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In this paper, we propose new adaptive search range 
motion estimation methods where the search ranges are 
constrained by the probabilities of motion vector 
differences and a search point sampling technique is 
applied to the constrained search ranges. Our new 
methods are based on our previous work, in which the 
search ranges were analytically determined by the 
probabilities. Since the proposed adaptive search range 
motion estimation methods effectively restrict the search 
ranges instead of search point sampling patterns, they 
provide a very flexible and hardware-friendly approach in 
motion estimation. The proposed methods were evaluated 
and tested with JM16.2 of the H.264/AVC video coding 
standard. Experiment results exhibit that with negligible 
degradation in PSNR, the proposed methods considerably 
reduce the computational complexity in comparison with 
the conventional methods. In particular, the combined 
method provides performance similar to that of the hybrid 
unsymmetrical-cross multi-hexagon-grid search method 
and outstanding merits in hardware implementation. 
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I. Introduction 

Many video coding standards have widely adopted motion 
estimation (ME) to exploit temporal redundancy in video. 
However, that the ME process requires very intensive 
computation is a problem. This problem is more serious in 
video coding standards [1] that support variable block sizes, 
such as H.264/AVC. Among ME algorithms, full search 
algorithm (FSA) is most exhaustive in computation while it 
results in optimal motion vectors (MVs). To relieve the 
problem, many fast algorithms have been proposed, such as the 
three-step search [2], the four-step search [3], the diamond 
search [4], [5], the hexagon-based search [6]-[8], and fast  
FSAs [9], [10]. These algorithms reduce the computational 
complexity by means of search point sampling with their 
inherent search patterns. For the remainder of this paper, we 
call them search point sampling-based methods.  

Even though the conventional algorithms alleviate the 
problem of the computational complexity, they often undergo 
quality degradation because of the local minimum problem. 
Moreover, they are not hardware-friendly because of their 
sequential behavior. That is, the searching process at the current 
step depends on the completion of the previous step. 
Particularly, some of these methods [7], [8] require the storing 
of the ME cost values of neighboring blocks, as well as the 
computing of the ME cost values for a few prediction positions, 
prior to actual searching operations, which causes further 
complexity in the hardware implementation. Such methods, 
which require conditional branch operations and serially 
repeated operations, should be avoided when considering 
hardware implementation. It is because hardware modules of 
these methods are designed to encompass the worst case 
scenarios, which require more computational power. For this 
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reason, the ME hardware modules have to read all pixels in the 
search area from frame memories, which requires considerable 
memory bandwidth. 

In the meantime, adaptive search range (ASR) methods, 
which are also called dynamic search range (DSR) methods, 
are hardware-friendly, as they can be implemented by regular 
array structures [11]-[13]. Such regular structures facilitate 
parallel and pipeline operations by employing more processing 
elements. In addition, they have a merit in memory bandwidth 
required by pixel data reading operations. The major part of 
memory bandwidth is the number of clocks required for pixel 
data reading operations from external frame memories to 
internal memories of the ME module. For example, the reading 
operations occupy about 13.2% and 36.6% of the number of 
the clocks dedicated to the ME hardware module for the search 
ranges of 16 and 32, respectively. Here, it is assumed that the 
system specifications include: clock of 104 MHz, 64 bit data-
bus, and inputs of 4CIF and 30 fps.1)  

As shown in the example, the ASR methods may 
significantly improve the memory bandwidth problem as not 
all pixels in the search ranges are read. By saving the memory 
bandwidth, we have room for reducing the hardware 
complexity of the ME module. Furthermore, as the ASR 
methods provide rectangular-shaped search areas in which all 
pixels are valid, they can easily be combined with the search 
point sampling-based methods so that computational 
complexity may be additionally reduced.  

The ASR methods introduced in [14]-[17] downsize the 
search ranges by using arithmetic computations of neighboring 
MVs. The search range of methods introduced in [16], [17] 
depends on the MVs rather than motion vector differences 
(MVDs). These methods employ thresholds to determine the 
search range, which makes them operate in a discrete manner. 
The search range for each block is determined such that it is 
proportional to the magnitude of the MVs of neighboring 
blocks of a current block. Our method is differentiated from 
these traditional methods in two aspects. Firstly, our method 
uses MVDs in determination of the search range, which is very 
effective for the image regions with consistent motions even 
for large motions. Secondly, it provides a mechanism that does 
not require any thresholds due to the increasing of MVDs. Lee 
and others [18] utilized motion estimation errors of 
neighboring blocks to restrict the search ranges. Chen and 
others [19] executed an MV estimation of a current block, 
                                                               

