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Many multi-modulus blind equalization algorithms 
(MMA) have been presented in the past to overcome the 
undesirable high misadjustment exhibited by the well-
known constant modulus algorithm. Some of these MMA 
schemes, specifically tailored for quadrature amplitude 
modulation (QAM) constellations, have also been proved 
to fix the phase offset error without needing any rotator at 
the end of the equalizer stage. In this paper, a new multi-
modulus algorithm is presented for QAM signals. The 
contribution lies in the technique to incorporate the sliced 
symbols (outcomes of decision device) in the multi-
modulus-based weight adaptation process. The 
convergence characteristics of the proposed sliced multi-
modulus algorithm (S-MMA) is demonstrated by way of 
simulations, and it is shown that it gives better steady-state 
performance in terms of residual inter-symbol 
interference and symbol-error rate. It has also been shown 
that the proposed algorithm exhibits lesser steady-state 
misadjustment compared to the best reported MMA. 
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I. Introduction 

In most digital communication systems, inter-symbol 
interference (ISI) occurs due to bandwidth limited channels or 
multipath propagation. Channel equalization is one of the 
techniques to mitigate the effect of ISI. Adaptive algorithms are 
used to initialize and adjust equalizer coefficients when a 
channel is unknown and possibly time-varying. Conventionally, 
an initial setting of the equalizer tap weights is achieved by a 
training sequence before data transmission. 

However, when sending a training sequence is impractical or 
impossible, it is desirable to equalize a channel without the aid 
of a training sequence. Equalizing a channel without training 
mode is known as blind equalization. For example, an 
originally connected transmission route in a telephone network 
or a mobile radio system might be disconnected abruptly, 
making a rapid reconnection necessary to re-establish the link 
and minimize the outage loss. In the course of reconnection, 
the receiver has to recover every demodulation operation, 
including equalization, and is adapted to the newly connected 
channel without the help of a training sequence. Also in a 
multi-point network, by providing the capability of 
unsupervised training (or retraining) of a tributary receiver, the 
data throughput of the system may be enhanced. 

Blind equalization of digital communication channels is a 
domain that has gained increased attention over the last two 
decades. A typical blind equalization setup is depicted in Fig. 1 
where a baseband representation of a communication system is 
illustrated. The purpose of the blind equalization algorithm is to 
make the equalizer match the impulse response of the inverse 
of the communication channel, thus opening the eye of the 
communication system and allowing for a correct retrieval of 
the transmitted symbols. The performance of a blind 
equalization algorithm can be measured in many ways 
including for example, the convergence rate, the residual ISI, 
and symbol error rate (SER). The convergence rate is 
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important, as it relates to the amount of time that service would 
be interrupted on the network during initialization, a change in 
the channel characteristics, or in the event that there is a 
significant interference in the channel being used. The SER 
relates to the equalizer’s ability to yield, upon convergence, the 
correct alphabets. Adaptive equalization must, therefore, 
provide the best possible convergence-time without 
compromising the SER.  

While the constant modulus algorithm (CMA) [1], a special 
case of Godard’s family of blind equalization algorithms [2], is 
a famous candidate that could achieve desired convergence 
requirements, its respective cost function is only amplitude-
dependent, and knowledge about the signal constellation is 
dismissed. For signal constellation exhibiting the constant 
modulus property, where all signal points have the same 
magnitude, the performance of CMA is reasonable. On the 
other hand, the CMA yields a degraded performance with a 
very poor SER for multi-level signals such as the quadrature 
amplitude modulation (QAM) signals because the CMA 
projects all signal points onto a single modulus [1]. 

