
The discrete Gaussian-Hermite moment (DGHM) is a 
global feature representation method that can be applied to 
square images. We propose a modified DGHM (MDGHM) 
method and an MDGHM-based scale-invariant feature 
transform (MDGHM-SIFT) descriptor. In the MDGHM, 
we devise a movable mask to represent the local features of 
a non-square image. The complete set of non-square image 
features are then represented by the summation of all 
MDGHMs.  

We also propose to apply an accumulated MDGHM 
using multi-order derivatives to obtain distinguishable 
feature information in the third stage of the SIFT. Finally, 
we calculate an MDGHM-based magnitude and an 
MDGHM-based orientation using the accumulated 
MDGHM.  

We carry out experiments using the proposed method 
with six kinds of deformations. The results show that the 
proposed method can be applied to non-square images 
without any image truncation and that it significantly 
outperforms the matching accuracy of other SIFT 
algorithms. 
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I. Introduction 

The scale-invariant feature transform (SIFT) was presented 
by Lowe [1] as a means to extract distinctive invariant features 
from images that have variations in deformations such as 
image scale and image rotation. Because the SIFT is 
computationally efficient, resistant to partial occlusion, and 
relatively invariant with respect to changes in viewpoint, it was 
widely used in image mosaics, object recognition, and image 
retrieval. 

Recently, a variety of approaches have been proposed for 
robust feature extraction. Ke and Sukthankar used principal 
component analysis (PCA) instead of histograms to reduce the 
computational time, and they provided some comparisons 
between the SIFT and PCA-SIFT [2]. Bay and others increased 
the extraction speed of robust features and used integral images 
for image convolution and the fast-Hessian detector [3]. 
Mikolajczyk and Schmid presented a comparative study for 
several local descriptors [4]. The Gaussian-Hermite moment 
(GHM) was firstly introduced by Shen [5]. Wang and others 
[6] applied the moments to fingerprint classification in 
biometrics. Other applications, such as iris identification [7] 
and stereo matching based on the GHM, have also been 
reported recently [8]. 

The GHM has base functions of different orders having 
different numbers of zero-crossings and very different shapes. 
Therefore, it can distinguish image features more efficiently 
and is less sensitive to noise because of its Gaussian nature. 
Moreover, the GHM has an orthogonal property, which helps 
to reduce the computational time. The discrete GHM (DGHM) 
[9] is a discrete version of the GHM and one of the global 
feature representation methods that can be applied to square 
images. 
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The DGHM is inappropriate for non-square images because 
the DGHM functions cause image loss (image truncation) or 
require extra computations. Accordingly, a new method that 
can prevent image truncation and can control sampling 
intervals to reduce the number of computations is needed. 

Although the existing SIFT techniques cited above can 
enhance the performance of feature extraction, they are still 
sensitive to conditions such as non-rigid deformations, large 
light changes, and large viewpoint changes. 

To solve the aforementioned problems, we propose the 
concept of a movable mask and a modified DGHM 
(MDGHM). The MDGHM is the DGHM of the movable 
mask having controllable sampling intervals to represent the 
local feature of a non-square image. The entire set of features 
of an image can be represented by the summation of multiple 
MDGHMs. 

We also propose an MDGHM-based SIFT (MDGHM-
SIFT) descriptor, in which an accumulated MDGHM using 
multi-order derivatives to gain distinguishable feature 
information is applied to the orientation assignment stage of the 
SIFT. 

The remainder of this paper is organized as follows.  
Section II reviews the relevant aspects of the conventional 
SIFT and DGHM. Section III describes our MDGHM and 
MDGHM-SIFT descriptor for local features. Section IV 
presents our experiment results and detailed discussions of 
these. Section V summarizes our conclusions. 

II. Conventional SIFT Algorithm and DGHM 

Table 1 lists the symbology we use to describe the DGHM 
and SIFT. 

1. SIFT 

The SIFT algorithm consists of four major stages: 1) scale-
space peak selection, 2) keypoint localization, 3) orientation 
assignment, and 4) keypoint descriptor computation [1].  

The first stage is a scale-space peak selection procedure. 
Scale-space peak selection is implemented efficiently by 
constructing a Gaussian pyramid and searching for local peaks 
(extrema) in a series of difference-of-Gaussian (DoG) images, 

, which can be expressed as ( , , )D x y σ
( , , ) ( ( , , ) ( , , )) ( , )

                 = ( , , ) ( , , ) ,
D x y G x y k G x y I x y

L x y k L x y
σ σ σ

σ σ
= − ×

−
     (1) 

where k is a scale factor and I(x, y) is an input image. 
In the second stage (keypoint localization), the low-contrast 

and unstable keypoints are removed.  
The third stage of the SIFT (orientation assignment)  

Table 1. Symbols and definitions used to describe DGHM and SIFT.

