
Small-screen mobile terminals have difficulty accessing
existing Web resources designed for large-screen devices.
This paper presents an adaptive transformation method
based on webpage semantic features to solve this problem.
According to the text density and link density features of
the webpages, the webpages are divided into two types:
index and content. Our method uses an index-based
webpage transformation algorithm and a content-based
webpage transformation algorithm. Experiment results
demonstrate that our adaptive transformation method is
not dependent on specific software and webpage templates,
and it is capable of enhancing Web content adaptation on
small-screen terminals.

Keywords: Webpage transformation, mobile terminals,
semantic features, text density, link density.

Manuscript received Dec. 7, 2012; revised Mar. 1, 2013; accepted Mar. 21, 2013.
This work was supported by the Chinese Key Projects in the National Science &

Technology Pillar Program (NO.2012BAD35B02).
Hao Li (phone: +86 15072411065, lihao.0205@gmail.com), Min Hu

(sophie423@163.com), and Xiaoliang Zhu (zhuxl@mail.ccnu.edu.cn) are with the National
Engineering Research Center for E-Learning, Huazhong Normal University, Wuhan, China.

Qingtang Liu (liuqtang@mail.ccnu.edu.cn) is with the Colleage of Information and
Journalism Communication, Huazhong Normal University, Wuhan, China.

http://dx.doi.org/10.4218/etrij.13.0112.0834

I. Introduction

As a result of the proliferation of wireless handheld devices,
mobile terminals have become indispensable tools in daily life.
However, in the era of rapid development of mobile phones,
when mobile devices attempt to access mass Internet resources,
which were originally designed for large-screen computers, it is
clear that mobile terminal screens are too small, the Internet
connection speed is slow, the storage space is limited, the
computational capability is weak, the battery standby time is
short, and so on [1].

To adaptively rendering webpage content on small-screen
devices, Carnegie Mellon University (CMU), Pittsburgh, PA,
USA, proposed a thumbnail method to enhance mobile
Internet access quality of service [2]. This method preserves the
original content of webpages well, allowing users to accurately
grasp the entire webpage structure; when users browse familiar
webpages, this method is especially effective. However, when
a page is too large, the converted page becomes too small, so
users have difficulty clearly browsing the specific contents.
Most Internet resources are currently in the form of webpages,
which were written in the HTML language. Special standards
were set for mobile Internet, according to the features of
handheld devices. These standards were either the HTML
standard reduction, such as CHTML (Compact HyperText
Markup Language) and HDML (Handheld Devices Markup
Language) [3], or completely new standards, such as WML
(Wireless Markup Language Wireless Markup Language) [4].
According to these new standards, rewriting the existing
webpages is simple and easy. For the majority of the existing

Research of Adaptive Transformation Method
Based on Webpage Semantic Features

for Small-Screen Terminals

Hao Li, Qingtang Liu, Min Hu, and Xiaoliang Zhu

900 Hao Li et al. © 2013 ETRI Journal, Volume 35, Number 5, October 2013

Internet webpage resources, such a rewriting method would
undoubtedly be cumbersome and labor-intensive.

To provide webpage content in an intelligent layout for
small-screen terminals, in 2003, Microsoft Asia Research
Institute presented the VIsion-based Page Segmentation (VIPS)
algorithm, used to extract the semantic structure of a given
webpage [5]. The VIPS algorithm represented such methods
based on the page visualization information for segmentation;
it extracted the structure and visual information from the
webpages based on heuristic rules and then divided webpages
into small blocks. This method is simple, easy to implement,
and has advanced efficiency, but it does not have general
applicability. Baluja transformed webpage segmentation into
an efficient machine-learning framework that segmented the
pages into blocks by a decision tree and the decision tree
information entropy reduction [6]. The method converted the
page segmentation process into a decision tree classification
process. Although this method has a strong mathematical
theoretical basis because it involves correlation judgment, it
cannot guarantee the correct rate of the page segmentation. In
2008, Chakrabarti and others presented a webpage
segmentation method based on graph theory, and they were the
first to transform the page segmentation problem into a
weighted graph combinatorial optimization problem [7]. This
method can be applied to all pages of the Web, so it has general
applicability. However, as a result of the graph construction, the
graph on behalf of a webpage is very large, so the graph
partitioning process has lower efficiency and is impractical.
Xiang and Shi predefined some universal patterns and then
searched for these patterns in the layout trees [8]. After
conversion, pages could basically keep the visual effects of the
original pages, but the tasks of web classification and pattern
matching were dramatically heavy.