In order to improve the performance of the CMA for QAM 
signals, a multi-modulus CMA, known as the decision-adjusted 
modulus algorithm (DAMA) [3]-[4], and radius directed 
(modulus) equalization (RDE) [5] have been proposed which 
employ multiple moduli rather than a single modulus. These 
algorithms allocate a modulus to each subset of signal 
constellation points depending on the equalizer output power 
(each subset is usually located on a circle). If there are n moduli 
on the constellation, then these algorithms can be realized as n-
CMA, one for each of the known moduli. However, this multi-
modulus CMA proved diverging even under a moderately 
distorted channel condition either due to a constellation size 
larger than 16-QAM [6] or simply due to a low signal-to-noise 
ratio (SNR) [7]. 

Another variant of the CMA is the dual-mode type CMA 
[7]-[9], which operates either in blind mode or in decision-
directed (DD) mode depending on the error level exhibited by 
the equalizer output with respect to the region it lies in. The 
decision boundaries of these regions are usually chosen by 
bisecting adjacent moduli. However, these algorithms also 
become infeasible at larger QAM constellations and a low 
SNR. The main reason of this infeasibility is that, with higher 
constellations, the outer (circular) moduli come very close to 
each other, which narrows down the regions suitable for blind 
equalization. Some authors suggested to start with the CMA, 
and after gaining some initial convergence they suggested to 
switch to the DAMA [10] or the multi-modulus algorithm 
(MMA) [11]. 

Interestingly, the literature provides another class of multi-
modulus algorithms - the modified constant modulus algorithm 

(MCMA), proposed independently by many authors [12]-[14]. 
This algorithm, instead of minimizing the dispersion of the 
magnitude of the equalizer output y(n), minimizes the 
dispersion of real and imaginary parts, yR and yI, of y(n) 
separately (embedded in its cost function). Recently, it was 
named multi-modulus algorithm (MMA) [15], [16]. Unlike 
CMA, the MMA cost function ignores the cross term yR yI 
between the in-phase and quadrature components in the CMA 
cost function. As a result, the MMA cost function is not a two-
dimensional cost function. It can be considered as the sum of 
two one-dimensional cost functions, which minimizes the 
dispersion of yR and yI around separate contours [17]. However, 
by considering the real and imaginary parts of the equalizer 
output in the cost function, it carries the information of the 
channel phase-distortion and the constellation orientation [18]. 
As far as the convergence of the MMA is concerned, 
Wesolowski showed that the stationary points of the MMA 
have a similar form to the stationary points of the CMA [19]. 
The MMA provides better convergence for higher QAM 
constellations compared to the CMA. However, it also exhibits 
a very high misadjustment in the steady state, though a much 
smaller one than that of the CMA. 

In this paper, we propose a sliced multi-modulus algorithm 
(S-MMA) for application to digital transmission employing 
QAM signals. In the S-MMA, the cost function embeds the 
dispersion constant and the slicer output. The S-MMA cost 
function satisfies a number of desirable properties, including 
multiple-modulus, symmetry, and (almost) uniformity. The S-
MMA cost function exhibits a much lower misadjustment 
compared to CMA and MMA. The performance evaluation of 
the proposed equalization approach is provided for a typical 
voice-band telephone channel using the transient and steady-
state behavior of residual ISI and SER, respectively.  

Brief overviews of the conventional CMA and MMA are 
given in sections III and IV, respectively. An analysis of the 
steady-state misadjustment exhibited by the MMA is provided 
in section V. The development of the proposed S-MMA is 
provided in section VI. Performance comparisons between the 
proposed technique and an existing effective equalization 
method are provided in section VII. Conclusions are drawn in 
section VIII. 

II. System Model 

Let a(n) denote the transmitted symbol and x(n) be the 
complex received signal, given as 
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where {h} is the complex baseband impulse response of the 
unknown channel of length K and v is the additive white 
Gaussian noise. The equalizer N-tap weight-vector and (tap) 
input-vector are respectively defined as w(n) = [w0(n), w1(n), 
…, wN-1(n)]T and x(n) = [x(n), x(n-1),…, x(n-N+1)]T. We define 
y(n) = wT(n)x(n) as the equalizer output and â (n) is the 
outcome of the decision device (slicer), computed as the closest 
constellation symbol to y(n). The objective is to achieve an 
estimate of the actual transmitted signal a(n) without using a 
training signal available at the receiver, such that ˆ( )a n =a(n- ∆), 
where ∆ is the bulk delay due to the channel-equalizer combined 
impulse response. In this case, the equalizer perfectly estimates 
the symbol that was transmitted ∆ baud times earlier. 
 