Symbol Definition Symbol Definition 

I(i, j) Digital input image f(x, y) Continuous image 

D(x, y, σ) Difference-of-
Gaussian (DoG) Hp(x) Hermite polynomial 

with p-order derivative

G(x, y, σ) Gaussian functions ( )pH x  Normalized Hermite 
polynomial 

L(x, y, σ) Gaussian filtered 
image 

( / )pH x σ  Gaussian-Hermite 
function 

σ Standard deviation Mp,q Continuous GHM  

μ(x, y) Orientation of each 
keypoint 

( , )pH x σ  
Gaussian-Hermite 
function on the x-axis 
in the discrete domain

m(x, y) Magnitude of each 
keypoint 

( , )qH y σ  
Gaussian-Hermite 
function on the y-axis 
in the discrete domain

p, q Order of derivative ηp,q DGHM 

 

 
identifies the dominant orientations for each keypoint based on 
the local image patch. In the orientation assignment stage, an 
orientation, µ(x, y), and magnitude, m(x, y), are assigned to the 
keypoints, based on the local image properties as expressed in 
(2) and (3): 

2

2

( ( 1, ) ( 1, ))
( , )

( ( , 1) ( , 1))

L x y L x y
m x y

L x y L x y

+ − −
=

+ + − −
,       (2) 

1 ( , 1) ( , 1)( , ) tan
( 1, ) ( 1, )

L x y L x yx y
L x y L x y

μ − + − −=
+ − −

.
        

(3) 

The fourth stage of the SIFT algorithm (the keypoint 
descriptor) builds a descriptor for each keypoint based on a 
patch of pixels in its local neighborhood. 

Because SIFT features are local, distinctive, based on the 
appearance of the object at particular interest points, and robust 
to partial occlusion, they are invariant to scale changes, image 
rotations, small illumination changes, and viewpoint changes.    

Despite its powerful performance, as mentioned above, the 
SIFT algorithm is still sensitive to large illumination changes, 
large viewpoint changes (that is, different keypoints with 
similar representations in different image maps), and non-rigid 
changes. A detailed description of the SIFT can be found in [1]. 

2. DGHM 

In [9], the DGHM, which includes a Hermite polynomial, 
and the GHM are introduced. The p-th degree Hermite 
polynomial, which is one of the orthogonal polynomials, is 
given as  

ETRI Journal, Volume 34, Number 4, August 2012 Tae-Koo Kang et al.   573 



calculated by using (9) for (7): 22( ) ( 1) exp( ) exp( )
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(10) 

Hermite polynomials satisfy the following orthogonality  
condition with respect to the weight function exp(–x2): 

2exp( ) ( ) ( ) 2 !p
p q px H x H x dx p π δ

∞

−∞

− =∫ q ,     (5) 

where δpd is the Kronecker delta. To obtain the orthonormal 
version, the normalized Hermite polynomial ( )pH x  is 
calculated by using (5) as 

From (8) and (10), the DGHM ηp,q, which is a discrete version 
of the GHM, can be derived as 

21( ) exp( ) ( ).
22 !

p pp

xH x H
p πσ

−
= − x      (6) 
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Gaussian-Hermite functions ( / )pH x σ  can be calculated by 
replacing x in (6) with x /σ: 

2

2
1( / ) exp( ) ( / )

22 !
p pp

xH x H x
p

σ
σπσ

−
= − σ .   (7) 

The DGHM has computational advantages and can be 
simply implemented. Moreover, it uses all pixels of an image 
to represent the peculiarity of the image. In other words, it can 
represent global image features, which can provide a 
generalized description of an entire object with a single vector 
[13]. 

Based on (7), the GHM Mp,q with order (p, q) of the 
continuous image f(x, y) can be defined as  III. MDGHM-Based SIFT Descriptor 

, ( , ) ( / ) ( / )  .p qp qM f x y H x H y dxdyσ σ
− −∞ ∞

−∞ −∞
= ∫ ∫ (8) The following subsections provide the details of the 

MDGHM and MDGHM-SIFT algorithm. Table 2 lists the 
symbols used in our mathematical description of the MDGHM 
and MDGHM-SIFT descriptor. 

   The GHM is theoretically defined in the continuous 
domain( ,  To compute the moments for a digital image  
I(i, j) whose size is , a coordinate 
transformation over the square   is performed 
using  

)−∞ ∞ .
 [0 , 1]K K i j K× ≤ ≤ −

[ 1 , 1]x y− ≤ ≤ 1. MDGHM 

As shown in (11), the DGHM is applied to a square image. It 
cannot be applied to non-square images because the discrete 
Gaussian-Hermite functions, ( , )pH x σ and

_
, may 

cause image data loss (image truncation) or require extra 
( , )qH y σ

2 1 2,   .
1

i K j Kx y 1
1K K

− + − += =
− −           

(9) 

The Gaussian-Hermite functions in the discrete domain can be 
  

Table 2. Symbols and definitions used to describe MDGHM and MDGHM-SIFT. 

