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In this study, we suggest a new segmentation algorithm 
for processing airborne laser point cloud data which is 
more memory efficient and faster than previous 
approaches. The main principle is the reading of data 
points along a scan line and their direct classification into 
homogeneous groups as a single process. The results of our 
experiments demonstrate that the algorithm runs faster 
and is more memory efficient than previous approaches. 
Moreover, the segmentation accuracy is generally 
acceptable. 
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I. Introduction 

During the last decade, accuracy has been a major issue in 
segmenting airborne laser point clouds. Traditionally, many 
experiments have been based on various filtering algorithms 
applied to range images created by resampling point attributes 
[1]-[3]. Usually, these approaches intrinsically degrade 
positional accuracy and induce loss of the edge discontinuity 
characteristic. Therefore, several algorithms were applied to the 
raw data points without implementing the resampling [4]-[6]. 
As one notable example, Sampath [5] divided ground from 
non-ground objects with one-dimensional filtering between 
two consecutive points along a scan line. Although effective, 
this approach can be complicated when separating individual 
non-ground objects for which seed point selection and region 
growing are adopted. 

Research is currently moving its focus from effectiveness to 
efficiency in processing as laser instruments acquire a faster 
pulsation frequency and greater precision. Processing speed 
notably attracts considerable attention because many practical 
applications must handle huge amounts of data. Furthermore, 
as the demand to construct and update building databases from 
remotely sensed data in urban areas increases, how to extract 
each building separately in a mass-productive way has become 
an important issue. Until now, however, very few researchers 
have shown interest in this issue. Sithole [4] tested the speed of 
proposed segmentation algorithms, in which a point cloud was 
partitioned to yield a series of profiles lying at different 
orientations. Each profile was then segmented to produce line 
segments and the overlaying line segments were connected to 
create surfaces. Iterative processes of classification and 
segmentation were then conducted to classify bare earth and 
detailed objects. This approach is targeted to extract special 
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objects and enhance the processing speed, but it involves a 
memory-intensive operation including the production of a 
series of profiles. 

Building upon this understanding, we propose a new 
segmentation algorithm which is faster and does not require 
much memory. Data points are read consecutively along scan 
lines and are directly classified into homogeneous groups in one 
single process. Eventually, segmented groups potentially mean 
individual buildings, their parts, vegetation, bare earth, and other 
divisions. Although classification, as a next step, is needed for 
clarification, this paper focuses on efficient segmentation. We are 
planning a future presentation on the classification routine 
appropriate for the proposed segmentation algorithm. 

To test the validity of the proposed algorithm, a typical single 
strip of a point cloud and the ISPRS filter test set [7] were 
studied and processed. The processing time and memory 
handling were then examined, and an accuracy assessment was 
also carried out. 

II. Proposed Segmentation Algorithm 

The basic algorithm of the proposed approach is similar to 
the region-growing and unsupervised-classification methods. A 
first input point is read from a data file; thus, constituting a new 
group. Starting with the next input point, each point is 
compared with the previous ones. If the new input point is 
adjacent to a previous point having a similar height, it is 
classified into the group to which the previous point belongs; 
otherwise, it becomes a new seed point generating a new group. 

To make this algorithm effective, points need to be read 
along a scan line to increase adjacency. In this approach, 
therefore, all points should be arranged along their scan lines 
during preprocessing if they are not already so arranged. In the 
sense that linearly arranged pieces of data are labeled according 
to their attributes, our approach partly resembles connected-
component labeling in a raster domain [8],[9], but the scan line 
does not offer such regular geometry as raster data. 

Concurrently, with regard to memory handling and 
processing efficiency, we also devised three strategies that 
work regardless of data size.  

1. Basic Algorithms 

The basic segmentation routine is carried out as follows. 
 

Step 1. Set n=1 
Step 2. Empty out Lmerge and read pnew  
Step 3. For i=1 to n 
         For j=1 to im { 
              Calculate dnew,ij and hnew,ij between pnew and pij 

              If ,new ij distd t≤  and ,new ij heighth t≤ { 
                  If pnew is not classified 
                      Classify pnew into Gi 
                  Put Gi into Lmerge 
              } 
         } 
Step 4. If num(Lmerge)=0{ 
        n=n+1 
        Create Gn and classify pnew into Gn 
      } 
      Else if num(Lmerge)>1 
        Merge groups in Lmerge 
Step 5. If there are more pnew to classify, go to step 2 

Else exit 

Here, n is the number of the point groups, mi is the number of 
member points in point group Gi, Lmerge is the list of groups to be 
merged, pnew is a new point to be classified, pij is the j-th member 
point of point group Gi, dnew, ij and hnew, ij denote the Euclidian 
distance and height differences between pnew and pij, and tdist and 
theight denote the thresholds of distance and height difference. 

From the above routine, all member points of every group 
are examined against a new point as in step 3. If the distance 
and height differences between the two points are within given 
thresholds, tdist and theight, the new point is classified into the 
group as in step 3; otherwise, it is classified into a new group as 
in step 4. For example, in Fig. 1, member points of group 2 
have the minimum distance d1 from pnew, which is larger than 
tdist. Some of the member points of groups 1 and 4 are adjacent 
to pnew within tdist, but they are lower or higher than pnew by h3 
and h4, which are larger than theight. Thus pnew is classified into 
group 3, which has a member point satisfying the above two 
conditions. In this way, five new input points after pnew are  
 

 

Fig. 1. Classification of a new point. 
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Fig. 2. Detection of erroneously divided groups. 
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classified into group 4 and the succeeding ones are also 
classified into adequate groups. Here, the upper section in Fig. 
1 describes the cross-section of the red-bounded part in the 
vertical view of the scene. 