 

Fig. 1. Blind equalization in the baseband. H(z) and W(z) are z-
transforms of channel and equalizer coefficients, respectively.
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In blind equalization, the channel input a(n) is unavailable, 
and thus different minimization criteria are explored. The 
crudest blind equalization algorithm is the DD scheme that 
updates the adaptive equalizer coefficients according to 

).())()(ˆ()()1( * nnynann xww −+=+ µ        (2) 

Under a high ISI, the convergence behavior of the DD 
equalizer is very poor. Better blind adaptive equalization 
algorithms are designed to minimize special non-mean square 
error cost functions that do not directly involve the input a(n) 
while still reflecting the current level of ISI in the equalizer 
output. Define the mean cost function as 

)]],([[)( nyEJ Ψ=w                (3) 

where ][⋅Ψ is a scalar function of the equalizer output and E 
denotes statistical expectation. J(w) should be specified such 
that at its minimum, the corresponding w(n) results in a 
minimum ISI or mean square error equalizer. Using (3), the 
stochastic gradient descent minimization algorithm is easily 
derived as 
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Let ψ be the first derivative of Ψ , where ψ  is often called 
the error-function. The resulting blind equalization algorithm 
can be written as 

).()]([)()1( * nnynn xww ψµ ⋅−=+         (4) 

Thus, the design of the blind equalizer translates into the 
selection of a suitable function Ψ  (or ψ ) such that the local 
minima of J(w) corresponds to a significant removal of ISI 
from the equalizer output y(n). A necessary condition in the 
selection of ψ  is that .0)]]([)([ * =nynyE ψ  

III. Constant Modulus Algorithm 

The CMA [1] is a stochastic gradient algorithm for the cost 
function 
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where R is the dispersion constant, defined as E[|a|4] / E[|a|2] 
[2]. Notice that this cost function uses the second and the 
fourth-order statistics of the signals. The corresponding 
stochastic gradient algorithm is given by 
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where µ  is the step-size parameter and the asterisk denotes 
the complex transpose. The CMA cost function enforces the 
equalizer output to lie on a circular contour. The cost function 
of the CMA doesn’t contain any phase terms, so the CMA is 
not related to the carrier phase [20]. To remove the phase offset 
error, it either needs differential encoding or the need to add a 
rotator at the output of the equalizer. The rotator removes a 
possible phase offset error and facilitates a reliable switching 
from blind mode to DD mode. 

IV. Multi-modulus Algorithm 

Unlike the CMA, the MMA cost function penalizes the 
dispersion of the real and imaginary parts of y(n) separately, 
which is given as 
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The corresponding MMA tap updating algorithm is 
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where ][/][and][/][ 2424
IIIRRR aEaERaEaER == are defined 

respectively as the dispersion constants for the real and 
imaginary parts of the transmitted signal. Minimizing the cost 
function (7) can be interpreted as fitting the signal constellation 
onto a square. An advantage of the MMA over the CMA is that, 
upon convergence, it produces the correct constellation 
orientation, making a phase compensator unnecessary. 

V. CMA and MMA with Dense Constellations 

Though the CMA provides reliable initial convergence and is 
capable of reducing the ISI level to a significantly low level, it 
is not very effective in providing a good eye opening when the 
number of different symbols in the signal constellation 
becomes very large. The basic MMA algorithm also has 
difficulties with very dense constellations, but because of its 
flexibility, it can be modified to ease the opening of these 
constellations (as will appear in section VI). 