Symbol Definition Symbol Definition 

I(i, j) Digital input image t(u, v) Mask image 

W Width of input image M Width of mask image 

H Height of input image N Height of mask image 

kM The number of max. samples on the u-axis mM Sampling intervals on the u-axis 

kN The number of max. samples on the v-axis mN Sampling intervals on the v-axis 

kW The number of max. samples on the i-axis mW Sampling intervals on the i-axis 

kH The number of max. samples on the j-axis mH Sampling intervals on the j-axis 

ˆ ( )pH x  Modified discrete Gaussian-Hermite functions of 
the mask on the x-axis 

ˆ ( )qH y  Modified discrete Gaussian-Hermite functions of 
the mask on the y-axis 

,ˆ ( , )p q i jη  MDGHMs of a mask t(u, v)(i, j) at an arbitrary point 
(i, j) on the image I(i, j) ,ˆ ( , , , )p q M Ni j m mη MDGHMs with sampling intervals 
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computation. Therefore, a new variable that can control the 
sampling intervals to reduce the number of computations is 
needed. 

The DGHM is a feature representation method for global 
image features, which means that it cannot be applied to local 
feature representation [13]. To represent local image features, 
we apply a mask onto the 2D digital image. 

Let I(i, j) be a digital 2D image whose size is W×H 
and let t(u, v) be a mask whose 

size is M×N  The variables k
[0 1,0 1],i W j H≤ ≤ − ≤ ≤ −

[0 1,0 1].u M v N≤ ≤ − ≤ ≤ − M, 
kN, kW, and kH in Table 2 are calculated as 

/ ,  / ,   for  ( , ),M M N Nk M m k N m t u v= =        (12) 

/ , / ,     for  ( , ).W W H Hk W m k H m I x y= =       (13) 

The pixel values of the mask t(u, v)(i, j) located at an arbitrary 
point (i, j) on the input image I(i, j) are obtained using  

( , )( , ) ( 1, 1)2i j
NMt u v I u i v j= + − + + − +2 .    (14) 

In (14), 2 1M −
 
and 2 1N −  are offset to center the mask 

around an arbitrary point (i, j). 
Based on (9) and (10), the coordinate of the mask t(u, v)(i, j) is 

transformed to be  by  1 , 1x y− ≤ ≤

2 1 2,   
1 1

u M v Nx y
M N
− + − += =

− −
1 ,         (15)  

and the discrete Gaussian-Hermite functions of the mask    
t(u, v)(i, j) can be written as 
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 (16) 

where 2 M −1  and 2 N −1 are scale factors. 
From (14) and (16), the MDGHM at the arbitrary point (i, j) 

on the input image I(i, j) is given as 
1 1

,
0 0

4ˆ ( , ) ( 1, 1)2( 1)( 1)

            ( , ) ( , ).

M N

p q
u v

p q

NMi j I u i v j
M N

H x H y

η

σ σ

− −

= =
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= + − +
− −

×

∑∑

To (17), we then apply the sampling interval mM, mN to the 
position value of the mask t(u, v)(i, j) to reduce the amount of 
computation. Therefore, the MDGHM with sampling intervals 

,ˆ ( , , , )p q Mi j m mNη  can be written as 
11

,
0 0

4ˆ ( , , , ) ( ( 1),2( 1)( 1)

                                 ( 1)) ( , ) ( , ).2

NM kk

p q M N M
u v

p qN

Mi j m m I i m u
M N

Nj m v H x H y

η

σ σ

−−

= =
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= +
− −

+ − +

∑ ∑ − +

 

(18) 

Using (18), we can express the whole moment of a non-
square image without data truncation by moving the mask on 
the image, and this moment can be expressed by  

1 11 1

,
0 0 0 0

1 11 1

0 0 0 0

4= (( 1) (2 2( 1)( 1)

          ( 1) ( 1)) ( , ) ( , )2 2
4     (( ),( ))

( 1)( 1)

         

W NH M

W NH M

k kk k

p q W M
i j u v

p qH N

k kk k

W M H N
i j u v

M MI m i m u
M N

N Nm j m v H x H y

I m i m u m j m v
M N

η

σ σ

− −− −

= = = =

∧ ∧

− −− −

= = = =

+ − + − +
− −

+ − + − +

= +
− −

∑ ∑ ∑ ∑
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  ( , ) ( , ).p qH x H yσ σ
∧ ∧

×

1),

+

(19) 
Although the quality of a feature image depends on the 

sampling interval, the MDGHM can present the local moment 
at an arbitrary point on an input image and can be utilized as an 
effective tool for identifying local features. 

2. MDGHM-Based SIFT Descriptors 

In [4], [10], the SIFT is sensitive to conditions such as large 
light changes and large viewpoint changes because the gradient 
method used in the orientation assignment of the SIFT does not 
provide distinctive information to determine the location of 
each keypoint accurately in a deformed image.  

 To solve this problem and improve the matching accuracy 
of the SIFT algorithm, we propose an MDGHM-SIFT 
algorithm. Figure 1 presents an overview of the proposed 
MDGHM-SIFT algorithm. 

As shown in Fig. 1, we apply the MDGHM to the keypoint 
candidates in the SIFT and calculate the MDGHM-based 
magnitude and MDGHM-based orientation using an 
accumulated MDGHM in the third stage of the SIFT. The 
MDGHM-based magnitude and MDGHM-based orientation 
are utilized in structuring the orientation histogram. 