1) 4CIF of 30 fps contains 47,520 macroblocks per second. Search ranges of 16 and 32 
corresponds to (2*16+1+15)*(2*16+1+15) pixels and (2*32+1+15)*(2*32+1+15) pixels, 
where 15 is for inclusion of a macroblock in the search ranges, respectively. With 104 MHz 
clocks, about 2,188 clocks can be assigned to each macroblock, that is, 104M clocks/47,520 
macroblocks. With 64 bit data-bus, one reading operation can read 8 pixels in a single clock. As 
a result, 288 clocks and 800 clocks are required to read all pixels of the search ranges of 16 and 
32, respectively. These reach 13.2% and 36.6% of 2,188 clocks. 

followed by computation of the MVD between the estimated 
vector and a motion vector predictor (MVp). Then the search 
range was simply fixed to |MVD| + f where f is a positive value 
determined empirically.   

While search point sampling-based methods, such as the 
three-step search algorithm, suffer from the local minimum 
problem, the ASR methods have the problem that search areas 
are incorrectly determined to cause performance degradation. 
In this paper, we aim to overcome the problem of the ASR 
methods. We made an effort to do this in our previous work 
[20], in which we presented an ASR determination method 
based on the probability model of MVDs. In this paper, we 
further improve our previous work and propose new methods 
based on it. The details are summarized as follows: 1) 
considering that search ranges are symmetric, the probability 
density function (PDF) of MVDs is modeled as the 
exponential distribution instead of the Laplace distribution in 
the previous work; 2) unlike the previous work, the search 
ranges of x and y directions are separately determined so that 
the performance may be improved, which results in a 
rectangular-shaped search area (that is, the search ranges of x 
and y directions are different from each other); 3) by 
additionally introducing a new set of samples for the estimation 
of the PDF’s parameter, we propose the methods based on two 
sample sets to restrict the search ranges; and 4) to enhance the 
proposed methods in terms of the computational complexity, 
we newly introduce a combined method where the proposed 
methods based on the two sample sets are combined with the 
search point sampling-based methods. 

II. Distribution of Motion Vector Differences and 
Search Range Determination 

Given a search range SR as an input parameter of 
H.264/AVC, the MVD of a block must be in the range of [-SR, 
+SR]. As MVp corresponds to the center of a search area, the 
search area is given as MVp±SR. It may cause a waste of 
computing power for the blocks with small motions. Thus, if 
there is any evidence that the MVD is in the range of [-k, +k], 
where k<SR, we can cut down the search area to MVp±k. For 
the evidence, we empirically investigate the distribution of the 
MVDs and propose the statistical model of it in this section. 
Based on the distribution, the effective search ranges are 
determined. For instance, if the variance of the distribution is 
small, we do not have to take a wide search range. Thus, the 
search ranges can be effectively managed by the variance. 
Alternatively, the search range can be controlled by the 
probability of an event related to an MVD. That is, we define 
the case in which the MVD is in the range of [-k, +k], and we 
find the value of k such that the event occurs with more than a 



ETRI Journal, Volume 34, Number 3, June 2012 Hyun-Soo Kang et al.   371 

 

Fig. 1. Empirical distribution of absolute values of MVD
components. 
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prefixed probability. Though the prefixed probability is fixed to 
a constant value for every block, the value of k may not be 
fixed because the parameter of the distribution can be different 
according to characteristics of the blocks.  

In many cases, prediction error signals follow Laplace 
distributions or Gaussian distributions. By empirical results for 
MVDs, in this paper, we conclude that the MVDs follow 
Laplace distributions. Therefore, the absolute value of each 
component may abide by an exponential distribution. Figure 1 
shows the distributions of the absolute values of x and y 
components of the MVDs resulting from the encoding of 
Foreman (CIF) 100 frames and Crew (706×576) 100 frames. 
Figure 1 reveals that exponential distributions can be good 
models to represent the MVD components. In addition, two 
components are very similar to each other in the distribution. 

The exponential distribution of a continuous random variable 
(RV) Z is defined as 

( ) ( ),z
Zf z e u zαα −= ⋅                 (1) 

where α is a positive constant, often called the rate parameter, 
and u(⋅) is the unit-step function.  

