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In this paper, we propose a curved projection integral 
imaging system to improve the horizontal and vertical 
viewing angles. The proposed system can be easily 
implemented by additional use of a large-aperture convex 
lens in conventional projection integral imaging. To obtain 
the simultaneous display of 3D images through real and 
virtual image fields, we propose a computer-generated 
pickup method based on ray optics and elemental images, 
which are synthesized for the proposed system. To show 
the feasibility of the proposed system, preliminary 
experiments are carried out. Experimental results indicate 
that our system improves the viewing angle and displays 
3D images simultaneously in real and virtual image fields. 
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I. Introduction 

Since integral imaging was first proposed by Lippmann in 
1908, it has been a promising three-dimensional (3D) imaging 
and display technique with full parallax and incoherent light 
[1]-[7]. In general, integral imaging consists of both pickup and 
display parts. The pickup part of integral imaging is carried out 
by a lenslet array and a two-dimensional (2D) image sensor. In 
the pickup part, rays coming from a 3D object are optically 
recorded as elemental images, which have their own 
perspective of a 3D object, by the lenslet array and 2D image 
sensor. The display part is the reverse of the pickup part. The 
recoded elemental images are displayed on a display panel, and 
then a 3D image is reconstructed through the lenslet array in 
front of the display panel.  

Although integral imaging has many advantages, including 
the full parallax, a continuous viewing point, and full color 
images, it also has disadvantages, such as the narrow viewing 
angle and low resolution. Recently, to improve the viewing 
angle, curved integral imaging systems using a curved lens 
array have been reported [8], [9]. However, their optical 
implementation has been limited to only horizontal systems 
because it is difficult to fabricate a curved lens array and a 
curved display panel. To overcome this problem, a curved 
integral imaging system was proposed which additionally uses 
a large-aperture convex lens [10]. This system provides a 
simple structure due to the use of the well-fabricated flat 
devices and the additional large-aperture convex lens. 

Recently, several projection integral imaging (PII) systems 
with 2D image projectors have been reported [9], [11]-[13]. It 
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is easy to implement the simple structure of the integral 
imaging display system using PII because of simple mapping 
between the elemental images and the lenslet array. In 2004, 
Jang and Javidi proposed the PII system, in which high 
resolution elemental images were displayed by using multiple 
projectors; thus, the resolution of reconstructed 3D images was 
improved [11]. They also proposed a PII system in which the 
lenslet array is in contact with the large-aperture concave lens 
in order to pickup and display the large 3D objects that are far 
away [12]. In 2004, Kim and others proposed a curved PII 
(CPII) system which uses a curved lenslet array to improve the 
viewing angle [9]. However, this system has been limited to 
only horizontal systems, and it requires complex modification 
of the proper elemental images.  

In this paper, to improve the horizontal and vertical viewing 
angles, we propose a CPII system which uses a large-aperture 
convex lens in the conventional PII system. The proposed 
system has a simple structure due to the use of a well-
fabricated flat lenslet array and a large-aperture convex lens. To 
obtain the simultaneous display of 3D images through real and 
virtual image fields, we introduce a computer-generated pickup 
method, and elemental images are synthesized for the proposed 
system. To show the usefulness of the proposed system, 
preliminary experiments are carried out and some experimental 
results are presented. 

II. Proposed CPII System 

1. System Structure 

The ideal configuration of the CPII system using a curved 
lenslet array, a curved screen, and a 2D image projector is 
shown in Fig. 1(a). Using a curved lenslet array and a curved 
screen provides a wide viewing angle; however, it is difficult to 
fabricate curved devices. In addition, the projected elemental 
images must be modified for projection on the curved screen. 
To overcome this problem, we propose a CPII system which 
has the equivalent effect of a curved lenslet array: it uses a flat 
lenslet array and a large-aperture convex lens as shown in   
Fig. 1(b). With a flat lenslet array, a flat screen can be used.  
The additional large-aperture convex lens provides a 
multidirectional curvature effect and a wide viewing angle. 

2. Synthesis of Elemental Images for Real and Virtual 
Display of 3D Images 

To obtain elemental images for the proposed CPII system, 
we can use a computer graphics (CG) pickup method. In this 
paper, the CG pickup technique based on an ABCD matrix 
[10] is extended to the synthesis of elemental images for real 
and virtual display of 3D images. To simplify the illustration of 

 

Fig. 1. Ideal CPII system and the (b) proposed CPII system. 
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ray analysis, we consider 1D analysis. The extension to 2D 
analysis is straightforward.  

First, consider the elemental images of a 3D object located in 
the real image field. Figure 2 shows the scheme to synthesize 
the elemental images in real image field of the proposed CPII 
system. To simplify the explanation, we suppose the use of a 
pinhole array and a conventional large-aperture thin lens. Let 
us define the distance between the lenslet array and the display 
panel as g and the focal length of the thin lens as f. As shown in 
Fig. 2, we consider a ray from the n-th pixel of the k-th 
elemental image. This starting ray goes toward the k-th lenslet 
and is given by 
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where H(z) and A(z) mean the height of the ray and the starting 
angle at position z, respectively; p is the pitch of the lenslet; and 
d is the size of a pixel in the elemental image. When z=g, the 
ray becomes 
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For the rays that intersect at the corresponding pinhole, the 
confined transmission matrix from the elemental image plane 
z=g to an arbitrary distance zr is calculated by  
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From (2) and (3), we can calculate the height of each ray at 
the distance zr. Then, we obtain  
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Fig. 2. Ray tracing for synthesizing elemental images in the real 
image field. 
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Fig. 3. Ray tracing for synthesizing elemental images in the 
virtual image field. 
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The analysis of rays in the virtual image field is somewhat 
different from that in the real image field.  