2+ − +

(17) 

Let (ia, ja, s) be the locations of a keypoint candidate, where a 
is the index of the keypoint candidates in a scale space s in the 
first stage of the SIFT. From (18), an arbitrary point (i, j) 
corresponds to the location of each keypoint candidate (ia, ja, s). 
The local moment at (ia, ja, s) can therefore be calculated by 
using the MDGHM as 
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Fig. 1. Overview of MDGHM-SIFT algorithm. 

Final keypoints extraction 

 

  

 

 

80% 

Final keypoints extraction 

80% 

Keypoint 
candidataes 

O
rie

nt
at

io
n 

as
si

gn
m

en
t 

(S
IF

T)
 

Neighbors 

Gradient method 

Gradient-based 
magnitude 

Gradient-based 
orientation 

Orientation histogram by gradient 
method 

2nd stage of SIFT 

L(i, j) 

Accumulated MDGHM Movable mask Orientation histogram by MDGHM 

MDGHM-based 
magnitude 

MDGHM-based 
orientation 

t(u, v) 
(i, j)

O
rie

nt
at

io
n 

as
si

gn
m

en
t 

(M
D

G
H

M
-S

IF
T)

 

MDGHMs 

1 
3 

5 

1
3 

5 

0pη∑ 0qη∑

 
11

,
0 0

4( , , ) ( ( 1),2( 1)( 1)

                         ( 1), ) ( , ) ( , ) ,2

NM kk

p q a a a M
u v

p qa N

Mi j s L i m u
M N

Nj m v s H x H y

η

σ σ

−−∧

= =

∧ ∧

= + −
− −

+ − +

∑ ∑ +

(20) 
where L(ia, ja, s) is the Gaussian filtered image constructed 
using (1). 

In addition, to identify the dominant features, we sum the 
first, third, and fifth order derivatives (p=q=1, 3, 5) of the 
MDGHM at a keypoint. The accumulation of multi-order 
derivatives in the MDGHM (accumulated MDGHM) makes 
the dominant features more distinguishable than the other 
features. 

From (20), the x-axis component ,0ˆ ( , , )p a ai j sη  and y-axis 
component 0,ˆ ( , , )q a ai j sη  of the MDGHM for each keypoint 
in each scale space can be determined. Therefore, we can 
calculate the MDGHM-based magnitude  and the 
MDGHM-based orientation 

ˆ ( , , )a am i j s
ˆ ( , , )a ai j sμ using the 

accumulated MDGHM for each keypoint candidate as 
2 2

2
(2 1),0 0,(2 1)

0 0
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p q
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= =
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The size of the MDGHM is defined as 

⎞
⎟

⎟
⎟
⎠

2 round(max( ) ) 1,      for -axis,
2 round(max( ) ) 1,       for -axis,

M p x
N q y

σ
σ

= × +⎧
⎨ = × +⎩

   (22) 

     (23) 

where p and q are the orders of the MDGHM and σ  
represents the standard deviation. We use p=q=1, 3, 5, and  
σ=0.3 so that the mask size of the MDGHM is 5×5. 

All keypoint candidates that have their own MDGHM-based 
magnitude and orientation participate in structuring the 
orientation histogram and are counted to determine the final 
keypoints. The final keypoints extraction process in the 
orientation assignment stage classifies keypoint candidates into 
keypoint candidates with a dominant orientation (dominant 
keypoints) and keypoint candidates with a minor orientation 
(minor keypoints). Finally, the dominant keypoints are selected 
as the final keypoints. 

The fourth stage of the MDGHM-SIFT descriptor is similar 
to the standard SIFT, except that we replace the gradient 
magnitude and orientation of the descriptor with the 
MDGHM-based magnitude and orientation. 

IV. Experiments and Discussion 

We carry out experiments to achieve feature representation 
of the MDGHM and the performance evaluation of four kinds 
of SIFT descriptors. 

1. Feature Representation in DGHM and MDGHM 

We apply the DGHM and MDGHM to a non-square image.  
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Fig. 2. Feature images using DGHM and MDGHM for non-
square image: (a) initial image, (b) feature image
obtained using DGHM, and (c) MDGHM. 

(a) (b) (c) 

 

 

Fig. 3. Feature images using gradient method and MDGHM: (a)
gradient, (b) 1st order MDGHM, and (c) 3rd order
MDGHM. 

(a) (b) (c) 

 
 
Figure 2 shows the results of the experiment. 

As shown in Fig. 2(b), the DGHM causes image truncation 
in the case of the non-square image, resulting in the 
disappearance of part of the feature image, as demonstrated by 
the black space on the right side of the image. As shown in  
Fig. 2(c), the MDGHM represents the features in the entire 
area of the non-square image. In the case of a square image, 
both methods produce feature images without any truncation. 

We compare the gradient method used in the SIFT with the 
MDGHM-based method in terms of the amount of feature 
information produced, and the results of this comparison are 
shown in Fig. 3. In Fig. 3, the yellow dots represent features. 
The more bright dots there are, the more distinctive feature 
information has been extracted. Therefore, the images can be 
ranked in ascending order of the amount of feature information 
as Figs. 3(a) < 3(b) < 3(c). 

