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ABSTRACT

Simulated annealing is an attractive,
but expensive, heuristic method for
approximating the solution to combinatorial
optimization problems. Attempts to parallel
simulated annealing, particularly on
distributed memory multicomputers, are
hampered by the algorithm’s requirement of
a globally consistent system state. In a
multicomputer, maintaining the global state
Sinvolves explicit message traffic and is a
critical performance bottleneck. To mitigate
this bottleneck, it becomes necessary to
amortize the overhead of these state
updates over as many parallel state
changes as possible. By using this
technique, errors in the actual cost C(S) of a
particular state S will be introduced into the
annealing process. This paper places
analytically derived bounds on this error in
order to assure convergence to the correct
optimal result. The resulting parallel
simulated annealing algorithm dynamically
changes the frequency of global updates as
a function of the annealing control
parameter, i.e. temperature. Implementation
results on an Intel iPSC/2 are reported.
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I. INTRODUCTION

The simulated annealing algorithm is based on
the analogy between simulation of the annealing
of solids and the problem of solving large
combinatorial optimization problems (Figure 1)
[1]. The ground states (global optima) of a
complex physical system can be reached by
heating the system up to some high temperature
(melting point) and then cooling it down slowly
keeping the equilibrium condition so we can
search all possible states. At each temperature
value 7, the system is allowed to reach thermal
equilibrium, characterized by a probability of
being in a state with energy E given by the
Boltzmann distribution [2].

| E
Prob [E=E]=——- - 1-1
rob ( ] Z) exp( x,,T} (1-1)
where Z(T) is the normalization factor depending
on the temperature 7" and «; is the Boltzmann
constant. The factor exp (-E/«T) is known as the
Boltzmann factor.

Physical Sjstems | Optimization Problems

State(Structure) Configuration
Energy Cost
Phase Transition Move Generation
Ground State Optimal Solution

Quick Cooling (Quenching) | Iterative Improvemetﬁ
| Slow Cooling(Annealing) | Simulated Annealing

Fig. 1. Analogy between physical systems
and optimization problems.

Metropolis et al. proposed a Monte Carlo
method [3], which simulates the evolution to
thermal equilibrium of a solid for a fixed value
of the temperature T. The Pascal-like pseudo
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PROCEDURE SIMULATED ANNEALING
begin
INITIALIZE;
k:=0;
repeat
" repeat
PERTURB (config.i — config. j,AC;);
/" evaluation of the cost change'/
if AC; <0 then accept

else if exp(-AC;; /T}) > random[0,1) then accept;
if accept then

UPDATE (configuration j);
until equilibrium is approached sufficiently

closely;
T;r-tl:: f(n)1
ki=k+1;

until stop criterion == true (system is 'frozen');
end.

Fig. 2. The Metropolis Procedure Proba-
bilistically samples states of the
configuration.

code for the simulated annealing algorithm is
in Fig. 2, Implémenting the simulated annealing,
the initial temperature is set sufficiently high so
that all moves are accepted. With a small
perturbation of the current state space, we can
reach a new state. Let AC be the difference of
the energy (cost) of current state and new state.
The probability that a candidate move is
accepted or rejected in simulated annealing is
determined by the Metropolis criterion:

Prob[AC is accepted | = min(l,exp(—%)).(l@)

If a candidate move is accepted, then the new
state becomes the current state: if the candidate
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move is rejected, the current state remains
unchanged. We iterate the above procedures until
the system gets in the thermal equilibrium, i.e.
the probability distribution of the states
approaches the Boltzmann distribution,

Evaluation of the annealing procedure, which
calculates the cost change (4C), is expensive due
to the large number of state parameters that need
to be evaluated. Parallelization of the annealing
procedure is an attractive option. In particular,
distributed memory multicomputers provide the
best promise in massive performance speedup. A
multicomputer consists of individual processors
with local memory that communicate by
message passing over an interconnection
network. Thus, there is no shared memory
available for maintaining the global system state.
However, the lack of shared memory causes the
inconsistent states among the processors,

‘The model problem in this paper is the stock-
cutting problem [4]. The stock-cutting problem
is to allocate regular and/or irregular patterns
onto a large stock sheet of finite dimensions in
such a way that the resulting scrap will be
minimized. This problem is common to many
applications in aerospace, shipbuilding, VLSI
design, steel construction, shoe manufacturing,
clothing and furniture. Stock-cutting problem is
commonly known as the 2D bin packing
problem. The cost function is made up of the
affinity relation between patterns, the distance
from the origin, and overlap penalty between
patterns. Consider the cost function C as

C= —aZ%JrBZd,." +rY0,,
iy

where @, 3, and y are positive real numbers that
indicate the contribution of each of the
components in the cost function. a,; is the
affinity relation between pattern i and j. d;; is the
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distance between pattern i and j. di, represents
the distance of pattern i from the origin. O; is
the overlap between pattern i and j.

The stock cutting problem yields a straight-
forward parallel decomposition, and, thus is an
interesting model problem. A data parallel
domain decomposition of the stock cutting
problem gives each node approximately the
same number of patterns. Each node performs
internal move, rotate and exchange operations as
well as participating in moves between nodes.
The distance from origin, 2di, is calculated
correctly without the global information of
location of all object since the origin is fixed.
The overlap penalty, 0., is also calculated
correctly by making two adjacent processors
cooperate when the pattern lies in boundary.
However, in calculating the affinity relation
between two patterns i and j, Y(a, /b,) we need
global information of correct location of two
patterns. So a cost error occurs in calculéting the
affinity relation cost.

Definition 1-1: When the new cost is larger than
the current cost, this proposed move is called a
hill climbing move.

The simulated annealing algorithm can be
looked upon as a random iterative improvement
algorithm, with a certain probability of making
mistakes by accepting hill climbing moves that
increase the cost to get out of the local minima.
Since simulated annealing randomly selects hill
climbing moves, it can tolerate some cost errors.
Thus, an approximate calculation, instead of an
exact calculation, which uses old state
information from other nodes can be used to
evaluate the cost function. This modified
procedure is an asynchronous algorithm,
whereas, a straightforward implementation of
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parallel simulated annealing is strictly
synchronous (and sequential!). Under the proper
conditions, annealing algorithms can evaluate
the cost using old state information, and still
converge to a reasonable solution. So it is
important to find an upper bound on the cost
error at a particular temperature to maximize
speedups in the parallel implementation. Herein
these two algorithms will be differentiated as
Sequential Simulated Annealing (even for a
parallel version since the sequence of state
updates is the same as for a sequential version)
for the former and Error-Present Simulated
Annealing for the latter.

Cost error tolerance plays a useful role in
multiprocessing. When processors independently
operate on different parts of the problem, they
need not synchronously update other processors.
A processor can save several changes, and then
send a single block to the other processors.
Asynchronous algorithms require a minimum of
synchronization. However, at low temperatures,
the cost error may degrade the final result unless
corrected by a later move. So, simulated
annealing does not have unlimited tolerance for
cost error.

Previous work of the cost-error-tolerant
schemes cannot measure the cost error correctly,
and cost error has been tolerated empirically. In
this paper, we define maximum bound of
tolerable cost error as a function of the global
update frequency.