However, the MVDs consist of discrete values, so each 
MVD must be considered a discrete RV. This says that the 
exponential distribution in (1) has to be modified such that the 
sum of probabilities over all ,Z +∈ I  where I+ is the set of 
non-negative integers, is 1. As the sum in (1) is 1(1 )e αα − −− for 

,Z +∈ I  the exponential distribution of the non-negative 
integer valued MVDs should be 

( ) ( )z
Zf z e u zαβ −= ⋅ , where (1 ).e αβ −= −         (2) 

In (2), it should be noted that the discrete random Z 
corresponds to the absolute value of the x or y component of 
the MVD vectors. Although the PDF is given by an integer 
pixel unit accuracy for convenience, it can be easily converted 
to a half pixel or a quarter pixel unit accuracy by scaling.  

In the meantime, we assume that x and y components, which 

are denoted by MVDx and MVDy, are independent of each 
other. This assumption is reasonable because they are error 
signals given by the independent prediction process. When 
they are independent, the absolute values of them are also 
independent. Consequently, we have a joint PDF: 

( )( , ) (1 )(1 ) ( ) ( )y x yx x y

XYf x y e e e u x u yα α αα − − +−= − − ⋅ .   (3) 

Having the PDF of MVDs, we now describe how to find the 
parameters, αx and αy. To estimate these parameters, we 
consider N samples, s1, s2, ... , sN, which are independent and 
identically distributed. Employing the maximum likelihood 
estimation technique to obtain an estimate α̂  of α, we have 
the following formula:  

1 2
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(4)
 

where ˆ ˆ ˆ( , )x yα α=α , ( , )x yα α=α , ( , )i i ix y=s , and l(⋅) is a 
likelihood function. Then,  
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Differentiating (5) with respect to αx and αy, this leads to the 
following equations: 

ˆ ˆln(1 1/ ), 0,
ˆ

ˆ0, 0,
z z
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z

μ μ
α

μ
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           (6) 
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1
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=
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Equation (6) says that the parameter estimation requires 
logarithmic computation, which causes computational 
complexity. An approximation technique to simplify the 
computation will be described in the remainder in this section. 

Once the distribution is estimated by the equations above, the 
probability that an MVD falls within a given range can be 
found. Consider an event {X>k} where the x component of an 
MVD is not included in a given range ±k. We can define the 
same event {Y>k} for the y component. To satisfy each of 
P{X>k}≤εx and P{Y>k}≤εy, where εx and εy are called missing 
probability for each component, we have to choose k such that: 

( )
min

ln
1z

z z

z

k k
ε

α
≥ − − ≡ , where z∈{x, y}.      (7) 

Substituting the estimated parameters above into these 
equations, the search ranges, [kxmin, kymin], can be obtained when 
given the missing probabilities.  

Combining (6) and (7), the relation between kzmin and ˆ
zμ is 

( )
( )min

ln / 2
1

ˆln 1 1/z

z

k
ε

μ
= − −

+
, where z∈{x, y}.       (8) 
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Fig. 2. Relation of search range kmin and absolute mean of 
samples μ̂ for different ε2 values. 
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Table 1. Coefficients for first order polynomials. 

ε2 
Coefficients 

0.30 0.20 0.15 0.10 0.05 

a 1.820 2.258 2.561 2.982 3.692 

b –0.206 –0.014 0.118 0.302 0.612 

 

 
Figure 2 shows the relation of the search range kzmin to the 

absolute mean of samples ˆ
zμ  for different ε2 values. For 

instance, if ε2=0.1 and ˆ
zμ =3, then kzmin=9.3. This explains that 

the optimal MV is in [MVp-9.3, MVp+9.3] with the 
probability of 90%. As shown in Fig. 2, (8) can be 
approximated by the first order polynomial function: 

min
ˆ .z zk a bμ= +                 (9) 

The coefficients in (9) are given in Table 1, where the 
coefficient a plays a major role in determination of kzmin. 
Therefore, the logarithmic computation of the search range 
kzmin based on (8) can be simplified using the approximation of 
(9). The search range kzmin can be simply obtained by adding 
the offset coefficient b to the multiplication of the coefficient a 
and the absolute mean of samples ˆ

zμ .  

III. Proposed Method 

We have described the PDF of MVD vectors so far. To 
estimate ˆ

xα  and ˆ
yα , N samples should be chosen for  

precise PDF estimation. There may be many options in 
choosing the samples. In our view, the method in [19] 
corresponds to the case where N=1. The estimated MVD in  
[19] may be sensitive to the single sample. To overcome this 
problem, we should adopt as many samples as possible even 
though all samples may not well represent the PDF. Taking into 

account memory requirement and empirical results, we 
carefully select two sets of four samples.  