To solve the problem that small-screen mobile terminals have
difficulty accessing existing web resources, this paper presents an
adaptive transformation method based on webpage semantic
features (WSFs). According to the text density and link density
features, webpages are divided into index webpages and content
webpages. We propose a content-based webpage transformation
algorithm and an index-based webpage transformation algorithm.
The structure of the paper is as follows. The first section
introduces the aims of the method and the related works. The
second section describes the design of the webpage adaptive
transformation method based on WSFs. The third section
presents our designed experiment and results, and the paper ends
with a summary and a conclusion.

II. Methodology

As shown in Fig. 1, the processing flow of our method

Fig. 1. Processing flow chart.

Data preprocessing

Semantic structural features extraction of
webpage

Judgment of webpage types

Webpage adaptive transformation

Webpage rendering

includes the following steps. 1) Data preprocessing: this step
mainly includes the URL format examination, HTML
structured regularization, and HTML tag format tidiness and
Document Object Model (DOM) tree representation of the
webpage document. 2) Semantic structural features extraction
of webpage: this process includes the calculation of text density
and link density of the page, to represent the tag level and
structure level feature of the webpage. 3) Judgment of webpage
type: the pages are divided into index type and content type in
our method. 4) Webpage adaptive transformation: to deal with
the two different types of webpage, we propose a content-
based webpage transformation algorithm and an index-based
webpage transformation algorithm. 5) Webpage rendering:
after completion of the webpage transformation, this phase
includes web integration and rendering for the users.

1. Representing Webpage Features

For a webpage, we establish a web semantic model, as
shown in Fig. 2, which has six semantic levels from the bottom
to the top [9]. 1) Text level: the source code of the webpage, for
example, <li class=“leaf first”> <a href=“/about-sakai”
title=“About Sakai”> About </ a> </ li>. 2) Tag level: HTML
elements form the building blocks of all websites; for example,
<table> represents a form, <tr> denotes a row in a table. 3)
HTML structure level: HTML tags also have layout
characteristics, which means that some HTML tags could very
well reflect the page layout and structure information, such as
<table> and <div> labels being used for webpage layout. 4)
HTML rendering structure: Webpages will eventually be
presented to the users graphically, and all the HTML tags are
rendered by the browser; So, this graphical interface reflects the
rendering structure of the HTML webpages; For example, for a
specific page, the top region is the navigation bar, the central
area is the body content, and the bottom zone is the copyright
and contact information. 5) Writing structure level: When page

ETRI Journal, Volume 35, Number 5, October 2013 Hao Li et al. 901

Fig. 2. Webpage semantic model figure.

Text LEVEL (Code)

Tag level (HTML tag)

HTML structure

HTML render structure

Writing structure

Nature language

Semantic

encoders write web functions, their personal writing habits are
reflected in the webpage; The characteristics of writing habits
constitute the web writing structural features; For example,
there may be a text description at the bottom of a picture. 6)
Natural language level: Web content may expose some
semantic intentions of the page developers; For example, for
the main body of a webpage, a subblock area may be
notification information, and another subblock zone may be
recent news information. In this paper, we will focus on the
first three semantic levels.

At the webpage text level, as a result of HTML non-
normative writing, we use Jtidy [10] to clean up its format,
process non-closed labels, and so on. At the webpage tag
level, we mainly focus on the content of text tags of
webpages, so we use text density δ(b) to ration the
characteristics of the tags of the HTML pages [11]. The text
density of current node, δ(b), is given as

'() , () 1,
(() 1)*maxLen()

() , () 1,
maxLen

T b L b
L bb
T b L b

δ

⎧ >⎪ −⎪= ⎨
⎪
⎪⎩

≤

 (1)

where T(b) denotes the length of the text of the current node,
L(b) represents the number of text rows of the current node,
T'(b) denotes the length of the text of the current node when
the number of text rows is larger than 1, and maxLen
represents the one-line text length of the current screen size.
Regarding the structure of the page, we mainly focus on link
density. The link density of the current node, θ(b), is given as

a ()()= ,
()

T bb
T b

θ (2)

where Ta(b) denotes the text length sum of all <a> tags of the
current node and its children nodes.

2. Algorithm Flow

In the preprocessing stage, URL address validation is
performed first, and then the webpage character encoder is
detected so that the transformed webpages are not garbled. In
the next step, remote URL HTML content is copied and stored
locally. In Step 4, the HTML tidy interface is recalled to clean
the HTML tags [10]. In the phase of converting webpages into
an HTML DOM tree, we recall the HTML Agility Pack
interface to implement its function [12]. An HTMLInput object
based on the input URL is constructed. Then, the parse method
is called to generate an HtmlDocument object, which contains
all the attributes of the current webpage. Based on the
HtmlDocument object, we propose an algorithm to determine
what type of webpage the current page is. A webpage is either
an index webpage or a content webpage. An index-based
webpage transformation algorithm and a content-based
webpage transformation algorithm are used to extract the main
content of the current webpage. In the page rendering stage,
adaptive webpage content is presented to the users according to
the screen size and other preferences of the terminal devices.
The specific pseudocode is as follows.