In this section, we intuitively provide a brief explanation of 
why the CMA and MMA have difficulties in opening the eye 
of very large signal constellations. In steady-state, the mean of 
the correction term E[δw(n)] = E[w(n + 1) – w(n)] in the CMA 
tap updating algorithm is zero, but its variance is generally not 
equal to zero. This results in tap fluctuations, which contribute 
tap adaptation noise to the output signal of the equalizer. 
Especially for QAM, due to the mismatch between the 
constellation and the cost function, the CMA update equation 
causes the adaptive weights to jitter (fluctuation noise) about 
their optimum settings even if the perfect equalization is 
achieved. Therefore, under any conditions, one would expect 
the misadjustment of the CMA should be very high for QAM. 
For a rigorous misadjustment analysis of the CMA, readers are 
referred to [6]. An indication of the amount of jittering about 
the stationary point can be obtained by calculating the variance 
of the i-th element of the update vector, which is given by 

[ ]2)(nwE iδ after convergence. 
Rewrite the MMA weight-update rule (8) as follows: 
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Specifically, the i-th element of the update vector is 
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Now consider the jittering of the MMA weights after 
convergence. We wish to focus on the component of this 

jittering that is caused by the mismatch between MMA cost 
function and the QAM constellation. Since this mismatch 
exists regardless of the quality of equalization, we consider the 
case of perfect equalization under the further assumption that 
there is no thermal noise. In this case, we assume that 

y(n) = a(n – ∆ ).                (11) 

Clearly Theorem 2.2 of [21] also applies; that is, the 
probability distribution of y(n) matches that of the original 
transmitted constellation a(n) and this allows statistical 
moments over the equalizer output to instead be taken over the 
constellation. The received signal sample, in the absence of 
noise, is given by 

∑ −−=−
k

k kinahinx ).()(           (12) 

Using (11) and (12), we may write 
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Knowing that E[a(n)]=0 (zero-mean), E[a2(n)]=0 
(symmetries about in-phase and quadrature axes), 
E[a*(i)a(j)]=E[|a(m)|2] δ ij (stationary and uncorrelated), 
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III aEaER = , we can easily 
find that the expectation of (13) is zero; that is, E[δwi(n)]=0. 
However, the variance of the jittering phenomenon, which can 
be measured from E[|δwi(n)|2], is non-zero and can be 
computed as follows: 
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Again using the assumptions regarding the transmitted 
sequence stated above, only the k = l terms in the double sum 
make non-zero contributions. Therefore, 
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Separating out the k = ∆ - i term, we have 
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Using the statistical independence of successive symbols 
yields 
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Using the symmetric nature of the QAM constellation, we 
observe that E[|aR(m)|p] = E[|aI (m)|p], which simplifies 
(17) to 
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The terms, 1γ and 2γ , in (18) indicate the mismatch and are 
expressed as 
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Examining (18) reveals that the only way to reduce the jitter 
is to either decrease “ µ ” or “ 1γ and 2γ ”. However, any 
decrement in µ  decreases the speed of convergence of the 

equalizer. In addition, finite precision effects become a factor in 
a practical implementation if µ  is too small [16]. Rather than 
decreasing the step size µ  for large constellations, we 
propose to keep the misadjustment metrics small, by 
modifying the cost function of MMA, such that the values of 

1γ  and 2γ  are decreased. 

VI. Sliced Multi-modulus Algorithm 

In this section, we provide a new algorithm, similar to the 
MMA, with reduced metrics 1γ  and 2γ . In order to decrease 
the values of metrics 1γ and 2γ , we propose to assign a 
separate MMA cost function and (thus a separate) modulus RR;I 

to a group of symbols having the same values of )(ˆ naR  or 
)(ˆ naI . It can easily be achieved by weighting the dispersion 

constants RR and RI with absolute values of )(ˆ naR and )(ˆ naI , 
respectively. In this way, both the real and imaginary parts of 
y(n) are forced to belong to the contour weighted with the 
absolute value of the real and imaginary parts of the closest 
symbol, respectively. 