As the first set, we select: 
 U1 ≡ {s1, s2, s3, s4} = {MVA-MVp, MVB-MVp,  

   MVC-MVp, MVcol-MVp},    (10) 
where MVA, MVB, MVC, and MVcol denote the MVs of the 
neighboring blocks defined by H.264/AVC. As shown in Fig. 3, 
they are left block, the upper block, the upper-right block, and 
the collocated block in the previous frame, respectively. In the 
case of the image boundary where the block C is not available, 
the upper-left block D is used instead of the block C.  

Strictly speaking, U1 is not MVDs’ set but the set of 
estimates of MVD. We can consider that MVA, MVB, MVC, 
and MVcol are estimates of the motion vector of the current 
block X. That is, the four estimates are 

1 2
A B

3 4
C col

ˆ ˆ, ,
ˆ ˆ, .

X X

X X

MV MV MV MV

MV MV MV MV

= =

= =
          (11) 

With the estimates, we can write estimates of MVD: 

 
1 2

1 2

3 4
3 4

ˆ ˆ ˆ ˆ, ,
ˆ ˆ ˆ ˆ, .

X X

X X

MVD MV MVp MVD MV MVp

MVD MV MVp MVD MV MVp

= − = −

= − = −
   (12) 

After all, we can conclude that the elements of U1 are the 
estimates of MVD of the current block. If the average value of 
the estimates are somewhat accurate, the search range given by 
(9) probably contains the optimal motion vector because the 
search range is determined to be larger than the average value 
of the estimates considering the value of the constants a and b. 
That is, kzmin resulting from each of the missing probabilities in 
Table 1 is always larger than the average value of the estimates. 
Thus U1 can be a good set to determine the search range. As U1 
is empirically better in performance than another set U2, which 
will be introduced next, we included U1 set in our method. 
Though the elements of U1 set do not accurately correspond to 
MVD, they may be considered as MVD and valuable in terms 
of experiment results. 

Each element of U1 can be considered as an estimated MVD 
if MVA, MVB, MVC, and MVcol are assumed to be estimates of 
the current block (X).  

The upper layer prediction [21] is used for U1. For all sub-
blocks except 16×16 blocks, one of MVA, MVB, and MVC is 
replaced with the MV of the upper layer block. Here it should 
be noted that one of s1, s2, and s3 for each component is 
obviously zero because one of MVA, MVB, and MVC is equal 
to MVp. For this reason, for 16×16 blocks, the denominator N 
in (6) is reduced to (N–1) to achieve unbiased estimation for 
ˆ

xμ and ˆ
yμ , that is, 

1 1

1 1ˆ ˆ, .
1 1

N N

x i y i
i i

x y
N N

μ μ
= =

= =
− −∑ ∑         (13) 
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Fig. 3. Definition of neighboring blocks. 
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For sub-blocks other than 16×16 blocks, however, (6) is 
employed without modification since the MV of the upper 
layer block replaces the MV which causes the zero value for 
each component. Assuming the block mode of a current block 
is Modecurr, the upper layer mode Modeup is: 
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(14) 

where Mode1, Mode2, Mode3, and Mode4 are 16×16, 16×8, 
8×16, and 8×8 block modes, respectively. The upper layer 
modes of the smaller sub-block modes follow the definition in 
[21].  

As the second set, we selected: 

U2 ≡ {s1, s2, s3, s4} = {MVDA, MVDB, MVDC, MVDcol}, (15) 

where MVDA, MVDB, MVDC, and MVDcol are MVDs of A, 
B, C, and the collocated block, respectively. Similarly, if the 
block C is unavailable, it is replaced with the block D. This 
second set was adopted by our previous work [20] but we 
should note that it is applied to the exponential distribution 
model. 

By intuition, it seems that U2 set is not better than U1 since 
MVDs are uncorrelated. However, this is not the estimation 
problem for the MVD of a current block, but for the 
distribution of it. For instance, consider the case where one 
estimates the distribution of a noise value at a time instant. In 
this case, we would choose the samples near the time instant 
for estimation, supposing a piece-wise stationary noise. In this 
manner, U2 could also be a good candidate. 