Algorithm 1. Adaptive transformation algorithm based on webpage
sematic features.
Input: URL
Output: adaptively transformed content webpage for the small-

screen terminals
Algorithm:
//Step 1: URL format standardization

public string urlformat(string url){
return urlformat (url);}

//Step 2: Character encoding detection

public string Characterdetect(string url){
 return mozillaCharDetect(url);}

//Step 3: Get HTML source code

public Stream getHtmlCode(string url; string character){
return GetRemoteStream(url, character);}

//Step 4: HTML tag tidy

public string htmltidy(Stream remoteStream){
return htmlTidy(remoteStream);}

//Step 5: Transformation HTML page into DOM tree

public HtmlDocument htmltidy(string htmlsource){
HTMLInput Input = new URLInput(htmlsource);
HtmlDocument document = Input.Parse();
Return document;}

//Step 6: Judgment of webpage type.

public string judgeOfWebType(HtmlDocument document){

902 Hao Li et al. ETRI Journal, Volume 35, Number 5, October 2013

return judgewebtype(document);}

//Step 7: Call the webpage transformation algorithm

public string webTransform(HtmlDocument document, string
type){

If(type==“index”)
Then return indexWebTransform(document);
If(type==“content”)
Then return contentWebTransform(document);}

//Step 8: adaptive webpage rendering for the small-screen terminals

public string adaptedWebContent (string webcontent,parameters
terminal){
return adaptedWebContent(webcontent, terminal)}

3. Algorithm for Judgment of Webpage Type

Webpages are determined to be either content webpages or
index webpages according to their presented form. On an index
webpage, content is displayed in subregions, each of which has
a custom abstract theme. Each zone of a webpage has multiple
rows, each row of content having an identified specific topic
and each topic linked with another webpage, as shown in Fig. 3.
On a content webpage, a specific topic is described by an
apparent complete title, and there is a large section of text to
describe this specific topic in detail or there may be additional
topics linked to this topic, as shown in Fig. 4. We use webpage
text density and webpage link density to judge the webpage
type. The webpage text density (Dt) calculation method and the
webpage link density (Dl) calculation method are respectively
shown as follows:

t n / ,D L N= (3)

l l l / .D L C N= ∗ (4)

In (3), Ln denotes the sum of the length of all no-link text for
the current web, and N represents the total number of nodes of
the current webpage. In (4), Ll represents the sum of text length
of all <a> tags for the current webpage, and Cl denotes the total
link number of the current webpage. Based on a statistical
analysis method, we mainly use the ratio of the whole webpage
text density and the link density to judge the webpage type, as

l t l l n/D D L C L= ∗ / , (5)

where Dl/Dt represents the link density and text density ratio of
this page.

We use the text density and link density of the webpage
nodes to extract the main content for the content-based
webpage, which will be discussed in detail in subsection II.5,
and the related calculation methods are shown in (1) and (2),
respectively.

We randomly select 150 content webpages and 150 index

Fig. 3. Index webpage. (Screenshot from www.chinadaily.com.cn.)

Fig. 4. Content webpage. (Screenshot from www.chinadaily.
com.cn/china/2012cpc/2012-11/04/content_15872387.htm.)

Fig. 5. Webpage link density with text density ratio distribution.

0

2

4

6

8

10

12

1 21 41 61 81 101 121 141

Number of webpages

R
at

io
 (L

in
k

de
ns

ity
/T

ex
t d

en
si

ty
)

0.6

webpages and calculate the text density and link density,
respectively, as shown in Fig. 5. From the figure, it is clear that
there is a polarization for the page link density with text density
ratio distribution. When the link density with a text density
ratio of the current webpage is greater than the threshold value,
the webpage is an index webpage; otherwise, it is a content
webpage (the threshold value is represented by the red line in

ETRI Journal, Volume 35, Number 5, October 2013 Hao Li et al. 903

Fig. 5). The specific pseudocode of this algorithm is as follows.