The proposed algorithm is thus devised by embedding the 
sliced symbols in the dispersion constants; it is named the 
sliced multi-modulus algorithm (S-MMA). The S-MMA cost 
function is 
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The corresponding S-MMA tap updating algorithm is 
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where c is a positive constant (possibly c ≤ 1). A closer look at 
(20) reveals that the S-MMA has an update rule very similar to 
the MMA (as specified in (8)). Especially, for c = 0, the S-
MMA reduces to the MMA. Observe that, due to using both 
equalizer and slicer outputs, the update rule (20) forces yR(n) 
and yI(n) to lie on point contours of values 

R
c

RR Rnany )(ˆ)](sign[ and ,)(ˆ)](sign[ I
c

II Rnany  
respectively, where sign[·] is a standard signum function. In 
this way, the S-MMA update mechanism is aware of the 
dispersion of y(n) away from the closest symbol )(ˆ na in some 
statistical sense. 
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1. Misadjustment of S-MMA 

Our main intention in the proposal of the S-MMA has been to 
propose a new algorithm, similar to the MMA, such that the 
steady-state misadjustment is minimized. Based on the procedure 
discussed in section V, the values of the misadjustment metrics 

1γ and 2γ , obtained for the S-MMA, are as follows (c = 1): 
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The values of 1γ and 2γ , as specified in (21), are much 
smaller than those in (19). To corroborate this claim, the ratios 
of 1γ ’s and 2γ ’s, exhibited by the MMA and the S-MMA are 
depicted in Fig. 2 for different QAM constellation sizes. 
Observe that the misadjustment metrics exhibited by the S-
MMA are at least five times smaller than those of the MMA. 

To gain further insight, we compare the error-functions of the 
MMA and S-MMA The error-functions of the MMA and S-
MMA are depicted in Fig. 3 for 64-QAM. Observe that the 
error-function of the MMA is continuous while the S-MMA 
error-function is discontinuous; or in other words, the S-MMA 
exhibits a piecewise combination of several continuous error-
functions. Due to a continuous error-function, the MMA forces 
all symbols to lie on a single contour; while due to a 
discontinuous error function, the S-MMA forces the equalizer 
output to lie on one of the multiple contours, the one 
statistically closest to it. Because of these increased contours in 
the S-MMA, the average distance between the constellation 
symbols and their respective contours is decreased, and as a 
result it yields a smaller steady state misadjustment. 

 

 

Fig. 2. Ratios of 1γ ’s and 2γ ’s for MMA and S-MMA. 
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2. Dispersion Constants of S-MMA 

Dispersion constants in a blind equalization algorithm are pre-

computed positive constants which play a vital role in adjusting 
the gain of the equalizer such that the statistics of the equalizer 
output y(n) (upon convergence) get matched with the statistics of 
the transmitted signal a(n). So, they contain the information 
about the size (number of symbols), shape (whether square, cross, 
or something else), and energy (which reflects the average 
symbol-to-symbol distance) of the transmitted signal. 

 

 

Fig. 3. (a) MMA and (b) S-MMA (c = 0.4) error-functions for 64-
QAM. 
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Assuming a perfect convergence condition, that is y(n) = 

a(n), the dispersion constants RR and RI in the S-MMA are 
computed by solving the equations, 
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Note that the incorporation of c in RR and RI  reflects the 
weight of the information contributed by )(ˆ naR and )(ˆ naI , 
respectively. 