Meanwhile, there is an undesirable problem that occurs in 
estimation of ˆ

xα  and ˆ
yα . As a lot of MVD vectors are null, 

the absolute means of samples, ˆ
xμ  and ˆ

yμ , are often 
concluded to be zero, which causes ˆ 0xα =  and/or ˆ 0yα =  
and hence kxmin=0 and/or kymin=0. It means that the resultant 
search range corresponds to either a single search point at the 
center position of the search area or zero pixel wide search 
range including the center position. This is undesirable as it 
provides poor motion estimation. Hence, we should guarantee 

the minimal search range f for the case.  
After all, the proposed method is summarized as below: 
1) Set the missing probability ε2. 
2) Compute ( ˆ

xμ , ˆ
yμ ) and (kxmin, kymin) using (6) and (9) if 

more than three out of s1, s2, s3, and s4 are available. 
Otherwise, set kxmin and kymin to the original SR (SRorg) 
which is an input parameter to video encoder.  

3) Obtain the final search range kx = min(max(kxmin, f), SRorg) 
and ky = min(max(kymin, f), SRorg) which is to guarantee 
searching for at least ±f, where f is a positive integer. By 
our experiments, f =2 or 3 is reasonable. 

4) Go back to 2) for the next block. 
The search point sampling-based algorithms are repeatedly 

applied to all enabled block modes in the serial manner. When 
m block modes are enabled, the computational complexity is m 
times of that when a single block mode is enabled. Therefore, 
due to the sequential behavior of these algorithms, it is not 
possible to implement them in hardware with the parallel 
structure where the motion estimation operations for all sub-
blocks are simultaneously executed by forming all the sub-
blocks from 4×4 primitive sub-blocks [13]. It is because the 
sampled search points of the sub-blocks may be different from 
each other and hence it is difficult for the upper-layer block 
modes to use the computational results of the lower-layer block 
modes. However, as the ASR methods can have the same 
search points for all the block modes, it is possible to use the 
results of the lower-layer block modes. Therefore, they can be 
implemented in the parallel structure, considering the fact that 
each block mode uses a different motion vector predictor in 
H.264/AVC. In this regard, the proposed algorithm can be 
slightly modified for the parallel implementation. If all block 
modes are enforced to have the same search area, it can be 
implemented by the parallel structure as shown in [13]. In this 
case, it is also possible to employ the fast FSA of JM [22] of 
H.264/AVC, where the costs of all block modes are efficiently 
computed by selectively adding the costs of 4×4 blocks. 
Conclusively, the proposed algorithm is hardware-friendly so 
that motion estimation for all block modes could be realized in 
the parallel manner with some modifications of search ranges. 

IV. Experiment Results 

For experiments, JM16.2 [22] is used. The motion 
estimation module in JM16.2 is replaced by the proposed 
methods for performance evaluation. The test sequences are as 
follows: Hall Monitor (352×288), Coastguard (352×288), 
Foreman (352×288), Stefan (352×288), City (704×576), Crew 
(704×576), and Soccer (704×576). We set the encoding 
parameters of JM16.2 as follows: 100 frames for each 
sequence, 30 fps, rate-distortion optimization off, IPPP picture 
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Table 2. BDPSNR and computational complexity (CPX) of conventional DSR method [16] and hybrid unsymmetrical-cross multi-
hexagon-grid search (UMHexagonS) method [7] against FSA (JM16.2). 

DSR [16] UMHexagonS [7] 
Images SR 

BDPSNR CPX (%) BDPSNR CPX (%) 

Hall Monitor 16 –0.039 10.31 –0.033 8.58 

Coastguard 16 –0.008 12.26 0.013 2.27 

Foreman 16 –0.031 15.96 –0.005 3.78 

Stefan 16 –0.063 21.27 –0.065 3.46 

16 –0.016 21.85 0.005 2.03 
City 

32 –0.014 10.55 0.005 1.07 

16 –0.043 56.47 –0.011 3.15 
Soccer 

32 –0.020 30.48 0.002 1.51 

16 –0.011 33.85 0.005 7.50 
Crew 

32 0.002 23.37 0.010 4.56 

Average –0.0243 23.637 –0.0074 3.79 

Table 3. BDPSNR and computational complexity (CPX) of proposed method using U1 against FSA (JM16.2). 