Algorithm 2. Algorithm for judgment of webpage type.
Input: htmlDocument
Output: webpage type;
Algorithm:
//Step 1: get the node list of the web document

Public IList<HtmlNode> getNodeList (HtmlDocument document){
 HtmlNode root= document.DocumentNode;

IList<HtmlNode> allnodes = root.SelectNodes(“//*”);
Return allnodes;}

//Step 2: get the length of no link text

Public int getNoLinkText(IList<HtmlNode> allnodes){
Int htmlNodeCount= allnodes.count; Int nolinkLen=0;

For(int i=0; i< htmlNodeCount; i++){
Htmlnode current = allnodes [i];

If(current.child.count==0) &&(current.type==“Text”)
Then nolinkLen = nolinkLen+ current.InnerText.Length;

If(current.child.count >0)
Then scanNolink(node, nolinkLen); }
// Traversing iterate the current node
return nolinkLen;}

//Step 3: get the A tag count of the web document

Public int getAtagCount(htmlNode root){
IList<HtmlNode> aTagnodes = root.SelectNodes(“.//a[@href]”);
Return aTagnodes.count;}

//Step 4: get the length of link word

Public int getAtagTextLen(IList<HtmlNode> aTagnodes){
Int aTagCount= aTagnodes.count;Int linkLen=0;

For(int i=0; i< aTagCount; i++){
Htmlnode current = aTagnodes [i];
If(aTagnodes [i].InnerText.Length>0)
Then int linkLen = linkLen + aTagnodes [i].InnerText. Length;
return linkLen;}

//Step 5: count the link density/text density

Public Double denstiyRation(){
htmlNodeCount =getNodeList(root).count;

//5.1count link density
linkCount = getAtagCount(aTagnodes);
LinkWordLen= getAtagTextLen(aTagnodes)
Double linkdensity= linkCount* LinkWordLen / htmlNodeCount;

//5.2count no link text density
nolinkLen = getNoLinkText (allnodes);
Double textdensity= nolinkLen / htmlNodeCount

//5.3 count the link density/text density
Return (linkdensity/textdensity);}

//Step 6 judge the webpage type

String judge(double ration){
If(linkdensity /textdensity >thtreshold) Then return “index”;

Else return “content”;}

4. Index-Based Webpage Transformation Algorithm

For index webpages, we first use the VIPS algorithm [13] to
segment the current webpage into small blocks and receive a
block list. In 2003, the Microsoft Asia Research Institute
proposed the VIPS algorithm to extract the semantic structure
for a webpage [5]. The VIPS algorithm makes full use of page
layout feature separators, and it employs a top-down approach,
which is very effective. Compared to other webpage
segmentation algorithms, VIPS is more stable and easier to
apply to our research, so we utilize it in our study. According to
the block list, a block type is set to each block; the block types
include advertise, noise, navigator, and main content. Another
page is selected with the same domain and website hierarchy to
detect the navigator. The same sub-DOM trees are extracted as
the navigator candidates from the selected two pages. Then,
nodes without links and nodes that have links whose URL
domain is outside of the domain of the current webpage are
removed, so the remaining DOM nodes are set as the navigator
type [13]. If the current block type is noise or advertise, the
block is filtered out directly. Otherwise, we detect each block to
search for a subtitle; if one exists, it will be extracted. The
subtitle extraction is used to enable users to quickly find the
content that matches their interest after the adapted
transformation. If the current block type is navigator, HTML
code is generated according to the text and URL of the current
block. If the block type is main content, text and URLs of
blocks are extracted from web content. After the mergence of
the extracted text, the URL, and the block subtitle, the adaptive
webpages are displayed on the small-screen terminals. The
pseudocodes are as follows.

Algorithm 3. Index-based webpage transformation algorithm.
Input: HtmlDocument
Output: adaptively transformaed index webpage
Algorithm:
//Step 1: call the webpage fragmentation algorithm to segment the

webpage

Public List<block> pageSegmentation(HtmlDocument document){
Return VIPS(document);}

//Step 2: noise block filter

Public List<block> blocksFilter(List<block> segmentation){
For(int i=0; i<segmentation.length; i++)

{block current=segmentation [i];
If (current.type==“advertise”) Then segmentation.remove(i);
If (current.type==“noise”) Then segmentation.remove(i);}
Return segmentation;}

904 Hao Li et al. ETRI Journal, Volume 35, Number 5, October 2013

//Step 3: call the subtitle extraction algorithm
Public list<string> subtitleDetect(List<block> segmentation)

{return subtitleDetect(segmentation);}

//Step 4: display of adapted content

Public string adaptiveTrams(List<block> segmentation;
list<string> sub){

Stritn htmlcode; Int subTitleIndex=0;
For(int i=0; i<segmentation.size; i++)
{block current=segmentation [i];

//4.1: webpage navigator content generation
If(current.type==“navigator”) Then
{List<rescord> resc=current.getRecord
for(int k=0; k< resc.length; k++)
htmlcode = htmlcode +Htmlgeneration(url,text);}