In Section II, we explain how a cost error can
occur in multicomputers. Section III discusses
previous work on cost-error-tolerant schemes. In
Section IV, we analyzc¢ three interesting

. phenomena of cost-error-present algorithm. In
Section V, we classify the error model by case
study, and present our cost-error measurement
scheme and error-tolerant method. This cost-
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error-tolerant method is applied to the stock-
cutting problem using an asynchronous parallel
spatial decomposition Simulated Annealing
algorithm. Finally, Section VI presents and
discusses some experimental results,

II.LERROR OCCURRENCE

Consider a system with two state variables x
and y in Figure 3, so some state s=<x,y>ES.
Let the cost function be fix+y). Now put x and y
on two separate processors. Each processor
proposes a move: processor () generates x¢— x-1,
while processor 1 generates ye—y-1 simultane-
ously.

In both cases, AC < 0, so each move will be
accepted. However, the cost function error
causes the state to jump to a high local
minimum. At low temperatures, the annealing
algorithm probably will not escape this trap
because there is no hill climbing move in low
temperatures. So the maximum bound of the
tolerable error is proportional to the temperature.

Resulting state
~®— Processor O proposes x ¢ x— 1

“— Processor | proposes y +— y— 1

! AN

flx+y)

Sasting state

Xty ——=

Fig. 3. Exrors can cause annealing failure [5].
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lIl. PREVIOUS WORK ON
ERROR TOLERANCE

Jayaraman, et al. describe the characteristics
of cost errors at different temperatures [5]. The
error in the cost function is defined to be the
difference between the real change in cost from
initial to final states and the estimated change in
cost, which is equal to the sum of the changes in
cost (AC; for processor i) at each processor.

Definition 3-1: The cost error (AE.) is defined
as the difference between the actual (real) cost
change and the estimated (measured) cost
change. That is, due to the local copy of the out-
dated information, the actual cost change
calculation may be different from the estimated
cost change.

c.)-Yac G

i=i

AE, = AC,~AC,=(C, -
where AC, is the actual cost change, and AC, is
the estimated cost change. C,, is the actual final
cost and C,; is the actual initial cost. AC, is the
estimated cost change in processor i, and P is the
total number of processors.

This cost error measurement scheme will be
referred as the traditional error measurement
scheme. There are shortcomings in this tradi-
tional error measurement scheme. These are
discussed in the next section.

Definition 3-2: An optimistic error occurs when
the cost error (AE,) is positive from Definition 3-1,
Le. the estimated cost change (AC,) is less than the
actual cost change (AC,), AC, > AC. > 0. Since the
Metropolis criterion (equation 1-2) is used for the
cost changes, exp(-AC, IT)>exp(-AC, /T) the
acceptance ratio is increased in the case of an
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optimistic error. In other words, the candidate
move is accepted while this move may be
rejected in sequential (error-free) simulated
annealing since exp(-AC, /T)=exp(-AC, /T). This
kind of error is called an optimistic error and this
move an optimistic move.

Definition 3-3: A pessimistic error occurs when
the cost error (AE,) is negative, i.e. the actual
cost change is less than the estimated cost
change, AC, > AC, > 0. This being the reverse
case of an optimistic error, the acceptance ratio
is decreased in the case of a pessimistic error.

Definition 3-4: The stream length, s, is defined
as the number of continuous moves before the
global update where all local information is
broadcasted and updated.

Jayaraman, et al. [6] observe that the average
cost error in the high temperature region
increases with an increase in the stream length.
However, the average cost error reduces and
finally drops to 0 in the low temperature region,
because in the low temperature region the
acceptance ratio of moves is small and
consequently, there are very few interacting
moves causing cost errors.

Grover [7] presents an cost-error-tolerant
scheme based on the analogy with statistical
mechanics to show that cost errors which are
much smaller than the temperature do not
change the results of the algorithm. In statistical
mechanics, all macroscopic properties of a material
can be derived from the partition function z, which
is defined as the sum of the Boltzmann factors over
all possible states, 2= exp(-C()/T). With this
method, the maximum Stream length in a fixed
temperature can be probabilistically predicted
based on the expected magnitude of a cost error.
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Banerjee, et al. [8] suggest an adaptive stream
length control. The goal is to find an upper
bound on the maximum permissible cost error at
a particular temperature. By adjusting the stream
length dynamically, the average cost error can be
limited to a specific range. This method is based
on the move acceptance curve in which the
acceptance ratio P is given by:

P=Prob [move accepted IAC >0] + Prob[AC>0]
+Prob [move accepted IAC <0} - Prob[AC<()]
(3-2)
where AC is the proposed cost change. By
considering the induced cost error and the
Metropolis criteria, the acceptance ratio with
cost error can be rewritten as

Pp=e 0T . Prob[AC>0)+Prob[AC<0]  (3-3)

where E is the total amount of cost error at a
fixed temperature.

If the acceptance ratio with cost emmor (Px) is
held to within 5 percent of a normal distribution,
a pessimistic cost error bound B, and an
optimistic cost ermor bound B. are approximated
as follows:

B, <-T-In(1-0.05)~ T/20 (3-4)

B = T-In(1+0.05)= T/2L

If the average cost error after a stream length is
higher than (T/21), the stream length is reduced
commensurate with that excess. If average cost
error is lower than (T/42), the stream length is
increased slowly. A five percent deviation in
composite acceptance is set experimentally to
maintain convergence.

IV. ANALYSIS OF COST ERROR

There are two different types of cost errors:
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Temporary errors and cumulative errors [9].
Temporary errors occur when two processors
simultaneously consider interacting moves. For
example, in the stock cutting problem, if two
processors attempt to move an object
simultaneously to the same location which is
empty, the objects will overlap. If the processors
investigate the overlap of the moved objects after
each move, the system gets a single, consistent
and correct state. Cumulative errors develop
when local state information used to compute the
cost becomes increasingly out of date as the
annealing process continues. In the stock cutting
problem, the affinity relation cost becomes
incorrect as the stream length increases, because
as the stream length increases, the local
information gets out-dated. Durand [9] observes
that a temporary error has only a minor effect on
the convergence of simulated annealing, while a
cumulative error appears to have a strong effect
on convergence.

When a cost error affects the annealing
process, there are some interesting phenomena.
First, from Definition 3-1, Jayaraman et al.[6]
and Casotto et al. [10] say that the cost error is
mostly negative and the absolute value of the
cost error is large at high temperatures, but goes
to zero as the temperature decreases. The ratio of
accepted moves versus attempted moves tends to
be very small at low temperatures, even if the
range limiter tries to keep it large. With very few
moves accepted, the probability of accepting
parallel moves is also very small. Furthermore,
even if moves generated in parallel are actually
accepted, they are range-limited, so that the error
cannot be arbitrarily large at low temperatures.

Figure 4 through 9 are drawn from the stock
cutting of 16 irregular patterns in 4 processors.
The Markov Chain length is 500, and the
temperature decrement ratio is 0.98. 125 is the
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maximum bound of the stream length. That is,
stream length 125 parallel simulated annealing
has a large cost error from Definition 3-4.

In the stock cutting problem, Fig. 4 indicates
that the cost error measured by the traditional
scheme (Definition 3-1) is not mostly negative.
However, the cost error only for the accepted hill
climbing moves is mostly negative. Figure 5
indicates that the absolute value of the average
cost error of pessimistic moves and that of
optimistic moves are almost the same in the high
temperature region. However, the absolute value
of the average cost error of pessimistic moves is
a little smaller than that of optimistic moves in
the critical and the low temperature regions. Fig.
6 shows that the number of accepted pessimistic
moves is greater than that of accepted optimistic
moves. From Figures 5 and 6, it is expected that
the total pessimistic cost error is greater than the
total optimistic cost error. This corresponds to
Fig. 4.