PM1 (ε2=0.3) PM1 (ε2=0.2) PM1 (ε2=0.1) PM1 (ε2=0.05) 
Images SR 

BDPSNR CPX (%) BDPSNR CPX (%) BDPSNR CPX (%) BDPSNR CPX (%)

Hall Monitor 16 –0.049 7.00 –0.043 7.16 –0.041 7.75 –0.034 8.37 

Coastguard 16 –0.013 6.97 –0.015 7.01 –0.014 7.20 –0.011 7.32 

Foreman 16 –0.082 7.10 –0.059 7.40 –0.046 8.39 –0.032 9.24 

Stefan 16 –0.123 7.17 –0.083 7.51 –0.033 8.38 –0.033 9.06 

16 –0.023 4.64 –0.019 4.69 –0.009 4.89 –0.007 5.05 
City 

32 –0.025 2.96 –0.024 2.97 –0.014 3.04 –0.017 3.11 

16 –0.138 5.35 –0.102 6.30 –0.060 8.21 –0.051 9.66 
Soccer 

32 –0.130 3.14 –0.096 3.48 –0.053 4.40 –0.040 5.38 

16 –0.054 7.55 –0.042 11.21 –0.027 17.04 –0.025 21.13 
Crew 

32 –0.047 4.23 –0.038 6.31 –0.024 10.13 –0.020 13.45 

Average –0.068 5.61 –0.052 6.40 –0.032 7.94 –0.027 9.18 

 

structure, and one reference frame. The minimal search range f 
is set to 2. 

Choosing QP=8, 18, 28, 38 where the four values follow the 
ones used in [8] and QP denotes quantization parameter, 
BDPSNR [23] is measured. For comparison, in Table 2, we 
exhibit the performance of two conventional methods: the 
hybrid unsymmetrical-cross multi-hexagon-grid search 
(UMHexagonS) method [7] and Xu and He’s DSR method 
[16], which is an enhanced version of Hong and others’ method 
[14], [15].  

Tables 3 and 4 show the performance of the proposed 
method for two different sets (U1 and U2), called PM1 and 
PM2, respectively, against the FSA on JM16.2. The 

computational complexities (CPX) represent the ratio of the 
number of search points of the proposed method to the number 
of search points of the FSA. For instance, the CPX of 10% 
means that the number of search points used by the proposed 
method is 10% of the number of search points adopted by FSA. 
For both PM1 and PM2, PSNR and complexity increase as the 
missing probability decreases. Accordingly, PSNR and 
complexity can be handled by the missing probability. In 
overall performance, PM1 is superior to PM2. 

Tables 3 and 4 also show that the proposed methods, PM1 
and PM2, outperform the conventional DSR method [16] for 
all sequences. The shortfall of the DSR method is that its CPX 
rapidly increases for image sequences with fast motions when  
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Table 4. BDPSNR and computational complexity (CPX) of proposed method using U2 against the FSA (JM16.2). 

PM1 (ε2=0.3) PM1 (ε2=0.2) PM1 (ε2=0.1) PM1 (ε2=0.05) 
Images SR 

BDPSNR CPX (%) BDPSNR CPX (%) BDPSNR CPX (%) BDPSNR CPX (%)

Hall Monitor 16 –0.039 7.11 –0.042 7.34 –0.035 8.11 –0.029 8.81 

Coastguard 16 –0.010 7.00 –0.012 7.07 –0.009 7.33 –0.012 7.48 

Foreman 16 –0.056 7.50 –0.037 8.11 –0.021 9.61 –0.016 10.82 

Stefan 16 –0.082 7.55 –0.052 8.02 –0.020 9.04 –0.015 9.81 

16 –0.015 4.73 –0.005 4.86 –0.001 5.30 0.000 5.72 
City 

32 –0.018 2.98 –0.010 3.02 –0.007 3.19 –0.002 3.41 

16 –0.063 6.14 –0.037 7.29 –0.019 9.42 –0.010 11.00 
Soccer 

32 –0.051 3.41 –0.026 3.94 –0.014 5.14 –0.007 6.28 

16 –0.028 9.99 –0.019 13.88 –0.012 19.74 –0.008 23.82 
Crew 

32 –0.023 6.00 –0.014 8.57 –0.008 12.55 –0.009 15.81 

Average –0.039 6.24 –0.025 7.21 –0.015 8.94 –0.011 10.30 

Table 5. BDPSNR and computational complexity (CPX) of PM1 combined with simple search point sampling method (PM1S) against FSA
(JM16.2). 

