatory steps such as synchronizing time, restart-

ing the application and database servers, resetting application and database states,

and warming up the target system.

5.2 Methodology

Are metric correlations stable? Can we detect fault-induced disturbance with cor-

relations? How well can we localize faulty components with correlation? To answer

these and other questions raised by our solution approach, we design and carry

out controlled experiments using our test-bed. More specifically, we carry out two

types of experiments: normal activity experiments and fault injection experiments.

Normal activity experiments involve studying the system under normal operating

conditions. These experiments are used to characterize the target system’s normal

behaviour, to check the robustness of our modeling approach, and to assess the

overhead of monitoring. These experiments are typically long (spanning several

hours) to make analysis less vulnerable to spurious observations. Fault injection

experiments are relatively much shorter (lasting less than an hour) and are discussed

next.

5.3 Fault Injection

The purpose of our fault injection experiments is to study how well we can detect

faults and how accurately we can localize the faulty components. To this end, we

postulate various types of faults that can occur in a system. We inject the faults

into the target system while it is in a healthy state and examine the response of the

monitoring system. Knowing the ground truth about the faults, we check whether

the monitoring system can detect the faults. Likewise, knowing the components in

which the faults exist, we can measure the accuracy of the diagnosis produced.

54

Number of
Fault Class Fault Category Components

Injected

Application faults
Exceptions in JSP and EJB components 12
Delays in JSP and EJB components 12
Locking in DB tables 5

Operator mistakes
Misconfigurations 3
Deletion of JSP components 7

Table 5.2: Summary of the faults injected

Faults can be defined at different granularity. We can create faults that cause

subsystems to fail (e.g., kill a database or application server process, disconnect

the network, etc.). These faults cause major subsystems to stop completely and

thus can be detected easily by probing the specific subsystems. However, with such

coarse-grained faults we cannot assess the effectiveness of our diagnosis approach

at the level of software components.

We have implemented faults at the level of software components (e.g., appli-

cation components, middleware components, database tables, etc.). Most of these

faults cause the target system to fail partially, making them more difficult to detect

and diagnose. With such faults, we can evaluate the effectiveness of our solution

approach in the presence of a system’s internal complexity and dynamism.

The fault injections we have designed can be broadly grouped into two cate-

gories: application faults and operator faults. In each category, we have several

classes of faults. A summary of the faults we use in our experiments is given in

Table 5.2 and further details are provided in the following sections.

5.3.1 Application Faults

These faults are injected in application components, which causes the execution of

the application to be affected directly. Such faults may arise from faulty imple-

mentation, which may have escaped testing or may have been introduced during a

system update. Such faults may also be caused by faulty logic, which may cause

part of the application to under-perform or even stall.

Faulty execution flow: This class represents faults that cause components to

deviate from the normal flow of execution. We instrument the target application

55

to induce two types of faults: unhandled exceptions and null call returns. Excep-

tion faults involve throwing an unhandled exception with probability eprob when a

selected method of a component is executed. Null returns are similar to the excep-

tion faults except that they cause a selected method of a component to return null

instead of throwing an exception.

The effects of both types of faults are similar in our test-bed, as most cases of

null returns cause exceptions. We thus only discuss results of the exception faults

in our evaluation.

Performance degradation: This class of faults causes slow-down in specific ap-

plication components. We modify the target application to introduce two types of

such faults: delay loops and thread sleep. Delay-loop faults entail delaying com-

pletion of a selected method for dlen time units by executing extra cpu-intensive

logic. To configure these faults, we specify a component, one of its methods, the

delay-loop duration dlen, and a probability of activation, dprob, when the selected

method is executed. Thread sleep is similar to delay loops except for the fact that

thread sleep causes the executing thread to sleep for dlen instead of keeping the

processor busy.

Both types of faults cause delays in application components. However, unlike

thread sleeps, delay loops tend to monopolize the CPU on the application host,

causing widespread disturbance in the system. Much more insight can be had by

analyzing effects of thread sleeps; we thus limit our evaluation to such faults.

Database table locking: This class of faults represent external disturbance to

components in the database used by our application. We simulate table-locking

faults which periodically lock a chosen database table. The lock is activated for

llock fraction of every linterval time interval during the fault-injection period.

In our experiments we configure our application faults using the parameters

listed in Table 5.3. The tasks of error detection and diagnosis are more diffcult

when faults are probabilistic rather than deterministic. Probabilistic faults are not

unrealistic; for example, in a load-balanced, clustered system a fault that affects a

member of a cluster is likely to have effets similar to that of a probabilistic fault.

56

Parameter Value

eprob 0.3
dprob 0.2
dlen 2000 (ms)
linterval 1000 (ms)
llock 0.5

Table 5.3: Fault parameters

5.3.2 Operator Faults

These faults simulate mistakes by a system operator during configuration or tuning

of the system. The faults we devised include misconfiguration of credentials in the

application server for database authentication, wrong tuning of system components

such as connection and thread pools (i.e., the pool sizes are set too low), and

deployment faults such as inadvertent deletion of application components.

The specifics of this class of faults are as follows:

• JSP deletion: the fault consists of removing JSP files from the deployment

files. We consider the separate removal of seven different JSPs. These faults

cause user requests to fail when a missing JSP is involved.

• Thread pool size too low: the fault entails setting the maximum size of

the main thread pool of the application server to a low value. This limits the

application server’s ability to accept and perform concurrent work.

• Database connection pool too small: the fault entails setting connection

pool size in the application server to a low value. The fault causes a slow

down in retrieving data from the DBMS.

• Database authentication error: the fault involves using wrong creden-

tials for the application server to authenticate with the database. This fault

completely prevents the application server from fetching persistent data from

the database.

In this chapter, we presented our evaluation setup, including a multi-tier Java EE-

based test-bed, the monitoring infrastructure, and the data used in our evaluation.

We outlined the methodology for evaluating our solution approach. We also de-

scribed the faults we have developed to check the response of a monitoring system

that implements our solution approach. The evaluation test-bed and methodology

57

described in this chapter are used in the following chapters to validate our claims

with respect to our solution approach. Prior to dwelling into the details of our

solution approach, in the next chapter we use the testbed to show the impact of

metric collection on system performance.

58

Chapter 6

Cost of Monitoring

Continuous monitoring is essential in ensuring that a software system operates as

desired. We can oversee a system’s health by retrieving and analyzing the monitor-

ing data it exposes. Monitoring should allow anomalous conditions or events in the

system to be detected quickly. Furthermore, monitoring should allow the causes of

anomalies observed to be identified rapidly, making it possible for remedial actions

to be taken and the system to be returned to a healthy state in a timely fashion.

Monitoring, however, is not free. Obtaining the monitoring data and analyzing

it requires resources, which need to be diverted from their use in performing the

system’s main function. A software system is primarily intended to serve a specified

purpose; a well-monitored system that cannot perform its functions as desired is

less useful, if useful at all. It is, therefore, critical to quantify the overhead of

monitoring a system and to reason about whether the cost is justified.

Estimating the cost of monitoring is particularly important in systems that

are subject to partial failures. Component-based systems that implement multiple

services are more likely to suffer from such failures. In such systems, it is essential

to have the ability to detect errors and identify faulty components without unduly

affecting parts of the system that are functioning correctly. In this context, systems

monitoring needs to be cost-sensitive; the cost needs to be minimized while ensuring

that the objectives of monitoring are met.

Enabling cost-sensitive monitoring requires that we have the means to estimate

the monitoring cost. As described in Chapter 2, monitoring involves various types

of overhead. It reduces system efficiency; in particular, the collection of metrics

causes additional, non-functional code to execute (e.g., logic for measurement and

aggregation, formatting and dispatching, etc.). This requires computation and

59

memory resources, which are no longer available for the monitored entity to use.

This specific cost can be measured directly by quantifying the effect of monitoring

on system performance. In addition, resources are needed to transmit, store, and

process the collected data. While the target system may not incur this additional

cost directly, it nevertheless adds to the overall cost of the target system because

these resources have to be provisioned.

In this thesis we focus on the measurement and collection overhead because

of their direct impact on a system’s operational efficiency. This overhead can be

estimated from readily available performance metrics. While we do not consider the

other overheads directly, we should point out that efforts to reduce the measurement

and collection overheads often translate into smaller ancillary overheads such as

communication, storage, and processing. The other overheads are more difficult to

quantify objectively. Communication and storage costs often depend on the way

the monitoring data is encoded. Likewise, the processing needed to analyze the

data is highly technique-specific. Furthermore, the other overheads may not be

as constrained as the computing resource of the monitored entity. For example,

in an enterprise context, network bandwidth and storage resources are often over-

provisioned; likewise, computing resources needed for the offline analysis of the

collected data can be added easily.

6.1 Measuring the Performance Overhead

We can estimate the performance overhead of monitoring by estimating the extra

computation needed by the measurement and collection of a set of metrics. To

this effect, we can either view the target system as a white box or consider it

as a black box. A white box view entails an analytical approach, whereby we

assume knowledge of the monitoring logic and availability of data to estimate the

associated computation overhead. A black box view, on the other hand, entails

an empirical approach to estimate the performance cost without knowledge of the

system’s internals.

6.1.1 Analytical Approach

The analytical approach requires that we first identify the various types of metrics.

For each type, we need to estimate the computation needed for each update and

each collection. The cost of collecting a metric for a particular sampling interval

60

is a function of the number of updates, the computation needed for each update,

and the computation required for reading, packaging, and dispatching the metric

value. When collecting a group of metrics, a fixed global cost may also be incurred

(e.g., a data structure containing metric values may need to be time-stamped or

be assigned a global identifier). Further to this detailed cost analysis, we need to

derive a figure for the overall overhead, and this figure has to be translated into

terms that system operators can understand easily.

The analytical approach is cumbersome in many respects. First, it requires

that we be aware of the details of the monitoring logic (e.g., via access to the

source code). Second, while monitoring the system, we not only need to collect the

values for each metric, but also additional data (e.g., number of updates) to allow

computation of the overhead for each metric. Not all software systems expose such

data. Third, in addition to estimating the various elements of the computational

cost of monitoring, we need to express the overall cost in terms of impact on the

system performance, which is non-trivial.

6.1.2 Empirical Approach

The alternative to the analytical approach is to estimate the computational cost

of monitoring empirically. This cost is more-naturally expressed relative to a mea-

sure of the system performance. If the performance of the system is measured in

terms of response-time, then a percentage increase in response time attributable

to monitoring can be used as an estimate of the cost. Such measures are not only

understood more easily by system operators but they also make it easier to express

requirements of what monitoring cost is acceptable.

One option is to express the performance cost as a percentage of the mean

response time in the system. This, however, has an important shortcoming. It is

difficult to separate the performance overhead from other factors such as queuing

time, especially in the presence of a varying workload. To address this issue, our

solution is to abstract the target system as a queuing model and estimate the cost

by quantifying the change in the service demand, which is the mean time spent by

user requests at a resource.

Queuing models can be built by assuming high level knowledge of the system

(e.g., the connections between subsystems such as application server and database).

While elaborate queuing models have been proposed in the literature to predict sys-

tem performance accurately, for our purposes it is only necessary to obtain a good

61

estimate of the relative change in performance with different levels of monitoring;

our goal is not accurate performance prediction.

In this work we employ operational analysis [31, 92] to approximate the service

demand. Operational analysis defines basic relationships among measurable per-

formance quantities (e.g., length of observation period, number of arrivals, busy

period, number of completions) based on a few verifiable assumptions. In making

use of operational analysis, we obviate the need to make distributional assump-

tions on the arrival rate of requests and service time and to solve complex queuing

models.

Collecting metrics causes the service demand to increase; the increase is gener-

ally proportional to how often, how much, and what data is collected. To estimate

the overhead of collecting a set of metrics, we first create a baseline for the ser-

vice demand using performance data obtained while all monitoring is disabled in

the system. We then estimate the service demand using data obtained while a set

of metrics are collected periodically. The performance overhead of monitoring is

equivalent to the increase in the service demand, which we express as a percentage

change.

This empirical approach is simple, relies on readily available performance data,

and has the advantage of being applicable in an online setting.

6.2 Experiments and Analysis

To illustrate our approach, consider the system supporting the Trade application

shown in Figure 5.1. In our testbed, only the WebSphere application server allows

fine-grained, metric-level control over the collection of metrics. We thus focus the

estimation of the measurement and collection overhead on the application server.

In the evaluation below, we change the set of metrics collected in the application

server while collecting a fixed set of metrics from the database and the operating

system.

To estimate the performance cost of monitoring on the application server, we

measure the following quantities in a given observation period T :

• B, the total time during which the CPU is busy during a period T , which

can be computed by multiplying the CPU utilization U by T .

• C, the total number of requests completed during T , which is equivalent to

knowing the throughput X = C/T

62

Table 6.1: Service demand with different monitoring configurations

Configuration Mean Service Demand (ms) % Increase from baseline

None (baseline) 3.81 -
Minimal 3.88 1.82
Detailed 4.28 12.09

• From the above two quantities, we can compute the mean service demand D

using the relationship:

D =
B

C
=

U × T

C
=

U

X

This operational law is known as the service demand law [92].

We carry out experiments with different monitoring configurations and estimate

the resulting performance overhead. Each experiment comprises a warm-up period

to eliminate initial transient effects. We use the httperf [102] open-loop workload

generator to simulate user activity and enforce exponential arrival time between

requests. For each monitoring configuration, we execute experiments at seven re-

quest load levels, which correspond to different degrees of system utilization. We

repeat each experiment five times at every load level. Results presented here are

the mean values obtained over the five repetitions.

Figure 6.1 shows the mean service demand for the CPU resource at the applica-

tion server at increasing load levels under different monitoring configurations. As

noted in Chapter 5, metrics are collected every 10 seconds. Each point on the chart

is obtained by averaging five 15-minute runs of the system (excluding warm-up).

“None” in the figure refers to disabling monitoring, while “Detailed” denotes a level

where all available metrics are collected. Of the metrics collected at the detailed

level, roughly 500 are active (i.e., their values are updated as a result of activity in

the system). At the “Minimal” level, we collect metrics related to the application’s

web interface. The 60 or so metrics collected include request counts, the number

of concurrent requests, response time, and failure counts of all dynamic web pages.

The web interface is the only way our simulated users access the application

functionality; as such, these metrics provide a good indication of the overall health

of the system. Table 6.1 presents the average service demand estimated at the

different monitoring levels.

The results show that increasing the monitoring level creates significant over-

head, which accounts for 12% of the service demand at the detailed level. This

63

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100 120 140 160 180

M
e
a
n

s
e
r
v
i
c
e

d
e
m
a
n
d

(
m
s
)

Load level (requests/second)

Detailed
Minimal

None

Figure 6.1: Effect of monitoring configurations on mean service demand

overhead will likely not be acceptable on a continuous basis in production systems.

In general, in these systems performance is regarded as being more critical than

concern for faults that occur rarely. Nevertheless, the high level of overhead may

be acceptable if it is incurred for short periods of time. Minimal monitoring, on the

other hand, has a small effect on performance because the set of metrics collected

is small. Such a minimal level of monitoring can be maintained on a permanent

basis without sacrificing much performance. These results bring to light a trade-

off between the overhead of monitoring and availability of information about the

system’s health. If a system’s health could be gauged, even approximately, using

a small set of metrics, then one approach to controling the monitoring overhead is

to rely on this small set so long as the system is deemed to be healthy; additional

monitoring can be activated when the system’s health requires further investiga-

tion. In Chapter 8 we present our adaptive monitoring approach, which builds on

this idea.

6.3 Summary

In this chapter we show that the cost of monitoring a software system using its

management metrics can be high; incurring such cost on a continuous basis may

not be acceptable in a production system. We employ an empirical approach to

estimate the performance overhead of metric collection based on principles from

queuing theory. Using this approach we show that enabling and collecting all

metrics exposed by the application server in our test-bed can reduce performance

64

by as much as 12%. This overhead adds to the overheads related to the network

usage, storage, and processing needed to make use of the collected data.

Our evaluation serves as motivation for the need for an automated, adaptive

monitoring approach to reduce the monitoring overhead while still making it possi-

ble to effectively monitor the target system. A pre-requisite for enabling automated,

adaptive monitoring is a system model; the next chapter presents our system mod-

eling approach.

65

Chapter 7

System Modeling

A prerequisite for monitoring a system’s health is a characterization capturing the

system’s expected behaviour or performance. For example, a basic characterization

of a software system may consist of the maximum utilization levels for key system

resources such as CPU, memory, and disk space. We refer to such a characteriza-

tion as a system model. The system model provides a way to detect unexpected

conditions. Therefore, system modeling is the most critical building block needed

for our automated adaptive monitoring approach.

Creating a system model is a difficult task because not only do systems that

we target have complex structure and behaviour, they also are subject to external

stimuli that are dynamic and difficult to predict. In this work we do not assume

availability of information about the target system’s structure and internal dynam-

ics, nor do we assume a priori knowledge of faults the system can experience. The

only information at our disposal is the set of system components, their metrics, and

the metric values. Despite these constraints, our system modeling approach needs

to meet the requirements spelled out in Chapter 4.

A system typically exposes a large number of metrics. If we knew in advance

which aspects of a system needed to be overseen, we could select and model specific

metrics that capture those aspects. With some domain knowledge, we may be

able to identify some key aspects that require oversight. Nevertheless, we do not

assume such knowledge. Our goal is to track the general health of the system,

without emphasis on specific aspects. Thus, the more metrics we can track with

our system model, the more comprehensive the monitoring will be.

One approach to model the system is to use a monolithic model, which takes all

available metrics as input. For example, we could employ multi-variate statistical

66

techniques. Such an approach, however, lacks flexibility; it requires tracking to be

performed using the same set of metrics which were used to create the model. As

such, this approach does not readily lend itself to adaptive monitoring.

Our solution approach is to use an ensemble of metric models, each of which

provides an assessment of a small number of metrics. By analyzing all such metric

models, we can determine the health of the system and also perform fine-grained

analysis to localize faulty components.

The basic approach to modeling the behaviour of a metric is to define an ac-

ceptable range for its values. Figure 7.1 illustrates an example of a threshold

that delineates the maximum value a metric can take. Thresholds are simple to

grasp, and system operators often have some intuition as to what values constitute

reasonable limits for certain metrics (e.g., those related to key system resources).

However, these represent a very small portion of the overall set of available metrics.

In general, finding appropriate thresholds is a difficult task.

 0

 5

 10

 15

 20

 0 20 40 60 80 100

M
e
t
r
i
c

Time

X
Upper threshold for X

Figure 7.1: Using simple thresholds to track metrics

Metrics of complex software systems are mostly non-linear, reflecting the dy-

namic nature of the workload as well as the system’s internal complexity. Simple

mechanisms such as static thresholds fail to capture this non-linearity. Thresholds

can only delineate an operating range within which the metrics are expected to

vary. If the range has too much slack, it will fail to detect some errors or failures.

On the other hand, a range that is too tight will cause many false alarms. The con-

sequences are reduced effectiveness or lower confidence in the monitoring system.

Therefore, we need more-general means to track metric behaviour.

67

7.1 Using an Ensemble of Metric CorrelationMod-

els

It is difficult to predict a metric’s volatile behaviour based on its past values alone,

as many factors potentially generate that behaviour. However, a system’s structure,

as determined by its software (i.e., its code), configuration, and internal dependen-

cies, constrains the system’s behaviour; the resulting regularity is reflected in the

metrics. Furthermore, when monitoring a system, we are not always interested in

the actual behaviour of the metrics (i.e., the different values they assume), espe-

cially when we do not have any intuition as to what the metric behaviour should

be. In such cases, it is sufficient to determine whether the metric’s behaviour is

what we would expect if the system was in the healthy state.

On the basis of the above observations, one simple but powerful approach to

characterizing a system’s normal behaviour is to identify stable correlations among

the metrics it exposes. These correlations should be invariant to the workload

and the passage of time. Figure 7.2 shows the behaviour of two metrics whose

behaviours follow each other closely; one of the metrics is the same as the one

shown earlier in Figure 7.1. We observe that one metric can serve as a reference

for the other, which allows us to track the metrics’ behaviour more accurately than

using a threshold.

 0

 5

 10

 15

 20

 0 20 40 60 80 100

M
e
t
r
i
c

Time

X
Y

Figure 7.2: Using correlations to track metrics

Causal metric correlations are induced by the many dependencies in the sys-

tem (e.g., correlation between calls to functions f() and f sub(), where the first

68

function always executes the second). Correlations can also be incidental, in which

case the correlated metrics vary together because their behaviour is induced by

a common factor. Irrespective of how co-variations arise, metric correlations are

easier to model than the behaviour of the individual metrics. To appreciate the

benefits of this modeling approach, consider the system shown in Figure 7.3. For

simplicity we assume that there is a single component in the system. The figure

shows that the workload metric, which captures the work submitted to the system,

displays behaviour that would be hard to model on its own. Moreover, we see that

Metric 2 of the component displays some other behaviour. The component’s inter-

nal logic and optimization transform the workload behaviour into a more complex

behaviour, which would be hard to predict on its own. Despite the complexity

in the individual metric behaviour, we can readily model the correlation between

the workload metric and Metric 1. The aspect represented by Metric 1 is not af-

fected by the component’s behaviour; as a result, Metric 1 is just a reflection of

the workload metric. Similarly, the correlation between Metric 2 and Metric 3 is

modeled easily; both these metrics are subject to the same complex component

behaviour. Therefore, we can make some judgment of the metrics in this system

without having to describe the evolution of the individual metrics. Actual systems

are much more complex than what is shown in Figure 7.3. The richness of the logic

and optimization implemented by the multitude of system components and their

inter-dependencies can give rise to very complex metric behaviour. Our approach

avoids the need to capture this complexity to monitor the system, albeit at the cost

of restricting what we can do with the learned models.

���������

�	�
��

��������
������

��������

��������

��������

Figure 7.3: Capturing complexity through metric correlations

Our modeling approach is blind to the semantics of the metrics and the rela-

tionships among them. We capture stable, long-term correlations that are repre-

sentative of the system’s healthy state. We model them mathematically to enable

69

prediction and anomaly detection. The set of correlation models we identify forms

an ensemble, which constitutes our model of the system in the healthy state. The

premise of our monitoring approach is that the metric correlations hold during nor-

mal operation and that some of them will fail when faults occur. By identifying

mismatches between metric observations and predictions of the correlation models,

we can detect errors and failures, and we can also identify faulty components.

A correlation model can relate two or more metrics. However, identifying metric

correlations becomes exponentially costly in the number of metrics involved; the

cost of identifying k-metric correlations from a set of n metrics is O(nk). In this

thesis we only consider correlations between two metrics. Besides reducing the

model identification cost, correlations between two metrics are easier to interpret.

Any modeling technique that can capture correlations among metrics well can

be used with our approach. The requirement is that the generated models fit the

data well, allowing maximum sensitivity to anomalies and minimum vulnerability

to false positives. A model that lacks fit may not only produce false positives but

also fail to detect anomalies; likewise, a model that overfits the data may detect

anomalies in the presence of normal variations. In addition, our choice of modeling

technique is restricted by the need to keep the computation and memory cost of

modeling low. This is important because we can have a large number of correlation

models.

We employ regression models to represent metric correlations because of their

simplicity and efficiency. In its simplest form, a regression model is a mathematical

model which predicts one dependent variable using one independent variable. More

elaborate models may include more than one independent or dependent variable.

Many forms of regression can be learned efficiently. For example, closed-form solu-

tions exist for solving linear regression using the method of Ordinary Least Squares.

Also, regression models have a very compact form, only requiring information about

the variables and their coefficients.

7.2 Identifying Stable Metric Correlations

Figure 7.4 presents a high-level depiction of our approach to creating a system

model. Identifying the correlation models requires that we obtain time series of the

system metrics while the system is in the healthy state. The collected data should

cover a period of time which is sufficient to capture representative behaviour of the

system. We use this data to identify stable, long-term metric correlations.

70

Figure 7.4: Approach to system modeling

The process of identifying stable correlations and using them to monitor the

system is summarized in Figure 7.5. The main steps involved in identifying stable

metric correlations are to cross-correlate the metrics, find models that fit the data

well, and validate the models by applying them to data collected from the system

in the healthy state. For online tracking, we apply the learned models to samples of

the associated metrics and check for unusual observations. The consistent detection

of such unusual observations implies that a correlation no longer holds (i.e., the

correlation is perturbed). We discuss details of the model identification and tracking

process in the following sections. We elaborate on the global assessment of the

models for error detection in the next chapter.

Identifying metric correlations require considering n(n−1)/2 (i.e., O(n2)) pairs

of metrics for modeling, where n is the number of metrics. While this cost appears

to be high, two key factors make our modeling approach practical. First, we employ

modeling techniques that are computationally efficient. Second, model identifica-

tion is fully parallelizable; each correlation model can be learned independently of

the others, provided the metric data can be shared. As discussed in Chapter 3,

the modeling cost can be further reduced by resorting to approximation algorithms

proposed in Jiang et al. [67].