//4.2: webpage main content generation
If(current.type==“maincontent”) Then
{List<rescord> resc=current.getRecord
for(int k=0; k< resc.length; k++)
htmlcode = htmlcode +Htmlgeneration(sub[subTitleIndex],
url,text);
subTitleIndex++}}
Return htmlcode; }

5. Content-Based Webpage Transformation Algorithm

For content webpages, we mainly extract the body content of
the page and then adaptively display it on small-screen
terminals. We first obtain all HtmlNodes of the current
webpage. Afterward, we traverse all nodes of the DOM tree of
the current webpage and calculate the text density and link
density of each node. If the text density of the current node is
greater than the minimum text density threshold value and the
link density is less than the minimum link density threshold,
the current node is a main content node; otherwise, the current
node is a noise node or not related to page topic content, which
is directly filtered out in this paper. After the traversal of the
whole DOM tree of the current page, all nodes related to the
body content are extracted. Finally, upon completing the text
and URL extraction and the page reorganization, the adapted
webpages are displayed on the small-screen terminals. The
pseudocodes are as follows.

Algorithm 4. Content-based webpage transformation algorithm.
Input: htmlDocument
Output: adaptively transformed content webpage
Algorithm:
//Step 1: get the node list of the web document

Public IList<HtmlNode> getNodeList (HtmlDocument
document){
HtmlNode root= document.DocumentNode;

IList<HtmlNode> allnodes = root.SelectNodes(“//*”);
Return allnodes;}

// Step 2: main content extraction

Public List<node> maincontent(IList<HtmlNode> nodes){
List<node> maincont;

For(int i=0;i<nodes.length;i++)
{HtmlNode current= nodes [i];

If (current.linkdensity<=min_link_density)&&
(current.contentdensity>min_ content_density)

 Then maincont.add(current);}
Return maincont;}

//Step 3: display of adapted content

Public string adaptiveTrams(List < node > nodes, List<block>
navigator){

Stritn htmlcode;
For(int i=0;i< navigator.length;i++)

{htmlcode = htmlcode +Htmlgeneration(navigator [i])}
For(int k=0; k< nodes.length; k++)

{htmlcode = htmlcode +Htmlgeneration(nodes [i])}
Return htmlcode;}

III. Experiment Discussion

1. System Implementation

We use a proxy-based approach to implement our system, as
shown in Fig. 6. We design a series of experiments to verify the
effectiveness of our proposed method. We consider the
judgment of webpage type, the generation of index webpages,
the generation of content webpages, the effectiveness of the
system validation of our proposed algorithm, and a comparison
to other methods. Our adaptive services are deployed on an
Apache server, and the proxy server is configured as follows:
the CPU is an Intel Pentium (R) Dual E2180 2.00 GHz, the
memory is PDDR2 SDRAM 667 MHz 1.0 GB, the hard disk
is 150 GB with Seagate ST3160815AS, and the operating
system is Microsoft Windows server 2003.

2. Judgment of Webpage Type

We randomly select 1,402 pages to prove the accuracy of the
algorithm for judging webpage type. For those 1,402 test
webpages, we first manually judge the page type and create test
data sets. We design a series of experiments to verify the
effectiveness of our proposed method. Then, we use an

Fig. 6. System architecture.

Raw content

Responses Adapted content

Requests

Proxy server ServerTerminals

ETRI Journal, Volume 35, Number 5, October 2013 Hao Li et al. 905

Table 1. Accuracy of judgment of webpate type.

Web Catalog Website Webpage
count

Correctly
judged count

Correctly
judged ration

Webpage
type

15 14 93.33% index
Harvard

52 50 96.15% content

18 17 94.44% index
MIT

62 61 98.39% content

19 18 94.74% index

Academia

Cambridge
43 41 95.35% content

21 20 95.24% index
Microsoft

45 43 95.56% content

23 21 91.30% index
IBM

43 41 95.35% content

17 15 88.24% index
Lenovo

44 42 95.45% content

24 22 91.67% index
business.sohu

45 41 91.11% content

22 20 90.91% index

Business

canon
45 40 88.89% content

12 10 83.33% index
eastmoney

43 39 90.70% content

12 11 91.67% index
wsj

45 41 91.11% content

11 10 90.91% index
finance.sina

43 39 90.70% content

14 11 78.57% index
stockstar

56 51 91.07% content

12 10 83.33% index

Finance

money.163
34 31 91.18% content

11 9 81.82% index
67.com

43 41 95.35% content

11 9 81.82% index
ent.sina

15 11 73.33% content

12 10 83.33% index
ent.huanqiu

23 21 91.30% content

14 12 85.71% index

Entertainment

ent.sohu
23 21 91.30% content

14 12 85.71% index
news.sina

25 23 92.00% content

16 14 87.50% index
news.sohu

35 32 91.43% content

11 10 90.91% index

News

ifeng
35 32 91.43% content

Fig. 7. Contrast effect diagrams before and after the adaptive
transformation of index webpage. (Screenshots from
www.sina.com.cn.)