50 -
0

Total
Cost Emor —50
—100 4

: T T T
1 10 100 1000
Temperature

Fig. 4. Total cost error for all accepted hill
climbing moves (Stream length
is 125)
(+++: AE,, for all accepted moves,
—: AE,, only for the accepted hill
climbing moves)
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Fig. 5. Average cost error for one accepted
hill climbing move (Stream length
is 125)
(--- : I<AE,>| for optimistic moves,
— : I<AE, | for pessimistic moves)

Number
of
Accepted
Moves

lj T T
0.1 1 10 100 1000
‘Temperature

Fig. 6. Total number of accepted hill
climbing moves.(Stream length : 125)
(--- : for optimistic moves,
— for pessimistic moves)

Secondly, when a cost error is present, Rose et
al. [11] states that the average acceptance ratio
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increases in the low temperature region as the
number of processors increases. This is due to
the misinformation causing some moves that
would not have been made in sequential
simulated annealing. Further moves are then
necessary to make up for these “wrong” moves,
thus increasing the acceptance ratio. In the stock
cutting problem, Fig. 7 depicts the acceptance
ratio of hill climbing moves. The acceptance
ratios of the optimistic and pessimistic hill
climbing moves are almost the same. So from
Figure 6 and 7, it can be expected that the
pessimistic hill climbing moves occur more
frequently than the optimistic moves. This can
be explained by noting that the hill climbing
move tends to be estimated higher than the
actual cost by using the out-of-date local
information.

The acceptance ratio of the error-present
algorithm is smaller than that of the sequential
simulated annealing algorithm, because a
pessimistic move occurs more frequently than an
optimistic move and a pessimistic move
decreases the acceptance ratio. In the critical
(middle) temperature region, a decreasing
number of hill climbing moves occur. Since only
hill climbing moves affect the acceptance ratio,
the acceptance ratios of the error-present
algorithm and the sequential simulated annealing
algorithm are nearly the same. In the low
temperature region, most accepted moves have
negative cost change. However, with incomplete
information, some moves are accepted, which
would not have been accepted in the sequential
simulated annealing algorithm. So the
acceptance ratio of the error-present algorithm is
increased slightly (Fig. 8).

The third phenomenon in the presence of cost
error is the reduced fluctuation of the average
change in cost as a function of temperature(<AC>
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-0
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0.1 1 10 100 1000

Temperature

Fig. 7. Acceptance Ratio of Hill Climbing
Moves.(Stream length: 125)
(--- : for optimistic moves,
— : for pessimistic moves)

0.5~ _Sweam Length: 1
----Stream Length: 125

0.4

Acceptance
Ratic
=4
[
I}

| T T
1 10 100 1000
Temperature

Fig. 8. Acceptance Ratio of All Moves.
vs. T) at high and intermediate temperature

regions [12]. Since pessimistic moves occur
more frequently, the fluctuations in cost are
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reduced in the high temperature region. So the
system is likely to be kept in the high local
minimum. The average cost using the error-
present algorithm is less than that of sequential
simulated annealing algorithm because the hill
climbing moves are rejected more frequently in
the error-present algorithm(Fig. 9).

=200
. =400 -
Cost —600 —
—800
-1000 o
T T T T
0.1 1 10 100 1000

Fig. 9. Fluctuations of Costs
(+++ : sequential annealing,
— : stream length is 125)

There are shortcomings in the traditional cost
error measurement scheme (Definition 3-1).
Since there is no way to calculate the actual cost
without global information, the traditional error
measurement scheme is to calculate the cost
error after a global update as a difference
between the actual cost change (AC,) and the
estimated cost change (AC,) using Definition 3-1.
However, this method has inherent problems.

This method counts only the accepted
moves, i.e. if the candidate move is a
pessimistic hill climbing move, AC.>AC,>0,
and this move is rejected, this move may be
accepted in sequential simulated annealing
because exp(-AC/T)> exp(-AC/T). This kind
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of cost error cannot be included with this
method. In other words, this method cannot
calculate the cost error of rejected moves.

The second problem is that when both the
actual cost change (AC,) and the estimated cost
change (AC,) are negative, regardless of the cost
error, the candidate move is accepted. However,
the difference in cost, AC,~AC,, is added to the
total amount of cost error, even though the
acceptance of the move is correct, i.e. there is no
error in the move decision.

Finally, the optimistic error (AC, > AC, > 0)
and the pessimistic error (AC, >AC, > 0) are
compensated during a stream length. Only the
rough average error can be conjectured. So this
traditional error measurement scheme can be
used only qualitatively. It indicates at which
temperature large cost errors occur.

These three problems are corrected by a new
cost error measurement scheme with some
assumptions (see Section V).

V. ANEW ERROR TOLERANCE
METHOD

In this section, a new cost error measurement
scheme is presented. Using the measured amount
of cost error, an optimal stream length is derived
based on the hill climbing nature of simulated
annealing. Bounds on the cost error are proved
analytically to be a function of global update
frequency, or stream length s (Definition 3-4).

Emroneous move decisions due to the cost error
(AE) will be proved to be exponentially distributed
with respect to fixed temperature (7 > 0). Here AE
is used to differentiate the traditional cost error,
AE, (Definition 3-1) . That is, AF is measured by
the improved cost measurement method
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correcting the shortcomings of the traditional
method discussed in Section IV. With this known
distribution, the probability of an erroneous
move decision and the amount of cost error due
to the erroneous move decision can be
determined in s parallel moves without global
updating, or in stream length s.

Fig. 9 shows one possible interpretation that as
the stream length increases, the hill climbing
power decreases since the fluctuations in costs
reduce in the error-present annealing process.
The decreased hill climbing power can be
compensated by an increased additional Markov
chain length. That is, the additional move
generations provide a greater chance of a hill
climbing move. Since the cost error increases as
the stream length increases, the optimal stream
length and the additional Markov chain length
are proportional to keep the convergence as in
sequential (error-free)annealing process because
as the stream length increases the cost error
increases t0o.

When the stream length is fixed, the generated
cost error must be tolerated by changing the
additional Markov chain length dynamically.
Meanwhile, when the additional Markov chain
length is fixed, the tolerable amount of the cost
error, bounds of the cost error, is fixed, so the
stream length is varied according to the bounds
of the cost error.

With the increment of the Markov chain
length, the annealing process converges to the
good results with reasonable speedups. Since the
additional Markov chain length is fixed in the
experiment, the amount of cost error must be
controlled by increasing or decreasing the stream
length. By adjusting the global update frequency,
the convergence property is maintained to the
same degree as in the sequential annealing
process.
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Here the distribution of the move acceptance
and the erroneous move decision are defined.

Theorem 5-1: The acceptance move decision is
exponentially distributed with respect to the
parameter 7 > 0.

Prob[Move accepted with cost change[0,AC]]
=1-exp(-AC/T)

Proof

Define the continuous random variable x to be
a function which associates a positive real
number, the hill climbing cost change (AC)
with each possible outcome of an accepted
move decision. The probability of move
acceptance is exp(-AC/T) when the cost change
is (AC, o). So the cumulative probability of
move acceptance is 1-exp(-AC/T) when the
cost change is [0, AC], which is the exponential
cumulative distribution function.