By comparing Figs. 3(b) and 3(c), we can see that the 
MDGHM using a higher-order derivative extracts more 
distinctive feature information than one using a lower-order 
derivative. We can therefore conclude that the MDGHM method 
contains more feature information than the gradient method. 

2. Experimental Comparison of Four SIFT Algorithms 

We evaluate four kinds of SIFT algorithms, as tabulated in 
Table 3. The SIFT algorithm generally consists of four stages. 
The four algorithms are classified according to the difference of 
the third and the fourth stage of each SIFT algorithm. For the 
experiment, a dataset of six image deformations, as described 
in [11], is used. They are a) scale change, b) image rotation, c) 

Table 3. Characteristics of four SIFT algorithms tested. 

Algorithm
Stage 

SIFT MDGHM-
SIFT 

MDGHM-
PCA-SIFT

(n=20) 

PCA-SIFT
(n=20) 

3rd stage Gradient MDGHM MDGHM Gradient

4th stage Histogram Histogram PCA PCA 

 

viewpoint change, d) image blur, e) JPEG compression change, 
and f) illumination change. 

All necessary metrics for the evaluation of the four SIFT 
algorithms are measured and calculated during the experiment. 
We use sampling intervals mM=mN=1 for the MDGHM-related 
SIFT algorithm. 

A. Experiment Setup 

To evaluate the performance of the methods, we need to 
define evaluation metrics and a matching method. 

a. Evaluation Metrics 

 We choose three evaluation metrics: recall, 1–precision, and 
the F-score, as used in [4], [12]. 

number of correct-positivesrecall ,
total number of positives

=
    

(24) 

number of false-positives1 precision ,
total number of matches

− =
      

(25) 

precision recallF-score=2 .
precision+recall

××
         

(26) 

A correct-positive is a match where two keypoints 
correspond to the same physical location. A false-positive is a 
match where the two keypoints come from different physical 
locations. From the correct-positive and the false-positive 
numbers, we can determine recall and 1–precision. A recall 
versus 1–precision graph is generated as follows. All pairs of 
keypoints from different images are examined. If the Euclidean 
distance between two feature vectors for a particular pair of 
keypoints falls below a chosen threshold, this pair is termed “a 
match.” Adjusting the threshold selects the appropriate trade-off 
between correct-positives and false-positives. The recall versus 1–
precision graphs are generated by varying the threshold for each 
algorithm [2]. 

In addition, we investigate accuracy using the F-score. The 
F-score is the harmonic mean of the recall and precision, and 
its highest value is 1, and its lowest value is 0. The F-score is 
defined as shown in (26). 
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Fig. 4. Examples of images and their deformations used for evaluation: (a) scale change, (b) image rotation, (c) viewpoint change, (d)
image blur, (e) JPEG-compression change, and (f) illumination change. 

(a) (b) 

(c) (d) 

(e) (f) 

 
b. Matching Method 

The definition of a match depends on the matching method. 
There are three matching methods [4]. In the nearest neighbor 
distance ratio (NNDR) matching method, a threshold is applied 
to the distance ratio between the first and the second nearest 
neighbors. Therefore, using the NNDR method, only one 
match is found. Because of these characteristics, we utilize the 
NNDR matching method. Hereafter, for convenience, we refer 
to the NNDR simply as the distance ratio (DR). 

B. Experiment and Results 

a. Image Deformation 

We carry out our test of the four SIFT algorithms identified 
in Table 3 by imposing six deformations: a) scale change, b) 
image rotation, c) viewpoint change, d) image blur, e) JPEG-
compression change, and f) illumination change. 

For the deformation test, we prepare six pairs of images as 
shown in Fig. 4, including a reference image and one image of 
a deformation. A deformation in a dataset consists of five to six 
continuously varying images. The image on the left side is a 
reference image and the image on the right side is one image 

among five to six continuously varying images. To deform the 
reference images, we use a) zoom out, b) rotation by 30º to 45º, 
c) viewpoint change by 50º to 60º, d) Gaussian blur by 
zooming and focusing, e) quality degradation by 5% through 
JPEG compression, and f) illumination change or brightening 
of the image. 

b. Experiment Result Data 

Table 4 shows the resultant data of the SIFT and MDGHM-
SIFT methods after imposing the six deformations. Each result 
in Table 4 represents the average value of the test results of five 
to six continuously varying images. All necessary metrics for 
the evaluation of the four SIFT algorithms are products of the 
experiment. However, for this paper, we plot for comparison 
only the results of applying the SIFT and the MDGHM-SIFT 
methods.  

During the experiment, DR is increased from 0 to 1 in 
intervals of 0.2. The keypoints values represent the total 
number of keypoints extracted by each of the SIFT algorithms. 
True and false matches are obtained during the experiment by 
varying the DR used as a matching threshold. Recall and 1–
precision (or false-positive rate) scores are calculated using the 
obtained data. The number of total matches, correct-positives, 
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Table 4. Experiment results of SIFT and MDGHM-SIFT. 