PM1S (ε2=0.3) PM1S (ε2=0.2) PM1S (ε2=0.1) PM1S (ε2=0.05) 
Images SR 

BDPSNR CPX (%) BDPSNR CPX (%) BDPSNR CPX (%) BDPSNR CPX (%)

Hall Monitor 16 –0.037 2.82 –0.037 2.88 –0.036 3.06 –0.031 3.25 

Coastguard 16 –0.013 2.79 –0.007 2.81 –0.009 2.86 –0.012 2.92 

Foreman 16 –0.074 2.92 –0.068 3.09 –0.062 3.45 –0.066 3.82 

Stefan 16 –0.062 2.94 –0.045 3.08 –0.022 3.34 –0.023 3.57 

16 –0.014 2.20 –0.011 2.24 –0.007 2.33 –0.008 2.44 
City 

32 –0.020 1.02 –0.019 1.03 –0.017 1.06 –0.011 1.11 

16 –0.053 2.56 –0.042 2.86 –0.029 3.40 –0.023 3.85 
Soccer 

32 –0.049 1.13 –0.030 1.26 –0.023 1.57 –0.020 1.88 

16 –0.015 3.57 –0.011 4.59 –0.007 6.06 –0.005 7.22 
Crew 

32 –0.017 1.81 –0.010 2.48 –0.005 3.48 –0.007 4.35 

Average –0.035 2.38 –0.028 2.63 –0.022 3.06 –0.021 3.44 

 

compared with that of the proposed method. It yields low 
complexity for the Hall Monitor sequence, which has slow 
motions, but its complexity increases for faster motions, such 
as those in the Coastguard, Foreman, and Stefan sequences. 
This reveals that since the proposed methods use the MVDs, 
they effectively restrict the search range for the case where 
motions are fast but consistent. As the DSR method just uses 
MVs, it sets large search ranges when MVs of neighboring 
blocks are large, without consideration for the consistency of 
the MVs. As the center of motion search is at MVp, we don’t 
have to set large search ranges for the image regions that have 
consistent motions even though the motions are large.  

On the other hand, PM1 and PM2 underperform the 

UMHexagonS method. To improve their performance, they 
can be combined with the search point sampling-based 
methods [24]. The combining process is simple and 
straightforward as the search areas of the proposed methods are 
rectangular in shape and all pixels in the areas are available. 
However, we should consider that the main problem of the 
search point sampling-based methods is quality degradation 
caused by local minima. To overcome the problem, the 
proposed methods can be employed so that the original search 
area may be reasonably downsized to a small search area 
where the optimal MV may exist with a high probability. Then, 
the number of local minima decreases, and the danger of being 
trapped in local minima decreases, as well. To avoid the local 
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minimum problem even in the small area, we can consider a 
search point sampling method where the pixel points in the 
area are evenly sampled as search points rather than sparsely 
sampled.  

As a result, we introduce a simple two-layer hierarchical 
searching method as the search point sampling-based method 
to be combined with the proposed methods. The first-layer 
searching step is performed at the positions with even number 
coordinates, (2x, 2y) where x, y ∈{…, –2, –1, 0, 1, 2, …}, 
followed by the second-layer searching step for nine points, 
(x+a, y+b) where x, y ∈{–1, 0, 1} and (a, b) is the best position 
by the first searching step. At a glance, this simple method 
reduces the computational complexity to about a fourth of the 
original complexity when the second-layer searching process is 
ignored. The simple method has an attractive merit in hardware 
implementation. It can be realized by regular structures in 
accordance with a hardware-friendly approach of the proposed 
methods.  

Table 5 shows the results when the simple method is 
performed for the search ranges determined by PM1. As 
shown in Table 5, combining PM1 with the simple method, 
which is called PM1S, gives significant reduction in the 
computational complexity with a negligible degradation in 
picture quality. Sometimes, it outperforms PM1 in image 
quality despite sampling the search points. It is probably 
because the search range is effectively extended by one pixel 
due to the second-layer searching step. The minimal search 
range adopted in the experiments is plus or minus two pixels 
wide, that is, f=2. The minimal search range is frequently taken 
since a lot of blocks have no motion. In this case, MVs can 
range up to plus or minus three pixels by the second-layer 
searching step. 