In this work we employ regression modeling techniques which are computation-

ally efficient. Specifically, the basic technique we use is simple linear regression,

which is the most efficient regression technique. We also investigate more-powerful

variants of linear regression, which can capture non-linear metric behaviour.

71

����������	

���	��
������	

�����
����������	�
������

�	
�
��
��������	�������	
�
��
��
����������������
��������
	
�����
��	��������	
�
�

�����
���������	�
�����

�������������������	�
���

�	�����������
�
������

����	�	�
������

���

��	�
����	�
������	� ��	�	���� ������

������	�
���
�

���

�����
��������	�
�����

������

�
�
������������
������	�
���

������
��������	�
�����

����

�������	�������

�
�
�����������

!����"��
�����
#����	��	�
����	� #����	�

�	�����������
�
������

Figure 7.5: System modeling and tracking workflow

7.2.1 Correlation Identification

Let the number of metrics exposed by our target system be n and the set of samples

collected to build our system model be S. We split the set of samples S into two

sample sets S1 and S2, where S = S1 ∪ S2. We evaluate all combinations of the n

metrics, by first estimating the model parameters using S1 and then assessing how

well the models fit the data in S2.

The selection process first entails verifying any assumptions of the correlation

models; models that violate the assumptions are discarded. The second step con-

sists of measuring how well the model represents the underlying data. A number

of measures are avail for this purpose. We measure the goodness of fit of a model

by using the coefficient of determination, R2, as it can be computed efficiently and

is used widely in practice with regression models.

7.2.2 Model Validation

The set of samples S2 is used to check whether the predictions of the remaining

models are in line with actual observations. We consider a model to be valid if

at at least pmin of the samples available are within the acceptance bounds of the

72

model (pmin ∈ [0, 1)). As such, only the models for which the number of outliers is

less than (1− pmin)× |S2| are retained for use in system monitoring; the remaining

models are discarded.

7.2.3 Simple Linear Regression

Many linear relationships exist between management metrics because of the un-

derlying system structure. Certain system functions are dependent on others. For

example, in an online store, a checkout is required to complete a purchase, making

the number of purchases and checkout operations linearly correlated. Likewise, the

time needed to display the results of a user query for a product may be linearly

correlated with the time taken to execute the associated query on the back-end

database. Simple linear regression (SLR) allows such linear relationships to be rep-

resented concisely. We cannot capture all pairwise metric correlations that exist

in the system using SLR, as not all relationships are linear. However, as we show

later, using SLR allows us to achieve good coverage of the available metrics.

Basics

SLR captures the relationship between two variables by fitting a line to the observed

samples. An example of an SLR model is depicted in Figure 7.6. Given a set of

pairs of values {(xi, yi)}, the learned model is given by:

ŷ = b0 + b1x (7.1)

where ŷ is the estimated value of the dependent or predicted variable, the bj ’s are

the model parameters, and x is the independent or predictor variable. One method

for finding the model parameter is Ordinary Least Squares (OLS), which involves

minimizing the sum of squared residuals, i.e.,
∑

(yi − ŷi)
2. The solution to this

optimization has a closed form and thus can be computed very efficiently. An SLR

model can be computed in O(s) where s is the sample size used to estimate the

model parameters.

Goodness of Fit

How well a model represents the data can be measured using the coefficient of

determination R2, which represents the proportion of the total variance in the

73

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 5 10 15 20 25

Y

X

Observations
SLR Model

Figure 7.6: A linear relationship modeled by simple linear regression

dependent variable that is shared by the independent variable(s) in the model. The

higher the R2, the better the predictability of y using x as the predictor. R2 is

given by:

R2 = 1− SSerr

SStotal

= 1−
∑

(yi − ŷi)
2

∑

(yi − ȳ)2

where SSerr is the sum of errors squared, SStotal is the total sum of squares, ŷi is

the predicted value, and yi and ȳ are the observed and the mean values for the

predicted variable. We are interested in models which have a minimum predictive

accuracy. Thus, we keep a model if R2 > R2
min.

Assumptions

Parameter estimation using ordinary least squares (OLS) assumes that the rela-

tionship between the variables is linear and that the residuals are independent and

identically, normally distributed (i.i.d.). The latter assumption implies the follow-

ing:

• The residuals (i.e., ŷi − yi) are independent of each other (i.e., there is no

serial correlation in the residuals), and they have a zero mean.

• The variance of the residuals is constant. The absence of constant variance

is known as heteroscedasticity.

• The residuals follow a normal distribution.

74

These assumptions are typically verified by visualizing the data (e.g., scatter

plot of the observations versus predictions, scatter plot of the residuals versus ob-

servations, probability plot, etc.). This approach is not practical given the large

number of metric combinations considered and the requirement to reduce reliance

on human operators. Since our aim is to learn metric correlation models automat-

ically, we make use of statistical tests to verify the assumptions.

The assumptions underlying OLS are not independent; often, failure to meet

one assumption is accompanied with violations of others. For example, failure to

meet the linear relationship condition is often detected by the fact that the residuals

do not follow a normal distribution [28]. Similarly, the presence of residuals with

non-constant variance may indicate a mis-specified model.

Failure to meet the assumption of independent residuals still produces unbiased

regression coefficients (i.e., there is no under or overestimation of the true parameter

in the long run), but significance tests and confidence intervals are no longer valid.

To check for independence of residuals, we apply an autocorrelation test; we test to

see if residuals obtained with a model are correlated with a time-shifted version of

itself. In particular, we employ the Durbin-Watson test [28], which checks whether

the autocorrelation of residuals at lag one is zero.

Failure to meet the assumption of constant variance of residuals is generally

seen as more important than failure of the other assumptions. Heteroscedasticity

make significance tests and confidence intervals invalid. However, the estimated

regression coefficients are still unbiased [28]. Also, Cohen et al. [28] suggests that

heteroscedasticity has to be large for significance tests and confidence intervals to

become incorrect. Several tests have been developed to detect if the variance of

residuals is not constant and/or has a specific pattern. These include the Goldfeld-

Quandt test, Cook and Weisberg, Breusch and Pagan, White, and Hartley’s Fmax

tests. Details on these tests can be found in [30, 100, 145, 147]. We use Hartley’s

Fmax test to check whether the residuals’ variance has large differences at different

values of the independent variable and at different points in time.

The assumptions underlying linear regression are not equally important. For

example, failure to meet the normality assumption for the residuals does not inval-

idate the regression results, especially when the sample size is large [28]. Statistical

tests such as Anderson-Darling, Shapiro-Wilk, and Kolmogorov-Smirnov (see [113])

can be used to see if a sample of observations comes from the normal distribution.

However, because the sample sizes we consider to learn correlation models are large,

we do not employ any test to check for normality. We found that these tests are

75

too stringent and tend to prevent useful correlations from being retained. For ex-

ample, we found many correlations that were stable but displayed a small level of

heteroscedasticity; however, the use of normality tests failed on these correlations.

Violations of the OLS assumptions may be remedied by transforming the data.

For example, the logarithm and square root transforms are known to help stabilize

variance. An added benefit of transformation is that, often, addressing a departure

from one of the assumptions causes the other assumptions to be satisfied [28, 113].

For example, a transformation may not only make a non-linear relationship linear,

but also address problems of heteroscedasticity and non-normality. Later in this

chapter, we discuss the use of SLR on transformed data to capture correlations for

which SLR is not otherwise deemed to be a good fit.

Outlier Detection

Once a metric correlation is identified and the corresponding model created, we

need a way to check if new observations fit the learned model. The prediction

error or residual is the discrepancy between the observed value for the dependent

variable and the value predicted by the regression model; this is the basic ingredient

we use to gauge how unusual observations are. In particular, we are interested in

detecting outliers. An outlier is an observation that is not in line with what would

be expected from the assumed correlation.

A number of outlier detection statistics have been described in the literature.

We use the studentized residual, which represents the difference between model

prediction and actual observation when a new observation is not included in the

estimation of the model parameters. Two variants of studentized residuals exist:

internally studentized and externally studentized. We use the latter as it is the

preferred variant for outlier detection [28]. The externally studentized residual is

computed as follows:

di =
yi − ŷ(i)

√

sǫ(i)
√
1− hi

(7.2)

where hi, the leverage of the ith point, is computed as follows:

hi =
1

n
+

(xi − x)2

(n− 1)sx2

sǫ(i) is the standard deviation of the residuals from the model computed without us-

76

ing the ith observation, ŷ(i) is the predicted value without using the ith observation

in the model, p is the number of parameters of the model including the intercept, n

is the number of observations, and sx is the standard deviation of the independent

term.

A model detects an outlier if |di| > Dmax. Guidelines exist on how to set the

value of Dmax. When a regression model fits the data, the externally studentized

residuals are expected to follow a t-distribution with df = n − p − 1 [28]. When

the sample used to learn the model is large, cut-off values as large as ±4.0 can be

used [28]. We adopt the latter recommendation in our work.

Figure 7.7 depicts an example of a metric correlation, which is taken from our

experimental data. The behaviour of the two metrics is shown both as a function

of time and as a function of each other. Figure 7.7(b) shows the linear regression

model that captures the correlation as well as the prediction interval that delineates

normal observations from outliers. The figures also illustrate the effect of a fault on

the correlation. At some point, a fault is activated in the system and this particular

correlation model clearly detects a number of outliers.

For monitoring purposes, one limitation of the studentized residual is that it

is sensitive to the standard deviation of the residuals (i.e., the term sǫ(i)). For

very strongly-correlated pairs of metrics, this value is very small. As a result, it is

possible for slight discrepancies between predictions and observations to be seen as

significant, even though the absolute discrepancies are not material. A discrepancy

of 1 ms in a response time metric whose mean value is 100 ms is not material.

However, such a change may be significant statistically if the metric was involved

in a strong correlation.

To address this problem, in addition to using the studentized residual, we also

compute the relative absolute residual, ri, which is given by:

ri =
yi − ŷi
ŷi

(7.3)

For an observation to be considered anomalous, we require both |di| > Dmax and

|ri| > Emax. The value of Emax depends on what represents material discrepancy,

which is system-specific.

77

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350

L
e
v
e
l

Time (Sample No.)

Average transaction time
Average TradeAppServlet service time

(a) Time perspective

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20

A
v
g
.

T
r
a
d
e
A
p
p
S
e
r
v
l
e
t

s
e
r
v
i
c
e

t
i
m
e

Avg. Transaction time

SLR Model
Observations during fault

Acceptance Inteval
Observations during normal operation

(b) Correlation perspective

Figure 7.7: Sample fault: Effect on a correlated metric pair

7.2.4 Extensions and Variations

Not all relationships in software systems can be captured using SLR; many rela-

tionships are non-linear, reflecting the complexity and dynamic nature of software

systems. For example, the relationship between load and response-time is not

linear. When a system reaches saturation, response time increases exponentially.

Similarly, many constraints and bottlenecks that exist in a software system give

rise to non-linear behaviour. We investigate a set of modeling techniques that can

represent non-linear behaviour. Our choice of techniques is driven by the need to

keep the modeling cost low and to capture different kinds of behaviour we may

encounter in practice. These modeling techniques are variants and extensions of

linear regression.

78

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5 6 7 8 9 10

Y

X

(a) Raw data

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10

l
o
g
(
Y
)

X

(b) Data after applying a logarithm transform

Figure 7.8: Applying data transformation: An example

SLR with Transformed Data

To capture common forms of non-linear behaviour and to address other peculiarities

of the data, we transform the data as a preparatory step and, then, apply SLR.

Models based on SLR with transformed data (SLR-T) are of the following form:

T (y) = b0 + b1T
′(x) (7.4)

where T (.) and T ′(.) can be any transformation used in data analysis.

Data transformation is commonly used to linearize a non-linear relationship, to

reduce the heterogeneity of variance, and/or normalize model variables. An exam-

ple of linearization by means of a logarithm transform is presented in Figure 7.8.

The traditional approach is to inspect the joint distributions and residuals man-

ually, for all pairs of variables considered, in order to decide what transformation

is required. However, this approach is impractical for our purposes. We thus auto-

mate the process by selecting the transformation that produces the most accurate

predictions while satisfying OLS assumptions. We use R2 to identify the best trans-

formation. It should be noted that we compute R2 based on the residuals computed

in the original units; that is, we reverse any transformation applied to the predicted

values before computing R2.

SLR with Smoothed Data

SLR with Smoothed Data (SLR-S) entails smoothing the data prior to learning

a model. Smoothing reduces noise in the data by dampening changes between

79

successive data points. Even though smoothing may cause subtle discrepancies

due to faults to be hidden, we expect to discover more correlations, which should

improve the ability to detect anomalies in the system.

An SLR-S model has the following form:

S(y) = b0 + b1S(x) (7.5)

where S(.) is the smoothing function. In this work we use an unweighted sliding-

average smooth whereby each point is replaced by the average from the previous k

samples. The smoothed value is given by:

S(xi) =
1

k

i
∑

j=i−k+1

xj

Autoregressive Models with eXogenous Input (ARX)

An Autoregressive model with exogenous input (ARX) [85] can be described as a

linear difference equation. Such a model can capture correlation between variables

which display serial correlation. In addition, such a model can take advantage of

the recent trends of the variables to improve prediction.

An ARX model based on two variables but with additional lagged terms has

the form:

y(t) = a1y(t− 1) + ...+ aky(t− k)

+b+ b0x(t) + ... + blx(t− l) (7.6)

where y(t) and x(t) are the input and output at time t and (k, l) represent the

maximum time lag of the two variables relevant to the model. The dependency on

the lagged versions of y is the autoregressive part of the model and the x’s represent

the exogenous or extra variable. We should note that time is discretized and that

t varies by one unit for each sampling interval.

To determine the best values for k and l, we compute all models such that

k ≤ Lmax, l ≤ Lmax and select the best among them using the adjusted R2 (R̄2).

We do not use R2 directly because it can only increase as more terms are added to

the model. Adding more variables, however, reduces the parsimony of the model.

Instead, we use R̄2, which includes a penalty for each new term added to the model.

80

It is given by:

R̄2 = 1− (1−R2)
n− 1

n− p− 1

where n is the number of data points and p represents the number of independent

terms in the model.

Locally-Weighted Regression

Patterns of non-linear behaviour can be complex; it is impossible to consider all

such patterns. In this work we use locally-weighted regression (LWR) (see [9]) to

capture non-linear behaviour that our other techniques may not be able to capture.

In particular, LWR obviates the need to specify a global function to model the

data;

LWR works by fitting a local linear model for each prediction by emphasizing

nearby data points. Note that with this technique the learning data has to be kept

and is used when a prediction needs to be made. The local model is obtained by

minimizing the locally weighted sum of the squared residuals (i.e.,
∑

wi
2(yi − ŷi)

2)

for all points in the learning data. The weights are given by:

wi = K(
D(xi, xquery)

h
)

where K(.) is the weighting function, xquery is the independent value for which

a prediction is needed, D(.) is the distance, and h is the kernel width. h is a

parameter that determines how distant points affect the local model; the larger it

is the smoother is the prediction function. Different ways of choosing the kernel

width have been proposed [9], including recommendation for default values [113]. In

this work we use the nearest-neighbour-based bandwidth selection, which consists

of setting h to the distance to kth closest neighbour.

An example of a relationship modeled using LWR is presented in Figure 7.9.

We can see that the model is more flexible than SLR-T, as it takes account of the

local distribution of the observations.

7.3 Suitability for Adaptive Monitoring

We can use a metric correlation model to check the behaviour of the associated

metrics. Each model can be evaluated whenever the data it requires becomes

81

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10

Y

X

LWR model

Figure 7.9: A relationship modeled by locally-weighted regression

available. This makes our system model, which is an ensemble of metric correlation

models, most fitting for adaptive monitoring. At any point in time, we only need

to employ the models whose metrics are being collected.

In order to track the system health at low cost, we can track a subset of the

available metrics continuously through the associated models. The remaining mod-

els can then be used as needed (e.g., when faults are suspected). This idea forms the

basis of our adaptive monitoring approach, which is discussed in depth in Chapter 8.

7.4 Experiments and Analysis

7.4.1 Data for Model Learning

In order to identify stable metric correlations for the Trade application, we use

data collected over a period of approximately 18 hours, during which we ensured

the system was in the healthy state. For the other applications, we use data from

a roughly six-hour run to identify the correlations. Table 7.1 lists the parameter

values we have used. Note that the metrics are collected using a 10-second sampling

interval.

7.4.2 Calibration for Model Identification and Cost

Before applying the regression techniques discussed in this chapter, a number of

parameters need to be set. In setting these parameters, we use recommendations

from the literature, make use of very basic domain knowledge, and/or carry out a

82

Parameter Values Description

|S|, |S1|, |S2| (Trade) 6300, 4200, 6200 Model identification:
samples available for learning,
samples used for correlation identification,
samples used for model validation

|S|, |S1|, |S2| (Other app.) 2100, 1400, 2100 Same as above
pmin 0.99 Model validation:

Min. proportion of samples required to be valid

Table 7.1: Parameters used to compute and validate correlation models

search for appropriate values. When searching for parameter values, we constrain

the search space to keep the computational cost low and maintain the practicality

of our approach.

As the number of possible models is large, the modeling techniques we use have

to be efficient. We next discuss how we configure the modeling techniques for use

in our approach, and we analyze their cost.

SLR

To check the assumption of constant error variance, the typical approach is to

consult an F-table with a given significance level and the sample size. However,

Cohen et al. [28] suggests that if the ratio of conditional variances at different values

of the independent variable exceeds 10, heteroscedasticity can be considered to be

large, and thus problematic. We take a more conservative approach than this rule of

thumb. When heteroscedasticity is a function of time, we use the critical value from

the F-distribution with a significance level of 0.001 (e.g., Fα=0.001,500,500 = 1.32).

Otherwise, we discard models for which Fmax exceeds 4.0. Our filter rule is more

stringent for time-induced heteroscedasticity because models which suffer from this

problem will most likely fail eventually, causing unnecessary false alarms. In the

case where heteroscedasticity is induced by the independent variable, we can be

more lenient, as the data used to learn the models captures the expected range of

the variance.

To detect outliers during model validation and monitoring, we set Dmax = 4.0

and Emax = 0.2. The same parameter values are used to detect outliers with SLR-T

and SLR-S.

Among the techniques evaluated in this work, SLR is the most computationally

efficient. Each model can be computed in O(s), where s is sample size used for

learning. The cost of making a prediction with an SLR model is O(1).

83

SLR-T

We limit ourselves to common forms of data transformations; these are listed in

Table 7.2. These four transformation functions generate 16 possible models for each

pair of variables considered.

Transform Equation

None T (x) = x
Logarithm T (x) = log10(1 + x)
Inverse T (x) = 1

1+x

Square root T (x) =
√
x

Table 7.2: Data transformations considered

SLR-T and SLR-S are in effect SLR models applied to transformed or smoothed

data. Like SLR, each model can be computed in O(s), even though the complexity

for computing SLR-S and SLR-T models is a multiple of SLR. This multiple is 16

for SLR-T since we consider four possible transformations for each variable.

SLR-S

For each pair of variables considered, we search for the best value of the smoothing

parameter k from the candidate set {1, 3, 6, 9, 12}. The best model is the one

having the highest R2. We do not consider values of k greater than 12 because of

the delay it would introduce for error detection. We elaborate on mechanisms for

error detection in Chapter 8.

Because we consider five different cases for smoothing the metric values, the

cost is 25 times that of SLR. However, the cost is still O(s).

ARX

We solve ARX models by treating them as multiple linear regression models. Let Y

be the s×1 vector of observed dependent variables and X be the s×p data matrix

with all the predictor terms and one additional term to cater for the intercept; s,

here, is the size of the sample used to compute the models. Deriving the model

parameters requires computing [X′X]−1X′Y. This equation is usually solved by QR

decomposition of X with complexity O(sp2). In addition to these computations,

84

we need to search for the best lag for each of the two variables in a model. In our

evaluation, we set Lmax to 2, as user requests in our test-bed and similar systems

are of short duration and do not span the allowed three sampling intervals (i.e., 30

seconds). For each pair of variables, we thus have 9 possible models, contributing

a factor of 9 to the cost of model identification.

Note that to compute the studentized residuals in the case of ARX, we would

need to compute the leverage (i.e., hi = xi[X
′X]−1xi

′) where xi
′ is a 1 × p vector

representing the sample being tested. However, this operation is expensive, as it

usually involves a QR decomposition. In our work we resort to using standardized

residuals to check for outliers, which can be computed with cost O(1). Standardized

residuals can be computed thus:

d′i =
yi − ŷi(i)√

sǫ(i)

We set the maximum residual based on qth-percentile residual observed during

model validation. If a newly observed sample produces a residual that exceeds the

percentile value by a factor γ, we consider it to be an outlier. In our evaluation, q

is set to 95% and γ = 1.5.

LWR

We use the tricube kernel as the weighting function, which determines weights of

neighbouring points as a function of distance. The kernel function needs to be

smooth, but the choice of the function is not a critical one [9]. Also, for each pair of

metrics, we consider three values of k to identify the kth nearest neighbour, namely
s
8
, s

4
, 3s

8
, s
2
, where s is the sample size used to the learn the model. From these, we

choose the model that yields the highest R2 value.

Of the modeling techniques we consider, LWR is the most computationally ex-

pensive. Because it is a lazy-learning technique, no model parameters are estimated

at the time of learning. Instead, all points collected during learning are kept in a

data structure, and used only when a prediction needs to be made. At the time

of prediction, we need to find the k-nearest neighbours, and then, we need to use

them to fit a local regression and make a prediction. If we use KD-Trees for near-

est neighbourhood search, learning amounts to constructing the trees with cost

O(slog(s)). With k neighbours, the cost of a single prediction is approximately

O(k2log(s)). In the implementation we use, all neighours (i.e., s) are taken into

85

account for prediction; the cost is thus O(s2log(s)).

The computation and memory requirements for LWR are a function of the

number of samples used to learn the model. Using all the data we have available

for correlation identification would be too costly. Instead, we use 180 samples

(corresponding to three hours) for learning LWR models. Nevertheless, we use as

many samples to validate the models as the other modeling techniques.

The outlier detection technique presented in Section 7.2.3 does not readily ex-

tend to LWR. As such, we do not use the studentized residuals to detect outliers.

Instead, we use the same approach and parameter values as ARX models to identify

outliers.

7.4.3 Setting R2
min

One important parameter of correlation identification is R2
min. In choosing an

appropriate value for R2
min, we are faced with two conflicting requirements. On the

one hand, we wish to retain as many correlations as possible to be more sensitive

to disturbance in the system; this can be achieved by choosing a small R2
min value.

On the other hand, we would like to keep only those metric correlations that fit the

data well so as to not miss anomalies and avoid false alarms; this requires larger

R2
min values.

Figure 7.10 shows the effect of computing SLR models with different R2
min val-

ues for the Trade system. As expected, we observe that higher R2
min lead to the

identification of fewer correlations and the coverage of a smaller subset of the Trade

system metrics.

Details of our error detection approach are provided in Chapter 8. We never-

theless present some results to give some intuition on the effect of varying R2
min.

Figure 7.11 presents a summary of the results of monitoring the Trade system using

SLR models. These results indicate that for the set of faults we use the choice of

R2
min is not sensitive until we reach a value of 0.875; at that point, our ability to

detect fault-induced disturbance decreases while we fare better in avoiding false

alarms. The choice of 0.875 would be adequate if we knew the faults in advance

and were confident that these faults are representative of the faults the system

can experience. Both arguments are not applicable since we have assume no prior

knowledge of faults.

In our evaluation we set R2
min to 0.6, which means that the models have better

than average predictability; each model can explain at least 60% of the variability

86

in the predicted variable. With this choice, we can not only capture strong metric

correlations but also retain weaker but stable correlations. Figure 7.11 indicates

that a significant number of false alarms are raised when R2
min = 0.6, we later show

that these false arise because of only a few models.

Although we are lax in setting R2
min, our validation step is more strict in checking

the stability of the models. In the validation step we discard the models which

detect outliers without there being a fault. More specifically, we require each model

to be valid for 99% of observations used for validation (i.e., we set pmin = 0.99).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
u
m
.

c
o
r
r
e
l
a
t
i
o
n

m
o
d
e
l
s

R2

(a) Effect of varying R
2

min
on model identifica-

tion

 120

 140

 160

 180

 200

 220

 240

 260

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
u
m
.

m
e
t
r
i
c
s

c
o
v
e
r
e
d

R2

(b) Effect of varying R
2

min
on metric coverage

Figure 7.10: Correlation models and metric coverage

7.4.4 Existence of Stable Metric Correlations

To show that stable correlations between metrics exist, we apply the regression

modeling techniques to data collected from out test-bed. In our experiments, Trade

and PlantsByWebSphere are subjected to a random uniform workload, while for

RUBiS and TPC-W we use the default workload generated by the emulated clients

as provided in the package.