IE browser with our adaptive
transformation method

HTC A3366 browser with our
adaptive transformation method

Original webpage

algorithm to judge the page type to determine the page type
automatically. The 1,402 test webpages are divided into the
following portal categories: academia, business, finance,
entertainment, and news. Table 1 shows the accuracy of the
judgment of webpage type for each category.

3. Generation of Index Webpages

There are vast amounts of links and abstract text in the index
webpages, which are mixed with an abundance of
advertisement and other noise content. On the one hand, this
noise content does not reflect the user’s interest; on the other
hand, this noise content affects the way the user accesses the
information on the page. Therefore, during the adaptive phase,
we filter out all the noise content. Therefore, users can quickly
access the content they are interested in, and network traffic is
significantly reduced. Taking the Sina website for example, as
shown in Fig. 7, the left image shows the effect of the original
pages in a personal computer with a large screen, the upper
right image is the result with a normal IE browser using our
adaptive transformation method, and the image in the lower
right displays the result on the HTC A3366 mobile smartphone
using our adaptive conversion method.

906 Hao Li et al. ETRI Journal, Volume 35, Number 5, October 2013

Fig. 8. Contrast effect diagrams before and after adaptive
transformation of content webpage. (Screenshots from
http://finance.sina.com.cn/g/20101228/17359175742.sh
tml.)

IE browser with our adaptive
transformation method

HTC A3366 browser with our
adaptive transformation method

Original webpage

4. Generation of Content Webpages

For a content-based webpage, the user’s actual interests
correlate to the main content block of the webpage; therefore,
blocks irrelevant to the main content do not draw the user’s
attention. The content enclosed by a blue circle in Fig. 8 is the
main focus of the user. The user has minimal interest in the
material set off by the red boxes in Fig. 8, so such material is
directly filtered out in the adapted display processing phase of
our method. A comparison of the webpages before and after
adaptive transformation is shown in Fig. 8. The left image
shows the effect of the original pages in a personal computer
with a large screen, the upper right image shows the effect with
a common IE browser using our adapted transformation
method, and the lower right image shows the effect on an HTC
A3366 mobile smartphone using our adaptive transformation
method.

5. Qualitative Evaluation

For each webpage in our test set, we retrieve it on both a
desktop browser and a mobile screen, using our content
adaptation service. Displays on both screens are saved as a pair
to use as a test case. We conduct an experiment with 30

Fig. 9. Users’ satisfaction survey.

72%

23%

5%

Satisfied

Tolerable

Unacceptable

volunteers, who verify the entire package of 200 test cases. The
volunteers are juniors at Central China Normal University, all
of whom have the habit of accessing the Internet via mobile
devices and PCs. We provide all volunteers with an HTC
A3366 mobile smartphone with a screen size of 3.2 inches. A
tutorial is given to the students prior to the experiment. For
each test case, a student volunteer is asked to compare the
original desktop screen shot and the adapted mobile
smartphone screen shot and rate the adaptation performance
according to the following levels: satisfactory, tolerable, and
unacceptable. For each level, the volunteer is asked to justify
his/her rating in detail. In this way, we ensure that their rating is
reliable.

The distinguishing characteristics of the three levels are as
follows.

• Satisfactory: This level implies that the student considers the
outcome of webpage adaptation to be satisfactory. The
participant can obtain the desired information and content
quickly using the mobile smartphone. Compared to
ordinary PC browsing, it does not cause any discomfort for
the user.

• Tolerable: This level implies that the student considers the
outcome of the webpage adaptation to be acceptable; the
errors are considered minor and do not hinder the student’s
overall understanding of the page. Compared to ordinary
PC browsing, the user feels that there are some differences
but that they are negligible.

• Unacceptable: This level implies that the student considers
the adapted display to be significantly different from the
original webpage and even confusing. The student cannot
access the wanted information and content using the mobile
smartphone. Compared to ordinary PC browsing, the user
feels it is unsuitable.

The results of the questionnaire show that most testers find
our adaptive conversion system to be satisfactory. As shown in
Fig. 9, the volunteers rate the system as follows: 72% of the
volunteers are satisfied with the adaptation, 23% of the
volunteers find the adaptation tolerable, and 5% of the

ETRI Journal, Volume 35, Number 5, October 2013 Hao Li et al. 907

Table 2. Statistics of conversion accuracy.