Prob[ X< AC]
=1-Prob[X > AC]
=1-Prob[Move accepted with cost change AC]
=1-exp(-AC/T)

So the continuous random variable x has an
exponential distribution with respect to the
parameter 7 > (). o

Since the estimated and actual cost changes
are different, erroneous moves can result.
Consider two possible cost changes, AC, and
AC, where AC, < AC, where it is not known
which is the actual and which is the estimated
cost change. If a move is accepted with a smaller
cost change, AC,, while the move is rejected
with a larger cost change, AC,, then an erroneous
move of error, AE = AC, - AC,, occurs.
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Theorem 5-2: The erroneous move decision 1s
exponentially distributed with respect to the
parameter T > 0, given that the candidate move is
accepted with smaller cost change, AC,, between
the actual and the estimated cost changes.

Prob[The erroneous move decision
with cost error [0,AE])]
=Prob[Move rejected with cost change AG|
Move accepted with cost change AC)]
=1-exp(-AE/T)

Proof

Define a continuous random variable Y, to be a
function which associates a positive real number,
the cost error of the hill climbing move (AE),
with each possible outcome of the erroneous
move decision. Consider two cost change values
AC, and AC, with AC, > AC,. Then AE=AC, -
AC,. The erroneous move decision is the event
that the candidate move with the smaller cost
change, AC,, is accepted, while the candidate
move with the larger cost change, AC,, is
rejected. The random variable Y, represents the
excess life of the move acceptance, i.e.Y, ¢=
Sncacys1-C1, where N(4C) is the number of
acceptances with cost change [0, AC], and S« is
the sum of the cost change when the move is
accepted n times. S is the sum of the random
variable X in Theorem 5-1. So, ¥, represents
how long the acceptance move decision is
maintained given that the candidate move with
the smaller cost change, AC|, is accepted. In
other words, Syucy. 1S the cost change of the
move rejection given that the candidate move
with cost change AC, is accepted.

Prob[ V., <AE]
=Prob[Syaci-AC, < AE]
=Pr0b[SN(Ac,)+| S AE+AC|]
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(from N(C)=zn=S,<C)
—Prob[N(AE+AC,) > N(AC,)+1]
=Prob[N(AE+AC,)-N(AC,) = 1]
=1-Prob[N(AE+AC,)-N(AC,) <0)
=1-Prob[N(AE+AC,)-N(AC,)=0]

(Since the number of rejections

is non-negative)
=1-Prob[N(AE)=0]

(From the memoryless property of
exponential distribution.(Theorem 5-1))
=1-exp(-AE/T) o

In Section V.1, the move decisions are
classified according to the actual cost change
(AC.) and the estimated cost change (AC:), and
the probability of the erroneous move decision is
calculated from Theorem 5-2 by a case-by-case
analysis. In Section V.2, the amount of cost error
is measured probabilistically regardless of
whether the move is accepted or rejected. This
cost error measurement method is unlike the
traditional cost error measurement scheme
(Definition 3-1). This method includes the cost
error due to the rejected moves. In Section V.3,
since cost error can be tolerated by hill climbing
moves, the measured amount of cost error is
used to derive the optimal stream length.

1. CASE-BY-GASE STUDY OF ERROR MODEL

There are four possible cost change cases
(Case 5-1 through Case 5-4) each with four
possible subcases, that is:

1) A move is accepted based on an estimated
cost change and also based on an actual cost
change.

2) A move is accepted based on an estimated
cost change, however will be rejected based
on an actual cost change.

3) A move is rejected based on an estimated
cost change, yet will be accepted based on
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cost change, yet will be accepted based on
an actual cost change.

4) A move is rejected based on an estimated
cost change and also based on an actiial cost
change.

In sub-cases 1) and 4), the move decision is
correct regardless of the cost error used.
However, in sub-cases 2) and 3), an erroneous
move decision occurs due to the cost error.

Since the actual cost change can not be
calculated at run time, the estimated cost change
is used in an acceptance decision using the
Metropolis criteria (equation 1-2).

Case 5-1: AC,> AC, >0 (Pessimistic move).

The first case is that the actual cost change
(AC,) and the estimated cost change (AC,) for
one move are positive and the estimated cost
change is greater than or equal to the actual cost
change.

Define one move error AE=AC,-AC,, where
ARV =().

1) The move is accepted with the estimated
cost change AC,, where the probability of a
move acceptance is exp(-AC,/T).

I-1) This move will be accepted with the
actual cost change AC, as well because
the probability of a move acceptance
with the actual cost change is greater
than or equal to the probability of a move
acceptance with the estimated cost
change, i.e. exp(-AC,/T) <exp(-AC,/T).
So the move decision is correct
regardless of the cost error.

2) The move is rejected with the estimated cost
change AC,, where the probability of a
move rejection is 1-exp(-AC, /T).

2-1) This move can be accepted with the actual
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cost change AC, with a probability P,,
where

P, = Prob[Move accepted with AC,N
Move rejected with AC, ]
= Prob[Move rejected with AC, |
Move accepted with AC, ]
X Prob[Move accepted with AC,]
= Prob[The erroneous move decision
with cost error4E, )
X Prob[Move accepted with AC, - AE, ]
= (l-exp(-4E\/T)) - exp((AC,- AE))IT)
from Theorem 5-2
= exp(-AC/T) - (exp (AE,/T)-1)
2-2) When this move is rejected with the
actual cost change AC,, there is no
erroneous move decision.

Case 5-2: AC,> AC>0 (Optimistic move).

The second case is that the actual cost change
and the estimated cost change for one move are
positive, however, the actual cost change is
greater than or equal to the estimated cost
change.

We define one move error AE,=AC,-AC.,,
where AE,> ().

1) The move is accepted with the estimated
cost change AC,, where the probability of a
move acceptance is exp(-AC./T)

1-1) If this move is accepted with the actual

cost change AC,, then there is no error.

1-2) This move can be rejected with the actual

cost change AC, with probability P.,
where

P2= Prob[Move accepted with AC.N
Move rejected with 4C, |
= Prob[Move rejected with AC, |
Move accepted with AC. ]
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X Prob[Move accepted with AC,]
= Prob[The erroneous move decision
with cost errordE, |
X Prob{Move accepted with AC)]
= exp(-ACJT) - (1-exp(-(AE,/T))
from Theorem 5-2
2) The move is rejected with the estimated cost
change AC:. .

2-1) This move will be rejected with the actual
cost change AC. as well because AC.>
AC.. So there is no erroneous move
decision.

Table 1. Probability of the Cost Error in a

Hill Climbing Move.
Pessimistic Move Optimistic move

(AC,.= AC)) (AC,= AC)

Move | acwiAC,| rjwiaC, acwAC, | mjwiAC,
apeAC)
acw/AC, 0 x(exp( AEIT}1) 0 -
- eAC/T)

1ej WIAC, 0  (1-expCABT) 0

Case 5-3:(AC, >0 N AC, <0)U(AC, >0NAC, <0)

In Case 5-3, the cost error is greater than the
absolute value of the estimated cost change, so
the signs of the estimated and actual cost changes
are different. Computing these two probabilities
is somewhat complex, thus any error control
scheme will be complex. These two cases happen
rarely since the cost error is much smaller than
the cost change in real experiments, The portion
of Case 5-3 to the total moves is less than 4% in
the maximum stream length implementation.
Thus, the occurrence of these events is ignored.
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Case 5-4: AC,<0 UAC, <0

In Case 5-4, a move will be always accepted
and there is no cost error, since the decision of
move is correct, i.e. move is accepted also with
the actual cost change AC..