Table 7.3 summarizes the results of our modeling approach using SLR. The first

two columns indicate the number of metrics we use for modeling and the number

of components the metrics cover. The next three columns in order list the number

of models identified, the number of metrics these models cover, and the number

of components covered. We first observe that with the exception of TPC-W half

87

 15

 20

 25

 30

 35

 40

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
u
m
.

f
a
u
l
t
s

d
e
t
e
c
t
e
d

R2

(a) Effect of varying R
2

min
on the ability to de-

tect faults

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
u
m
.

f
a
l
s
e

a
l
a
r
m
s

R2

(b) Effect of varying R
2

min
on false alarms

Figure 7.11: Sensitivity to faults

or more of the components considered are associated with metric correlations. For

Trade, which is our main target application, the models cover more than 60% of

the considered metrics and more than 87% of the components. Despite the fact

that SLR can only capture linear correlations, these results indicate that we can

track the health of a major part of the system.

The configuration and structure of a system determine what types of relation-

ships exist between metrics. For example, a saturated tier in a system may cause

many relationships, which otherwise would be linear, to become non-linear. As

such, we may not be able to achieve much metric and component coverage with

SLR. The RUBiS and TPC-W applications suffer from this problem; for these ap-

plications, the database tier is a bottleneck. In such cases, we can use variants of

SLR to improve the system coverage and, hopefully, the ability to detect errors.

To illustrate this, we apply SLR-T to the data collected from our test-bed. The

results, shown in Table 7.4, show a marked improvement in metric and component

coverage for all the applications. With SLR-T, we can cover more than half of the

components of TPC-W, which has almost no coverage with SLR.

Application # Metrics # Components # Models # Metrics # Components
analyzed identified covered covered

Trade 352 40 5138 224 35
PlantsByWebSphere 269 36 199 109 19
RUBiS 59 20 122 31 10
TPC-W 51 20 1 2 1

Table 7.3: SLR modeling results

88

Application # Metrics # Components # Models # Metrics # Components
analyzed identified covered covered

Trade 352 40 17142 259 37
PlantsByWebSphere 269 36 1104 168 26
RUBiS 59 20 213 32 10
TPC-W 51 20 40 20 11

Table 7.4: SLR-T modeling results

Table 7.5 compares the coverage of the Trade application using the modeling

techniques presented earlier. These results show that coverage can be improved

significantly by using more-powerful techniques. In addition, we see that each of

the alternatives to SLR allows a set of unique correlations to be found. However,

as discussed earlier, these more-powerful techniques are costlier than SLR. If more

coverage of the system metrics than that provided by SLR is desired, the other

modeling techniques can be used, albeit incurring higher cost.

Modeling # Models # Unique # Metrics # Components
technique identified models covered covered

SLR 5138 0 224 35
SLR-T 17142 152 259 37
SLR-S 24337 3104 261 37
ARX 18104 6939 351 40
LWR 21606 1000 284 37

Table 7.5: Metric correlation models from the Trade system

In order to understand the advantage provided by the modeling techniques we

have considered, we classify the available metrics into three broad categories: activ-

ity metrics, timing metrics, and state metrics, and categorize the correlation models

accordingly. Activity metrics are counters measuring the amount of work or num-

ber of operations performed in a given sampling interval. Examples include request

counts, number of table rows selected, number of connections retrieved from pool,

number of objects created, etc.Timing metrics mostly include response time metrics

such as servlet response time, remote method response time, JDBC query execution

time, etc. State metrics capture the current state of the system. Examples include

memory and CPU usage, connection pool size, number of concurrent connections,

etc.

89

Figure 7.12 shows the breakdown of the models with respect to our metric

categories. This figure shows that most metric correlations captured by SLR involve

activity metrics only. In contrast, the other modeling techniques are able to capture

a significant number of relationships between different types of metrics, in particular

between activity and timing metrics, and activity and state metrics.

Our modeling techniques rely on different features to improve on SLR. By

smoothing, SLR-S is able to reduce the local variance of the metrics and thus

increase the likelihood of finding linear correlations. The remaining techniques can

capture non-linear correlations. SLR-T can represent basic non-linear relationships

by using transformed data. In addition, transformation can address problems such

as heteroscedasticity. SLR models that suffer from heteroscedasticity are discarded

even though they display a high degree of correlation. With SLR-T, however, we

can often stabilize the residual variance and thus retain some of the models that are

discarded with SLR. LWR allows modeling of non-linear behaviour by leveraging

data points close to those for which predictions need to be made. ARX models

can capture non-linear relationships by taking advantage of the recent past of the

predicted variable in addition to values of the independent variable. Figure 7.12

indicates that all alternatives to SLR are able to capture correlations between ac-

tivity and timing metrics. ARX captures the largest number of such correlations,

suggesting that the recent trend of the modeled metrics can help improve modeling

of timing and activity metrics. Figure 7.12 also suggests that to capture metric cor-

relations involving state metrics, we need to take account of the past behaviour. We

observe that both SLR-S and ARX capture many such correlations. This matches

the intuition that changes in state metrics are a reflection of the amount of activity

that has taken place in an interval. It is harder for SLR-T and LWR to model these

correlations, as they do not take account of past metric values.

Note that it is possible for the same pair of metrics to be captured by different

modeling techniques. In our experiments, we have observed many cases where a pair

of metrics is modeled differently by different techniques. Since we do not interpret

the models, they do not have to accurately and intuitively reflect a phenomenon in

the system. As long as the model has good fit and satisfies our quality requirements,

we can use it for system monitoring.

7.4.5 Error Detection with Metric Correlations

We now take a look at how the modeling techniques compare in capturing correla-

tions that are effective for monitoring a system. Specifically, we study how effective

90

���

�����

�����

���

���

	
			 �			 �			
			 �				 �
			 ��			 ��			 �
			

�

�����

��

�

����

����	

�

���

��	

����

�

�

�

��

��

�
	

���

�

��

�

��

�

�

�	�

���

�

	�

��

�

�

�

������������������� ����������������� ���������������� ��������������� �������������� �������������

��� !�"#

Figure 7.12: Comparison of modeling techniques per type of metric pairs covered

the correlation models are when all of them are used for monitoring the Trade sys-

tem. For specific details of our error detection approach, the reader is referred to

Chapter 8.

Table 7.6 shows that the number of faults detected by the different techniques

is roughly the same. SLR-S detects the maximum number of faults, followed by

LWR, which detects one less than the maximum. These two techniques generate

the highest number of correlation models (see Table 7.5). We also used 18-hour long

data collected from the system in the healthy state and apply the same correlation

models. We report the number of false alarms (i.e., the number of times anomalies

are reported, even though no fault was injected) and the number of unique models

that cause those false alarms.

From these results we observe that there is only a small difference in fault

detection using the different modeling techniques, despite significant differences in

the number of models identified. For example, the fault coverage of ARX is the

same as SLR despite ARX having more than three-fold the number of models and

higher metric and component coverage. This indicates that there may be much

redundancy in the coverage of the more-powerful techniques.

Table 7.6 also presents the false alarm results. The number of false alarms

91

suffered by SLR may seem high, but these correspond to 10 models only. Note that

we do not discard models that cause false alarms. In practice, however, these will

be discarded, which would make the false alarms number much smaller.

Using the same amount of data and similar parameters, the other modeling

techniques are less robust than SLR. SLR-S and LWR suffer from the highest

number of false alarms. SLR-T also suffers from a relatively high number of false

alarms. ARX fares better than the other alternatives to SLR, but is still worse

than SLR. This lack of robustness is explained by the fact that the more-powerful

techniques may overfit the data. When models lack the ability to generalize, valid

observations may be detected as outliers.

Modeling # Faults # False # Distinct failed
technique detected alarms models

SLR 36 97 10
SLR-T 35 373 134
SLR-S 39 859 1241
ARX 36 121 46
LWR 38 428 106

Table 7.6: Comparison of fault coverage and false alarms

In the absence of knowledge about faults and the metrics which the faults could

affect, it is better for our ensemble of models to cover the maximum number of

metrics and components. The more components covered, the more likely we are to

uncover faults in the system. Also, the broader the coverage, the more confidence

we can have in the analysis, as it is based on a more-complete picture of the sys-

tem. However, the need for more coverage should be balanced with the need to

keep the memory and computation cost of learning and applying the models low.

Furthermore, because false alarms require the attention of system operators, it is

essential that the false alarm rate be minimized.

From our experience, we recommend the following approach to modeling metric

correlations.

• Start with SLR. There are many benefits to using SLR. First, the modeling as-

sumptions can be checked using established, well-studied statistical tests. Sec-

ond, outliers can be detected by employing established, efficiently-computed

diagnostics. Third, the models can be interpreted easily. The alternative

92

modeling techniques can produce models that are difficult to interpret. For

example, it can be difficult to interpret ARX models that have negative co-

efficients or certain models with transformed data (e.g., using a square-root

transform).

• If the coverage provided by SLR is not satisfactory, for each unmodeled pair

of metrics, consider using ARX then SLR-T. However, both ARX and SLR-T

should be used with stricter model selection and validation parameters. In

particular, we recommend using a higher value of R2
min and more samples for

model validation.

We do not recommend the use of SLR-S, for much experimentation would be

needed to determine appropriate parameters to reduce false alarms to an acceptable

level. We also do not recommend using LWR because of its high cost both in terms

of memory and computation. In order to make this technique practical, we need to

either reduce the size of the learning data or the number of metrics that need to

be tracked, none of which is a satisfactory option. With less data, we may not be

able to capture representative behaviour of the system.

7.5 Summary

In this chapter we have presented and evaluated an approach to modeling complex

software systems based on the management metrics they expose. The main idea is

that a system in the healthy state displays stable, time- and load-invariant corre-

lations among many of its metrics; some of these correlations are perturbed when

faults occur in the system. The metric correlations are formalized mathematically

as regression models. Together, these models form an ensemble, which represents

our system model. Our principal motivation for using the correlation-based mod-

eling approach is that it is suitable for adaptive monitoring. Our system model

enables tracking different subsets of the available metrics at different times.

We study and compare several practical regression techniques to capture metric

correlations. We leverage standard, well-studied, statistical tests to identify sta-

ble correlation models and to detect outliers. Using a multi-tier software system,

we show the existence of stable metric correlations in several Java EE application

benchmarks. Our results indicate that a significant amount of metric and compo-

nent coverage can be achieved using simple linear regression alone. We investigate

the use more-powerful variants of linear regression to capture non-linear behaviour.

93

Our experiments show that these techniques not only improve metric and com-

ponent coverage, but they also allow metrics of different nature to be correlated.

However, these more-powerful techniques have higher computational cost and the

models they produce tend to be more vulnerable to false alarms.

94

Chapter 8

Adaptive Monitoring

The cost of measuring and collecting all available metrics from a system is gen-

erally high and cannot be incurred permanently in a production software system.

However, tracking metric behaviour is necessary for determining the health of the

system and for performing fault localization. Fortunately, these two tasks do not

have the same requirements in terms of the metrics that need to be tracked. Errors

or failures are rarely confined to small parts of a system; instead, it is more common

for faults to have widespread effect and/or for errors and failures to propagate in

the system. As a result, a small set of metrics is often sufficient to estimate the

health of the system. Localizing faults, on the other hand, necessitates acquiring a

more-complete picture of the system, as a fault can exist anywhere in the system.

Therefore, one effective approach to reducing the high cost of full metric monitoring

is to only collect and analyze enough metrics to allow those two tasks to be carried

out.

In this chapter we describe our automated, adaptive monitoring approach that

allows the cost of monitoring to be kept low, while still providing pertinent data for

fault detection and diagnosis. The adaptation of monitoring refers to the changes

made at runtime to the set of metrics collected from the system. An adaptive

monitoring system can, therefore, be viewed as a system which tracks different

subsets of the available metrics at different times. This capability allows the system

to control the monitoring overhead.

Our choice of system modeling approach as described in Chapter 7 is specifically

motivated by the requirement to enable adaptive monitoring. In order to track

different subsets of metrics at different times, we simply need to make use of the

correlation models that are associated with the metrics in the subsets. This opens

the door for different adaptation algorithms to be devised. As illustrated by the

95

diagram in Figure 8.1, at any point in time these algorithms can choose to oversee

any subset of the modeled metrics to meet their goals.

�������

�����	

��
��
���

�����	

�����	

Figure 8.1: Available metrics and the subset of modeled metrics

Since we do not assume any knowledge about the target system’s internal struc-

ture nor any faults that may occur in the system, we devise a basic approach to

adaptive monitoring. In this approach, we pre-specify different monitoring levels.

At each such level, a given set of metrics is collected and their behaviour analyzed.

When metrics exhibit anomalous behaviour at one level, we move up to the next,

more-detailed level to gain further insight. We next describe this approach with

two levels of monitoring, namely minimal and detailed.

The purpose of detailed monitoring is to obtain a more-complete picture of the

system health and to perform diagnosis. This level of monitoring is triggered when

faults are suspected in the system, and the behaviour of metrics is tracked using

the metric correlation models we have identified a priori. At this level, we incur

the cost of collecting all the modeled metrics. However, this cost is incurred for

short lapses of time; prolonged detailed monitoring is not necessary since we are

not interested in studying any particular, evolving phenomenon. Rather, we only

need to gather sufficient evidence to reason about possible faults and their location

in the system.

In this work we presume that all metrics associated with correlation models are

collected at the detailed monitoring level. However, even if we limit the collection

to those metrics that are associated with models, the monitoring overhead can still

96

��������
�	
��	��
�

��
�
��
�	
��	��
�

�
	
����
���

�	

Figure 8.2: Adaptation in the context of two levels of monitoring

be high. If there are constraints on the cost of monitoring that system operators

are willing to accept at the detailed monitoring level, we need to restrict the set

of metrics collected. To this effect, we can select a subset of the modeled metrics

whose measurement and collection overhead fits a system operator-specified budget.

Following the cost estimation approach described in Chapter 6, this budget can be

put in terms of the slowdown system operators are willing to tolerate in a system,

which may have only failed partially. Later in this chapter we discuss methods to

select subsets of metrics to monitor.

The goal of minimal monitoring is to provide a continuous, low-cost assessment

of the overall system health. Cost reduction is achieved by limiting the collection

to a small set of metrics. Minimal monitoring is essential in keeping the monitoring

cost low, because it is in effect while the system is in the healthy state. A production

system is expected to be in the healthy state most of the time, and faults are

anticipated to occur rarely. When anomalies are detected at the minimal level,

adaptation takes place, and a larger set of metrics is collected and the data analyzed.

Figure 8.2 provides a high-level depiction of our approach to adaptive monitoring.

Metric selection is critical for the minimal monitoring level, for it needs to

detect as many faults as possible and its cost is incurred continuously. We next

present several methods for selecting a subset of metrics to collect at the minimal

monitoring level. We then describe how the health of a system can be gauged at

the two monitoring levels.

97

8.1 Metric Selection

In deciding what metrics to collect at a particular monitoring level, we need to take

account of the following important factors:

• Importance: When domain knowledge is available, some metrics may be

known to be more critical than others (i.e., they reflect measures of inter-

est to the system operators). Such selection, however, presumes that system

operators understand the system and know which metrics reflect critical as-

pects of a system.

• Cost: Metric measurement and collection reduce system efficiency directly.

The performance cost depends on what quantity is measured and how often

it is measured. The higher the cost of a metric, the more careful we have to

be in enabling its collection.

• Redundancy: A number of metrics may reflect the same underlying phe-

nomenon. Also, many metrics may behave similarly. In such cases, it may not

be necessary to collect all these metrics; most information from these metrics

can be had through a set of selected representatives.

Based on the above factors, we consider two broad approaches to selecting

metrics: manual selection by leveraging domain knowledge and automated selection

by making use of information inferred from the monitoring data.

8.1.1 Manual Selection

With some domain knowledge, we may be able to identify critical indicators of a

system’s health. These indicators often include utilization of key resources (e.g.,

CPU, memory, network), performance of major components of the system (e.g.,

number of requests successfully serviced and response time), and number of failures

encountered. It is also possible that the monitoring of some critical metrics is

recommended by system vendors (see, e.g., [62]).

In the absence of any prior knowledge and recommendations, certain metric

characteristics make them better candidates than others for inclusion in the selected

metric set. First, the metrics are affected by the behaviour of a large number of

components, allowing them to detect a broad range of errors and failures. Second,

these metrics are not expensive to measure and collect. Third, problems that do not

98

affect the selected metrics are deemed not pressing enough to warrant immediate

further investigation.

The difficulty with this selection approach is that it is manual, calling for human

input. Its results will vary from one individual to the other, depending on their

knowledge and experience.

8.1.2 Automated Selection

An alternative to relying on the knowledge of system operators is to determine

automatically, by analyzing the data exposed by the system, a small set of metrics

suitable for tracking the system’s health. With this approach, we no longer rely

on the metrics’ semantics; instead, our choice is dictated by cost and information-

redundancy considerations. Because of our focus on correlation-based monitoring,

our selection methods produce metric subsets that can be tracked using metric

correlation models. These methods use the metric correlation information as their

main input. Note that we do not employ any threshold-based models when the

minimal set of metrics is determined automatically.

Even though metric correlations do not correspond to dependencies in the sys-

tem, they contain valuable hints about the system structure and its dynamics. The

correlations reflect underlying artifacts such as component dependencies, compo-

nent interactions, and workload-induced shared behaviour. While the global dy-

namic behaviour of a system is typically driven by the input workload, the system

structure causes differentiation among metric correlations. For example, if one op-

eration always causes another to be performed, metrics which reflect the frequency

of the two operations will be strongly correlated. On the other hand, two operations

that tend to vary with the workload without a direct dependency between them

may be less strongly correlated. Such differentiation allows different dynamics in

the system to be reflected in the correlations. Thus, the correlation information

can help us decide on what metrics to choose.

The metric measurement and collection overhead can be viewed as comprising

two parts: one that is constant (e.g., connection setup between the data collector

and the target) and one that varies with the number of metrics collected (e.g.,

metric measurement, operating system overhead for transferring the metric values,

etc.). By interpolating the performance overhead results in Chapter 6, we find that

the constant component represents a small portion of the overall overhead. As

such, it is reasonable to assume that the monitoring overhead is proportional to the

99

number of metrics collected. In the following sections we discuss metric selection

methods under the constraint that there is a maximum number of metrics which we

are allowed to collect. This constraint is akin to a maximum performance overhead

budget specified by system operators.

Note that the measurement overhead varies from one type of metric to another.

For example, an activity counter is less expensive than a time-tracking metric; the

latter involves two system calls for each update. However, with the exception of

one method, all methods discussed in this work involve a random choice of metrics

from some set of metrics. Therefore, we will obtain a mix of metrics of different

types, and the chance of selecting only high-cost metrics is low.

Näıve Selection

We first consider two simple and intuitive methods to select metrics.

• Random selection: This method entails selecting randomly from the set

of pairs of correlated metrics until the maximum number of metrics desired

is reached. This method allows a uniform coverage of the space of metric

correlations.

• Selection by strongest correlation (i.e., minimum distance): This

method focuses on metric pairs that have the highest R2. Structural depen-

dencies in a system often induce strong correlations. Here, we order all pairs

of strongly correlated metrics from the highest R2 to the lowest. We then

select pairs in this order until the size of the metrics selected reaches the

number sought.

The two methods above make a coarse-grained use of the correlation informa-

tion. However, further insight can be gained from the correlations. In principle, the

subset selection methods should make use of as much of the correlation information

as possible so that the majority of the system dynamics reflected in the correlations

can be represented.

Selection by Clustering

This method is predicated on the idea that groups of closely related metrics reflect

some artifacts or specific dynamics in the system, and as such, we need to capture

these groups of correlated metrics to better monitor the system. We can discover

100

Method Cluster distance measure

Single-linkage dist(Ci, Cj) = minv∈Ci ,v′∈Cj
dist(v, v′)

Complete-linkage dist(Ci, Cj) = maxv∈Ci,v′∈Cj
dist(v, v′)

Average-linkage dist(Ci, Cj) =
1

ninj

∑

v∈Ci

∑

v′∈Cj
dist(v, v′)

Table 8.1: HAC clustering methods used

these groups automatically by applying statistical clustering to the metric data.

Since groups of correlated metrics expose similar information, we can select repre-

sentatives from each group or cluster. By doing so, we can retain a set of correlated

metrics capturing the essence of the range of dynamics captured by the overall set.

This method presumes that when a fault affects some part of the system (e.g.,

a group of interacting components), many correlations associated with that part

are affected. As such, one or few of these correlations are likely to be sufficient

to detect the fault. However, there is no guarantee that all correlations associated

with that part are perturbed. The more representative metrics we select from a

cluster, the less likely we are to miss anomalies, albeit incurring a higher overhead.

Thus, we need to find an appropriate trade-off between the ability to detect faults

and the monitoring overhead, especially given the performance penalty in a system

that may only be partially operational.

To apply this selection method, we first identify stable metric correlations as

described in Chapter 7. We then create a dissimilarity matrix D by setting the

entry di,j = 1−R2 if the correlation between metrics i and j has passed validation.

Otherwise, we set di,j = 1.0, which is the maximum value an entry in D can take.

We employ hierarchical agglomerative clustering (HAC) [47], which operates by

considering each object as part of a separate cluster and merging the clusters into

larger clusters until a stopping criteria is met or all objects become part of a single

cluster. Several HAC methods exist. They differ in their definition of the distance

between clusters. We consider three methods: single-linkage, complete-linkage,

and unweighted-average-linkage. While in single-linkage the distance between two

clusters is given by the distance between the nearest neighbours from the two clus-

ters, in complete-linkage the cluster distance is a measure of the farthest neighbours

from the clusters. Average-linkage provides a middle ground between the two meth-

ods by averaging all pairwise distances between members of the two clusters. Let

dist(v1, v2) be the distance between metrics v1 and v2, Ci be a cluster, and ni be

the number of metrics in Ci. The notion of distance used by the three methods is

summarized in Table 8.1.

101

Algorithm 1: Metrics subset selection using clustering

Input: D (distance matrix), k (number of metrics to select), max dist (maximum

intra-cluster distance)

Output: S

begin
S := ∅;
C := cluster(D, max dist);

; // obtain the set of metric clusters

L := sort C by |G|, where G ∈ C;

while |S| < k do

foreach G in L do
v1 := pick-random-metric(G);

S := S ∪ v1;

remove(v1, G);

if |S| = k then
break;

pick v2 randomly from G, where distance(v1,v2) <= max dist;

S := S ∪ v2;

remove(v2, G);

if |S| = k then
break;

end

Because our goal is to find groups of closely related metrics, we use maximum

intra-cluster distance as the stopping criterion in the clustering procedure. Our

algorithm for metric selection using clustering is listed as Algorithm 1. The same

algorithm is used with the three clustering methods described above.

The use of clustering for metric filtering presents several challenges. First,

the right clustering method needs to be chosen. For example, the use of single-

linkage often results in a small number of clusters, of which a few are relatively

much larger; in contrast, complete-linkage tends to produce many clusters of small

size. Second, it requires setting parameters (e.g., maximum intra-cluster distance),

which influence results heavily. Third, depending on parameters and the clustering

technique used, it is possible for many metrics to end up alone (i.e., in clusters of size

one). Ensuring that such metrics are not ignored requires special handling. Finally,

clusters only specify membership; within each cluster, the correlation information

is ignored.

Selection by Minimum Spanning Tree

We now propose a method which does not require setting any parameter, is equally

or more efficient than traditional clustering algorithms, and retains more infor-

mation than mere cluster membership. This technique originates from studies on

correlations among financial equities in stock markets. In that context, correlation

networks are formed by cross-correlating stock price returns. Researchers have used

102

0

1

0.1

2

0.11

3

0.23

4

0.15

5

0.42

6

0.41

0.01

0.01

0.015

0.4

0.405

0.015

0.02

0.37

0.38

0.021

0.35

0.32 0.36

0.33

0.39

(a) Correlation network

0

1

0.1

2

0.01

3

0.01

4

0.015

5

0.35

6

0.32

(b) MST

Figure 8.3: An example of a correlation network and an MST derived from it

Minimum Spanning Trees (MST) as a tool to summarize the information content of

such networks [15, 89]. The same research argues that the derived MSTs retain the

most important information; as such, they can help create better stock portfolios.

An example of a correlation network and its MST is given in Figure 8.3. The

tree is obtained by retaining the strongest correlations while ensuring that all nodes

can be reached. It is not necessary for a correlation network to have a unique MST.