Number of pages
Website

Total Accurate
transformation

Incorrect
transformation

Accuracy

sina.com 116 112 4 96.55%

jrj.com.cn 98 92 6 93.88%

ifeng.com 107 98 9 91.59%

163.com 107 98 9 91.59%

sohu.com 103 94 9 91.26%

qq.com 103 92 11 89.32%

huanqiu.com 63 55 8 87.30%

xinhuanet.com 93 80 13 86.02%

chinanews 88 75 13 85.23%

hexun.com 98 80 18 81.63%

caixun.com 73 62 11 84.93%

xinmin.cn 71 0 71 0.00%

Sum 1120 938 182 83.75%

volunteers are dissatisfied with the results.

6. Quantitative Evaluation

To verify the accuracy of the algorithm, we select 1,120
webpages as an experiment data set and choose 30 juniors as
our test volunteers. Using manual observation to determine the
content of the pages, a comparison to the results of our adaptive
conversion method is made.

• Case 1. The result from manual observation is identical to
the result of the conversion.

• Case 2.
Manual observation of result Automatic transformation of result

<5%
Manual observation of result

−

• Case 3. A program error occurs.

Correct transformed number of pagesAccuracy
Total number of pages

= (6)

In Cases 1 and 2, the conversion is accurate. In Case 3, as
well as in other cases not mentioned, an error occurs.
According to the experiment results shown in Table 2, we
find that the accuracy of the algorithm for some sites is up to
96%, while the average accuracy of all samples is 83.75%.
We also note that the accuracy rate is zero for some individual
sites, such as xinmin.cn. A statistical analysis shows that such
sites are constituted by a large number of pictures and lack
textual information, so our method is not applicable for these
websites.

Fig. 10. Comparisons with other content extraction methods.

828 820
710

110162
270

111 67 69

0

200

400

600

800

1000

Satisfied Tolerable Unaccepted

WSF

VIPS

DOM-BASED

Table 3. Execution time comparisons before and after adaptive
transformation

Execution time (seconds)
No. Webpage

type Source webpage After transformation
Saved time

ration

1 Content 11.8 1.71 85.51%

2 Content 12.3 1.86 84.88%

3 Content 13.4 1.95 85.45%

4 Content 12.8 1.92 85.00%

5 Index 32.8 1.82 94.45%

7 Index 35.6 1.62 95.45%

8 Index 33.4 1.74 94.79%

9 Index 37.9 1.69 95.54%

7. Comparison with Other Methods of Web Content
Extraction

For webpage content extraction, VIPS [14] and DOM-based
[15] algorithms are compared with our method based on WSFs.
Our experimental data set consists of the data presented in
subsection III.6, with the exception of xinmin.cn. Similarly, we
choose 30 juniors as our test volunteers. Using manual
observation and auto transformation by different methods, we
obtain the experiment results shown in Fig. 10. These results
show that the performance of our WSF-based method matches
that of the VIPS method but exceeds that of the DOM-based
method.

8. System Execution Time Comparison

The system execution time is calculated as follows:
 Tu = Tc + Tprocess +Ts, (7)

where Tc denotes the delay of users connected to the proxy, Ts
represents the delay of the application connected to the remote
server, and Tprocess is the application processing time. From (7),
we can easily extract that Tc and Ts are affected by the network,

908 Hao Li et al. ETRI Journal, Volume 35, Number 5, October 2013

compared with Tprocess, Tc and Ts can ignore. Therefore, we only
took account in Tprocess in our experiment. In our experiments,
under the GPRS network environment and the 10-kbps
bandwidth, we use four index webpages and four content
webpages, respectively, by mobile terminals, before and after
adaptive transformation. The experiment results show that the
time saved by users is more than 84% (see Table 3).

IV. Conclusion

This paper presented an adaptive transformation method
based on webpage semantic features to solve the problem
small-screen mobile terminals have in accessing existing Web
resources designed for large-screen personal computers.
According to the text density and link density features of the
webpage, we extracted the main content of the webpage via a
content-based webpage transformation algorithm and an index-
based webpage transformation algorithm, allowing the mobile
terminals to adaptively access Internet services. Experiments
showed that our method is not dependent on specific software
and webpage templates, and it can effectively enhance Web
content adaptation on small-screen terminals. In future work,
we must improve the accuracy of the page type judgment
algorithm and handle webpages whose main contents are
pictures and videos as well as handle the interactive functions
of webpages.

References

[1] H. Alam and F. Rahman, “Web Document Manipulation for Small
Screen Devices: A Review,” Proc. Int. Works. Web Document
Anal., 2003, pp. 33-36.