Algorithm 
Deformation 
(Keypoints) 

DR Recall 
1–precision 

(FPR) 
True 

match 
False
match

Total
match

Algorithm
Deformation
(Keypoints)

DR Recall
1–precision 

(FPR) 
True 

match 
False
match

Total
match

0.2 0.001 0.000 3 0 3 0.2 0.000 0.000 1 0 1 

0.4 0.016 0.000 80 0 80 0.4 0.015 0.000 40 0 40 

0.6 0.053 0.004 259 1 260 0.6 0.068 0.005 183 1 183 

0.8 0.096 0.082 469 42 511 0.8 0.117 0.060 316 20 336 

Scale 
(4,900) 

1.0 0.283 0.716 1,385 3,500 4,885

Scale 
(2,695) 

1.0 0.307 0.693 827 1,867 2,694

0.2 0.000 0.000 13 0 13 0.2 0.000 0.000 5 0 5 

0.4 0.043 0.000 162 0 162 0.4 0.035 0.000 81 0 81 

0.6 0.179 0.000 410 0 410 0.6 0.180 0.000 210 0 210 

0.8 0.358 0.014 719 10 729 0.8 0.377 0.003 367 1 368 

Rotation 
(1,974) 

1.0 0.628 0.367 1,248 723 1,971

Rotation 
(984) 

1.0 0.700 0.293 694 288 982 

0.2 0.000 0.000 0 0 0 0.2 0.000 0.000 0 0 0 

0.4 0.004 0.000 22 0 22 0.4 0.002 0.000 8 0 8 

0.6 0.016 0.000 81 0 81 0.6 0.018 0.000 65 0 65 

0.8 0.067 0.037 338 13 351 0.8 0.086 0.025 310 8 318 

Viewpoint 
(5,021) 

1.0 0.436 0.561 2,187 2,790 4,977

Viewpoint
(3,611) 

1.0 0.541 0.454 1,954 1,622 3,576

0.2 0.133 0 68 0 68 0.2 0.146 0 75 0 75 

0.4 0.222 0 114 0 114 0.4 0.267 0 137 0 137 

0.6 0.263 0 135 0 135 0.6 0.317 0 163 0 163 

0.8 0.353 0.037 181 7 188 0.8 0.424 0.031 218 7 225 

Blur 
(513) 

1.0 0.659 0.341 338 175 513

Blur 
(514) 

1.0 0.685 0.315 352 162 514 

0.2 0.287 0.000 260 0 260 0.2 0.295 0.000 282 0 282 

0.4 0.465 0.007 422 3 425 0.4 0.496 0.006 475 3 478 

0.6 0.581 0.019 527 10 537 0.6 0.631 0.019 604 12 616 

0.8 0.628 0.087 570 54 624 0.8 0.681 0.073 652 51 703 

JPEG- 
compression 

(907) 

1.0 0.656 0.344 595 312 907

JPEG- 
compression

(957) 

1.0 0.710 0.290 679 278 957 

0.2 0.099 0.000 20 0 20 0.2 0.134 0.000 23 0 23 

0.4 0.172 0.000 35 0 35 0.4 0.297 0.000 51 0 51 

0.6 0.227 0.000 46 0 46 0.6 0.366 0.000 63 0 63 

0.8 0.325 0.043 66 3 69 0.8 0.488 0.023 84 2 86 

SIFT 

Illumination 
(203) 

1.0 0.512 0.477 104 95 199

MDGHM
-SIFT 

Illumination
(172) 

1.0 0.616 0.380 106 65 171 

 

and false-positives increases as the DR increases and abruptly 
increases in the range between DR=0.8 and DR=1.0. 

For most of the deformed images, the number of total 
matches, correct-positives, and false-positives obtained using 
the SIFT is greater than that obtained using the MDGHM-SIFT, 
but this pattern is reversed in the case of image blur and 
illumination change. Therefore, it is difficult to evaluate which 
algorithm is best using only these figures. We will discuss our 
evaluation of this in subsection IV.3. Besides these numbers, 
there are also fewer keypoints detected by the MDGHM-SIFT 

than by the SIFT. This comes from the fact that the number of 
dominant orientations is reduced in the MDGHM-SIFT, unlike 
in the SIFT. 

3. Evaluation and Discussion 

The performance of the four SIFT algorithms listed in  
Table 3 is illustrated by the 1–precision versus recall graphs 
shown in Fig. 5 for six deformations. Markers on the line to 
identify each algorithm are DR points at intervals of 0.05. 
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Fig. 5. Comparison of four SIFT algorithms in response to six distortions: (a) scale change, (b) image rotation, (c) viewpoint change, (d)
image blur, (e) JPEG-compression change, and (f) illumination change. 
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The DR value of the rightmost marker (last marker) on each 

performance line is 1.0. We can see that the four SIFT 
algorithms performed well at DR values greater than 0.8. The 
MDGHM-SIFT displays the best performance among the four 
SIFT algorithms for all deformations. In addition, the 

MDGHM-PCA-SIFT performs better than the SIFT in 
response to a viewpoint change and illumination change and 
displays an almost equal performance to the SIFT in image 
rotation and JPEG-compression. These facts tell us that the 
MDGHM has a positive effect on the performance of the PCA- 
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Table 5. Performance results. 