When ties exist, different MSTs can be derived from the same network.

By mapping metrics to nodes and correlations to links, we obtain one or more

correlation networks. Our method is to summarize the networks in the form of

MSTs and then to select metrics from them. The nodes in an MST differ according

to the number of their children. Each node with children represents a group of

metrics that are closest to each other. For example, nodes 3, 5, and 6 in Figure 8.3

form such a group. To select a subset of metrics, we randomly pick metrics from

the parent-children groups that exist in an MST. Algorithm 2 provides an overview

of our MST-based selection method. When there exists more than one correlation

network, we can create MSTs for each network and combine the resulting sets of

parent-children groups for use in Algorithm 2.

Given an n × n adjacency matrix, Prim’s algorithm [29] can be used to derive

an MST with time complexity O(n2), which is generally more efficient than the

103

Algorithm 2: Metrics Subset Selection using MST

Input: D (distance matrix),k (number of metrics to select)

Output: S

begin
S := ∅;
mst := compute-mst(D);

T := obtain set of (parent,{children}) tuples from mst;

L := sort T by |{children}|;
while |S| < k do

foreach (p, C) in L do
S := S ∪ p;

if |S| = k then
break;

r := pick-random-metric(C);

S := S ∪ r;

remove(r, C);

if |S| = k then
break;

end

clustering techniques considered here. In fact, one efficient way of finding single-

linkage clusters is to obtain the MST first.

8.2 Minimal Monitoring

To continuously oversee the health of the system, we need a minimal level of mon-

itoring. We require models to track the behaviour of the metrics collected at this

level.

8.2.1 Using Metric Correlation Models

As our system model is an ensemble of metric correlation models, we can simply

choose the subset of these models that relate to the selected metrics. These models

are continuously applied to the collected data. When these models repeatedly

detect outliers, we hypothesize that there exist faults in the system. We then adapt

monitoring to obtain more information in order to confirm or refute the hypothesis.

More specifically, we track correlations by feeding new metric observations to the

associated regression models and checking for outliers (i.e., values that fall outside

the acceptable intervals). Each model’s residuals are recorded in a sliding window

of length w. If a model detects outliers in the majority of w the entries, it is

considered to have failed.

To detect errors in the system, we aggregate results from individual models

104

thus:

Ft =
∑

m∈M

St(m) (8.1)

where t is the time, M is the set of correlation models associated with metrics in

the minimal set, and St(m) is the assessment of a model m given by:

St(m) =



















1 if
∑w−1

i=0 st−i(m) > w
2
and

∑t

i=0 si(m) < (1− p)t

0 otherwise

(8.2)

where st(m) = 1 if an outlier is detected at time t by modelm and 0 otherwise. p is a

parameter, with value in the range [0, 1), specified by system operators. A model is

considered reliable only if a proportion p of past observations of the relevant metrics

are not outliers. A model fails at time t if it reports outliers for the majority of the

most recent w samples. Ft represents the total number of reliable models that fail

at time t; if Ft > FMM
max , the monitoring system reports an error at time t.

The reason to only account for reliable models is to prevent false alarms. Unreli-

able models may have escaped our tests during model validation. It is also possible

that the underlying metric relationships have evolved.

8.2.2 Augmenting Minimal Monitoring with Threshold-Based

Models

Certain faults do not perturb metric correlations. In fact, it is possible for faults

to strengthen existing correlations, or even induce new ones. As a result, despite

there being a fault, correlations may continue to hold while the absolute values of

the metrics involved reach abnormal levels. One approach to circumventing this

limitation is to combine correlation models with other models that are less prone to

this problem. We consider the use of single-metric models, which capture a metric’s

behaviour without relying on any other metric.

There are many techniques for creating single-metric models. The simplest

model is a fixed value range which determines whether the metric’s behaviour is

within the norm. We refer to such models as threshold-based models because they

can be seen as indicator functions predicting whether conditions of interest exist.

More elaborate single-metric models such as autoregressive models allow one to

105

make predictions based on past values of the metric. As a proof of concept, we

employ threshold-based models. Such models are commonly employed in practice.

For example, many businesses enter into service-level agreements (SLA) with other

businesses or customers to deliver service according to given performance or relia-

bility standards, commonly known as service-level objectives (SLO). An SLO is in

essence a threshold-based model which in addition to a target level also specifies

a measurement period and a minimum fraction of observations required to satisfy

the target.

Similarly, setting thresholds on key metrics, such as resource utilization levels,

is the most common technique used by system operators to spot anomalous metric

behaviour. Industry products such as IBM Tivoli Monitoring [57] and HP Open-

View [52] readily allow system administrators to set thresholds on such metrics.

Furthermore, for key metrics, system operators may be able to determine what

constitutes acceptable threshold values based on their knowledge and experience.

For example, it is has been reported that Internet service users are likely to be

annoyed if a page takes more than four seconds to load [74]; a threshold can thus

be set to reflect such a user preference.

Appropriate threshold values are generally difficult to determine. This is es-

pecially true for metrics that belong to components that are not directly visible

from the system’s interface, as setting the threshold requires good understanding

of the internals of the system. In the absence of any domain knowledge, we can

analyze historical data to determine appropriate threshold values. Since the focus

of our work is not on devising new schemes to determine thresholds, we avail our-

selves of schemes already used in practice; we use a percentile-based technique to

set thresholds in our evaluation.

The purpose of using threshold-based models is to enable a better assessment

of the system’s health during minimal monitoring. Irrespective of the technique

used to set thresholds, we consider a threshold-based model to have failed when it

is consistently violated for t consecutive sampling intervals. This mechanism allows

us to make threshold-based models more robust to transient disturbance. If the

target system is already bound by SLOs, violations of the underlying thresholds

correspond to failures. When such a violation occurs, the failure is readily known

and there is no need for additional evidence to corroborate the failure. However,

there is a need to localize the cause of the failure, which can be accomplished by

proceeding to detailed monitoring.

There are circumstances where violations of thresholds do not necessarily cor-

106

respond to failures. This may be case when thresholds have been derived auto-

matically from historical data, or when the thresholds were set by system operators

without a formal basis. In these cases, when threshold-based models fail, we need to

obtain corroborative evidence to validate the observed anomalies. In our approach

such evidence is obtained by enabling detailed monitoring and analyzing the metric

correlation models.

With the addition of threshold-based models, we have two types of models at

our disposition during minimal monitoring. Our basic monitoring approach is to

combine both types of models. This approach has the potential to improve fault

coverage because of the complementary nature of the two types of models. During

minimal monitoring, if any one of the threshold-based models or the correlation

models persistently detects anomalies, we proceed to detailed monitoring.

8.3 Detailed Monitoring

As discussed earlier, the detailed monitoring level represents a more-thorough over-

sight of the system by tracking a much larger set of metrics than minimal mon-

itoring. Detailed monitoring, being costlier, is only enabled when we need more

information to corroborate anomalies detected during minimal monitoring and to

localize the source of the anomalies observed. Fault localization is discussed in

detail in Chapter 9. Here, we focus on the validation aspect of detailed monitoring.

During detailed monitoring metrics are tracked using the correlation models we

learned a priori. As in minimal monitoring, a regression model is considered to

have failed if it consistently reports outliers. More specifically, we compute St(m),

which is the assessment of a model m, as follows:

St(m) =







1 if
∑w−1

i=0 st−i(m) > w
2

0 otherwise
(8.3)

where st(m) = 1 if an outlier is detected at time t by model m, and 0 otherwise.

Note that in Equation 8.3, we no longer take into account any notion of model

reliability. The reason is that for most models checked during detailed monitoring,

we have no prior data to estimate reliability. The metrics associated with the

majority of the models are only collected when detailed monitoring is enabled. As

such, we have no record of how often most the models have failed since the time of

107

the last error detection. In contrast, during minimal monitoring, we have a fixed

set of correlation models that are always checked. We can thus compute a model

reliability score by tracking how often they fail.

Since we do not know how reliable a model is in detailed monitoring, we allow

some models to fail without suspecting errors in the system. This allowance is

captured by the FDM
max parameter, which is described further below.

Each metric correlation model only provides an assessment of the metrics it

covers. We thus need to combine the results from the individual models to evaluate

the global system health. There are several natural abstraction levels at which this

aggregation can be effected. Three aggregation levels which match our abstraction

of the target system are: global (all), metric, and component.

Given an abstraction level, we aggregate results from all the available models

and detect errors in the system thus:

Ft =
∑

m∈M

St(m) (8.4)

where t is the time, Ft represents the number of models that fail at time t, M is the

set of correlation models available for analysis at the aggregation level considered,

and St(m) is given by Equation 8.3. If Ft > FDM
max , the monitoring system reports

an error at time t. In general, if model validation is thorough, we expect FDM
max to

be set to a very small value.

• Global Level: The global abstraction level entails taking account of the

results from all the correlation models applied at the detailed monitoring

level. At this aggregation level, M in Equation 8.4 is the set of all the models

available during detailed monitoring. If Ft > FDM
max(g), an error is reported.

• Metric Level: A modeled metric is correlated to one or more other metrics.

We can analyze results from correlation models at the metric level, whereby

errors are detected when a significant number of models associated with any

one metric fail.

Faults generally cause specific dynamics in the system to be perturbed. Such

perturbances tend to affect specific clusters of correlated metrics. Thus, the

metric-level analysis can be more sensitive to faults. In comparison with the

global level, analysis at the level of metrics allows the different dynamics

captured by metric correlations to be assessed separately. Perturbance may

108

appear negligible when considered at the global level, but it can be significant

when viewed at the metric level.

To detect errors, for each metric v, we use Equation 8.4, where M represents

the set of correlation models associated with metric v. If Ft > FDM
max(m) holds

for at least one metric, an error is reported.

• Component Level: When a component fails, its metrics are likely to behave

anomalously, which in turn may cause the associated correlations to be per-

turbed. Because we assume that the metric-to-component mapping is known,

we can analyze results from correlation models at the component level. For

each component c, we use Equation 8.4, where M represents the set of cor-

relation models associated with component c. If Ft > FDM
max(c) holds for any

component, an error is reported.

Note that if the metrics tracked during minimal monitoring are chosen using the

automated selection methods described in Section 8.1.2, FDM
max(g) needs to be larger

than (Ft+Ut). Ft is number of models which failed at time t and Ut represents the

number of models found to be unreliable at time t, both of which are computed

during minimal monitoring. This essentially implies that for detailed monitoring to

support any error hypothesis generated during minimal monitoring, it should find

more correlation perturbance than what was observed during minimal monitoring.

Our adaptive monitoring approach relies on minimal monitoring for triggering

the error detection logic. Therefore, errors can be missed if they are not detected

at the minimal monitoring level. In such cases, detailed monitoring will not be

triggered even though it might have provided pertinent information. If errors are

missed systematically, the parameters of minimal monitoring need to be fine-tuned,

taking care of striking the right balance between the ability to detect errors and

the occurrence of false alarms. Errors can also be missed when anomalies detected

at the minimal monitoring level are not confirmed by the analysis at the detailed

level. In such a case, detailed monitoring is unable to support any error hypothesis

and cannot help locate sources of faults. If the anomalies observed do not corre-

spond to known failures (e.g., SLO violation), the anomalies detected with minimal

monitoring are not reported to the system operators. Though not reported, the de-

tected anomalies can be logged; this data can help post-mortem analysis and assist

in configuring the monitoring system.

109

8.4 Experiments and Analysis

In this section we describe experiments in which we use an implementation of

our adaptive monitoring approach. Our target is the Trade system described in

Chapter 5. Metric correlation models are identified by the approach presented in

Chapter 7 and the modeling technique used is Simple Linear Regression.

Our evaluation is based on two data sets. The first data set consists of metric

data collected over a period of 36 hours, during which the system is not intentionally

subjected to any fault. Half of this data is used to learn and validate the models

needed for monitoring. We use the remaining half to check for false alarms. As

reported in Chapter 7, we identify 5138 SLR models, which cover a total of 224

metrics.

Our second data set includes data collected from a set of 39 fault-injection

experiments. Each experiment involves injecting a fault in a component of either

the system software or the Trade application. The fault is injected while the system

operates normally. A detailed description of the faults we inject is available in

Chapter 5.

In our evaluation, results from the correlation models are kept in a sliding

window of length six (i.e., w = 6), which represents a delay of one minute. We

set p = 0.99 (i.e., we only consider those models to be reliable for which 99% of

observations are not outliers). We set FMM
max to 1 (i.e., an anomaly is detected if at

least one model fails persistently).

8.4.1 Minimal Monitoring: Manual Selection

We first evaluate our adaptive monitoring system using the manual metric selection

approach. During minimal monitoring, a fixed set of manually selected metrics is

tracked using threshold-based models, metric correlation models, or both.

Leveraging our domain knowledge, we choose to track metrics related to the

response time of and failures in components which are accessed directly by the end

users. In our experiments, this translates into monitoring the number of requests

to the different web pages of the application, the time taken to deliver those pages,

and the number of failed requests.

In order to evaluate our approach with threshold-based models, we set thresholds

based on past normal behaviour. Using historical data, the threshold for the upper

bound on acceptable values for a metric is computed as follows:

110

Model type Num. false alarms Num. faults detected

Threshold-based models 48 30
Correlation models 0 7
Combined 48 37

Table 8.2: Minimal monitoring detection results

Tmax = percentile([xi], p)(1 + markup) (8.5)

where Tmax is the maximum response time threshold, the function percentile com-

putes the p-th percentile from the vector of observed response time values [xi], and

markup represents an additional non-negative margin. If Tt > Tmax for k consecu-

tive samples, we report anomalies.

In our evaluation, we use Equation 8.5 to determine thresholds for response-

time metrics. For failure metrics, we take the conservative view that any persis-

tent failure is worth investigating. If any failure metric is non-zero for at least k

consecutive samples, we report anomalies. We do not track request counts using

threshold-based models, as it is not semantically meaningful. We set k, the number

of required repeated violations, to 3; in practice, however, k should be set according

to the needs and particulars of the system being monitored. Although we only em-

ploy static thresholds in this work, thresholds can also be dynamic. For instance,

the percentile or any other aggregation function can be based on a sliding window

of past values of a metric.

Table 8.2 summarizes the detection results for minimal monitoring using the

manual metric-selection approach. In this set of experiments, thresholds for response-

time metrics are set using 95th percentile of learning data and a markup of 0.1.

These results indicate that we can detect more faults with the threshold-based

models, but we suffer from a higher level of false alarms. Metric correlation mod-

els, on the other hand, detect fewer faults, but do not suffer from any false alarms.

The noteworthy result is that the two types of models complement each other, for

together they detect 35 of the 39 faults. The correlation models are able to detect

faults that are not reflected in the web page failure metrics and the faults that do

not significantly impact response-time. On the other hand, thresholds allow us to

readily detect those faults that are reflected in web page failure metrics and that

cause large increases in response time.

Our results show that augmenting correlation models with threshold-based mod-

els improves system monitoring. The combination allows us to improve fault cov-

111

 24

 26

 28

 30

 32

 34

 36

 38

 0 0.5 1 1.5 2

N
u
m
.

f
a
u
l
t
s

d
e
t
e
c
t
e
d

Response-time SLO markup

Figure 8.4: Effect of varying SLO markup on fault coverage

erage. There are two reasons that underlie this improvement. First, some faults

may not cause correlations to break even though the metrics involved soar beyond

acceptable levels. Such faults can be detected by threshold-based models. Sec-

ond, some metrics are tracked more easily using threshold-based models; the same

metrics may not be associated with any correlations. For instance, it is easier to

define an upper limit for metrics which reflect the number of errors or failures in a

system. With our approach, these metrics are not associated with any correlations.

When identifying correlations, we discard all metrics that do not display any vari-

ance. Because correlation identification takes place while the system is in a healthy

state, the error metrics mostly report nil. Third, certain metrics are more naturally

modeled with correlations than thresholds. For instance, the request counts for the

application web pages are tracked readily using metric correlation models; tracking

these with thresholds is non-trivial because these vary with the workload.

In order to study the incidence of false alarms, we vary the markup used to

compute the thresholds for web page response times. We do not vary thresholds on

the number of web page failures, for any consistent web page failure is a cause for

concern. The results shown in Figures 8.4 and 8.5 confirm the trade-off between

sensitivity to faults and false alarms. Without any markup, we can detect 31 faults,

but we would incur 135 false alarms. With a markup value that avoids false alarms,

we only detect 26 faults.

112

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.5 1 1.5 2

N
u
m
.

f
a
l
s
e

a
l
a
r
m
s

Response-time SLO markup

Figure 8.5: Effect of varying SLO markup on false alarms

8.4.2 Minimal Monitoring: Automated Selection

We now evaluate the alternative approach to selecting metrics for minimal moni-

toring. For clustering-based selection, we fix the maximum intra-cluster distance

to (1 − R2
min) (i.e., 0.4). Since there is no unique MST when there are correla-

tions of equal strength (i.e., equally distant), we repeat each analysis ten times by

randomizing the metric indices in the distance matrix D. This allows ties to be

processed differently in each repetition. This also allows different decisions to be

made where a random choice is involved. The following results present the mean

number of faults detected and the 95% confidence intervals for the mean when dif-

ferent percentages of available metrics are selected for monitoring. For instance,

0.1 denotes using 10% of the modeled metrics for monitoring.

In all our experiments, no false alarms were reported using the parameters

described above. A determining factor in avoiding false alarms is the use of reliable

models only. Remember that our error detection procedure only takes into account

those models for which 99% of the past observations fall within the acceptance

bounds of the models.

We now compare the fault coverage of the methods described in Section 8.1.2.

Figures 8.6, 8.7, and 8.8 1 indicate that selection by clustering generally produces

much better fault coverage than selection by the strongest correlation. The figures

suggest that choosing by the strongest correlations is not a good strategy; it per-

forms worse than random selection. This is so because the selected metrics tend to

reflect the same underlying system dynamic, thus limiting the coverage.

1Note that in some figures we have shifted some curves slightly to improve clarity

113

The clustering methods provide a small improvement over random selection,

though single-linkage performs slightly better than the other two methods. In this

set of experiments, the use of single-linkage clustering outputs one very large cluster

and a few small clusters (of size 2 to 6). Selection in the large cluster is random.

Still, we obtain better fault coverage because the small clusters are guaranteed to

be covered by the clustering-based selection method; this is not the case for pure

random selection.

Average-linkage and complete-linkage produce more clusters with a more-varied

cluster size distribution. Yet, they do not provide a marked improvement over

random selection. This is explained by the fact that the clusters contain strongly

correlated metrics. This indicates that focusing on the strongest correlations, even

when they belong to different clusters, is not necessarily effective. In addition, the

two methods leave many metrics in singletons because they are associated with

weaker correlations. Such metrics cannot be selected unless additional heuristics

are used in the selection method.

Figure 8.9 shows that MST-based selection performs much better than näıve

selection. Figure 8.10 compares MST-based selection with clustering-based selec-

tion. We first see that MST consistently improves fault coverage over single-linkage.

While MST performs better than complete- and average-linkage overall, for very

small fractions of the available metrics, the clustering methods have a slight advan-

tage. When the choice is limited to very few metrics, the two clustering methods

are likely to choose metrics from clusters that capture different system dynamics,

which is important for fault coverage. However, as the restriction on the number

of metrics is relaxed, these methods fail to cover weaker correlations.

Our results suggest that selection of metrics subset by MST generally provides

better fault coverage than näıve selection and clustering-based selection. MST not

only has better fault coverage than clustering, but also does not need require any

parameter (e.g., cut-off distance) and costs less in computation.

The principal factor underlying the better performance of MST-based selection

is that it not only captures strong correlations but it also retains groups of metrics

that are closest, albeit less strongly correlated. A metric v can have several other

metrics as children because no other metric has stronger correlation to the children

of v than v itself; this grouping is formed even though v may not be strongly

correlated to the children. Clustering, on the other hand, is intended to capture

groups of strongly correlated metrics; weaker correlations are only included as side-

effects. For example, when using single-linkage, metrics are added to a cluster based

114

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m
.

f
a
u
l
t
s

d
e
t
e
c
t
e
d

Fraction of modeled metrics

SINGLE-LINKAGE
RANDOM
CLOSEST

Figure 8.6: Single-linkage clustering vs. näıve selection

on their distance to the closest member of the cluster; this procedure, however,

results in clusters having members that are not necessarily close. Despite the fact

that with single-linkage we retain weaker correlations, it is less effective than MST-

based selection. With single-linkage, some clusters are often large, making the

selection of weaker correlations less likely because they are mixed with potentially

many strong correlations.

Improving Clustering-Based Selection

In our evaluation thus far the maximum intra-cluster distance is set to reflect what

we consider to be strong correlations (i.e., the cut-off is set to (1−R2
min)). Several

techniques exist to measure the quality of clustering. We can try to use such

techniques to improve our clustering and hope that such improvement translates

into better metric selection (i.e., one that achieves better fault coverage). One

popular technique to assess clustering quality is Silhouettes [75]. The Silhouette

score s(x) of an object x is an indication of how good the cluster assignment for

the object x is. The Silhouette score is given by:

S(x) =
b(x)− a(x)

max(a(x), b(x))
(8.6)

where a(x) is the average dissimilarity of x to all the other objects in its assigned

cluster, b(x) is average dissimilarity of x to objects of the neighbouring cluster that

is closest to it. The range of S(x) is [−1, 1], where a value close to 1 indicates a

115

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m
.

f
a
u
l
t
s

d
e
t
e
c
t
e
d

Fraction of modeled metrics

COMPLETE-LINKAGE
RANDOM
CLOSEST

Figure 8.7: Complete-linkage clustering vs. näıve selection

good assignment (i.e., x is closer to the members of its own cluster than to those

of the closest cluster). The average s(x) of all objects in the data (S̄) thus provides

a measure of the overall quality of clustering.

In order to improve the clustering of our data, we searched for the cutoff distance

that yields the highest S̄ when using single-linkage clustering. We use a step size

of 0.01 and repeat each analysis 10 times. We consistently obtain a cutoff distance

of 0.06, corresponding to an average Silhouette score of 0.372. The fault coverage

obtained from using this cutoff distance is depicted in Figure 8.11. We observe that

the fault coverage is much worse than random selection. We repeated a similar

analysis for both complete- and average-linkage and obtained similar fault coverage

results. Two possible explanations for the results are: (1) there is no clear structure

in the data, implying that clustering partitions the data artificially; (2) optimizing

the aspect of clustering quality captured by the Silhouette score is not suitable for

our purpose.

Despite the fact that the Silhouette score does not help improve fault coverage,

our experiments suggest that an appropriate cutoff distance can help increase fault

coverage significantly. For example, Figure 8.12 shows the effect of varying the cut-

off value on fault coverage when using selection by single-linkage clustering with

30% of the available metrics. We can see that choosing a threshold value between

0.12 and 0.34 would increase fault coverage substantially. However, to make such a

choice we would need to have access to fault data in advance, which is not practical.

This result suggests that better fault coverage can be achieved by identifying the

right properties of clustering which need to be optimized; the Silhouette score,

116

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m
.

f
a
u
l
t
s

d
e
t
e
c
t
e
d

Fraction of modeled metrics

AVERAGE-LINKAGE
RANDOM
CLOSEST

Figure 8.8: Average-linkage clustering vs. näıve selection

however, does not match this requirement. A deeper investigation of clustering

quality in this context is left for future work.

Overall our results demonstrate that we can automatically select a subset of the

available metrics that is effective in detecting errors in a system. Our results suggest

that selection of the subset by MST generally provides better fault coverage than

näıve selection and clustering-based selection. With MST-based selection, we can

detect more than two-third of the faults by only tracking one-third of the metrics

modeled with correlations.

8.4.3 Detailed Monitoring

In this section we evaluate the monitoring system’s ability to detect errors when

only detailed monitoring is used. During detailed monitoring, we only rely on

correlation models to track the system’s health. Remember that a total of 5138

SLR models are available to monitor the Trade system. We set FDM
max for all three

aggregation levels to 5 (i.e., FDM
max(g) = FDM

max(m) = FDM
max(c) = 5), which corresponds

to approximately 0.1% of the overall set of models. This value is small enough to

provide a cushion against false alarms, detect any significant disturbance in the

system, and potentially help in problem determination.

The detection results, presented in Table 8.4.3, indicate that the analysis of

correlation models when aggregated at the metric and component levels is slightly

more sensitive to the injected faults. This higher sensitivity reflects the ability

to capture local disturbance using these aggregation levels. However, the higher

117

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m
.

f
a
u
l
t
s

d
e
t
e
c
t
e
d

Fraction of modeled metrics

MST
RANDOM
CLOSEST

Figure 8.9: MST vs. näıve selection

sensitivity comes at the cost of more false alarms; we elaborate on these alarms

further below.