Consider the case of the very first attempt, made by 
Benveniste et al. [22], in which the misadjustment was reduced 
by using the weighted sum of blind and DD errors. However, 
due to the nonlinearity of the DD error, it was impossible to 
incorporate the contribution of )(ˆ na  into the dispersion 
constants. Later, other researchers proposed dual-mode 
solutions (for example [7]), where the blind equalizer made the 
switching between blind and DD modes of adaptation. Since 
dual-mode is actually a special case of Benveniste’s idea (in 
which the weights are simply replaced with binary flags), the 
dispersion constants were again blind to the contribution made 
by )(ˆ na . 

3. Dimensions of the S-MMA 

Assume that the equalizer has successfully converged and 
the equalizer output y(n) is in a close vicinity to the 
constellation symbol )(ˆ na within an angle θ, such that 

θjenany −= )(ˆ)(  (probably due to a residual phase-offset). 
The real and imaginary parts of )(ˆ na can be expressed in 
terms of y(n) = yR(n) + j.yI(n) and θ as follows: 

),sin()()cos()()(ˆ θθ nynyna IRR −=         (24) 

),sin()()cos()()(ˆ θθ nynyna RII +=         (25) 
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For the sake of simplicity, we assume that both y(n) and 
)(ˆ na  lie in the first quadrant. Under this assumption, 

)(ˆ)(ˆ nana RR = and )(ˆ)(ˆ nana II = . For c = 1, we obtain the 
real part of the error-function in (20) as follows: 

{ }[ ].)()sin()()cos()()()]([

:MMAS
2 nyRnynynyny RRIRRR −−−=

−

θθψ
 

(27) 
On the other hand, the real part of the error-function in the 

CMA update rule (6) is 

.)]()()[()]([

:CMA
22 nynyRnyny IRRR −−−=ψ

   
(28)

 

Similarly, the real part of the error-function in the MMA 

update rule (8) is 

)].()[()]([

:MMA
2 nyRnyny RRRR −−=ψ

      
(29)

 

Comparing (29), (28) and (27), it reveals that the error 
functions in the MMA, CMA and S-MMA are one-, two- and 
pseudo-two-dimensional, respectively. The S-MMA is pseudo-
two-dimensional because it contains both yR(n) and yI (n) only 
when θ is not equal to zero (θ ≠ 0). Also, by considering the 
angle θ, it is apparent that the S-MMA is utilizing more 
information (or higher statistics in a loose sense) than both the 
CMA and MMA. 

4. Complexity of the S-MMA 

The computational complexity of the S-MMA is almost the 
same as that of the MMA. In fact, the dispersion constants RR 
and RI in the MMA are replaced with c

R na )(ˆ RR and 
c

I na )(ˆ RI , respectively. However, these constants need not 
be computed at each iteration. For example, for 16-QAM, 
only two values RR and 3cRR (= RI and 3cRI, resp.) are needed 
to be precomputed and stored in registers. The binary 
representation for IRa ;ˆ can be used to address these registers. 
Thus, the S-MMA needs some extra storage space compared 
to the MMA. 

VII. Simulation Results 

In simulations, a complex-valued seven-tap transversal 
equalizer was used and initialized so that the center tap was set 
to one and the other taps were set to zero. The channel is a 
complex-valued representation of a typical voice band 
telephone channel, taken from [23] with additive white 
Gaussian noise. The residual ISI and symbol-error rate (SER) 
are measured and compared as performance parameters. Each 
of the ISI traces is obtained from the ensemble average of 200 
independent Monte Carlo experiments. The values of 
dispersion constants and step-sizes used in these experiments 
are mentioned in the labels of the figures. 

Figures 4, 5 and 6 depict residual ISI plots for 16-, 64- and 
256-QAM constellations, respectively, for the MMA and S- 
MMA (c = 1). It can be observed that the steady-state ISI in the 
S-MMA is lower by at least 5dB compared to those obtained 
from the MMA. It is evident from the ISI curves that the S-
MMA improves the equalizer performance by offering better 
removal of multipath effects at a steady-state without 
compromising over the convergence rate. 