We now compare PM1S with the UMHexagonS method. In 
CPX, PM1S is lower than the UMHexagonS method, on 
average. In measuring the complexity, the early termination 
process in the UMHexagonS method is not included in 
complexity. Note that the early termination process causes 
irregular termination of the ME process. In BDPSNR, PM1S is 
slightly lower than the UMHexagonS method; for instance, it 
is 0.014 dB lower at ε2=0.05. However, the degradation in 
BDPSNR may be negligible. Though PM1S is slightly inferior 
in BDPSNR, it has an outstanding advantage in that it is much 
more hardware-friendly than the UMHexagonS method, as its 
algorithm is simple and regular. Specifically, as the 
UMHexagonS method contains the early termination process, 
it is hard to predict when the early termination is in effect. In 
addition, the UMHexagonS method has different search 
patterns for different searching steps and the starting point of a 
current searching step is dependent on the result of the previous 
searching step, which makes it impossible to achieve 

parallelization in hardware implementation. In contrast, PM1S 
is very regular, and there is no termination in the process of 
motion estimation. Accordingly, it can be easily implemented 
with a parallel structure, and its termination time is predictable. 
In addition, the UMHexagonS method requires more memory 
bandwidth for the reading operation of the pixels in the search 
area. That is, all the pixels in the search area have to be read by 
the motion estimation module from frame memory because 
searching patterns become highly flexible as searching steps 
proceed. According to the experiment results shown in Tables 3 
and 4, the proposed method performs motion estimation for 
about 10% of all search points, on average. Roughly speaking, 
the proposed method requires that only 10% of the pixels in the 
original search area are read. This means that the proposed 
method can save 90% of the memory bandwidth. Conclusively, 
when taking overall aspects into account, PM1S is competitive 
enough with the UMHexagonS method.   

In the complexity measure of the proposed method, we do 
not include the complexity required for the search range 
computation of (9) as the complexity is insignificant. Once the 
constants a and b in (9) are fixed for a given missing 
probability, we do not have to compute them whenever motion 
estimation is performed. That is, they can be saved in the 
memory in advance. Furthermore, in the computation of the 
average value of four samples, we do not require a division 
operation by four when the original value of the constant a is 
divided by four beforehand, so that the division in the average 
value computation is contained in a. That is, (9) can be 
rewritten as 

 min 1 2 3 4

1 2 3 4

( )
4

'( ) , where ' / 4.

z

ak z z z z b

a z z z z b a a

= + + + +

= + + + + =
   

(18)
 

As preprocessing for motion estimation, four additions and 
one multiplication are required for each component. They are 
not significant, compared to SAD computations in motion 
estimation. 

Meanwhile, a question about how to determine ε2 still 
remains. The value of ε2 should be chosen according to the 
characteristics of the input images since the same ε2 yields 
different performances for different input images. As a solution, 
we can fix ε2 for the next frame by observing PSNR and 
complexity resulting from encoding a frame. In determination 
of ε2, additionally, we should take the quantization parameter 
into account. Figure 4 shows the complexities according to 
QPs. The complexities are inversely proportional to QP values 
while the slopes are dependent on ε2 and input images. A small 
value of ε2 also induces low variation of the complexities. 
Consequently, we should pay more attention to the cases in 
which there is a small value of ε2 and a small value of QP.  
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Fig. 4. Complexity versus QP: (a) Foreman CIF (SR=16) and (b)
Soccer 4CIF (SR=32). 
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Since the complexity of motion estimation in our method is 
dependent upon the value of ε2, more investigation into the 
determination of ε2 is required as further work.  

V. Conclusion 

We proposed new ASR methods wherein the search ranges 
are constrained by the probabilities of MVDs and a search 
point sampling technique is applied to the constrained search 
ranges. Our previous work in which the search ranges were 
analytically determined by the probabilities was improved and 
new methods based on it were proposed. The PDF of MVDs 
was modeled as the exponential distribution and then its 
parameter was estimated. To relieve the complexity to compute 
search ranges, we introduced a formula showing that the search 
ranges are linearly proportional to the absolute mean of the 
MVD samples. For the parameter estimation, two sets of 
samples U1 and U2 were introduced. The first set was taken by 
estimating the MVDs of the current block using motion 
information of neighboring blocks. The second set of samples 
was selected from the MVDs of neighboring blocks. In 

addition, we proposed a combined method with a simple 
search point sampling-based method. The simple method was 
also selected due to its hardware-friendly aspect. An evaluation 
for the two sets of the proposed method (PM1 and PM2) and 
for the combined method was performed with the test 
sequences. In particular, the combined method provided 
performance similar to that of the UMHexagonS method, 
having the outstanding advantage in hardware implementation, 
that is, parallelism, memory bandwidth, processing termination 
time predictability, and so on. 
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