Aggregation level Num. faults detected Num. false alarms

Global 32 0
Metric 36 97
Component 36 97

Table 8.3: Detailed monitoring detection results

Figure 8.13 shows the effect of varying FDM
max and aggregating the results from

the correlation models at the three abstraction levels. We observe that analysis at

the metric level is the most sensitive to faults, while the global level is the least

sensitive. Results of the component-level aggregation lie between the two other

levels.

The false alarms results are shown in Figure 8.14. These show that the global-

level aggregation is the least vulnerable to false alarms. Results of the component-

level aggregation closely follow those of the global level. In contrast, aggregation

at the metric level suffers from the highest level of false alarms, only reaching

a low level when FDM
max = 0.5. One important reason underlying this high level

of false alarms is the fact that a significant number of the modeled metrics have

few correlations. Figure 8.15 depicts the cumulative distribution of the number

118

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m
.

f
a
u
l
t
s

d
e
t
e
c
t
e
d

Fraction of modeled metrics

MST
SINGLE-LINKAGE

COMPLETE-LINKAGE
AVERAGE-LINKAGE

Figure 8.10: MST vs. Clustering-based Selection

of correlations per metric. We see that almost 20% of the modeled metrics are

involved in one correlation only. As such, the FDM
max threshold is violated easily

when even one metric exhibits anomalies.

From the above results, it may appear that the component aggregation level

offers a good trade-off between sensitivity to faults and robustness against false

alarms. However, further investigation of the false alarms reveals that they originate

from 10 models only (from a total of 5138). As false alarms are investigated, the

corresponding models will be discarded from the model ensemble, leaving the most

reliable models and reducing eventual occurrences of false alarms. Therefore, a good

strategy for detecting anomalies is to analyze the models at all three aggregation

levels and set FDM
max to a small value such that the monitoring is sensitive to any

significant disturbance. Aggregation at the metric and component levels ensures

that the monitoring system is sensitive to local disturbance, while with global-level

aggregation, the monitoring system can detect subtle disturbances whose effect is

spread out in the system.

8.4.4 Adaptive Monitoring

Combining minimal and detailed monitoring provides a mechanism to validate error

hypotheses and reduce false alarms. The hypotheses are generated in the minimal

monitoring stage with less information than what is available during detailed mon-

itoring. Also, the hypotheses generated during minimal monitoring may be based

on models that are not as robust as the correlation models used during detailed

119

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m
.

f
a
u
l
t
s

d
e
t
e
c
t
e
d

Percentage of modeled metrics

MST
RANDOM

SINGLE-LINKAGE (CUTOFF BY SILHOUETTE)

Figure 8.11: Single-linkage with cutoff distance selected by the Silhouette score

monitoring. For example, if we track response time metrics using the percentile-

based thresholds as described in Section 8.2.2 with a markup of zero, the monitoring

system will produce many false alarms. However, by leveraging detailed monitor-

ing, none of these the threshold violations are reported, as the violations are not

corroborated at the detailed monitoring level (i.e., we do not observe a noticeable

number of correlation models failing). Without the validation step, these violations

would be reported to the system operators.

Table 8.4 summarizes the fault detection results of the adaptive monitoring ap-

proach. With the manually-selected metrics, the automatically determined thresh-

olds allow detection of 30 faults, of which 25 are confirmed by detailed monitoring.

In all, we can detect 37 of the 39 faults by combining threshold- and correlation-

based models; 32 of these faults are confirmed by detailed monitoring. When the

selection of the metrics for minimal monitoring is automated, we can detect 27

faults using the same number of metrics as we used with manual selection. All the

27 faults detected at the minimal level were corroborated by detailed monitoring.

These results suggest that a completely automated approach to metric selection

and tracking at the minimal monitoring level can produce results similar to those

that rely on domain knowledge and human expertise.

We showed earlier that with detailed monitoring enabled on a continuous basis,

we could detect 36 of the 39 faults we inject. However, this comes at the cost of

greater performance overhead (12% as per our analysis in Chapter 6). In contrast,

the cost incurred by our adaptive monitoring system is much lower. If we consider

tracking the manually-selected metrics with combined threshold-based and corre-

120

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
u
m
.

f
a
u
l
t
s

d
e
t
e
c
t
e
d

Maximum intra-cluster distance

Figure 8.12: Effect of varying the maximum intra-cluster distance with single-
linkage clustering

Mechanism Minimal Monitoring Detailed Monitoring

Manual – Thresholds 30 25
Manual – Correlations 7 7

Automated – Correlations 27 27

Table 8.4: Detection results with adaptive monitoring

lation models at the minimal monitoring level, we can detect 37 of the faults and

experience 48 false alarms in a period of 18 hours. We thus have a false alarm rate

of approximately three per hour. In our experiments we require a minimum of six

samples (i.e., one minute) for our analysis at the detailed monitoring level. There-

fore, the average service time can be approximated by 57
60
(3.88) + 3

60
(4.28). This

represents only a 2.4% overhead. Even if we use two minutes worth of detailed

monitoring for each false alarm, the performance overhead is less than 3%.

8.5 Adaptive Monitoring: Further Considerations

We next briefly discuss several issues pertaining to the implementation of an adap-

tive monitoring approach.

121

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

N
u
m
.

f
a
u
l
t
s

d
e
t
e
c
t
e
d

Fmax
DM

Global level
Metric level

Component level

Figure 8.13: Effect of varying FDM
max on fault coverage

8.5.1 Combining Manual and Automated Metric Selection

In our evaluation, we have assumed that either manual or automated metric selec-

tion is used. Automated selection assumes the availability of no other information

besides correlations. In practical monitoring scenarios, however, some metrics will

have to be collected because either their collection is mandated by system operators

or is recommended by software vendors. Both clustering- and MST-based metric

selection involve choosing metrics from a group or cluster. One way to combine

both approaches is to replace metrics that are selected automatically by equivalent

metrics whose collection is required. Here, equivalence refers to metrics that are

in the same group or cluster. This method does not guarantee that all manually-

selected metrics will be substituted; we can add the metrics which could not be

substituted to the minimal monitoring set. It is, however, important to ensure that

the total cost of minimal monitoring remains within the desired overhead budget.

If this is not the case, we can reduce the target number of metrics the automated

method needs to select.

8.5.2 Using an Intermediate Monitoring Level

The adaptive monitoring approach of this chapter uses two levels of monitoring:

minimal and detailed. When faults are suspected, we enable detailed monitoring

directly. This raises a several issues, especially when the overhead of detailed

monitoring is high.

122

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

N
u
m
.

f
a
l
s
e

a
l
a
r
m
s

Fmax
DM

Global level
Metric level

Component level

Figure 8.14: Effect of varying FDM
max on false alarms

• If minimal monitoring suffers from a high false-alarm rate, the overall cost

of monitoring will become high, since each false alarms would increase the

monitoring level.

• Certain anomalies detected during minimal monitoring via threshold-based

models may reflect genuine errors, which the correlation models cannot detect.

In such cases, triggering detailed monitoring, which only employs correlation

models, is wasteful.

• When a system operates close to saturation, enabling detailed monitoring will

make the system unstable. This instability arises from the reduced efficiency

caused by the detailed monitoring and the system having accepted more work

than it can handle.

To address these issues, we can introduce an intermediate monitoring level.

The purpose is to see if the analysis of correlation models corroborates anomalies

observed during minimal monitoring and thereby determine if detailed monitoring

will be useful. At this new level, we probe a subset of the correlation models. If

we do not detect any anomalies, then we save the cost of the unnecessary detailed

monitoring, albeit at the risk of missing anomalies that detailed monitoring could

have detected. Otherwise, we can proceed with the full-scale detailed monitoring.

Because the overhead of the intermediate level lies between minimal and detailed,

it allows the system to adjust gradually to the reduced efficiency caused by the

more-expensive monitoring levels (e.g., by accepting less work). This helps avoid

instability when the system is already operating close to saturation.

123

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160

F
r
a
c
t
i
o
n

o
f

m
o
d
e
l
e
d

m
e
t
r
i
c
s

Number of correlations

Figure 8.15: Metric correlation distribution

The metrics to be collected at the intermediate monitoring level can be se-

lected using the methods described in Section 8.1.2. The choice will depend on

an operator-defined performance overhead budget. To achieve overhead reduction,

this budget needs to be smaller than that of detailed monitoring.

8.5.3 An Alternative Adaptive Monitoring Approach

In the course of this work, we considered an alternative approach to adaptive mon-

itoring. It entails using an algorithm to discover dynamically which set of metrics

it would be most pertinent to collect when anomalies are detected during mini-

mal monitoring. Devising such an algorithm is difficult without knowledge of the

system structure. However, we can devise an algorithm that makes use of the

metric correlation information. When a metric in the minimal monitoring set be-

haves anomalously, this algorithm enables collection of those metrics correlated with

the anomalous metric. For this algorithm to be effective, it is important to have

representatives from each group of correlated metrics in the minimal monitoring

set. If a cluster of correlated metrics does not have representatives in the mini-

mal monitoring set, then the cluster would not be analyzed, as it is not reachable.

The monitoring overhead can be reduced by employing a clustering technique that

partitions the set into small clusters. As a result, anomalies are detected during

minimal monitoring would only trigger the additional monitoring of small clusters

of metrics.

This algorithm suffers from several shortcomings. First, it requires the use of

124

clustering techniques. As discussed in Section 8.1.2, the use of clustering presents

several challenges. The effectiveness of the algorithm depends heavily on the clus-

tering method and the parameters used. Second, despite the use of representatives

from all clusters of correlated metrics, we can fail to detect anomalies if the rep-

resentative metrics are not affected; our automated metric selection methods also

share this shortcoming.

8.5.4 Dealing with Slow Fault Resolution

Fault resolution can be time-consuming, especially when it involves interaction

with software developers or vendors. As a result, a fault may continue to exist

long after it has been identified. If we simply revert to minimal monitoring each

time errors are confirmed and diagnosis performed, then the monitoring system

will repeatedly enable detailed monitoring. This is inefficient, as the overhead of

detailed monitoring will be incurred unnecessarily, slowing down the part of the

system that is still healthy. In addition, the same information will be reported

repeatedly, potentially wasting system operators’ time.

Two approaches to dealing with this problem include caching of monitoring

results and partial model deactivation. In the first approach, we keep a cache

of the detection results during minimal monitoring. If a newly detected anomaly

involves metrics which were reported and confirmed in the recent past, we can

skip detailed monitoring under the presumption that it is a re-occurrence. The

difficulties with this approach include defining what represents recent past and

dealing with multiple, independent faults that occur within the same time frame.

The second approach is to deactivate temporarily those models that have failed

because of a fault that is yet to be fixed. With our modeling approach, this implies

removing the affected correlation models from our ensemble of models as well as

any affected threshold-based model. The shortcoming of this approach is that it

requires manual intervention; when the fault is resolved, the monitoring system

needs to be informed so that the deactivated models can be reinstated. Resolving

some faults may also require updating the application or the system software, which

may require that our system model be re-learned. In that case, manual intervention

would be difficult to avoid.

125

8.5.5 Keeping Metric Correlation Models Up-to-date

Software systems are often subject to change; software updates and patches, for

example, are common occurrences. Likewise, user behaviour can also change. These

changes can affect metric correlations, causing the model parameters to change

or even inducing new correlations. Therefore, the correlation models need to be

checked when such changes occur. If no mechanisms exist to keep abreast of such

changes, then the correlations need to be re-evaluated from time to time to ensure

validity.

While the system is healthy, which we expect to be the case most of the time,

only the metrics collected during minimal monitoring are available for analysis. We

therefore need to enable the collection of those other metrics. Two options exist in

this regard: we can enable collection of the metrics we have already modeled, or

we can enable collection of metrics regardless of whether they were modeled before.

The latter option has the advantage of allowing new correlations to be identified.

Since enabling the collection of all metrics at runtime would incur high cost, we

need to limit the collection to subsets such that the overhead does not exceed a

specified budget. Over time, we can cover the space of metric pairs, while the

system operates normally. We discuss this idea further as an opportunity for future

research in Chapter 10.

8.6 Summary

In this chapter we describe our approach to adaptive monitoring, which is enabled

by our system model comprising an ensemble of metric correlation models. Our

approach involves pre-specifying a fixed number of monitoring levels, corresponding

to the monitoring of different subsets of the available metrics. Adaptation takes the

form of transitions between the monitoring levels. We present the approach using

two levels of monitoring, namely minimal and detailed. We propose automatic

methods to select metrics to monitor at the minimal level. We also propose the

use of threshold-based models to overcome some limitations of metric correlation

models. We present techniques to combine metric-level results in order to gauge

the overall health of the system.

By means of fault injection experiments, we evaluate the effectiveness of our

monitoring approach in detecting errors and in avoiding false alarms. More specif-

ically, we study the performance of minimal monitoring, detailed monitoring, and

126

their combination in an adaptive monitoring system. We show that correlation-

based monitoring effectively detects the vast majority of the faults we inject. We

further show that, even with the availability of domain knowledge, the use of met-

ric correlations improves error detection during minimal monitoring. More impor-

tantly, we show that an adaptive monitoring system can detect a significant portion

of the faults at a fraction of the cost of detailed monitoring. We demonstrate how

a completely automated, adaptive monitoring system can detect 70% of the faults

using 30% of the modeled metrics, without relying on any domain knowledge or

human expertise. Finally, our cost analysis shows that the cost of adaptive mon-

itoring is slightly higher than that of minimal monitoring and much lower than

detailed monitoring. Adaptive monitoring allows us to get the benefits of detailed

monitoring without its cost.

One important function of adaptive monitoring is to provide detailed data in

the event of faults to enable diagnosis. The next chapter describes our approach to

localizing faults in the system.

127

Chapter 9

Diagnosis

The failure of software systems can have damaging consequences for organizations,

including preventing normal operation and impacting goodwill. Despite the best

software engineering and system management practices, errors and failures still oc-

cur. To limit the impact of these errors and failures, it is crucial to identify their

causes quickly and take remedial action. However, the size and complexity of mod-

ern software systems make these tasks difficult, even for skilled and knowledgeable

system operators. The purpose of this thesis is to reduce the involvement of human

operators in system monitoring and problem determination tasks. In this chapter,

we tackle the problem of automatically localizing faults. The problem of automatic

recovery from errors and failures is a vast research area in its own right and is not

investigated in this work.

Two factors make the task of fault localization time-consuming. First, software

systems typically comprise many interdependent components and layers, which

makes finding the source of errors difficult. Second, software system can expose a

sea of complex data; finding relevant information manually in this data is a difficult

task. We address the fault localization challenge by augmenting the monitoring

system with automated diagnosis capabilities. As with error detection, we do not

assume the availability of any information about the internals of the system, nor

do we assume prior knowledge of faults. We devise diagnosis algorithms that use

metric data and rely on a metric-based system model.

Intuitively, we expect diagnosis algorithms to work better when more data about

the system health is available. However, collecting such extensive monitoring data

incurs high performance overhead. However, one of our requirements for monitoring

is that the performance overhead be low. This problem represents our motivation

for devising an adaptive monitoring solution. In previous chapters we described

128

an approach to system modeling that is suited to adaptation, and a monitoring

approach that provides detailed data only when required. Detailed monitoring is

not only needed to validate error hypotheses but also to enable fault localization.

As such, the monitoring system performs diagnosis when the most metrics are

collected. Specifically, our diagnosis algorithms are executed when two conditions

are satisfied. First, errors or failures are suspected during minimal monitoring.

Second, a global analysis of regression models during detailed monitoring indicates

that the system is not in a healthy state.

As described in Chapter 7, our system model is an ensemble of metric correlation

models. Alhough it is known that “correlation does not imply causation,” corre-

lation often provides useful insights about phenomena that underlie observations.

The insight behind our diagnosis approach is that correlations capture regularity

in a system’s behaviour, which is imposed by the system’s structure, which is a

signature of the system in the healthy state; in the event of faults, correlations

associated with the faulty components suffer from the most perturbance.

In this chapter we elaborate on how to leverage our system model to diagnose

faulty components. Given our assumptions, there are two factors that make it diffi-

cult to pinpoint specific components as faulty. First, many component dependencies

exist within a software system; it is difficult, with the correlation information alone,

to disambiguate a faulty component from those that depend on it. Second, when

a given stable correlation is perturbed, we cannot readily determine which one of

the associated metrics is at fault. Without knowledge of component dependencies,

we cannot determine the direction of the causal relationship between the metrics, if

one exists. Therefore, rather than singling out a specific component, our diagnosis

algorithms provide a list of components deemed to be faulty. We assign to each

reported component an anomaly score reflecting the degree to which it is believed

to be faulty. Such localization allows operators to quickly pin down the faults,

albeit with some manual effort. It is our thesis that, in the absence of any other in-

formation besides what is available from the analysis of correlations, the operators

can save much time by inspecting the components in the order reported.

The diagnosis approach we discuss here is not the only way to identify faulty

components. Other sources of information (e.g., log records) can contain valuable

information to identify faults. The output of our diagnosis algorithms (i.e., the list

of components and their scores) can be combined with the output of other, ideally

independent, algorithms to improve diagnosis results.

129

9.1 Analyzing Regression Models

Figure 9.1 depicts our view of the target system; each model is associated with

metrics and metrics belong to components. This view suggests an intuitive, bottom-

up, approach assessing the health of individual components. We can check whether

a metric is anomalous by analyzing results from the models associated with it,

and then reason about the components by analyzing the metrics or the models

associated with them. When a component fails or experiences errors, its metrics

likely behave anomalously, reflecting the change of behaviour or performance; the

perturbed metrics may cause the associated models to fail. Using information about

the failed models and the observations for which they fail, it is possible to quantify

the extent of the perturbance.

Our overall approach is depicted in Figure 9.2. When detailed monitoring is

enabled, we retain results of the correlation models in sliding windows. From these,

we compute the model-level scores and perform further aggregation at the metric

or component level. We first evaluate the correlation models individually, assigning

each an anomaly score. We then assign anomaly scores at the level of metrics or

components by aggregating model-level scores. Finally, we rank, short-list, and

report the top anomalous components to system operators.

����������	

����
�	�	
����
�	��
����
�	�����

�����������

����
���	
����
����
����
�������
������

�����	
������
������ ������������

������

Figure 9.1: Relationship between components, metrics, and models

Each regression model provides several pieces of information which we can use to

characterize the observed anomalies. First, the strength of the correlation between

two metrics is known from when a correlation is identified. Second, during moni-

toring, we can check whether a model has detected outliers, and we can estimate

the degree to which an observation is an outlier. Outlier degree is a function of the

prediction error for a particular observation (i.e., the difference between observed

value and the predicted value for a target variable). We can use these indicators

to compute an anomaly score for each model. There are many ways in which the

130

���

���

���

�������
	����
�
����
��

�	����

��
�
�
�

���������

����
����

�����
����
����
����������������

�
������
������

������
�	����

�����	�����

Figure 9.2: Approach to diagnosis

available indicators can be combined to compute anomaly scores; below, we present

some basic approaches together with the underlying intuition.

9.2 Model-Level Anomaly Scores

Let f(model, data) be the degree to which a model fits the learning data and d be

the outlier degree. Both f(.) and d are assume to have the range [0, 1). In our work

f(.) = R2, an indication of the correlation strength, and d is the studentized residual

normalized by the maximum value of d observed from the models considered in a

given sample.

Four alternative anomaly score definitions for a model and a given sample are

as follows:

131

S1 =







1 if observation is an outlier

0 if observation is normal

S2 =







f(.) if observation is an outlier

0 if observation is normal

S3 =







d if observation is an outlier

0 if observation is normal

S4 =







g(f(.), d) if observation is an outlier

0 if observation is normal

S1 is the most basic score, whereby a model that reports outliers is assigned a

score of one, and the correlation strength and the outlier degree are ignored. With

S2, the score of a model is the degree to which a model fits the learning data. The

intuition behind this score is that the more correlated a pair of metrics is, the more

anomalous it is when it fails to hold. The S3 score is the normalized outlier degree.

The more an observation fails to fit the model, the larger this anomaly score is.

Finally, S4 is a compound score based on both the normalized outlier degree and

the goodness of fit. We use g(f(.), d) = R2 × d

As described in Chapter 8, to improve robustness, we require a model to con-

sistently report outliers before it is taken to have failed. More specifically, we use

equation 9.1 to determine if a model has failed.

St(m) =







1 if
∑k−1

i=0 st−i(m) > w
2

0 otherwise
(9.1)

where st(m) = 1 if an outlier is detected at time t by a model m and 0 otherwise

and w is the window length. The value of d varies from sample to sample. Since a

model’s assessment is based on a sliding window, we set d to the maximum value

found in the window.

It is difficult for system operators to work directly with the set of models that

report outliers, as their number can be large and many of the metrics these models

cover can be shared. We therefore need means to combine model-level scores at the

level of metrics or components.

132

9.3 Metric-Level Anomaly Scores

A plausible hypothesis we can make regarding a component that fails or has errors

is that it will display the most anomalous behaviour. We gauge a component’s

behaviour through its metrics. Two intuitive definitions of what “most anomalous”

metric means are:

• It is a metric that is associated with the most perturbed model. A model’s

level of anomaly can be quantified using any of the factors we discussed earlier.

• It is a metric whose associated metrics together display the highest degree of

perturbance.

To formalize these notions, let M(v) be set of models associated with metric

or variable v and S(m) be the anomaly score of a model m; S(m) can be any of

the scores described in Section 9.2. In order to find the most anomalous metric,

we need to combine the model-level anomaly scores at the metric level and then

choose the one with the largest score. Two ways to compute metric-level scores

that capture the intuition behind our definitions are as follows:

1. Max-score: We assign each metric the highest anomaly score from the mod-

els to which it is associated. This global score is given by:

G(v) = max
m∈M(v)

S(m) (9.2)

2. Ratio-score: We sum the individual model scores such that contributions

from all the associated models are included. Further, to put all metrics on

equal standing, we normalize the sum by the maximum score which can result

from the summation. This global score given by:

G(v) =

∑

m∈M(v) S(m)

|M(v)| × Smax

(9.3)

9.4 Component-Level Anomaly Scores

We can also compute anomaly scores for system components. To this end, we

consider three methods that make use of metric-level scores, model-level scores,

or the number of anomalous metrics. Figure 9.3 depicts the methods with the

information they require.

133

����������
	�
���
����

���������
��

����

��������
��

����

����������
	�
���
����

��������
��

����

����������
	�
���
����

��������

������

����� ����� ������

Figure 9.3: Types of component-level scores

1. Component Ranking Based on Metric Scores (CR-MS): The first

method consist of assigning anomaly scores at the level of metrics as de-

scribed in Section 9.3 and then extracting the component information from

the reported metrics. In particular, we score the metrics, rank them, and

instead of reporting metrics, we report the corresponding components. Sev-

eral metrics belonging to the same component may be anomalous and thus

be ranked; we only consider the rank of the first metric of each component.

As a result, the component-rank may be much lower than the metric-rank of

the first metric pertaining to that component, since several metrics that are

ranked higher may belong to the same component.

2. Component Ranking Based on Component Scores (CR-CS): The

second method is to compute the scoring functions described in Section 9.3

directly at the level of components. To this effect, we replace the metric

v by the component c in Equations 9.2 and 9.3. We would thus use M(c),

which is the set of models associated with metrics of component c, and the

scores S are aggregated per component (i.e., m ∈ M(c)). We can use the

resulting anomaly scores directly to rank and short-list the most likely faulty

components.

3. Component Ranking Based on the Proportion of Anomalous Met-

rics (CR-PAM):The third method involves computing, for each component,

the ratio of metrics reported to be anomalous. A metric is considered to be

anomalous if any model associated with it fails. Let V(c) be the set of mod-

eled metrics pertaining to component c and O(c) be the subset of V(c) (i.e.,

O(c) ⊆ V(c)) which is considered anomalous. The component score is given

134

by:

G3 =
|O(c)|
|V(c)| (9.4)

9.5 Reporting Diagnosis Information

The metrics or components that do not conform with the expected behaviour will

have non-zero anomaly scores. We need to make two choices regarding what diag-

nosis information to present to system operators. First, we need to decide whether

to report a ranked list of components or a ranked list of metrics. Second, we have

to choose whether to report the top k items or report all items with non-zero score

to system operators.

With the anomaly scores described earlier, we have the ability to process and

report either the most anomalous metrics or the most anomalous components. Re-

porting metrics raises two issues: First, there may be a large number of metrics

that exhibit anomalous behaviour. Thus. it may not be easy to make sense of this

list, especially if metrics of the same components are ranked far apart. Second, by

limiting the list to a fixed size k, we may lose valuable information.

By reporting components instead of metrics, we can address the above issues to

some extent. There are typically far fewer components than metrics in a system,

so reporting components is less likely to confuse the system operators. Further, we

can use more of the results of the analysis of metrics by combining that information

at the level of components. Because of these advantages, in our evaluation we focus

on the component-level diagnosis.