The summary of the above cases are in Table
1, where AE is the amount of the cost error.

2. IMPROVED ERROR MEASUREMENT
SCHEME

In improving the cost error measurement
scheme, the total amount of cost error is
calculated throughout the given stream length, s.
Unlike previous methods (see Section III) which
ignore cost errors from rejected moves and find
the optimal stream length heuristically, this new
method calculates the cost error analytically
based on the results in the previous section.

Lemma 5-1: The actual cost change (AC)) is
represented as the sum of the estimated cost
change (AC,) and the cost error throughout an
iteration i.

AC,=AC, +AE
=AC ti-a-|<E>|

Proof

AF is the cost error of any iteration i. In a spatial
decomposition stock cutting problem (Fig. 10),
the absolute value of the average cost error
(I<E>) is calculated when one move is supposed
to be accepted with a half distance of the range-
limiter, and the other processors do not know
this acceptance. Actually, this is the maximum
bound of I<E>| because as the move distance is
shorter, the move is accepted more easily, For
example, any one pattern of Processor P, is
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assumed to be moved to a half distance of the
range-limiter and Processor P: does not know it.
Then the absolute value of the average cost error
l<E>| for P: can be calculated when the
Processor P: tries the move generation. The cost
error AE at an iteration 7, can be represented as
an average error (I<E>l) times the total number
of accepted moves throughout an iteration {. The
total number of accepted moves is the
acceptance ratio (@) times the iteration i. So

AE=1i-a- B>l o

Py
3 Processor P, handles
T O - i paitern1, 2,3, 4,
. Processor P, handles
Py ;| pattem 5, 6, 7.

Fig. 10. Spatial Decomposition_

In the spatial decomposition stock-cutting
problem, the stock sheet is nearly equally
divided in x-direction. Each processor governs a
space and handles the patten whose reference
coordinate belongs to its own space. The
reference coordinate of the pattern is the smallest
(x,y) of the bounding box surrounding the
pattern. Then each processor does move
generations asynchronously when the move does
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not affect the space of the other processors
(Intra-Move). When the move affects the space
of the other processor (Inter-Move), all the
affected processors cooperate the move
generation.

Since a cost error occurs only with a positive
cost change in this analysis, to calculate the cost
error, it is necessary to compute a probability for
the conditions of Case 5-1 and Case 5-2.

Theorem 5-3:
ProblAC, =2 AC,>0]+ProblAC, = AC.>0]
=Prob[AC.> 0]
Proof
Prob[AC,=AC,>0]
=Prob[AC,> AC,| AC,>0,4C,>0]
X Prob[AC, >0, AC,>0]
=Prob[AC. > AC,| AC.>0,4C,>0]
X Prob[AC,>014C,>0]
X Prob[AC,>> 0]
=Prob[AC, 2 AC,| AC,>0] - Prob[AC,>0]

Since Prob [AC,>0 | AC,>0]=1 from the
assumption that the cost error is not greater than

" the absolute value of the estimated cost change, i.e.

the estimated cost change and the actual cost
change have the same signs.

Similarly,
Prob[AC,=AC, > 0]=ProblAC, > AC,| AC,>0]
X Prob[AC,>>0].
So

ProblAC, = AC, > 0]+Prob[AC, > AC, > 0]
=Prob[AC,z4C,1AC,>0] - Prob[AC,>0]
+Prob[AC, = AC14C,>>0] - Prob[AC,>>0]
=Prob[AC,>0]. o

The next task is to estimate the Prob
[AC>0]. Since Prob[AC,>0] is a function of
state configuration, i.e. in a maximum cost, Prob
[AC>0] is zero in a move generation, while in a
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local minimum cost, Prob[AC.>0] is one in a
move generation.

Lemma 5-2: The probability of positive
estimated cost change is

Z[(AC.,(L;bo}(")
Prob[AC>0] =i """
N(@)

for any state
Proof

State j is any neighbor of state i. AC,(ij) is the
estimated cost change of a move from state i to
state j. N(i) is the number of neighbor states from
state i. The proof is obvious by using the
specified indicator, /. O

Since N(i) and AC.(i,j) are not known in
advance, it is difficult to estimate the Prob
[AC:>0]. However, during the running of the
algorithm, the estimated cost change can be
calculated. So only when the estimated cost
change is greater than zero, the total probability
of cost error (P;) is counted.

The probabilities of optimistic and pessimistic
errors are calculated, when the estimated cost
change (4C.) and cost error (AE) are fixed, i.e.
experimentally the optimistic and pessimistic cost
errors are the same (Figure 5) and the actual cost
changes are calculated from the predefined
estimated cost change and cost error (Lemma 5-1).

Corollary 5-1: The probability of optimistic cost

() )

Corollary 5-2: The probability of pessimistic

COS[ €ITor.
T T

Po=Prob [aC,>AC,>0)-

P,.=Prob (ac,>Ac,>0].
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In Section IV, it is shown that the total
pessimistic cost error is greater than the total
optimistic cost error. This can be explained by
the next theorem with some assumptions.

Theorem 5-4: The probability of the pessimistic
cost error is greater than that of the optimistic
cost error with the following four assumptions.

1. The cost error (AE) is less than the estimated
cost change in the hill climbing move.

2. The amount of the pessimistic and optimistic
cost error are the same, AE,=AE, from Cases
5-1 and 5-2.

3. Only the estimated cost change is measured
and the actual cost change can be expected,
or calculated, using Lemma 5-1.

Proof

The assumption 1 is reasonable because the cost
error is much smaller than the cost change in
most cases from Case 5-3. Figure 5 proves the
assumption 2. So only the occurrence numbers
of the pessimistic and optimistic cost errors are
different. Since there is no way of calculating the
actual cost change directly, the assumption 3 is
inevitable. Figs.6 and 7 tell that the pessimistic
hill climbing moves occur more frequently than
the optimistic moves, i.e. Prob[AC.>AC:>0]<
Prob[AC.> AC.>0) With the above assumptions,
and Corollaries 5-1 and 5-2, it is obvious that
the probability of the pessimistic cost error is
greater than that of the optimistic cost error
because lexp(-AE/T)-11 < lexp(AE/T)-1I. So the
large pessimistic cost error is more likely to be
accepted comparing with the optimistic cost
EITOr. D

The probability of optimistic cost error (P,,) is
always in [0, 1] from Corollary 5-1. The
probability of pessimistic error (P,.) must be
checked to be in [0, 1]. Pessimistic errors happen
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only in Case 5-1.

So, AC,>AC, >0
=AC,2AC, AC, >0
=AC,ZAC, - AE, AC,—AE>0
= AE20, AE<AC,
= AC,>AE>0
=12P 20

pes

from Corollary 5—2

So the range of the probability of pessimistic
error is well defined.

Theorem 5-5: Since a cost error occurs only in a
positive cost change, the total probability of cost
error, P, is given by

P, =Prob{AC:0]
X exp(-ACJT) + (exp(AE/T)-1)
Proof
Pr=Ppes+Pop
=Prob[AC, > AC>0]
X lexp(-AC/T) - (exp(AE/T)-1)I
+Prob[AC, > AC>0]
X lexp(-ACJT) - (exp(-AE/T)-1)I
S Prob[AC, 2 AC >01+Prob[AC, > AC >0]
Xexp(-AC/T) - (exp(AEIT)-1)
=ProblAC>0)] - exp(-AC/T) - (exp(AE /T)-1)
o

Now the cost error can be determined using the
probability of cost error (P,).