MDGHM-SIFT SIFT Algorithm 
/Metric 

Deformation Recall Precision F-score Recall Precision F-score

Scale 0.307 0.307 0.307 0.283 0.284 0.283

Rotation 0.700 0.707 0.703 0.628 0.633 0.630

Viewpoint 0.541 0.546 0.544 0.436 0.439 0.437

Blur 0.685 0.685 0.685 0.659 0.659 0.659

Compression 0.710 0.710 0.710 0.656 0.656 0.656

Illumination 0.616 0.620 0.618 0.512 0.523 0.517
Algorithm 

Deformation 
MDGHM-PCA-SIFT PCA-SIFT 

Scale 0.127 0.128 0.128 0.095 0.095 0.095

Rotation 0.600 0.606 0.603 0.534 0.539 0.537

Viewpoint 0.417 0.426 0.422 0.322 0.287 0.303

Blur 0.556 0.558 0.557 0.511 0.512 0.511

Compression 0.691 0.691 0.691 0.641 0.641 0.641

Illumination 0.558 0.561 0.560 0.384 0.381 0.383

 

SIFT. 
Subsection III.2. provides the calculation of the accumulated 

MDGHM using multi-order derivatives to obtain dominant 
feature information. To compare the influence of the 
derivatives on the MDGHM-SIFT performance, we carry out a 
performance test on three MDGHM-SIFTs, that is, the 
MDGHM-SIFT (p=q=1, 3, 5), MDGHM-SIFT-5 (p=q=5, 7, 9), 
and the MDGHM-SIFT-11 (p=q=11, 13, 15). The upper three 
lines, designated by MDGHM-SIFT, MDGHM-SIFT-5, and 
MDGHM-SIFT-11, of each graph in Fig. 5 demonstrate the 
influence of the derivatives on the performance. 

The three methods demonstrate very similar performances, 
with each being superior for at least one of the deformations. 
The MDGHM-SIFT-5 shows a slightly superior performance. 
However, because the increase in the order of derivatives 
results in an increase of the number of computations required, 
the MDGHM-SIFT-5 does not result in a large improvement in 
performance compared to the MDGHM-SIFT. The MDGHM-
SIFT-11 exhibits the worst performance among the MDGHM-
SIFTs. This is because as the order of derivatives becomes very 
high, the mask size becomes excessively large, and the 
possibility of the mask overlapping increases. As a result, both 
the distinctiveness of the keypoints and the matching accuracy 
decrease. 

Table 5 shows the recall, precision, and F-score needed to 
judge which algorithm is superior. As shown in Table 5, 
according to the F-score, the MDGHM-SIFT exhibits an 
enhancement of approximately 2.4% in the case of scale 

change, a 7.3% enhancement in the case of image rotation, a 
10.7% enhancement in the case of viewpoint change, a 5.4% 
enhancement in the case of image blur, a 2.6% enhancement in 
the case of JPEG-compression change, and a 10.1% 
enhancement in the case of illumination change compared to 
the performance of the SIFT. Even though the number of total 
keypoints identified by the MDGHM-SIFT is smaller than that 
of the SIFT as shown in Table 4, the performance of the 
MDGHM-SIFT is still better than that of the SIFT according to 
the F-score. This means that the MDGHM-SIFT is the most 
effective of the four SIFT algorithms tested. 

These differences in performance stem from the MDGHM-
based dominant orientation and magnitude in the orientation 
assignment stage of the SIFT algorithm. In the orientation 
assignment stage, the MDGHM-SIFT uses the accumulated 
MDGHM with multi-order derivatives, which makes 
dominant keypoints more dominant and minor keypoints 
weaker, which results in a decrease in the number of final 
keypoints and an increase in the matching accuracy. 

The MDGHM-SIFT can extract more distinguishable final 
keypoints because more minor keypoints can be discarded. The 
MDGHM-SIFT can therefore be an efficient alternative 
approach, as it performs with a higher matching accuracy and 
lower computation cost than other algorithms. 

V. Conclusion 

We proposed a modified discrete Gaussian-Hermite moment 
(MDGHM) and the MDGHM-based scale-invariant feature 
transform (MDGHM-SIFT) descriptor. We devised and tested 
the concept of a movable mask. The MDGHM is the DGHM 
with a movable mask and controllable sampling intervals that 
allow the local features of a non-square image to be 
represented. The total features of an image can then be 
represented by the summation of multiple MDGHMs. 

We also proposed the application of the accumulated 
MDGHM using multi-order derivatives to obtain 
distinguishable feature information in the third stage of the 
SIFT. Finally, we calculated the MDGHM-based magnitude 
and the MDGHM-based orientation using the accumulated 
MDGHM. 

We carried out the experiment for the proposed method 
using six kinds of deformations: a) scale change, b) image 
rotation, c) viewpoint change, d) image blur, e) JPEG-
compression change, and f) illumination change. The result 
shows that the proposed method can be applied to non-square 
images without any image truncation and that the proposed 
method outperforms other SIFT algorithms by significantly 
improving the matching accuracy. 