While we opt to report component-level diagnosis, we should point out that in

practice diagnosis at both levels can prove valuable to system operators. Metrics

carry extra information which may be lost if only components are reported. This

information is often valuable in determining the nature of the errors or failures

experienced. For example, performance-related problems tend to have a greater

impact on timing metrics. Likewise, disturbance of correlations involving activity

metrics often indicates anomalous changes in execution flow. An additional consid-

eration is that metrics carry fine-grained details. For example, a metric may relate

to a specific function of a component, which may assist operators in isolating the

cause of anomalies quickly.

In our evaluation, we choose to report the top k components based on the

assigned anomaly scores. The parameter k gives system operators some control

135

over the use the diagnosis system. The chosen value of k will depend on their

confidence in the diagnosis system and the amount of time they are willing to

spend investigating its output. The smaller the value of k, the faster the system

operators can investigate the reported components. In the event that the actual

faulty component or any of its metrics is not short-listed, the amount of time the

operators will waste is limited. However, with larger values of k, the operators will

lose much valuable time when the relevant item is not reported.

The alternative to presenting the top k diagnosis is to report all anomalous

metrics or components. While in this thesis we assume no knowledge of the system’s

internals, in practice system operators tend to have some such knowledge. If this

is the case, the operators can find semantic linkages among subsets of the reported

items, in particular when metrics are reported. For example, if an operator finds

some database metrics reported together with metrics of the JDBC subsystem in

an application server, he can readily suspect a fault related to data retrieval. If we

restrict the list of reported metrics to a small length k, such analysis becomes more

difficult.

An additional advantage of reporting the complete diagnosis results is that it

allows system operators to get a sense of the extent to which system components

are affected by faults. The reported anomaly scores give an indication of the degree

to which the components are impacted.

9.6 Experiments and Analysis

We now present an evaluation of our diagnosis approach based on our 39 fault-

injection experiments using the Trade system. For a description of the faults, the

reader is referred to Chapter 5. In this chapter, we only evaluate diagnosis for the

cases that can be detected by our monitoring system with the parameters described

in Chapter 8. Our system model comprises metric correlations modeled with SLR.

For error detection, we combine results from the global, metric, and component-

level analyses; in our experiments, FDM
max is set to 0.1% for all three aggregation

levels. Table 9.1 provides a summary of the results from these experiments.

Our approach to evaluating diagnosis accuracy and comparing different methods

relies on the component ranks. A perfect result is for a faulty component to be

ranked first. To evaluate the overall results, we use the cumulative distribution

of faults with respect to the ranks of the true faulty components. In the figures

136

Number of modeled metrics 224
Number of modeled components 35
Number of faults detected by detailed monitoring 36 (3 missed)

Table 9.1: Results from the monitoring of the Trade system using SLR models

presented below (e.g., Figure 9.4 1), a point (x, y) denotes the number of faults (y)

for which the computed rank is x or less. In essence, the more faults we can diagnose

with a given maximum rank, the better the results are. We should point out that, in

comparing two diagnosis algorithms, it may be preferable to consider differences for

smaller rank values to be relatively more important. Smaller rank values imply that

system operators can identify the faulty component faster. However, if there are

major differences at the larger rank values, then more care is needed in interpreting

the results.

Figures 9.4 and 9.5 shows the results of applying the Max-score (Equation 9.2)

at the metric and component-level respectively. Remember that when the scoring

function is applied at the metric level, we extract the component ranking from

the results. The results show that for almost 2/3 of the cases where errors are

detected, we can rank the faulty component within the top 15. This is much better

than random ranking; if we order the 35 modeled components randomly, we have

approximately 50% chance of ranking the faulty component within the top 17. More

importantly, we can short-list the faulty component within the top 5 components

in 15 of the 36 cases. These results provide evidence that valuable information can

be obtained from the analysis of metric correlations.

Besides the overall results, we would like to know which model-level scoring

function is the best and what aggregation level is the most adequate. In Fig-

ures 9.4 and 9.5, we observe that using d for the model-level score produces the

most accurate ranking. When using d as the model-level score, there is no signif-

icant difference in the results if aggregation is performed either at the metric- or

component-level (see Figure 9.8).

Figures 9.6 and 9.7 summarize the ranking results obtained by using the Ratio-

score (i.e., Equation 9.3). In both cases, we obtain more accurate results with the

raw mode-level score (i.e., 0 or 1) or R2, although the advantage these scores enjoy

is less clear when we directly aggregate the scores at the component-level.

Figure 9.8 compares the best result from the different algorithms discussed

1To improve the readability of the figures, we have joined the fault count results using lines;
as such, line segments between successive ranks have no meaning

137

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m
.

F
a
u
l
t
s

Rank

R2

d
R2 x d

Figure 9.4: Diagnosis with Max-score and CR-MS

above. It also includes results of ranking components based on the ratio of anoma-

lous metrics (i.e., CR-PAM). These results show that computing the component-

level score as a ratio of anomalous metrics is less accurate than alternatives based

on aggregating model-level scores. We also find that the most accurate results are

obtained with the following combination:

1. Using d as the model-level anomaly score.

2. Using Max-score given by Equation 9.2 to aggregate model-level scores.

3. Aggregating anomaly scores directly at the level of metrics (CR-MS) or com-

ponents (CR-CS).

While Max-score and Ratio-score are able to synthesize useful diagnosis infor-

mation, we should point out that both have shortcomings. The main issue with the

Ratio-score is that it ignores the number of correlations associated with a metric.

For instance, a metric may be correlated with two other metrics; if the correlation

with one of the metrics is perturbed, the score is 0.5. Another metric may be cor-

related with 100 other metrics; if 50 of the correlations experience perturbance, the

score is still 0.5. However, the score in the first case is more sensitive in that it can

vary greatly with small changes in the number of broken correlations.

However, metrics that have many correlations do not necessarily have more

stable Ratio-score values. The more correlations a metric has, the more likely

it is for many of these correlations to be accidental. When faults occur, many

138

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m
.

F
a
u
l
t
s

Rank

R2

d
R2 x d

Figure 9.5: Diagnosis with Max-score and CR-CS

such correlations may break even though the metric is not anomalous. Consider,

for example, a simple system with the components shown in Figure 9.9. Assume

that a fraction of requests to A require execution of a method in B and another

fraction require execution of a method in C. The metrics mi are activity counters,

all of which are correlated with one another. The correlations involving {m1, m2},
{m1, m4}, {m3, m2}, and {m3, m4} are incidental. If a fault causes C to fail, all

these incidental correlations will break as shown in Figure 9.10. In this instance,

components A and B have scores as large as that of C.

The particular example shown in Figure 9.9 and 9.10 also sheds some light on

inaccuracies that arise because of dependencies in the system. Components that

depend on faulty components may appear equally or even more anomalous than

the true faulty component. In the figure, we see that m2 and m4 belonging to

components A and C respectively have an equal number of broken correlations.

In fact, it is possible for m2 to have more broken correlations if some correlations

associated with m4 were not retained (e.g., because of numerical imprecision or

measurement errors) in the model identification phase.

The Max-score, on the other hand, eventually corresponds to the anomaly score

of a single model. As such, it makes little use of the information provided by the

other failed models. It is possible for correlations of components that depend on

the faulty component to display more perturbance than correlations of the faulty

component. In the example depicted in Figure 9.10, nothing prevents a broken

correlation associated with component A or B to have the highest anomaly score. In

fact, this may occur for reasons as simple as numerical imprecision when computing

139

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m
.

F
a
u
l
t
s

Rank

1/0
R2

d
R2 x d

Figure 9.6: Diagnosis with Ratio-score and CR-MS

the outlier detection statistic, correlation strength, or the anomaly scores.

Despite these shortcomings, our results show that both Ratio-score and Max-

score produce good diagnosis results, with Max-score being the better alternative.

This is in line with the intuition that a faulty component is the one that displays

the most anomalous behaviour. Nevertheless, further research is needed to see how

we can overcome the limitations of correlation-based diagnosis. We describe some

of our work to address this problem in Chapter 10 and other ideas in Chapter 11.

9.6.1 Nature of Faults and Diagnosis Accuracy

One key factor that determines diagnosis accuracy is whether faults perturb cor-

relations associated with the faulty component. If pertinent metrics affected by a

fault are not modeled, the diagnosis accuracy suffers. Likewise, if a fault causes

the faulty component’s metrics to become anomalous but does not perturb the

metrics’ correlations, the diagnosis accuracy suffers. To study such phenomena, we

group our faults in two categories according to their expected effects and evaluate

the diagnosis results accordingly. Performance-related faults are those that cause a

slow-down in a component of the system. Examples of our faults in this category

include delays caused by thread-sleeps, database table locks, and reduction of the

thread and database connection pool sizes. Nineteen of our thirty nine faults fall

in this category. Execution flow-related faults are those which cause the flow of

execution in the system to diverge from the normal case. Our faults in this cat-

egory include unhandled exceptions in components, runtime component removal,

140

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m
.

F
a
u
l
t
s

Rank

1/0
R2

d
R2 x d

Figure 9.7: Diagnosis with Ratio-score and CR-CS

and corruption of the database authentication credentials. The remaining twenty

faults fall in this category.

Figure 9.11 presents the separate evaluation of the two categories of faults.

These results indicate that faults affecting the execution flow can be localized more

precisely, while faults that affect performance are more difficult to localize. An

important reason for the difference in accuracy is that performance-related faults

tend to maintain, even strengthen, metric correlations. Consider the example illus-

trated in Figure 9.12, where the function foo() depends on foo sub(), which in

turn depends on foo sub sub(). Because the latter dominates the response time of

the two other functions, all the response times are correlated. If because of a fault

the response time of foo sub sub() increases (as shown in the figure), then the

response time of the dependent functions will increase as well, thereby maintaining

the correlations despite there being a fault.

9.6.2 Diagnosis with Alternative Modeling Techniques

Of the alternatives to SLR which we have considered, SLR-T and ARX represent

the better choices. As discussed in Chapter 8, though these techniques are costlier

and require more stringent tuning to reduce false alarms, they provide better met-

ric and component coverage than SLR. To evaluate whether this extra coverage

translates into improved diagnosis accuracy, we use these techniques to model met-

ric correlations and the Max-score, CR-MS algorithm using d as the model-level

score. The results, shown in Figure 9.13, show that both modeling techniques im-

141

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m
.

F
a
u
l
t
s

Rank

1/0, ratio-score, CR-MS
R2, ratio-score, CR-CS
d, max-score, CR-MS
d, max-score, CR-CS

CR-PAM

Figure 9.8: Overall comparison of diagnosis methods

�

�

�� ��

��

�

��

Figure 9.9: Example: component dependencies in a simple system

prove diagnosis accuracy as compared to SLR. While SLR-T brings about a slight

improvement, ARX provides considerable gains over both SLR and SLR-T.

To understand the reason behind the improvement, we break down the results

with respect to the two fault categories discussed earlier. Figures 9.14 and 9.15

present these results. We observe that for faults that affect execution flow, ARX

is slightly better than SLR, which is in turn a little better than SLR-T. For such

faults, these more-powerful techniques do not provide any major benefit, as the

pertinent correlations are already captured by SLR.

In contrast, Figure 9.15 shows that both alternative modeling techniques per-

form much better than SLR in diagnosing performance-related faults. The main

reason for this improvement lies in the ability of these modeling techniques to rep-

resent correlations between activity and response time metrics, which performance-

related faults readily perturb. As shown in Chapter 7, both SLR-T and ARX

capture a significant number of such correlations.

142

�

�

�� ��

��

�

��

Figure 9.10: Example: component dependencies and broken correlations

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m
.

F
a
u
l
t
s

Rank

Execution-flow related
Performance-related

Figure 9.11: Comparison of diagnosis of performance- versus execution flow-related
faults

Our results indicate that both SLR-T and ARX improve diagnosis accuracy. Be-

cause our system model is an ensemble of correlation models, we can accommodate

the unique correlations that these modeling techniques capture. This, however,

increases the computational cost of learning our system model. We can reduce this

cost by taking the following approach: for each pair of metrics considered, apply

the modeling techniques in the order of their cost, and use the technique that has

the lowest cost but which is powerful enough to capture the correlation.

As suggested in Chapter 7, we can employ more stringent model identification

parameters to reduce the level of false alarms seen with SLR-T and ARX. An

alternative approach is to use SLR models for detection at the minimal level as

well as for the validation of errors or failures at the detailed level; we can use the

combined set of models from all three modeling techniques to perform diagnosis. In

Chapter 7, we showed that the three modeling techniques are almost equally good

in detecting our faults, which implies that our detection results will not change by

143

�����

���������

�������������

�����

���������

�������������

Figure 9.12: Example of a performance fault that does not affect correlations

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m
.

F
a
u
l
t
s

Rank

SLR
SLR-T

ARX

Figure 9.13: Diagnosis with alternative modeling techniques using Max-score, CR-
MS

only relying on SLR models. However, our diagnosis will be greatly improved by

leveraging all three types of models.

9.6.3 Difficulty of Evaluating Diagnosis

Our diagnosis approach produces much more valuable information than what is

apparent from our rank-based analysis. Our evaluation is limited in two ways.

First, it is stringent in that it relies on strict syntactic matching of component

names. Second, in many instances we encounter ties in anomaly scores, which we

address by ordering the tied items randomly.

144

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m
.

F
a
u
l
t
s

Rank

SLR
SLR-T

ARX

Figure 9.14: Diagnosis with alternative modeling techniques (Execution flow-
related faults)

Syntactic Matching Strict syntactic matching requires that the exact name of

the faulty component be found as a substring in the list of the reported items. For

instance, if a fault is injected in the component OrderEJB, we require the name

of a reported component to contain the OrderEJB string. In our experiments,

we have commonly observed components that are semantically linked to the faulty

component being top-ranked. However, this information is not reflected in our rank-

based analysis based on syntactic matching. System operators can often infer fault

in a component by semantic matching. For example, if the diagnosis suggests that

TradeEJB.getOrders() is displaying anomalies, one can readily suspect OrderEJB

to be possibly faulty. With very little background knowledge, one would know that

OrderEJB provides access to the order data.

Ties in Anomaly Scores When the scores assigned to metrics or components are

equal, we order them arbitrarily. As such, a lower rank in some cases does not nec-

essarily indicate diagnosis inaccuracy. Ties are difficult to avoid when working with

correlations. With our approach, at the lowest level, we assign anomaly scores to

correlation models, which in turn are aggregated at the metric- or component-level.

When a correlation model fails, we cannot determine which metric is anomalous;

the model’s score is shared by the two metrics. This leads to ties. This is especially

noticeable when we use Max-score, whereby both the top-ranked and second-ranked

items are tied because they are associated with the same model. Therefore, only

considering the top 1 metric or component can be misleading; instead, it is better

145

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m
.

F
a
u
l
t
s

Rank

SLR
SLR-T

ARX

Figure 9.15: Diagnosis with alternative modeling techniques (Performance-related
faults)

to take the top k entities into account, where k > 1.

An alternative way to reduce the impact of ties is to report correlated metric

pairs instead of individual metrics or components to the system operators. While

this appears to be a more-natural solution, system operators may find it more

difficult to use. As mentioned earlier, the number of correlated pairs reported

can be high, making the analysis cumbersome. Moreover, operators may find it

difficult to understand and interpret the reported correlations, especially when the

correlations are incidental.

9.7 Summary

In this chapter we demonstrate that the analysis of metric correlation models can

assist system operators in identifying faulty components fast. We devise several

anomaly scoring functions to quantify anomalies using the correlation information

and the outlier degree observed. We describe techniques to compute metric-level

anomaly scores based on the model-level scores. Likewise, we present techniques to

generate a component-level diagnosis using the model-level and metric-level scores.

We discuss the usefulness of different types of diagnosis information to system

operators. We also elaborate on the limitations of metric correlations in pinpointing

the exact sources of faults.

We use a multi-tier software system and fault injection experiments to evaluate

146

our diagnosis approach. We perform a detailed analysis of the diagnosis potential of

metric correlation models using fine-grained, software component-level faults. Our

results indicate that our anomaly scores can assist in finding the faulty component

by ranking them high. More specifically, using SLR models, we can shortlist the

faulty component in 61% of the cases where errors are detected within the top 15

and 42% within the top 5. Our results suggest that anomaly scores based on

the maximum outlier degree observed produce the most accurate diagnosis. We

investigate the impact of the nature of faults on the diagnosis accuracy; we show

that performance-related faults are harder to identify using SLR models. We study

how the more powerful alternatives to simple linear regression can improve diagnosis

accuracy: we shortlist the true faulty component in 80% of the cases within the

top 15 and 67% within the top 5. Our analysis reveals that the improvement is

brought about mostly by capturing correlations between acvitiy and timing metrics.

147

Chapter 10

Discussion

In this chapter we discuss the wider applicability of our solution approach and its

limitations. We also present a summary of our work, which is not covered in this

thesis, to improve the basic solution approach by relaxing some of its assumptions.

10.1 General Applicability

In this work we showed the effectiveness of our solution approach using a test-bed

based on the WebSphere application server and the DB2 DBMS. We have shown

that stable metric correlations exist in different applications that execute on this

setup. Our results should carry over to other Java EE application servers, since

the use of the JMX technology to expose management metrics is standard and

the Java EE framework itself is standardized. Because the application components

implement well-defined interfaces, it is possible to know which metrics are likely

important (e.g., those pertaining to remote calls) and thus worth exposing to a

monitoring system. The required instrumentation is typically implemented in the

middleware, removing any dependence on application-specific instrumentation. The

use of a different DBMS should also not affect our results, since different DBMS

implement the same core functionality and, as such, and expose similar metrics.

In order to apply our solution approach to other component-based frameworks,

such as .Net and CORBA, and to any other type of software systems, three re-

quirements need to satisfied: first, we need a way to discover system components

and their metrics; second, we need a way to know what management interfaces are

available and how to use them; third, metric collection should be controllable.

148

The first two requirements can be met by standardization efforts. One promi-

nent effort is Web-Based Enterprise Management (WBEM) [37], which makes use

of open standards and technologies to unify the management of distributed com-

puting systems. WBEM leverages the Common Information Model (CIM) [38] to

to describe managed entities (hardware or software) in a language-independent for-

malism and makes this information available through a standard interface. The

software vendors need to implement “providers” to allow WBEM infrastructure to

interface with their products.

The WBEM infrastructure has been implemented in several popular operat-

ing systems including Microsoft Windows, RedHat Enterprise Linux, Mac OS X,

and Solaris, allowing WBEM-aware entities running on them to be monitored and

managed in a unified manner. WBEM is not specific to enterprise computing sys-

tems, but it is being used in other domains such as telecommunications [53]. In the

absence of such standardization efforts, we can still apply our approach by discover-

ing components and their metrics from system artifacts such as configuration files,

source code, and documentation. We can extract the required information from

these artifacts either automatically (e.g., by writing text or code analysis tools) or

manually, albeit with more effort.

Knowing the types and the cost of the available metrics can make our solution

approach more effective. The use of CIM entails defining metadata that provides

some semantic information about metrics. With such information, for example,

we can extend the use of threshold-based models in other systems. If we can

determine that a metric represents the response time of an entity, we can leverage

historical data to automatically create threshold-based models. In the absence

of standardized metric metadata, it should also be possible to infer metric types

and cost information from naming conventions. It is common for metric names to

include terms such as “count”, “size”, “time”, which gives some indication about

the nature of the metrics. One avenue for future research is to explore whether

the type information can be inferred automatically by analyzing the nature of the

metric data (e.g., by considering the values assumed, their variance, etc..)

The third requirement is easily met in Java EE-based systems because much

of the useful instrumentation is implemented in the middleware. In other systems,

however, the developers need to add the instrumentation that is likely to be relevant

to understanding the behaviour and performance of the system. In addition to

instrumenting the system and providing means to access the exposed data, the

developers also need to provide mechanisms for turning the instrumentation on

and off.

149

It should be noted that most software systems have instrumentation to aid mon-

itoring In addition, knobs to control the activation of this instrumentation may exist

to help reduce the performance overhead. In these cases, what is needed is to in-

tegrate what already exists into a WBEM-like infrastructure to make it seamless

to implement our solution approach. Often libraries exist to make this integra-

tion easy; for instance, this is the case for Windows Management Instrumentation

(WMI), which is an implementation of WBEM on the Microsoft Windows Platform.

A .Net-based system would be an appropriate target to validate our claim that

our solution approach applies to other systems because the .Net framework is widely

used in practice and is supported by a WBEM infrastructure. This work would

require choosing a target application and supporting components (e.g., a DBMS),

ensuring that the system is instrumented to expose application-level metric data

through WMI, using WMI to retrieve the metric and component metadata, and

periodically collect the metric data to identify and model correlations.

10.2 Limitations

The monitoring and problem-determination approaches described in this thesis have

some limitations. These arise from the constraints imposed by the solution require-

ments and our choice of the solution approach. In this section we discuss these

limitations, and where possible suggest ways of addressing them.

Learning faulty behaviour: One important limitation of our system modeling

approach is that faults can become part of the learned system behaviour. The

metric data needed to build the system model should ideally come from the target

system while it executes fault-free. If this is not the case, we will learn a system’s

faulty behaviour as though it were normal. Fault-free systems do not exist in

general. However, faults can be benign, whereby they do not affect a system’s

reliability. System operators need to make sure that during the period of metric

data collection, the system was not subject to any apparent fault.

Multiple, independent faults: Our monitoring approach allows the detection

of multiple independent faults, provided these faults affect the metrics we model.

However, the accuracy of our diagnosis approach may suffer in the presence of

multiple faults, since the effects of these faults on the metric correlations are likely

to be confounded. Our current approach does not address this problem explicitly.

150

Nevertheless, if multiple faults exist, the iterative detection and resolution of the

faults will improve the diagnosis accuracy of the remaining faults.

Faults with subtle effects and transient faults: Our monitoring approach re-

lies on statistical tests to detect anomalies; these tests detect significant deviations

from the modeled norm. As a result, it is difficult to detect faults that cause subtle

changes in the system. Nonetheless, such faults tend to become more severe as time

passes or as their effects spread, and thus they are likely to be detected eventually.

For example, a memory leak may not be noticeable for a long period, but will even-

tually cause excessive page faults, even thrashing. In addition, our approach does

not work well for detecting faults that are transient and short-lived. While we may

be able to detect an instance of the fault manifestation, by the time detailed mon-

itoring is enabled, the fault may become inactive. Such faults are better detected

using alternative approaches such as expectation-based tracking [120].

Fault-induced correlations: Our error detection approach is predicated on the

idea that correlations break because of faults. However, faults can also induce

new correlations that were not apparent before. Consider, for example, the case

of a faulty link between a web server and an application server. This may delay

communication between the two servers. Before the fault, the latency between the

two servers may not have been a relevant factor. But, as a result of the fault, the

latency becomes the most important contributor to the overall response time.

In order to capture newly induced correlations, we need to analyze all the avail-

able metrics, not only those associated with correlations. One relevant approach

mentioned in Chapter 3 is proposed in [21, 22]. This approach employs multi-

variate statistical modeling and data reduction techniques to track all the available

metrics. However, further research is needed to see if such a modeling approach

can be used with adaptive monitoring.

Metrics not covered by correlations: Our approach involves identifying cor-

relations between metrics and representing them using regression models. Our cor-

relation models cannot cover all system metrics. First, a metric can be related to

more than one other via complex relationships. Capturing such correlations would

require a multi-variate model, which is not addressed in our work. Discovering

multi-variate models is expensive; the cost of a näıve search is exponential in the

number of the metrics per considered model. Second, even if a metric is correlated

151

to another metric, the modeling techniques chosen may not be flexible enough to

capture the metric relationship.

For metrics not captured by correlation models, we could use threshold-based

models or similar, single-variable alternative models. Automatically creating these

models and configuring them to achieve the right balance between sensitivity to

faults and susceptibility to false alarms is non-trivial.

Critical metrics: Our monitoring approach is agnostic to the metric semantics.

In particular, it considers all metric correlations to be equally important, regardless

of how critical they are to system operators. However, certain metrics are more

important than others, especially in the business context. For example, compliance

with performance SLOs can be critical for some services. In this case, a top-

down approach may be more appropriate, whereby the key metrics are chosen first,

followed by those that affect them. Breitgand et al. [16] investigates an approach

whereby thresholds for component metrics are derived automatically from SLOs.