Theorem 5-6: The amount of cost error in the
hill climbing move (AC, > 0) is

E=AC,-exp(-AC,/T)- (exp(AE/T) - 1)

Proof
Since Prob[AC:>0]= 1, the probability of cost
error in the hill climbing move is given by
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P, =exp(~AC,/T)-(exp(AE/T) - 1)
from Theorem 5-35
So,
E=AC.-P,
= AC, -exp(-AC,/T)-(exp(AE/T)-1) ,

given that AC, >0
o

Durand [9] suggested that some problems or
algorithms of Jayaraman, et al. [13] are more
resistant to the cost error than those of Rose, et
al.[11][14]). This robustness to the cost error can
be explained by Theorem 5-7.

Theorem 5-7: The total amount of the cost error
(E) depends on the portion of the cost error (AE
ori - a - [<E=l)in the estimated cost (AC,).
Proof

The cost function is made up of the cost-error-
dependent terms which result in the cost error in
calculating the cost function and the cost-error-
independent terms which do not result in the cost
error. For example, in the stock cutting problem,
the cluster term and the overlap penalty term are
the cost-error-independent terms, while the
affinity relation term is the cost-error-dependent
term(see Section I). From Theorem 5-6, when
the cost error, AE, has only a small portion of the
estimated cost error, AC,, i.e. AE<< AC,, the
total probability of the cost error goes to 0.

E < exp(—AC, /T)- (exp(AE/T) 1)
= exp(«(AC-AE)/T) — exp(-AC,/T)

Since AC, > AE > 0 in the hill climbing move,
the total amount of cost error (E) is always
positive. So robustness to the cost error depends
on the portion of the cost error (AE) in the
estimated cost (AC),). o
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It was shown that the traditional cost error
measurement scheme (Definition 3-1) has three
shortcomings (see Section IV). These three
shortcomings of the traditional method are
corrected with the assumptions in Theorem 5-4.
The shortcomings are corrected as follows.
First, The new cost error measurement method
includes the cost error of the rejected moves
(Corollary 5-2 and Theorem 5-5). Second, this
method does not include the cost error of the
negative cost change moves, because the move
decision is always correct regardless of the cost
error used. Finally, there is no compensated cost
error between the pessimistic and optimistic cost
errors because this method adds the probabilities
of the pessimistic and optimistic cost error
(Theorem 5-5).

3. MAXIMUM BOUND OF TOLERABLE ERROR

In this section, the optimal stream length is
derived for the measured amount of cost error.
Since a cost error is tolerated by hill climbing
moves, a maximum bound on the cost error can
be defined using a maximum bound on the hill
climbing move.

Theorem 5-8 [15]: Let d(s) be the maximum
amount (or depth) of cost which can be hill-
climbed at a given temperature 7 and stream
length s. Then

exp(~d(s)/T) 2 -3 = d(s)<Tlns (5-1)

This means that there is possibility to choose
d(s) hill climbing move in s moves [15]. The
maximum hill climbing depth is the function of
temperature and log of the stream length.

The error-present simulated annealing has a
small hill climbing power than sequential
simulated annealing, so the error-present algo-
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rithm is likely to be kept in a local minimum due
to cost error (Fig. 9). Hill climbing power is the
degree of accepting the hill climbing move. In
order to get out of the local minimum and
converge to the optimal result, the error-present
algorithm must have the same hill climbing
power as the sequential simulated annealing
algorithm. Since the decreased hill climbing
power is due to the cost error, the following
theorem is derived.

Theorem 5-9: The hill climbing depth of the
error-present algorithm (d,) is less than that of
the sequential algorithm (d,) by at most the
amount of error (F),

d,<d+E

where d, is the hill climbing depth of sequential
simulated annealing for one hill climbing move,
d, is the hill climbing depth of the error-present
algorithm for one hill climbing move, and E is
the hill climbing error derived from Theorem 5-6.
Proof

A loss of hill climbing power is introduced only
by pessimistic errors (AC, > AC, > 0). Hill
climbing power, probabilistically, is d,=AC, -
exp(-AC,/T) in the error-present annealing
process and d4,=4C, - exp(-4C,/T) in the
sequential annealing process. Using E (from
Theorem 5-6) and pessimistic condition
(AE=AC,-AC, where AC, > AC, > Q), we have

d,—(d,+E)=AC, .exp(— A;:“)

AC,
—(AC,~exp( T)

4G (o A
o) (of )
=AC"-exp(—- .

ACJ
T
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(s enf-25222)

=AC, - exp(— aG, )— AC,- cxp(— A, )
T T
from Lemma 5-1
AC
= exp(—- Tﬂ )~(AC¢ - AC,) <0

from pessimistic condition

So,d, <dA+E, a

Next, an extra stream length («) is required
for the decreased amount of hill climbing
depth, E(s), throughout the stream length s.

Corollary 5-3: The extra move () to tolerate the
cost error E(s) is given by

exp( E;s)) ,Souz exp( E;s)) from Theorem 5—8
u

For a given temperature 7, at least « moves
have a hill climbing power E(s); and with stream
length s, there is a hill climbing power d,(s) in an
error-present algorithm.

Corollary 5-4:

RN

Now the stream length s, can be calculated for
the error-tolerable algorithm having a regular hill
climbing depth d,(s). That is, in order to increase
the hill climbing depth to match that of
sequential simulated annealing, the stream length
s, is required.

from Theorem 5—8

Theorem 5-10: When a total amount of cost error
(E(s)) occurs during stream length 5, 5, = 5 + u
stream length is needed to tolerate the cost error.
Proof

5, s defined as exp(-d/T) = 1/s,
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( %) = exp( + E] from Theorem 5— 9

exp( ,;S)) ( dg(s)+ E( f))

SECWES

from Corollary 5-3 and Corollary 5-4

from ergodicity

>1.
A

< =

So s, = s - u stream length is needed for the
error present algorithm to have the same hill
climbing depth as the sequential annealing
process has in the stream length s. o

The next task is to solve how to define the
extra stream length factor u, considering the time
for global update. From Corollary 5-3,

E(s)<T-Inu, since exp -—L (5-2)
T u

In order to decrease the extra stream length
factor u for speedups, the maximum tolerable
cost error E(s) must be decreased as well. So, the
extra stream length factor u and the maximum
tolerable cost error E(s) are proportional. That is,
as the stream length increases, the cost error

“Increases, so the extra stream length factor (i)

must increase to keep the convergence.

For example, if a 10% increase of Markov
chain length is allowed, i.e. u= 1.1, then the
maximum error bound E(s) can be calculated
using equation (5-2). If the measured amount of
cost error in a given stream length s is greater
than the maximum bound cost error E(s), the
stream length will be decreased. If the measured
amount of cost error in a given stream length s is
less than the maximum bound cost error E(s), the
stream length will be increased. When the
stream length is changed, the Markov chain
length M is kept fixed, i.e. Markov chain length
M =stream length (s) X # of global updates in a
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given temperature. The pseudo code for the error
tolerant scheme is in Figure 11.