Next, we explain the elemental images of 3D object in the 
virtual image field. Figure 3 shows the scheme to synthesize 
the elemental images in the virtual image field of the proposed 
CPII system. A ray from the n-th pixel of the k-th elemental 
image to the thin lens passes through the real image field. 
However, after the ray starts from the thin lens, it travels in the 
–z direction. If the ray reaches the distance –zv in the virtual 
image field, the transmission matrix of the ray is calculated by 
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Using (2) and (5), the height of each ray at distance zv located 
in the virtual image field is given by  
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To synthesize the final elemental images, we should 
calculate all n and k using (4) and (6) according to the distance. 
Here, when f is infinite, (6) becomes the analysis of the 
conventional PII without a large aperture thin lens.  

3. Calculation of Viewing Angle  

In integral imaging, the viewing angle is a major factor in the 
display system because an observer wants to see the 3D images 
without restriction on viewing positions. Basically, the viewing 
angle of the integral imaging is restricted because of the limited 
f-number of the lenslet array. When an observer sees the 3D 
images out of the viewing angle, image flipping occurs. 
Therefore, it is important to increase the viewing angle of 
integral imaging. Figure 4(a) is a diagram of the viewing angle 
in the conventional integral imaging. The viewing angle 
depends on the f-number of the lenslet array. This is given by 
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On the other hand, the CPII system we propose can enhance 
the viewing angle of the 3D object in all directions. This can be 
calculated by considering the number of lenslets. The concept 

 Fig. 4. Viewing angle in (a) the conventional system [8] and (b) 
the proposed system. 
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Fig. 5. Maximal viewing angle of the proposed system according
to the K number. 
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of our viewing angle is shown in Fig. 4(b). When the number 
of lenslets K is odd, the viewing angle is chosen using two rays 
starting from the –K/2-th and K/2-th lenslets. This is the 
maximum viewing angle in the proposed system. The viewing 
angle θmax can be derived as  
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⎝ ⎠

.            (8) 

Figure 5 shows the calculated viewing angle using (8) when 
p=1.08 mm, g=5.2 mm, and f=200 mm. Here, the large K 
value provides the large viewing angle. However, the K value 
is limited by the size of the large aperture lens due to the 
fabrication difficulty. This tradeoff should be considered in 
designing the CPII system.  

III. Experiments and Results 

To demonstrate the proposed CPII system, preliminary 
experiments were performed using the optical setup shown in 
Fig. 6. A 2D LCD projector was used to display the elemental 
images. We used a lenslet array of 34×25 lenslets in which 
each lenslet is mapped with 30×30 pixels in the image 
projector. The diameter and focal length of the lenslets are 
p=1.08 mm and g=5.2 mm, respectively. The focal length of 
the large aperture lens is f=200 mm. The 3D object was 
composed of two character patterns as shown in Fig. 6. The 
Chinese character ‘光’ was positioned at 30 mm in the virtual 
image field and the Chinese character ‘云’ was positioned at  
30 mm from the lenslet array in the real image field.  

First, we synthesized the elemental images in the CPII 
system by using (4) and (6). The synthesized elemental images 
are shown in Fig. 7(b). For comparison, we present elemental 
images using the conventional PII in Fig. 7(a). We see that 
fewer elemental images were sampled for the character ‘光’, 

 

Fig. 6. Experimental setup. 
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Fig. 7. Synthesized elemental images: (a) conventional PII and 
(b) proposed CPII. 
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and more elemental images were sampled for the character ‘云’ 
in the proposed CPII system than in the conventional PII 
system. This is because the character ‘光’ is picked up in the 
virtual image field and the character ‘云’ is picked up in the real 
image field.  

Next, we displayed the synthesized elemental images in the 
image projector shown in Fig. 6. Figure 8 shows the 
reconstructed images captured by the CCD camera in the real 
and virtual image fields when using the proposed CPII system. 
The image focused at the virtual image field is shown in    
Fig. 8(a), and the image focused at the real image field is 
shown in Fig. 8(b). Figure 9 shows the reconstructed images  
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Fig. 8. (a) Focused image in the virtual image field and (b)
focused image in the real image field using the proposed
CPII system. 
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from different viewing angles. We observed the full ‘光’ image 
within 6o to the left and right in the conventional PII system as 
shown in Fig. 9(a). However, in the proposed CPII system, we 
observed images within 10o to the left and right. Therefore, the 
measured viewing angle of the conventional PII system was 
approximately 12o, and that of the proposed CPII system was 
approximately 20o. Under the experimental conditions shown 
in Fig. 6, the theoretical viewing angles of the conventional and 
proposed systems were calculated to compare those of the 
optical experiments. From (7), (8), and Fig. 5, the theoretical 
viewing angles for the conventional PII system and the 
proposed CPII were calculated as approximately 12o and 22o, 
respectively. The calculated viewing angles agree well with the 
experimental results. From the experimental results, we can see 
that the proposed CPII system improves the viewing angle and 
displays 3D images simultaneously through the real and virtual 
image fields. 

IV. Conclusion 

We proposed a CPII system which provides a curvature 
effect by using a large-aperture convex lens as an addition to 
the conventional PII system. The proposed system has a simple 
structure using of well-fabricated flat devices without any 
modification and provides a curvature effect by using a large-
aperture convex lens. The experimental results demonstrate  
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Fig. 9. Experimental results: (a) conventional PII system and (b) 
proposed CPII system.  

 
that the proposed system provides an improved viewing angle 
and can display 3D images simultaneously through the real and 
virtual image fields. 
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