10.3 Extending the Basic Solution Approach

In collaboration with colleagues, we have investigated several ideas to improve the

correlation-based and adaptive monitoring approaches. These efforts have resulted

in several publications, which we summarize briefly below:

Monitoring with metric correlations in clustered environments: In [104],

we studied the use of metric correlations to monitor clustered systems, in which

some subsystems (e.g., application servers) are replicated. In that study, we ob-

served that a blind approach to learning metric correlations is not necessarily effec-

tive; instead, making use of the high level structure (i.e., the topology) of a system

not only helps reduce the cost of identifying metric correlations, but also reduces

the likelihood of retaining less stable correlation models. The study suggests that

comparing the analysis of metric correlations on different peers can help isolate the

cause of observed anomalies.

Tracing-augmented adaptive monitoring: In [103], we extended our basic

adaptive monitoring approach, including trace-based analysis to achieve higher di-

agnosis accuracy. We propose a three-step adaptive monitoring approach. At the

152

minimal level, key system metrics are monitored by means of thresholds. When

anomalies are detected, an extended set of metrics is collected and checked using

correlation models. If the anomalies are corroborated, we enable the collection of

ARM request traces, which incur higher performance overhead. The analysis of the

metric correlations allows us to identify the likely faulty replica in a clustered sys-

tem. Traces collected from the faulty replica are compared with those of its healthy

peers; components involved in the execution of user requests are then ranked ac-

cording to the degree to which their behaviour and performance deviate from the

normal case.

Using information theory to model metric correlations: In [69], we inves-

tigated the use of mutual information, an information-theoretic measure, to capture

metric correlations. Mutual information obviates the need to specify a priori a fixed

functional form (e.g., simple linear regression) By capturing metric correlations ir-

respective of the form of the underlying relationships, we can improve the coverage

of system dynamics. We propose an efficient method to track the correlated metrics.

We cluster the correlated metrics into groups, and we track the groups using the

entropy of the normalized metric values in each group. Tracking at the group level

is much more efficient than tracking a large set of individual correlation models.

Addressing heteroscedasticity in metric correlations: In [71], we show

that for many pairs of correlated metrics in complex software systems, the variance

of the predicted variable is not constant. This behaviour violates the assumptions

of linear regression, making the correlations modeled with linear regression less

effective for monitoring. In particular, for many metric pairs, we have observed that

the variance of the residuals increases with the predictor variable. To address this

problem, we employ the method of generalized least squares with linear regression to

account for the non-constant residual variance. We show through experiments that

this variant can capture many metric correlations more effectively by considering

the changing residual variance.

Identifying three-variable metric correlations In [72], we exploit the het-

eroscedasticity phenomena observed in many two-variable relationships to discover

three-variable models. One common reason that underlies heteroscedasticity is a

variable missing from the model. We thus perform a search for three-metric mod-

els for only those metric pairs which suffer from heteroscedasticity. Our approach

153

keeps the cost within O(n2) for n metrics, whereas a näıve search for three-variable

models would cost O(n3).

Improving correlation-based diagnosis using structure information In [70],

we extend the work presented in [69] and present a diagnosis algorithm to locate

faulty components which incorporates knowledge of component dependencies. We

show that diagnosis accuracy can be improved significantly by leveraging informa-

tion about the system’s structure; this information need not be complete or perfect

to be useful.

Learning fault signatures based on metric correlations As discussed in

Chapter 9, a number of factors can reduce the diagnosis accuracy of methods based

on metric correlations. If faults are known beforehand, an alternative fault iden-

tification approach is to find the unique set of perturbed correlations associated

with the faults. In [68], we study the problem of identifying the most pertinent

metric correlations in order to detect known, recurrent faults and to diagnose them

accurately, while requiring a minimal number of correlation models. We propose a

methodology to find the relevant metric correlations using neural networks.

154

Chapter 11

Conclusions and Future Research

In this thesis, we tackled the challenge of overseeing complex software systems

in an automated and cost-effective manner. The motivation behind this effort

was to reduce the cost of monitoring and problem determination both in terms

of human resources and the monitoring overhead. To this effect, we devised an

automated, adaptive monitoring approach based on management metrics. Our

approach entails modeling and monitoring complex software systems using simple,

efficient statistical techniques using metric data alone, without domain knowledge,

detailed information about system structure and its inner workings, and a priori

knowledge of faults. Further, our approach involves changing the set of management

metrics that are tracked, in order to fulfill the information needs of the task at hand.

The automated nature of our solution approach allows the cost human resources

to be reduced, and the adaptive capability allows the monitoring overhead to be

minimized. Our approach can be implemented easily and deployed with little or

no change to the the target systems. We validated our solution approach using a

realistic test-bed, showing its ease of implementation, efficiency, and effectiveness.

Our approach alleviates the burden of modeling and tracking the health of com-

plex software systems on human operators and experts. Although human operators

are ultimately responsible for resolving problems that arise in these systems, our

approach accelerates the process, allowing them to save valuable time. Therefore,

the cost system monitoring can be kept minimal, allowing resources to be allocated

to providing the core system functionality.

Our work offers a positive outlook on the future of system management, in par-

ticular monitoring. Our research demonstrates that simple statistical and machine-

learning techniques can enable larger, more complex software systems to be mon-

itored effectively and with little or no human involvement. A distinguishing con-

155

tribution of this work is to show that these benefits can be had without sacrificing

system performance.

While our work represents a significant step in the pursuit of fully automated,

adaptive software system monitoring, it also brings to light a number of challenges,

which future work needs to address. We discuss some of these challenges next.

11.1 System Modeling

System modeling is the most critical building block to enable automated monitor-

ing. Two aspects of our approach to system modeling that can be improved are

described below.

Identifying metric correlations: The adaptive monitoring solution described

in this work is designed to keep the monitoring overhead low during live monitoring.

Prior to the monitoring stage, we need to identify and model the stable metric

correlations. This requires that all metrics be collected over a period long enough

to record the representative behaviour of the system. As discussed in Chapter 6, the

cost of monitoring all the available metrics can be high and thus cannot be enabled

for long periods in a production system. One solution is to use a complete replica of

the production system to identify the correlations using real-world workload traces.

This solution, however, is in general impractical because of its cost.

Two alternative solutions that we have considered are described below. Their

experimental validation is part of our future work.

• In clustered systems, where replicas of subsystems exist, full monitoring can

be enabled in part of the system. For example, if there are multiple web

and application servers to handle the workload, metrics can be collected from

one web server, one application server, and the back-end. The system can

be configured to direct representative but less work to the monitored part to

compensate for the reduced efficiency. If the replicas are similar and the work-

load is balanced fairly among them, we can expect the same correlations to be

discovered on the non-monitored counterparts. If replicas are different (e.g.,

based on different hardware or system software), then an incremental ap-

proach to identifying the correlations is needed. Different parts of the system

can be monitored at different times and the correlation identification process

will end when all parts have been covered. The main shortcomings of this

156

approach include the need to make load-balancing in the system monitoring-

aware and, if needed, to implement the incremental model-learning logic.

• The idea of incremental learning can be further extended to work at the level

of metric subsets. We can specify a performance overhead budget within

which correlation identification has to take place. In a series of phases, we can

identify stable correlations by exploring subsets of the metrics at a time. In

each phase, a subset of available metrics is chosen to be enabled for collection.

These metrics are collected for a specified period, after which correlations be-

tween metrics are assessed for strength and stability. In the subsequent iter-

ation, another subset of metrics is enabled and analyzed, while the collection

of those metrics that are no longer needed is disabled. These phases continue

as long as the space of metric pairs to explore is not exhausted.

The downside to the incremental system modeling approach is the much

longer time needed to find all stable correlations as compared to the approach

where all data is collected and modeling applied at once.

Multi-scale metric correlations: In this thesis we assumed that metrics are

read periodically at fixed intervals. The time interval is set so that the dynamics of

interest are reflected readily in the collected data. It is, however, possible for metric

correlations not to be strong and stable at the chosen resolution, but still be relevant

at a larger time scale. We would like to investigate correlations at multiple time

scales and study whether correlations at coarser time scales can improve system

monitoring.

11.2 Fine-Grained Adaptive Monitoring

One challenge for future work with respect to adaptive monitoring is to make it

more fine-grained. In this thesis we devised an approach where two monitoring

levels (and, possibly, a third intermediate level) are pre-specified, and adaptation

takes place by moving from one level to another when needed.

An adaptive approach that works at the level of individual metrics will be more

efficient. Two main challenges in this respect are as follows: first, we need to deter-

mine when enough metrics have been analyzed to determine the existence of faults

reliably and their likely source; second, we need to find ways to obtain this informa-

tion with the least cost. Fine-grained adaptation may not be possible without some

157

knowledge of the system structure . Further, knowledge of the cost of collecting

individual metrics requires information about metric types. As discussed in Chap-

ter 10, this information may be available through standardized metric metadata or

be inferred from system artifacts.

11.3 Diagnosis

Opportunities for improvement also exist for our diagnosis approach. Some ideas

to this effect are presented next.

Use of information about system structure: In this thesis we have not

used any information about how the target system is structured. However, such

information can help reduce the cost of modeling the system and improve diagnosis.

As mentioned in Chapter 3, this information can often be inferred from system

artifacts or the monitoring data. With knowledge of the high-level topology of

the system (i.e., information about how the subsystems are connected), we can

drastically reduce the number of metric combinations whose correlations need to

considered. Instead of performing cross-correlation of all the metrics exposed by a

system, we only need to correlate metrics of subsystems that are connected.

Knowledge of the system structure can help refine the diagnosis based on metric

correlations. One way to leverage this information is to distinguish the correlations

that arise because of direct component dependencies from those that are incidental.

We can analyze the correlation graph created using the causal correlations to iden-

tify points at which correlations break when a fault occurs. Comparing the results

of the diagnosis approach presented in Chapter 9 and this graph-based approach,

and studying whether the two approaches are useful together, needs to be explored.

One difficulty with trying to identify faulty components based on broken correla-

tions is that components that depend on the true faulty components often behave

as though they were faulty (i.e., they are associated with broken correlations).

Knowing the structure, we could undo this effect by adjusting the anomaly scores

such that components that are not dependent on a reported anomalous component

are assigned larger scores than those that are. While an idea to this effect has been

explored by Agarwal et al.. [1], further work is needed to see how easily and how

well the inaccuracies arising because of dependencies can be undone.

158

Confidence score for the diagnosis: The diagnosis produced by our moni-

toring system consists of a list of components or their metrics prioritized according

to assigned anomaly scores. The system operators can process this list in order by

checking the status of the reported components. Our results in Chapter 9 show

that very often the faulty component is included in the top-ranked components.

Nevertheless, sometimes the true faulty component is not included in the reported

list or it ranks too low. In such a case, the system operators will likely waste much

time going through the reported list, even though it may not be useful. Therefore,

one challenge that needs to be addressed is to devise a measure of confidence in the

reported diagnosis. Such a confidence score should be high when the true faulty

component is included in the reported list and it ranks high, and it should be low

otherwise.

A number of factors could be considered to compute such a confidence score,

including the quality of the metric correlation models used to produce the diagnosis,

the number of independent models involved (i.e., models that do not share metrics),

and the number of different clusters of correlated metrics to which the anomalous

metrics pertain (i.e., an estimate of the number of affected dynamics in the system).

Noise in the presence of faults: Metric correlations are not equally robust to

changes in the system. Correlations that arise because of dependencies in the sys-

tem are robust to changes in the load or resource availability. These correlations are

affected when the dependencies or the underlying structure of the system changes.

On the other hand, other correlations, in particular the models that capture them,

are sensitive to the configuration of the system. For example, a correlation between

a metric that tracks activity and a metric that measures response time in a com-

ponent may be sensitive to the amount of CPU and memory resources allocated.

This resource configuration may not change for long periods of time, and thus it is

reasonable to identify and use this correlation for monitoring purposes. However,

problems arise when faults occur in the system; if the faults affect resource avail-

ability, the parameters of the correlation may change. Even though the correlation

may still exist, it displays different characteristics than when it was identified. The

consequence is that some correlation models may report outliers despite the fact

that the correlations still hold, albeit displaying different characteristics.

In this work we address this problem by using both the Studentized residuals

and the relative absolute residual (see Section 7.2.3 in Chapter 7. The latter is less

sensitive to small changes in the values of metrics that are strongly correlated. Al-

though, this technique addresses the problem to some extend, a deeper investigation

159

of this issue is needed.

11.3.1 Correlation-Friendly Instrumentation

From our work, we learned a number of lessons on how to instrument software

systems to make correlation-based monitoring and diagnosis more effective. First,

code should be instrumented such that any regularity or symmetry in the behaviour

or performance of the logic therein is exposed. The following example illustrates this

point. It is common for developers to instrument functions such that information

about successful completion is captured. Listing 2.1 in Chapter 2 is an example of

such a function, whereby a counter tracks the number of completions just before

the function exits. If a fault prevents this function from completing, the counter

alone may not indicate an anomaly. Moreover, if the call to this function is nested

in several layers of function calls, where the calling functions also have completion

counters before their exit point, the correlations between the counters will not

break, since their values will drop at the same time. Instead, by having counters

both at the entry and the exit points, an anomaly can readily be detected inside

each function, including the function that is directly affected by the fault.

Studying the kinds of regularity that exist in software systems, how instrumen-

tation can capture them in an efficient way, and how such instrumentation can

improve our solution approach remains to be studied.

Second, exposing metrics that reflect the state of the system (e.g., number of

active entities, number of concurrent operations, etc..) can be effective in detecting

and helping localize performance faults. Not all instrumentation costs the same;

obtaining timing information, for example, is expensive. As such, exposing state

data, especially data that reflects regularity pertaining to the state, provides an

efficient alternative to detecting and diagnosing performance faults with timing

metrics.

11.3.2 Other Applications of Metric Correlations

In this thesis we explored the error detection and diagnosis potential of metric

correlations. Metric correlations can serve other purposes such as assessing the

impact of failures or errors in the system. For example, by analyzing the extent to

which metric correlations are perturbed, one may estimate the degree to which the

system is affected by a fault. Similarly, by analyzing the changes in correlations,

160

one can study how a fault affects the system. Such impact analysis need not be

limited to failure and errors; it can be used to study the impact of changes to the

system, including its software. For instance, strengthening of existing correlations

and appearance of new ones may indicate that the change made to the system

introduced a new bottleneck.

161

Bibliographical Notes

The work presented in this thesis builds on ideas published by the author in [105,

108, 109, 110, 111]. The correlation-based monitoring approach is investigated

further by the author in [103, 104, 107]. In [103, 107], correlation-based monitoring

is combined with the analysis of log files and traces. In [104], correlation-based

monitoring is applied to clustered, multi-tier software systems. Extensions and

related work to which the author has contributed comprise [68, 69, 70, 71, 72].

Finally, some novel ideas which are being explored are described in [106].

162

References

[1] M. K. Agarwal, K. Appleby, M. Gupta, G. Kar, A. Neogi, and A. Sailer. Prob-

lem determination using dependency graphs and run-time behavior models.

In Proceedings of the 15th IFIP/IEEE Distributed Systems: Operations and

Management (IM), Davis, California, USA, November 2004. 32, 158

[2] Manoj Agarwal, Nikos Anerousis, Manish Gupta, Vijay Mann, Lily Mum-

mert, and Narendran Sachindran. Problem determination in enterprise mid-

dleware systems using change point correlation of time series data. In Pro-

ceedings of the IFIP/IEEE Network Operations and Management Symposium

(NOMS), April 2006. 30

[3] Manoj K. Agarwal, Narendran Sachindran, Manish Gupta, and Vijay Mann.

Fast extraction of adaptive change point based patterns for problem resolution

in enterprise systems. In DSOM ’06: Proceedings of the 17th IFIP/IEEE In-

ternational Workshop on Distributed Systems: Operations and Management,

pages 161–172, 2006. 31

[4] Sandip Agarwala, Yuan Chen, Dejan Milojicic, and Karsten Schwan. QMON:

QoS- and utility-aware monitoring in enterprise systems. In Proceedings of

the 3rd IEEE International Conference on Autonomic Computing (ICAC),

2006. 35

[5] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds,

and Athicha Muthitacharoen. Performance debugging for distributed systems

of black boxes. In Proceedings of the 19th ACM symposium on Operating

systems principles (SOSP), pages 74–89, New York, NY, USA, 2003. ACM

Press. 27

[6] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Monika R. Henzinger,

Shun tak A. Leung, L. Sites, Mark T. Vandevoorde, Carl A. Waldspurger,

163

William E. Weihl, L. M. Berc, S. Ghemawat, M. R. Henzinger, and S. t. A. Le-

ung. Continuous profiling: Where have all the cycles gone? In ACM Trans-

actions on Computer Systems, pages 1–14, 1997. 34

[7] Apache Software Foundation. Apache Module mod status. http://httpd.-

apache.org/docs/2.0/mod/mod status.html. 19

[8] Matthew Arnold and Barbara G. Ryder. A framework for reducing the cost

of instrumented code. ACM SIGPLAN Notices, 36(5):168–179, 2001. 34

[9] Chris Atkeson, Andrew Moore, and Stefan Schaal. Locally weighted learning.

AI Review, 11:11–73, April 1997. 81, 85

[10] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.

Basic concepts and taxonomy of dependable and secure computing. IEEE

Transactions on Dependable and Secure Computing, 1(1):11–33, 2004. 10

[11] Victor Bahl, Paul Barham, Richard Black, Ranveer Chandra, Moises Gold-

szmidt, Rebecca Isaacs, Srikanth Kandula, Lun Li, John MacCormick,

David A. Maltz, Richard Mortier, Mike Wawrzoniak, and Ming Zhang. Dis-

covering dependencies for network management. In Proceedings of the fifth

Workshop on Hot Topics in Networks (HotNets-V), 2006. 27

[12] Paul T. Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier.

Using magpie for request extraction and workload modelling. In Proc. of the

6th Symposium on Operating System Design and Implementation (OSDI),

pages 259–272, 2004. 27

[13] Paul T. Barham, Rebecca Isaacs, Richard Mortier, and Dushyanth

Narayanan. Magpie: Online modelling and performance-aware systems. In

Proceedings of HotOS’03: 9th Workshop on Hot Topics in Operating Systems

(HotOS), pages 85–90, 2003. 27

[14] Peter Bodik, Greg Friedman, Lukas Biewald, Helen Levine, George Candea,

Kayur Patel, Gilman Tolle, Jon Hui, Armando Fox, Michael I. Jordan, and

David Patterson. Combining visualization and statistical analysis to improve

operator confidence and efficiency for failure detection and localization. In

Proc. of the 2nd IEEE International Conference on Autonomic Computing

(ICAC), Seattle, June 2005. 28, 32

164

[15] G. Bonanno, G. Caldarelli, F. Lillo, S. Micciche, N. Vandewalle, and R. N.

Mantegna. Networks of equities in financial markets. The European Physical

Journal B, 38:363–371, 2004. 103

[16] David Breitgand, Ealan Henis, and Onn Shehory. Automated and adaptive

threshold setting: Enabling technology for autonomy and self-management.

In ICAC ’05: Proceedings of the Second International Conference on Auto-

matic Computing, pages 204–215, Washington, DC, USA, 2005. IEEE Com-

puter Society. 152

[17] A. Brown, G. Kar, and A. Keller. An active approach to characterizing dy-

namic dependencies for problem determination in a distributed environment.

In Proceedings of IFIP/IEEE International Symposium on Integrated Network

Management, pages 377–390, May 2001. 27, 30

[18] Andrew Byde, Dave Cliff, and Matthew Williamson. HP Labs’ complex adap-

tive systems group research overview. Technical Report HPL-2004-79, HP

Laboratories Palo Alto, 2004. 3

[19] Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic in-

strumentation of production systems. In USENIX Annual Technical Confer-

ence, General Track, pages 15–28, 2004. 17, 33, 35

[20] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A Simple Network

Management Protocol (SNMP). IETF RFC 1157. http://www.ietf.org/rfc/-

rfc1157.txt. 12, 13, 22

[21] Haifeng Chen, Guofei Jiang, Cristian Ungureanu, and Kenji Yoshihira. Fail-

ure detection and localization in component based systems by online tracking.

In Proceedings of the Eleventh ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 750–755, 2005. 28, 29, 32, 151

[22] Haifeng Chen, Guofei Jiang, Cristian Ungureanu, and Kenji Yoshihira. Com-

bining supervised and unsupervised monitoring for fault detection in dis-

tributed computing systems. In Proceedings of the 2006 ACM symposium on

Applied computing (SAC), pages 705–709, New York, NY, USA, 2006. ACM

Press. 29, 32, 151

[23] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer. Failure diagno-

sis using decision trees. In Proceedings of the International Conference on

Autonomic Computing, New York, NY, 2004. 27, 32

165

[24] Mike Y. Chen, Anthony Accardi, Emre Kiciman, Jim Lloyd, Dave Patterson,

Armando Fox, and Eric Brewer. Path-based failure and evolution manage-

ment. In Proceedings of the International Symposium on Networked Systems

Design and Implementation (NSDI, pages 309–322, 2004. 2, 27

[25] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric A.

Brewer. Pinpoint: Problem determination in large, dynamic internet services.

In International Conference on Dependable Systems and Networks (DSN),

pages 595–604, 2002. 27, 32

[26] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons, and Jeff Chase.

Correlating instrumentation data to system states: A building block for au-

tomated diagnosis and control. In Proceedings of the sixth Symposium on

Operating Systems Design and Implementation (OSDI), pages 231–244, De-

cember 2004. 31, 32

[27] Ira Cohen, Steve Zhang, Moisés Goldszmidt, Julie Symons, Terence Kelly,

and Armando Fox. Capturing, indexing, clustering, and retrieving system

history. In Proceedings of the 20th ACM Symposium on Operating Systems

Principles (SOSP), pages 105–118, 2005. 31

[28] Jacob Cohen, Patricia Cohen, Stephen G. West, and Leona S. Aiken. Ap-

plied Multiple Regression/Correlation Analysis for the Behavioral Sciences.

Lawrence Erlbaum, 2nd edition, 2003. 75, 76, 77, 83

[29] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to algorithms. McGraw-Hill Book Company, Cambridge,

London, 2. edition, 2001. 103

[30] William H. Crown. Statistical Models for the Social and Behavioral Sciences:

Multiple Regression and Limited-Dependent Variable Models. Greenwood

Publishing Group, 1998. 75

[31] Peter J. Denning and Jeffrey P. Buzen. The operational analysis of queueing

network models. ACM Computing Surveys, 10(3):225–261, 1978. 62

[32] Ada Diaconescu, Adrian Mos, and John Murphy. Automatic performance

management in component based software systems. In ICAC 04: Proceedings

of the First International Conference on Autonomic Computing (ICAC04,

pages 214–221. IEEE Computer Society, 2004. 34

166

[33] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus. Managing web server

performance with autotune agents. IBM Systems Journal, 42(1):136–149,

2003. 25

[34] Yixin Diao. Stochastic modeling of Lotus Notes with a queueing model.

In International Computer Measurement Group Conference, pages 229–238,

2001. 25

[35] Yixin Diao, Frank Eskesen, Steve Froehlich, Joseph L. Hellerstein, Alexander

Keller, Lisa Spainhower, and Maheswaran Surendra. Generic on-line dis-

covery of quantitative models for service level management. In IFIP/IEEE

8th International Symposium on Integrated Network Management (IM), pages

157–170, 2003. 28

[36] John Dilley, Rich Friedrich, Tai Jin, and Jerome A. Rolia. Measurement

tools and modeling techniques for evaluating web server performance. In

Proceedings of the 9th International Conference on Computer Performance

Evaluation: Modelling Techniques and Tools, pages 155–168, London, UK,

1997. Springer-Verlag. 25

[37] Distributed Management Task Force, Inc. Web-Based Enterprise Manage-

ment (WBEM). http://www.dmtf.org/standards/wbem/. 22, 149

[38] Distributed Management Task Force, Inc. Common Information Model Stan-

dards. http://www.dmtf.org/standards/cim/. 149

[39] Mikhail Dmitriev. Profiling Java applications using code hotswapping and

dynamic call graph revelation. In Proceedings of the 4th international work-

shop on Software and performance (WOSP), pages 139–150, New York, NY,

USA, 2004. ACM Press. 33, 35

[40] Armando Fox and David Patterson. Self-repairing computers. Scientific

American, June 2003. 3

[41] Eibe Frank, Leonard Trigg, Geoffrey Holmes, and Ian H. Witten. Technical

note: Näıve Bayes for regression. Machine Learning, 41(1):5–25, 2000. 31

[42] Zhenghua Fu and Nalini Venkatasubramanian. Adaptive parameter collection

in dynamic distributed environments. In IEEE International Conference on

Distributed Computer Systems (ICDCS), 2001. 34, 36

167

[43] Saeed Ghanbari and Cristiana Amza. Semantic-driven model composition

for accurate anomaly diagnosis. In International Conference on Autonomic

Computing, 2008. 31

[44] Dan Gunter and Brian Tierney. NetLogger: A toolkit for distributed system

performance tuning and debugging. In Proc. of the IFIP/IEEE Eighth In-

ternational Symposium on Integrated Network Management (IM 2003), pages

97–100, March 2003. 22, 34

[45] Zhen Guo, Guofei Jiang, Haifeng Chen, and Kenji Yoshihira. Tracking proba-

bilistic correlation of monitoring data for fault detection in complex systems.