PROCEDURE ERROR - TOLERANT
SIMULATED ANNEALING
begin
INITALIZE;
k:=0;
repeat
calculate|< E > in 7,
/" Average cost error in one accepted move'/
E(s)=0
I"E(s)is the total amount of cost error
in a given stream length’/
Tepeat
PERTURB(config.i — config. LAC);
ifAC; <0 then accept
else

AC,
E(s)=E(5)+ AC"/‘ .cxp(__Ti)

k

(o555

' is the i - th iteration in the stream length'/
"o is the acceptance ratio'/
if exp(—AC,.j / Tk) > random [0.1) then accept;
if accept then
UPDATE(configuration j);
until equilibrium is approached sufficiently

closely;
L= (T
ki=k+1;

if(E(5)ST, -logu) [u=11"/
increase stream length,
else
decrease stream length;
until stop criterion == true(system is 'frozen');
end.

Fig. 11. The Error-Tolerant Simulated
Annealing
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VI. EXPERIMENTAL RESULTS

The new adaptive error-tolerance method (see
Section V); which will be referred to as the
adaptive method, was implemented on a 16-node
Intel iPSC/2. The target problem was the
composite stock cutting problem (see Section T),
which was decomposed specially along the
space of stock sheet.

The parallel space-decomposition simulated
annealing algorithm was implemented in 4
nodes. A total of 16 irregular patterns were used.
The Markov chain length was 500. To track the
behavior of the cost error, the weight of the
affinity relation term was set much greater than
that of the cluster term, since the cost error
occurs only in the affinity relation term of the
cost function. The fixed stream length method,
which will be referred as the static method, was
implemented twelve times on each stream
length. The stream length was varied to note its
effect on the cost error.

Fig. 12 shows that the average final cost starts to
increase above stream length 10. Using 4 patterns
per node and an optimal stream length of 10, the
herein algorithm is much more robust with respect
to the cost error than the floor planning algorithms
of Jayaraman [6] and Durand [9], where the
optimal stream length was set equal to the number
of patterns per node. This can be explained by
Theorem 5-7. The portion of the cost error (AE) in
the estimated cost (AC,) of the composite stock
cutting problem may be smaller than that of floor
planning problems. This can be due to more inter-
processor move generations where the correct
location of pattern is broad-casted to the neighbor
processors. And more we can guess that the cost
error-free term (cluster term of the cost function)
is weighted greater than the floor planning
algorithm. From Theorem 5-7, this reduces the
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this reduces the total amount of the cost error, so
the stream length can be increased keeping the
convergence to the optimal results.

~380

=390
Average
Final —400—

Cost
—410

—420-|

Fig. 12. Final Cost vs. Stream Length

Comparing the stream length at cach
temperature (Figure 13) with the annealing curve
(Figure 14), the stream length reduces to 2 in the
critical region where specific heat is very high.
However, the stream length increases to 125 far
from the critical region, i.e. the global update is
done only once at the end of each temperature.
The stream length varies dynamically according
to the annealing curve. This means the cost error
has little effect on the annealing process away
from the critical region, but affects it greatly in
the critical region. This corresponds to the fact
that the annealing process proceeds rapidly away
from the critical region, but much more slowly in
the critical region.

In Table 2, Adp means the adaptive method,
and Static-10 means that the stream length was
fixed at 10. Since the average final cost starts to
increase above the stream length 10, the stream
length of 10 was selected for the static method.
The average final costs was almost the same.
However, the standard deviation of the adaptive
method was smaller than that of the static
method, as expected. The average stream length
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of the adaptive method is larger than that of the
static method. Since the number of global update
was inversely proportional to the stream length,
the average number of global updates was
reduced 6.3 times in the adaptive method,
compared to the static method. From the above
data (Figs, 13, 14, and Table 2), the adaptive
method adapts the stream length dynamically,
with comparable final results.

Length
TR 5]

0

T T T T T
0.01 0.1 1 10 100 1000
Temperature

Fig. 13. Stream Length vs. Temperature,

—200 -
Cost

—300

—400

T T T T T
0.01 0.1 1 10 100 1000
Temperature

Fig. 14. Annealing Curve.

Table 2. Final Cost of Adaptive and Static

Methods.
Mean | Std. Dev| Worst | Best
Adp | 4245 8.29 4144 | -436.2
Static-10 | -424.3 11.70 | -402.9 | -436.2
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As the second experiment, 16 different sets of
patterns were implemented to observe the results of
the adaptive method. The number of patterns varied
from 128 to 160. A cooling schedule was set such
that the initial temperature was about 200,000, the
temperature decrement ratio was 0.98 to 0.99, and
the Markov chain length was 5,000 to 20,000. In
other words, the weight of the cluster term in the
cost function is balanced with that of the affinity
relation term.

Table 3. Speedups of Adaptive and Static Methods.

node size | Mean | Std.Dev. | Max | Min
Adp | 147 | 016 | 167 | 1.15
2| Static-5 | 1.18 | 0.09 1.28 | 1.02
Adp | 355 050 | 395211
4] Static-5 | 276 | 029 | 3.16 | 2.05
Adp | 698 | 094 | 764 | 4.13
Static-5 | 4.89 | 047 | 5.46 | 3.97
Adp [ 1194 134 |[13.04]8.10

l6

Static-5 | 7.63 0.84 9.45 | 6.35

— adaptive method
10{ - - statc-5 method

Speedups

T -
10 15
# of processors

=}
A —

Fig. 15. Speedups of Adaptive and Static
Methods.

In Table 3, Adp means the adaptive method
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and Static-5 represents the static method, where
the stream length was fixed at 5. Table 3
indicates the speedups of both the adaptive
method and the static method comparing with
the sequential annealing process. The mean of
speedup of the adaptive method was greater than
that of the static method over the entire
processor range. However, the standard deviation
of the adaptive method was always greater than
that of the static method. Since the experiment
was done on different sets of patterns, the run
time may have varied according to the problem,
in order to maintain the convergence in the
adaptive method.

Figure 15 plots Table 3. Figure 15 indicates
that as the number of processors increased the
adaptive method was much better than the static
method in speedups. As the number of
processors increased, the global update time
increased as well. Thus, the speedups of the
parallel implementation was reduced as the
number of processors increased.

Since the adaptive method reduced the global
update frequency, the adaptive method achieved
better speedups than the static method for a large
number of processors.

Table 4. Final Cost of Adaptive and Static Methods.

node size Mean Std.Dev.
Seq. 583848 91797.9

) Adp 587628 83453.7
Static-5 | 588608 83138.0

4 Adp | 578001 77181.2
Static-5 | 575734 79882.2

g| Adp | 574773 76009.6
Static-5 | 575499 755340
Adp | 589618 75242 4

16 static-5 | 591113 76073.4 j
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Table 4 compares the final cost of the adaptive
method with that of the static method. The
stream length of the static method varied from 5
to 100 where the convergence was assumed to be
maintained. The mean final cost of the adaptive
method was smaller than that of the static
method for the entire processor range. In 16
nodes, the final cost of the parallel imple-
mentation was greater than that of the sequential
annealing process. This may result from
restricted mobility in move generation. Let the
cost deviation of the parallel implementation be
defined as:

Cost of parallel - Cost of Sequential
Cost of Sequential

Cost Deviation =

The cost deviation of the parallel implementa-
tion using 16 nodes was less than 1% for the
adaptive method and 1.2% for the static method.
The standard deviation of the adaptive method
was smaller than that of the static method for all
node ranges. This corresponds to the previous
experiments (Table 2)

As the third experiment, the stream length of
the static method was varied to determine the
cost error behavior using a different set of the
stream lengths. This experiment was similar to
the the first experiment (Table 2). However, the
weight of the cluster term was balanced with that
of the affinity relation term in order to consider
the packing density. The experiment was done 3
times using 128 regular patterns and 16 nodes.
The initial temperature was set around 20,000,
the decrement ratio was 0.98 to 0.985; and the
Markov chain length was 10,000.