A lower residual ISI floor directly implies a lesser  
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Fig. 4. Residual ISI for 16-QAM signaling. 
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Fig. 5. Residual ISI for 64-QAM signaling. 
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Fig. 6. Residual ISI for 256-QAM signaling. 
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misadjustment. It is also evident from this set of experiments 
that the S-MMA is capable of giving better performance 
regardless of the size of the QAM constellation. 

Next, we compare the performance of the MMA and S-
MMA algorithms by measuring the SER versus SNR. 

Figures 7(a), 7(b) and 7(c) depict SER plots for 16-, 64-, and 
256-QAM constellations, respectively. Each of the SER plots 
is computed when convergence has been achieved at the 
same rate for both the S-MMA and MMA (the first 15000 
symbols were not used in the computation of the SER). The 
values of step-sizes are similar to those which are used in the 
results shown in the legends of Figs. 4 through 6. Remember, 
the SER of 10-2 is usually considered acceptable to guarantee 
a safe switch between the blind equalization and DD tap-
updating algorithms [16]. Observe that the S-MMA is 
yielding a similar SER as those of the MMA at a low SNR; 
however, for a higher SNR, the S-MMA is outperforming the 
MMA. Especially, for 256-QAM, the SER of the S-MMA is 
approaching 10-3 while the SER of the MMA is far above 10-2. 
It can be concluded that the performance of the S-MMA 
becomes far better than the MMA at higher constellation 
sizes. Further improvement in SER can be gained by using 
coding techniques in a transmitted data sequence; a detailed 
analysis of the performance of different coding schemes in a 
blind receiver has been explored in [24]. 

Blind equalizers are usually switched to the DD 
equalization mode once the error level is reasonably low. 
Considerable attention has to be paid in determining the point 
at which this switch-over is made in order to avoid the error-
propagation effects associated with the DD mode. Non-
convergence of the algorithm or large steady state errors may 
result if the algorithm is switched to the DD mode too early. 
On the other hand, too late a switch to the DD mode may 
result in a long delay in the convergence process. The 
switchover process is thus not trivial and demands extra 
computation to determine the error level [25]. 

Under the above mentioned scenario, observe that the S-
MMA is not only capable of providing a reliable initial 
convergence but also minimizes the error level (by decreasing 
the misadjustment at almost no additional cost), so that a 
reliable switch-over to DD mode is possible. It can be argued 
that the S-MMA is using )(ˆ na  from the start-up, when )(ˆ na  
cannot be considered reliable. This problem can be solved by 
selecting a small value of c at start-up. However, on the basis of 
computer simulations on many different channels, it is 
observed that for square constellations, c can reliably be 
selected as high as 1 from the start-up phase. Moreover, for 
non-square constellations, the reliable convergence along with 
a smaller misadjustment were observed to be achieved with   
values of c much smaller than 1 (these results are omitted to 
limit the size of this paper). 

Finally, the idea of slicing the error-function can equally be 
applied to the CMA and/or other error-function-based 
algorithms to decrease their misadjustment. 
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Fig. 7. SER results for (a) 16-, (b) 64- and (c) 256-QAM. 
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VIII. Conclusion 

In this work, we have introduced an adaptive equalizer for the 
blind equalization of QAM signals that minimizes a cost 
function composed of equalized and sliced symbols. The 
contribution lies in the technique to incorporate the sliced 
symbols in the multi-modulus type weight adaptation process. 
The proposed implementation is referred to as the sliced multi-
modulus algorithm (S-MMA). The steady-state misadjustment 
analysis of an existing technique and the proposed one is carried 
out. Both analysis and simulations demonstrate the advantage of 
using the proposed cost function over the traditional multi-
modulus cost function associated with the conventional MMA. 
The performance of the equalizers implementing the MMA and 
S-MMA are compared. The simulation-based experiments show 
that the S-MMA exhibits a superior performance compared to 
the MMA yielding a better residual ISI and SER, without 
compromising the convergence rate. 
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