An algorithm for adaptively tuning sampling interval 

ETRI Journal, Volume 34, Number 4, August 2012 Tae-Koo Kang et al.   581 



parameters and the application of the proposed method to 
particular areas such as image stitching and environment 
recognition of robots are left for future study. 

References 

[1] D.G. Lowe, “Distinctive Image Features from Scale-Invariant 
Keypoints,” Int. J. Computer Vision, vol. 60, 2004, pp. 91-110. 

[2] Y. Ke and R. Sukthankar, “PCA-SIFT: A More Distinctive 
Representation for Local Image Descriptors,” Proc. Int. Conf. 
Computer Vision Pattern Recognition, 2004, pp. II: 506-513. 

[3] H. Bay, T. Tuytelaars, and L.V. Gool, “SURF: Speeded Up Robust 
Features,” 9th European Conf. Computer Vision, 2006, pp. 404-
417. 

[4] K. Mikolajczyk and C. Schmid, “A Performance Evaluation of 
Local Descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 
27, 2003, pp. 1615-1630. 

[5] J. Shen, “Orthogonal Gaussian-Hermite Moments for Image 
Characterization,” Proc. SPIE Intelligent Robots Computer Vision 
XVI, 1997, p. 224. 

[6] L. Wang, Y. Wu, and M. Dai, “Some Aspects of Gaussian-
Hermite Moments in Image Analysis,” Proc. Int. Conf. Natural 
Computation, 2007, p. 450. 

[7] L. Ma et al., “Local Intensity Variation Analysis for Iris 
Recognition,” Pattern Recognition, vol. 37, no. 6, 2004, pp. 1287-
1298.  

[8] W. Shen and Y. Xiao, “Stereo Matching Based on Orthogonal 
Gaussian-Hermite Moments,” Proc. SPIE Int. Symp. 
Multispectral Image Process. Pattern Recognition, 2009. 

[9] B. Yang and M. Dai, “Image Analysis by Gaussian-Hermite 
Moments,” Signal Process., vol. 91, no. 10, 2011, pp. 2290-2303. 

[10] L. Juan and O. Gwun, “A Comparison of SIFT, PCA-SIFT and 
SURF,” Int. J. Image Process., vol. 3, no. 4, 2009, pp.143-152. 

[11] http://www.robots.ox.ac.uk/~vgg/research/affine 
[12] C.J. van Rijsbergen, Information Retrieval, Butterworth-

Heinemann, London, UK, 1979.  
[13] D. Lisin et al., “Combining Local and Global Image Features for 

Object Class Recognition,” IEEE Workshop Learning Computer 
Vision Pattern Recognition, 2005. 

 
 

Tae-Koo Kang received his BS in applied 
electrical engineering and his MS in visual image 
processing in 2001 and 2004, respectively, and is 
currently working toward his PhD in electrical 
engineering from Korea University, Seoul, Rep. 
of Korea. His research interests include computer 
vision, robotics, artificial intelligence, and 

machine learning. 

Huazhen Zhang received his BS in electrical 
engineering from North China University of 
Technology, Beijing, China, in 2003. He received 
his MS in electrical engineering from Korea 
University, Seoul, Rep. of Korea, in 2009. His 
research interests include computer vision, 
robotics, artificial intelligence, and machine 

learning.  
 

Dong W. Kim received his PhD in electrical 
engineering from Korea University, Seoul, Rep. 
of Korea, in 2007. Dr. Kim was a post-doctoral 
research scholar at BISC (Berkeley Initiative in 
Soft Computing), University of California, 
Berkeley, Berkeley, CA, USA, in 2008 and the 
AHMCT (Advanced Highway Maintenance and 

Construction Technology Research Center), University of California, 
Davis, Davis, CA, USA, in 2009. He is now a professor in the 
Department of Digital Electronics, Inha Technical College. His research 
interests include the intelligent humanoid robot, autonomous multi-
mobile robot navigation and robot intelligence based on the neuro-fuzzy 
system. 
 

Gwi-Tae Park received his BS, MS, and PhD in 
electrical engineering from Korea University, 
Seoul, Rep. of Korea, in 1975, 1977, and 1981, 
respectively. He was a technical staff member in 
the Korea Nuclear Power Laboratory and an 
Electrical Engineering faculty member at 
Kwangwoon University, in 1975 and 1978, 

respectively. He joined Korea University in 1981 where he is currently a 
professor in the School of Electrical Engineering. He was a visiting 
professor at the University of Illinois in 1984. He is a fellow of the 
Korean Institute of Electrical Engineers (KIEE), the Institute of Control, 
Automation, and System Engineers, Korea (ICASE) and advisor of the 
Korea Robotic Society. He is also a member of the Institute of Electrical 
and Electronics Engineers (IEEE) and the Korea Fuzzy Logic and 
Intelligent Systems Society (KFIS).  

 
 
 
 
 
 
 
 
 
 

582   Tae-Koo Kang et al. ETRI Journal, Volume 34, Number 4, August 2012 


	I. Introduction
	II. Conventional SIFT Algorithm and DGHM
	III. MDGHM-Based SIFT Descriptor
	IV. Experiments and Discussion
	V. Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