In Table 5, the performance is defined as the
inverse of the product of run time and cost.
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performance =

1

cost X run time

Table 5. Performance of Static and Adaptive

Methods.
Steam Length | Time(Avg) | Costavg) | Performance(avg)
625 6.96378e+06| 97019 |  1.30075-13
208 70591e+06 | 791015 1.78955-13
125 7.31633e+06| 790672 1.72831e-13
89 7.38138e+06| 784053 1.72784e-13
69 748652e+06| 794623 1.68088¢-13
57 T18042e+06 | 791005 1.76246e-13
45 7.52592e+06| 787917 1.68743¢-13
35 7.83123e+06| 7865064 1.62355¢-13
26 8.44653e+06| 784167 1.5004%-13
21 8.56733e+06| 787604 148084e-13
16 943514e+06| 788615 1.34336e-13
10 1.09276e+07| 788676 1.16026e-13
5 1.74531e+07 | 783721 731384e-14
Avg 8.7364%9¢+06 | 7883% 145192¢-13
Adaptive | 7.20755e+06| 786792 1.76375%-13
Sequential | 9.34506e+07| 75321 1.42030e-14
2.5
™ - 29
1
5 00 20 50 100 W 65
Seream Length

Fig. 16. Performance of Adaptive vs. Static
Methods.
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The performance was used as a parameter of a
kind of goodness test for the trade-off between
run time and cost. The weights of cost and run
time are set to be equal for convenience. The cost
deviation of the cost of the sequential process
was 4.4% for the adaptive method and 4.7% for
the static raethod.

7.3e+06 800000
7.25c406 ~

R - 795000

time cost

(otied) 7.2c+06 -{ (solid)

790000

7.15e+06 -
.
7-1e+06 I T T T T 785000
105 1.1 12 13 14
Stream Length Factor (u)

Fig. 17. Time and Final Cost for Various

Stream Length Factor,

13.05

Performance 13
ratio
Adp/S

(Adp/Seq) 12.95 4

129

T T T
1.1 1.2 13 1.4
Sucam Length Factor (i)

Fig. 18. Performance for Various Stream
Length Factor.

In Fig. 16, the performance ratio is defined as
the performance of the static method over that of
the adaptive method (performance of Adap-
tive/performance of Static). Fig. 16 indicates
that the static method can get a fairly good
performance around the fixed stream length 100.

C.-E.Hong, H.-1.Ahn & B. M.McMillin 23

In other words, considering the trade-off
between the run time and the cost, 100 is a
desirable stream length. When the stream length
was larger than 200, the run time reduces with a
relatively small increase of the cost. So the
performance defined here can not represent the
trade-off properly in large stream length regions.
The performance of the adaptive method was
lower than that of the static method in the proper
regions. The average performance ratio of the
static method to that of the adaptive method was
0.82.

In Fig. 17 and 18, stream length factor (i) is
varied without the additional stream length, so we
can see the final cost change and run time. The
final costs are almost the same and high when the
stream length factor is above 1.2, u= 1.2. This
means that the final cost diverges fully when u« =
1.2. The run-time decreases as the stream length
factor (1) increases because the additional stream
length according to u is not introduced. In Fig.
18, when the stream length factor is above 1.2,
the run-time decreases with almost the same
final cost, so performance increases too. That is,
the performance definition does not represent the
goodness test.

From the experimental results, the adaptive
method 1s well suited for relaxing the frequency
of the global updates, i.e. for increasing the
stream length while maintaining the quality of
the final results comparatively. Aside from the
improved speedups, the adaptive method has an
advantage over the static method in that, in the
latter, much implementation is needed to
determine the optimal stream length.

VII. CONCLUSION

Simulated Annealing is a general purpose
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algorithm that can be applied to the broad range
of NP-complete problems such as the traveling
salesman problem, graph theory, VLSI cell
placement, and composite stock cutting.

Since Simulated Annealing is a stochastic
process, the real disadvantage is the massive
computing time required to converge to a near
optimal solution. One of the promising
approaches for speeding up the Simulated
Annealing algorithm is parallelization. Distribut-
ed memory multicomputers show the most
promise in achieving large parallel speedups.
However, in a distributed memory architecture
such as a hypercube, there is no globally
available, centrally located system state.
Updating the entire global state § thus involves
explicit message traffic and is a critical
bottleneck. To mitigate this bottleneck, it
becomes necessary to amortize the cost of these
state updates over as many parallel move
evaluations as possible by using an approximate
cost calculation. Thus, error in maintenance of
the cost function C(S) is inevitable and bounds
must be placed on this error in order to assure
convergence to the correct result.

The Simulated Annealing algorithm can be
looked upon as a random iterative improvement
algorithm with a certain probability of making
mistakes by accepting hill-climb moves that
increase the cost to get out of local minima.
Since Simulated Annealing randomly selects
hill-climbing moves, it can tolerate some degree
of cost error. Previous work on cost-error-
tolerant schemes is mainly based on
experimental results [8].

In this paper, we prove, analytically, bounds on
the cost error as a function of global update
frequency, or stream length s. The erroneous
move decision is exponentially distributed with
respect to the parameter 7 > 0, i.e. Prob [The
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Erroneous Move Decision With Cost Error [0,
AET] is 1-exp (-AE/T) where AE is the cost error
n one move at temperature 7 from Theorem 5-2.
With a cost error distribution, we can find the
total probability of cost error in s parallel moves
without global updating

P = Prob [AC, > 0]-exp(—£)-(eﬂgﬂ— 1)
T T

where s is the stream length, @ is the acceptance
rate, [<E>l is the average cost error in one
acceptance move, T is a fixed temperature from
Theorem 5-5. S0 AE =5 + a - |<E>l.

With a total probability of cost error (P;), we
can calculate the amount of cost error in the hill
climbing move,

sl ) {2

We assume that hill-climb power is decreased
proportional to the amount of cost error from
Fig. 9. To recover the decreased hill-climb
power, we mtroduced 10% increase of Markov
Chain length and calculated the optimal stream
length. So, in the presence of cost error, we need
s - u stream length in order to have the same

hill-climb power as much as the original (error-
free) algorithm has in stream length s.

d (s 11
exp(%)zz';

where d,(s) is the hill-climb power of error-free
simulated annealing during stream length s, and
u is the extra stream length increase, i.e. in the
experiment we set u to 1.1.

We applied the adaptive cost-error-tolerant
scheme on the stock-cutting problem in an Intel
IPSC/2. We saved 6.3 times of number of global
update comparing a fixed stream length scheme
keeping same solution quality. In comparing the
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speedups of running time in 16 processors, the
speedup of fixed stream length is 7.6 and the
speedup of adaptive error control scheme is 11.9.
Aside from the improved speedups, the adaptive
error control scheme has an advantage over the
static stream length (original) method in that, in
the latter, to find out the optimal fixed stream
length, we have to run many experiments.
However, in our adaptive error control scheme,
we vary the stream length by choosing large
stream length in high and low temperature
regions, and in the critical temperature region,
choosing small stream length dynamically.
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