[2] H. Lam and P. Baudisch, “Summary Thumbnails: Readable
Overviews for Small Screen Web Browsers,” Proc. CHI, Portland,
OR, USA, Apr. 2005, pp. 681-690.

[3] S. Saha, M. Jamtgaard, and J. Villasenor, “Bringing the Wireless
Internet to Mobile Devices,” Computer, vol. 34, no. 6, 2001, pp.
54-58.

[4] S.J. Barnes and B. Corbitt, “Mobile Banking: Concept and
Potential,” Int. J. Mobile Commun., vol. 1, no. 3, 2003, pp. 273-
288.

[5] D. Cai et al., “Vips: A Vision Based Page Segmentation
Algorithm,” Technical Report MSR-TR-2003-79, Microsoft
Research, 2003.

[6] S. Baluja, “Browsing on Small Screens: Recasting Web-Page
Segmentation into an Efficient Machine Learning Framework,”
Proc. 15th Int. Conf. World Wide Web, Edinburgh, Scotland, May
23-26, 2006, pp. 33-42.

[7] D. Chakrabarti, R. Kumar, and K. Punera, “A Graph-Theoretic
Approach to Webpage Segmentation,” Proc. 17th Int. Conf.

World Wide Web, Beijing, China, Apr. 21-25, 2008, pp. 377-386.
[8] P. Xiang, X. Yang, and Y. Shi, “Web Page Segmentation Based on

Gestalt Theory,” Proc. IEEE Int. Conf. Multimedia Expo, 2007,
pp. 2253-2256.

[9] S.J.H. Yang et al., “Applying Semantic Segment Detection to
Enhance Web Page Presentation on the Mobile Internet,” J. Inf.
Sci. Eng., vol. 27, no. 2, 2011, pp. 697-713.

[10] J. Deng et al., “The Web Data Extracting and Application for Shop
Online Based on Commodities Classified,” Comput. Intell. Syst.,
2011, vol. 234, pp. 189-197.

[11] C. Kohlschütter and W. Nejdl, “A Densitometric Approach to Web
Page Segmentation,” Proc. 17th ACM Conf. Inf. Knowl. Manag.,
Napa Valley, CA, USA, Oct. 26-30, 2008, pp. 1173-1182.

[12] R. Györödi et al., “Web Page Analysis Based on HTML DOM
and Its Usage for Forum Statistics, Alerts and Geo Targeted Data
Retrieval,” WSEAS Trans. Comput., vol. 9, no. 8, 2010, pp. 822-
831.

[13] K. Vieira et al., “A Fast and Robust Method for Web Page
Template Detection and Removal,” Proc. 15th ACM Int. Conf. Inf.
Knowl. Manag., Nov. 06-11, 2006, pp. 258-267.

[14] D. Cai et al., “Extracting Content Structure for Web Pages Based
on Visual Representation,” Web Technol. Appl., vol. 2642, 2003,
pp. 406-417.

[15] S. Gupta et al., “DOM-Based Content Extraction of HTML
Documents,” Proc. 12th Int. Conf. World Wide Web, May 20-24,
2003, pp. 207-214.

Hao Li received his MS from Huazhong
Normal University in 2010. He is now a
doctoral student at the National Engineering
Research Center for E-Learning of Huazhong
Normal University. He has authored five
published journal articles and conference papers.
His main research interests include mobile

applications and the Semantic Web.

Qingtang Liu received his PhD from
Huazhong University of Science and
Technology in 2005. He is now a professor,
PhD candidate supervisor, and the dean of the
College of Information and Journalism
Communication at Huazhong Normal
University, China. He has authored more than

20 published journal articles and conference papers. His main research
interests include digital copyright protection, search engines, mobile
applications, Web 2.0, and the Semantic Web.

ETRI Journal, Volume 35, Number 5, October 2013 Hao Li et al. 909

Min Hu received her MS from Huazhong
Normal University in 2011. She is now a
doctoral student at the National Engineering
Research Center for E-Learning of Huazhong
Normal University. She has authored five
published journal articles and conference papers.
Her main research interests include knowledge

services and the Semantic Web.

Xiaoliang Zhu received his BS from Hefei
University of Technology in 1996 and received
his MS and PhD degrees from the Department
of Electronics and Information Engineering of
Huazhong University of Science and
Technology in 2003 and 2006, respectively. He
is now a vice professor at the National

Engineering Research Center for E-Learning of Huazhong Normal
University. He has authored more than 10 published journal articles
and conference papers. His main research interests include multimedia
information processing and IPTV technology.

910 Hao Li et al. ETRI Journal, Volume 35, Number 5, October 2013

	I. Introduction
	II. Methodology
	III. Experiment Discussion
	IV. Conclusion
	References