In International Conference on Dependable Systems and Networks (DSN),

pages 259–268, 2006. 29

[46] Manish Gupta, Anindya Neogi, Manoj K. Agarwal, and Gautam Kar. Dis-

covering dynamic dependencies in enterprise environments for problem de-

termination. Lecture Notes in Computer Science, 2867:221–233, Jan 2003.

27

[47] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2nd edition, 2006. 101

[48] Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, and Michael Hind. Ver-

tical profiling: Understanding the behavior of object-oriented applications. In

Proc. of 19th Annual ACM SIGPLAN Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA), 2004. 30

[49] Daniel E. Hecker. Occupational employment projections to 2014. Monthly

Labor Review, pages 70–101, November 2005. 2

[50] Joseph L. Hellerstein, Fan Zhang, and Perwez Shahabuddin. Characterizing

normal operation of a web server: Application to workload forecasting and

problem detection. In Proceedings of Computer Measurement Group, Decem-

ber 1998. 28

[51] Edwin A. Hernandez, Matthew C. Chidester, and Alan D. George. Adap-

tive sampling for network management. Journal of Network and Systems

Management, 9(4):409–434, 2001. 34, 36

[52] Hewlett-Packard Development Co. HP OpenView Management Software.

http://www.managementsoftware.hp.com/. 23, 106

168

[53] Chris Hobbs. A Practical Approach to WBEM/CIM Management. Auerbach

Publications, 2004. 149

[54] IBM Corporation. Autonomic Computing. http://www.research.ibm.com/-

autonomic/. 3

[55] IBM Corporation. DB2 V8.2 - System Monitor Guide and Ref-

erence. ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/en US/-

db2f0e81.pdf. 19

[56] IBM Corporation. WebSphere Application Server, Version 6.0.x - Moni-

toring overall system health. http://publib.boulder.ibm.com/infocenter/-

wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/-

tprf monitoringhealth.html. 19

[57] IBM Corporation. IBM Tivoli Software. http://www.ibm.com/software/-

tivoli/. 23, 34, 106

[58] IBM Corporation. WebSphere Application Server. http://www.ibm.com/-

software/webservers/appserv/. 49

[59] IBM Corporation. DB2 Universal Database. http://www.ibm.com/software/-

data/db2/udb/. 49

[60] IBM Corporation. PlantsByWebSphere Sample. http://www.ibm.com/-

developerworks/websphere/library/samples/plantsby.html. 50

[61] IBM Corporation. Trade. http://www-01.ibm.com/software/webservers/-

appserv/benchmark3.html. 51

[62] IBM Corporation. WebSphere Application Server, Monitoring Sys-

tem Health. http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/-

com.ibm.websphere.express.doc/info/exp/ae/tprf monitoringhealth.html. 98

[63] IBM Corporation. IBM WebSphere Application Server V6 Performance

Tools. http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/topic/-

com.ibm.iea.was v6/was/6.0/Performance/WASv6 PerformanceTools.pdf.

33

[64] JBoss Enterprise. A Framework for Organizing Cross Cutting Concerns.

http://jboss.org/jbossaop/. 18

169

[65] G. Jiang, H. Chen, and K. Yoshihira. Discovering likely invariants of dis-

tributed transaction systems for autonomic system management. In Proceed-

ing of the International Conference on Autonomic Computing, 2006. 29

[66] Guofei Jiang, Haifeng Chen, and Kenji Yoshihira. Modeling and tracking

of transaction flow dynamics for fault detection in complex systems. IEEE

Trans. Dependable Sec. Comput., 3(4):312–326, 2006. 29, 33

[67] Guofei Jiang, Haifeng Chen, and Kenji Yoshihira. Efficient and scalable al-

gorithms for inferring likely invariants in distributed systems. IEEE Trans-

actions on Knowledge and Data Engineering, 19(11):1508–1523, 2007. 30,

71

[68] Miao Jiang, Mohammad A. Munawar, Thomas Reidemeister, and Paul A. S.

Ward. Detection and diagnosis of recurrent faults in software systems by

invariant analysis. In Proceedings of the IEEE High Assurance Systems En-

gineering Symposium (HASE), 2008. 154, 162

[69] Miao Jiang, Mohammad A. Munawar, Thomas Reidemeister, and Paul A. S.

Ward. Information-theoretic modeling for tracking the health of complex

software systems. In Proceedings of the International Conference on Computer

Science and Software Engineering (CASCON), 2008. 153, 154, 162

[70] Miao Jiang, Mohammad A. Munawar, Thomas Reidemeister, and Paul A. S.

Ward. Automatic fault detection and diagnosis using information-theoretic

modeling. In Proceedings of the International Conference on Dependable Sys-

tems and Networks (DSN), 2009. 154, 162

[71] Miao Jiang, Mohammad A. Munawar, Thomas Reidemeister, and Paul A. S.

Ward. Heteroscedastic models to track relationships between management

metrics. In Proceedings of the International Symposium on Integrated Network

Management (IM), 2009. 153, 162

[72] Miao Jiang, Mohammad A. Munawar, Thomas Reidemeister, and Paul A. S.

Ward. System monitoring with metric-correlation models: Problems and so-

lutions. In Proceedings of the International Conference on Autonomic Com-

puting (ICAC), 2009. 153, 162

[73] Mark W. Johnson. Monitoring and diagnosing applications with ARM 4.0. In

Proceedings of the Computer Measurement Group (CMG) Conference, pages

473–484, 2004. 19, 27, 34

170

[74] Jupiter Research. Retail Web Site Performance: Consumer Reaction to a

Poor Online Shopping Experience. http://www.akamai.com/4seconds. 106

[75] Leonard Kaufman and Peter J. Rousseeuw. Finding groups in data: an in-

troduction to cluster analysis. Wiley Series in Probability and Mathematical

Statistics. Applied Probability and Statistics, New York, 1990. 115

[76] J.O. Kephart and D.M. Chess. The vision of Autonomic Computing. IEEE

Computer, 36(1):41–50, January 2003. 2, 3

[77] Emre Kiciman. Using statistical monitoring to detect failues in Internet ser-

vices. PhD thesis, Stanford University, 2005. 24

[78] Emre Kiciman and Armando Fox. Detecting application-level failures in

component-based internet services. IEEE Transactions on Neural Networks,

16(5):1027–1041, September 2005. 27, 32, 33

[79] Emre Kiciman and Ben Livshits. AjaxScope: A platform for remotely moni-

toring the client-side behavior of web 2.0 applications. In Proceedings of the

Symposium on Operating Systems Principles (SOSP), 2007. 35

[80] Emre Kiciman and Helen Wang. Live Monitoring: Using adaptive instrumen-

tation and analysis to debug and maintain web applications. In Proceedings of

the 11th Workshop on Hot Topics in Operating Systems (HotOS), San Diego,

CA, May 2007. 35

[81] Abdelkader Lahmadi, Laurent Andrey, and Olivier Festor. On the impact

of management on the performance of a managed system: A JMX-based

management case study. In Proceedings of the 16th IFIP/IEEE International

Workshop on Distributed Systems: Operations and Management (DSOM),

Ambient Networks, pages 24–35, 2005. 33

[82] Lawrence Berkeley National Laboratory. The Internet Traffic Archive.

http://ita.ee.lbl.gov/html/traces.html. 49

[83] Jun Li. Monitoring and characterization of component-based systems with

global causality capture. In Proceedings of the 23rd International Conference

on Distributed Computing Systems (ICDCS), pages 422–31, May 2003. 27

[84] Lei Li, Kalyanaraman Vaidyanathan, and Kishor S. Trivedi. An approach for

estimation of software aging in a web server. In Proceedings of the Interna-

tional Symposium on Empirical Software Engineering (ISESE), pages 91–100,

2002. 26

171

[85] Lennart Ljung. System Identification - Theory For the User. PTR Prentice

Hall, Upper Saddle River, N.J., 2nd edition, 1999. 80

[86] Ying Lu, Tarek Abdelzaher, Chenyang Lu, Lui Sha, and Xue Liu. Feedback

control with queueing-theoretic prediction for relative delay guarantees in web

servers. In Proceedings of the 9th IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), Washington, DC, USA, 2003. IEEE

Computer Society. 25

[87] Michael R. Lyu, editor. Handbook of software reliability and system reliability.

McGraw-Hill, Inc., Hightstown, NJ, USA, 1996. 11

[88] Miroslaw Malek, Felix Salfner, and Günther Hoffmann. Self rejuvenation:

An effective way to high availability. In International workshop on Self-*

Properties in Complex Information Systems, 2004. 30

[89] Rosario N. Mantegna. Hierarchical structure in financial markets. The Euro-

pean Physical Journal B, 11(1):193–197, 1999. 103

[90] Matthew L. Massie, Brent N. Chun, and David E. Culler. The Ganglia dis-

tributed monitoring system: Design, implementation, and experience. Paral-

lel Computing, 30(7):817–840, July 2004. 22

[91] Daniel A. Menasce. Web server software architectures. IEEE Internet Com-

puting, 7(6), November/December 2003. 25

[92] Daniel A. Menasce, Virgilio A.F. Almeida, and Lawrence W. Dowdy. Perfor-

mance by Design: Computer Capacity Planning by Example. Prentice Hall

PTR, 2004. 62, 63

[93] J. Mickens, M. Szummer, and D. Narayanan. Snitch: Interactive decision

trees for troubleshooting misconfigurations. In Proceedings of the 1st Work-

shop on Tackling Computer Systems Problems with Machine Learning Tech-

niques (SysML), April 2007. 33

[94] Microsoft Corporation. Dynamic Systems Initiative. http://www.microsoft.-

com/business/dsi/. 3

[95] Microsoft Corporation. DCOM Architecture. http://msdn.microsoft.com/-

library/en-us/dndcom/html/msdn dcomarch.asp. 15

[96] Microsoft Corporation. The .Net Framework. http://msdn.microsoft.com/-

netframework/. 15

172

[97] Microsoft Corporation. WMI - Windows Management Instrumentation.

http://www.microsoft.com/whdc/system/pnppwr/wmi/default.mspx. 17

[98] Microsoft Corporation. CLR - The Common Language Runtime.

http://msdn.microsoft.com/netframework/programming/clr/default.aspx.

18

[99] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.

Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchitha-

padam, and Tia Newhall. The paradyn parallel performance measurement

tool. IEEE Computer, 28(11):37–46, 1995. 35

[100] George A. Milliken and Dallas E. Johnson. Analysis of Messy Data: Analysis

of covariance. CRC Press, 2002. 75

[101] A. V. Mirgorodskiy and B. P. Miller. Autonomous analysis of interactive

systems with self-propelled instrumentation. In Proceedings of the 12th Mul-

timedia Computing and Networking (MMCN), January 2005. 17, 33, 35

[102] David Mosberger and Tai Jin. httperf—A Tool for Measuring Web Server

Performance. http://www.hpl.hp.com/personal/David63

[103] Mohammad A. Munawar, Miao Jiang, Allen George, Thomas Reidemeister,

and Paul A. S. Ward. Adaptive monitoring with dynamic differential tracing-

based diagnosis. In Proceedings of the 19th IFIP/IEEE International Work-

shop on Distributed Systems: Operations and Management (DSOM), 2008.

49, 152, 162

[104] Mohammad A. Munawar, Miao Jiang, Thomas Reidemeister, and Paul A. S.

Ward. Monitoring multi-tier clustered systems with invariant metric rela-

tionships. In Proceedings of the 3rd Workshop on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS), 2008. 49, 152, 162

[105] Mohammad A. Munawar, Miao Jiang, Thomas Reidemeister, and Paul A. S.

Ward. Filtering metrics for minimal correlation-based self-monitoring. In

IEEE International Conference on Self-Adaptive and Self-Organizing Systems

(SASO), 2009. In press. 162

[106] Mohammad A. Munawar, Miao Jiang, and Paul A.S. Ward. Incremental

budget-constrained system modeling and tracking. Technical Report 2009-08,

Department of Electrical and Computer Engineering, University of Waterloo,

2009. Presented at HotAC 2009. 162

173

[107] Mohammad A. Munawar, Kevin Quan, and Paul A.S. Ward. Interaction anal-

ysis of heterogeneous monitoring data for autonomic problem determination.

In IEEE International Symposium on Ubisafe Computing. IEEE Computer

Society Press, 2007. 162

[108] Mohammad A. Munawar and Paul A. S. Ward. Better performance or better

manageability? In DEAS ’05: Proceedings of the 2005 workshop on Design

and evolution of autonomic application software, pages 1–4, 2005. 162

[109] Mohammad A. Munawar and Paul A.S. Ward. Adaptive monitoring in en-

terprise software systems. In Proceedings of the 1st Workshop on Tackling

Computer Systems Problems with Machine Learning Techniques (SysML),

June 2006. 29, 162

[110] Mohammad A. Munawar and Paul A.S. Ward. A comparative study of

pairwise regression techniques for problem determination. In Proceedings of

the International Conference on Computer Science and Software Engineering

(CASCON), pages 152–166, 2007. 162

[111] Mohammad A. Munawar and Paul A.S. Ward. Leveraging many simple statis-

tical models to adaptively monitor software systems. In International Sympo-

sium on Parallel and Distributed Processing with Applications (ISPA), 2007.

162

[112] Maitreya Natu and Adarshpal S. Sethi. Efficient probing techniques for fault

diagnosis. In Proceedings of the Second International Conference on Internet

Monitoring and Protection (ICIMP), page 20, Washington, DC, USA, 2007.

IEEE Computer Society. 36

[113] NIST/SEMATECH. Handbook of statistical methods.

http://www.itl.nist.gov/div898/handbook/. 75, 76, 81

[114] Object Management Group Inc. CORBA. http://www.corba.org/. 15

[115] Tobias Oetiker. The Round Robin database tool. http://oss.oetiker.ch/-

rrdtool/. 34

[116] Soila Pertet, Rajeev Gandhi, and Priya Narasimhan. Fingerpointing corre-

lated failures in replicated systems. In Proceedings of the USENIX Workshop

on Tackling Computer Systems Problems with Machine Learning Techniques

(SysML), April 2007. 33

174

[117] Soila Pertet and Priya Narasimhan. Causes of failure in web applications.

Technical Report CMU-PDL-05-109, Carnegie Mellon University Parallel

Data Lab, December 2005. 1

[118] Rob Powers, Moises Goldszmidt, and Ira Cohen. Short term performance fore-

casting in enterprise systems. In KDD ’05: Proceeding of the eleventh ACM

SIGKDD international conference on Knowledge discovery in data mining,

pages 801–807, New York, NY, USA, 2005. ACM Press. 26

[119] A. Gonzalez Prieto and R.Stadler. A-gap: An adaptive protocol for contin-

uous network monitoring with accuracy objectives. IEEE Transactions on

Network and Service Management (TNSM), 4(1), June 2007. 34, 36

[120] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul,

Mehul A. Shah, and Amin Vahdat. Pip: Detecting the unexpected in dis-

tributed systems. In Proceedings of the Symposium on Networked Systems

Design and Implementatio (NSDI), pages 115–128, May 2006. 24, 151

[121] Rice University/INRIA. RUBiS - Rice University Bidding System.

http://rubis.objectweb.org/. 50

[122] I. Rish, M. Brodie, S. Ma, N. Odintsova, A. Beygelzimer, G. Grabarnik, and

K. Hernandez. Adaptive diagnosis in distributed systems. IEEE Transactions

on Neural Networks (special issue on Adaptive Learning Systems in Commu-

nication Networks), 16(5):1088–1109, September 2005. 36

[123] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R. Vilalta,

and A. Sivasubramaniam. Critical event prediction for proactive management

in large-scale computer clusters. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining (KDD),

pages 426–435, New York, NY, USA, 2003. ACM Press. 26, 30

[124] Abhijit Sawant and Kiran Prabhakara. Admire: An algebraic data mining

approach to system performance analysis. IEEE Transactions on Knowledge

and Data Engineering, 17(7):888–901, 2005. 30

[125] M. Seltzer and C. Small. Self-monitoring and self-adapting operating sys-

tems. In Proceedings of the 6th Workshop on Hot Topics in Operating Systems

(HotOS-VI), page 124, 1997. 36

175

[126] Kai Shen, Ming Zhong, and Chuanpeng Li. I/O system performance de-

bugging using model-driven anomaly characterization. In Proceedings of the

USENIX Conference on File and Storage Technologies (FAST), 2005. 25

[127] C. Soules, J. Appavoo, K. Hui, D. Silva, G. Ganger, O. Krieger, M. Stumm,

R. Wisniewski, M. Auslander, M. Ostrowski, B. Rosenburg, and J. Xenidis.

System support for online reconfiguration. In Proceedins of USENIX Annual

Technical Conference, June 2003. 17

[128] Christopher Stewart, Terence Kelly, and Alex Zhang. Exploiting nonstation-

arity for performance prediction. In Proceedings of the European Conference

on Computer Systems (EuroSys), pages 31–46, March 2007. 26

[129] Christopher Stewart and Kai Shen. Performance modeling and system man-

agement for multi-component online services. In Proceedings of the Second

USENIX/ACM Symposium on Networked Systems Design and Implementa-

tion (NSDI), May 2005. 25

[130] Sun Microsystems Inc. J2EE Management Specification. http://java.sun.-

com/j2ee/tools/management/. 12

[131] Sun Microsystems Inc. Java Management Extensions (JMX) Tech-

nology. http://java.sun.com/javase/technologies/core/mntr-mgmt/-

javamanagement/. 13, 19, 22

[132] Sun Microsystems Inc. The Java Virtual Machine Specification. http://java.-

sun.com/docs/books/vmspec/. 18

[133] Sun Microsystems Inc. The JVM Tool Interface. http://java.sun.com/j2se/-

1.5.0/docs/guide/jvmti/. 18

[134] Sun Microsystems Inc. Platform Monitoring and Management Using JMX.

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html. 18

[135] Sun Microsystems Inc. HPROF: A Heap/CPU Profiling Tool in

J2SE 5.0. http://java.sun.com/developer/technicalArticles/Programming/-

HPROF.html. 18

[136] Sun Microsystems Inc. J2EE 1.4 Platform Specification.

http://java.sun.com/j2ee/j2ee-1 4-fr-spec.pdf. 15

[137] Symantec Corp. Symantec Indepth for J2EE 8.0 - User’s Guide. Number

287103. 2007. http://support.veritas.com/docs/287103. 35

176

[138] Ariel Tamches and Barton P. Miller. Fine-grained dynamic instrumentation of

commodity operating system kernels. In Proceedings of the third Symposium

on Operating Systems Design and Implementation, February 1999. 17

[139] Brad Topal, David Ogle, Donna Pierson, Jim Thoensen, John Sweitzer, Marie

Chow, Mary Ann Hoffmann, Pamela Durham, Ric Telford, Sulabha Sheth,

and Thomas Studwell. Autonomic problem determination: A first step toward

self-healing computing systems. Technical report, IBM, 2003. 2

[140] Transaction Processing Performance Council. TPC-W – a transactional web

e-Commerce benchmark. http://www.tpc.org/tpcw/. 50

[141] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and

Asser Tantawi. An analytical model for multi-tier internet services and its

applications. In Proceedings of the 2005 ACM SIGMETRICS international

conference on Measurement and modeling of computer systems, pages 291–

302, New York, NY, USA, 2005. ACM Press. 25

[142] Mustafa Uysal, Tahsin M. Kurc, Alan Sussman, and Joel H. Saltz. A perfor-

mance prediction framework for data intensive applications on large scale par-

allel machines. In Proceedings of the Fourth Workshop on Languages, Com-

pilers and Runtime Systems for Scalable Computers, pages 243–258, 1998.

25

[143] Robbert van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe:

A robust and scalable technology for distributed system monitoring, man-

agement, and data mining. ACM Transactions on Computing Systems,

21(2):164–206, 2003. 22, 34

[144] Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi-Min Wang.

Automatic misconfiguration troubleshooting with peerpressure. In Proceed-

ings of the Symposium on Operating Systems Design and Implementation

(OSDI), pages 17–17, 2004. 33

[145] Sanford Weisberg. Applied Linear Regression. Wiley-Interscience, 3rd edition,

2005. 75

[146] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning

tools and techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.

53

177

[147] Jeffrey M. Wooldridge. Introductory Econometrics: A Modern Approach.

South-Western Educational Publishing, 1st edition, 2000. 75

[148] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. High speed and

robust event correlation. IEEE Communications Magazine, 34(5):82–90, May

1996. 32

[149] Q. Zhang, L. Cherkasova, and E. Smirni. A regression-based analytic model

for dynamic resource provisioning of multi-tier applications. In Proceedings

of the International Conference on Autonomic Computing (ICAC), 2007. 26

[150] Steve Zhang, Ira Cohen, Moises Goldszmidt, Julie Symons, and Armando

Fox. Ensembles of models for automated diagnosis of system performance

problems. In Proc. of the International Conference on Dependable Systems

and Networks (DSN’05), pages 644–653, 2005. 31

[151] Tao Zheng, Jinmei Yang, Murray Woodside, Marin Litoiu, and Gabriel Iszlai.

Tracking time-varying parameters in software systems with extended kalman

filters. In CASCON ’05: Proceedings of the 2005 conference of the Centre for

Advanced Studies on Collaborative research, pages 334–345. IBM Press, 2005.

26

178

	List of Tables
	List of Figures
	Introduction and Motivation
	Problem Overview
	Enabling Automated Monitoring
	Accelerating Problem Determination
	Reducing Resource Requirements

	Scope and Assumptions
	Thesis Contributions
	Thesis Organization

	Background
	Basic Terminology
	Management Metrics
	Metric-Collection Mechanisms
	Metric-Collection Overhead
	Component-Based Distributed Software Systems
	The Java Platform, Enterprise Edition
	Monitoring Infrastructure

	Literature Review
	Monitoring Infrastructure
	Basic Approaches to Systems Monitoring
	Software System Modeling
	Modeling Performance
	Modeling Normal Behaviour
	Modeling Anomalous Behaviour or Performance

	Diagnosis
	Reducing the Cost of Monitoring
	Efficient Monitoring Mechanisms
	Adaptive Monitoring

	Prior Work Limitations

	Solution Overview
	System Abstraction
	The Problem
	Solution Overview
	Modeling the Target System
	Reducing the Monitoring Overhead
	Detecting Errors and Failures
	Diagnosing Faulty Components

	Monitoring System Overview

	Evaluation Approach
	Evaluation Setup
	Target Platform
	Applications
	Workload
	Monitoring Engine
	Monitoring Data
	Experiment Framework

	Methodology
	Fault Injection
	Application Faults
	Operator Faults

	Cost of Monitoring
	Measuring the Performance Overhead
	Analytical Approach
	Empirical Approach

	Experiments and Analysis
	Summary

	System Modeling
	Using an Ensemble of Metric Correlation Models
	Identifying Stable Metric Correlations
	Correlation Identification
	Model Validation
	Simple Linear Regression
	Extensions and Variations

	Suitability for Adaptive Monitoring
	Experiments and Analysis
	Data for Model Learning
	Calibration for Model Identification and Cost
	Setting R2min
	Existence of Stable Metric Correlations
	Error Detection with Metric Correlations

	Summary

	Adaptive Monitoring
	Metric Selection
	Manual Selection
	Automated Selection

	Minimal Monitoring
	Using Metric Correlation Models
	Using Threshold-based Models

	Detailed Monitoring
	Experiments and Analysis
	Minimal Monitoring: Manual Selection
	Minimal Monitoring: Automated Selection
	Detailed Monitoring
	Adaptive Monitoring

	Adaptive Monitoring: Further Considerations
	Combining Manual and Automated Metric Selection
	Using an Intermediate Monitoring Level
	An Alternative Adaptive Monitoring Approach
	Dealing with Slow Fault Resolution
	Keeping Metric Correlation Models Up-to-date

	Summary

	Diagnosis
	Analyzing Regression Models
	Model-Level Anomaly Scores
	Metric-Level Anomaly Scores
	Component-Level Anomaly Scores
	Reporting Diagnosis Information
	Experiments and Analysis
	Nature of Faults and Diagnosis Accuracy
	Diagnosis with Alternative Modeling Techniques
	Difficulty of Evaluating Diagnosis

	Summary

	Discussion
	General Applicability
	Limitations
	Extending the Basic Solution Approach

	Conclusions and Future Research
	System Modeling
	Fine-Grained Adaptive Monitoring
	Diagnosis
	Correlation-Friendly Instrumentation
	Other Applications of Metric Correlations

	References