Exceptionally, a homogeneous group may be erroneously 
divided into several parts. This may result from the shape of 
certain surrounding or intervening objects and a particular scan 
direction. For example, as in Fig. 2, when a building (group 2) 
is surrounded by earth (group 1), a new group (group 3) is 
created when classifying the starting point of the erroneous 
division, which actually belongs to earth (group 1). 

In this case, pnew can be a key used to detect the erroneous 
division (Fig. 2). When pnew can be classified into both group 1 
and group 3, the two groups can be said to be separated from a 
group. In this case, Lmerge is employed so that groups into which 
pnew can be classified are put into Lmerge in step 3. If 
num(Lmerge)>1, groups in Lmerge are recognized to be divided 
from the same object and then merged together in step 4. 

The values of tdist and theight cannot be determined 
systematically because they depend on local conditions of the 
dataset, such as point density, minimum distance and height 
differences between objects, and their complexity. Therefore, 
the two values should be estimated following a preliminary 
inspection of the dataset and should be set at values intended to 
reduce overdivision or overmergence of groups. Thus, tdist can 
be generally established as a larger-than-average distance 
between two adjacent points and a smaller-than-minimum gap 
between two separable objects, and theight can be set at less than 
the minimum height difference between two objects. 

As an extension of the basic algorithms, it is possible to 
establish topology among segmented groups. For example, 
when a new point is classified to a group but is not further than 
tdist from some member points of other groups, the groups are 
recognized as neighbors and then further relationships, such as 
the relative height of their positions can be analyzed. We are 
planning to utilize this concept in the future to enhance the 
algorithm and to develop the classification routine.  

 

 

Fig. 3. Control of query. 
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2. Three Strategies for Memory Handling and Processing 

Efficiency 

We adopted a linked-list structure for storing groups and their 
member point information aiming at efficient memory 
management. However, as the volume of data increases, a time 
delay in querying groups and member points grows 
significantly. To solve this problem, three strategies utilizing 
scan-line characteristics are proposed below. The second 
strategy is also helpful in controlling main memory occupancy. 

A. Strategy to Control Query Range for Member Points 

In Fig. 3, scan line 7 is being classified, and earlier scan lines 
1 to 6 are under query for their classification. However, there is 
no need to query scan lines from 1 to 4, and little need for scan 
line 5, because they are far from the input points by more than 
tdist. It is not generally necessary to consider old scan lines 
further than tdist from the current input. Only recently classified 
nSL scan lines require query. 

If the average gap between two scan lines is given as dSL, the 
value of nSL can be determined as distSLSL tdn >>× . However, 
considering an irregular shape and arrangement of scan lines, nSL 
should be set great enough, and 3 to 5 is judged to be suitable 
from experimental experience. To test the idea, we divided each 
group into query and storage subgroups. A query subgroup 
retains member points on nSL newer scan lines and is queried for 
classification. A storage subgroup stores member points lying on 
older scan lines which are distant by more than tdist from the 
current input scan line and are not further queried. In Fig. 3, 
supposing nSL is set to 3, points on scan lines from 5 to 7 are 
queried for classification and points on scan lines from 1 to 4 are 
stored in each storage subgroup. If a new scan line 8 begins to be 
queried, points on scan line 5 will be moved to each storage 
subgroup. Thus, the query range for member points and their 
memory occupancy can be controlled throughout the process. 
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B. Strategy to Store Groups not Concerned with Classification 
Query 

If a group no longer needs to be queried for classification, 
that is, if its query subgroup is empty, the points in its storage 
subgroup may be moved to a fixed disk with a group ID and 
the group information removed from the main memory. In this 
way, the memory requirement for storing processed data can be 
reduced, and meaningless referral time to groups no longer 
concerned with classification query can be eliminated. In Fig. 3, 
group 3 has no member points in its query subgroup; the 
member points are recorded on a fixed disk with ID 3 and all 
data for group 3 is removed from the main memory. In real 
conditions, if earth is connected throughout the scene, its query 
subgroup will be kept extant; thus, it will not be removed from 
the main memory. This will increase main memory occupancy 
steadily to store more earth points, but the algorithm can still be 
said to be memory-effective because it does not require a full 
set of input points organized in the main memory, and the 
majority of processed group data is removed from the main 
memory during the process. 

C. Strategy to Control Query Range for Groups 

For each group, a buffered boundary with width tdist is 
updated whenever a point is classified into it. If a new input 
point does not fall within the buffered boundary, the group is 
skipped in the classification query because the new input point 
cannot be nearer than tdist to any member points of the group. 
We adopt a simple rectangular boundary for speed in 
calculation. In Fig. 3, because pnew falls in the buffered 
boundary of groups 1 and 2 and not that of groups 3 and 4, the 
classification query is not applied to the latter groups. 

III. Experiments and Result Analysis 

The proposed algorithm was applied to two kinds of real 
data. The first experiment used data from the city of Daejeon, 
Korea, which has a single strip of an airborne laser point cloud 
retaining its scan-line properties. With the dataset, we tested the 
usefulness of the three strategies and the performance of 
building segmentation. The other experiment used the ISPRS 
test data provided by the ISPRS Working Group III/3 [7], 
which was originally designed to compare filtering algorithms 
for extracting DEMs from a point cloud. We adopted the data 
to test the efficiency of our algorithm under various conditions 
of data and parameters. 

1. Daejeon Data Test 

The subject site shows the typical aspects of modern cities 
with many residences and other buildings, some vegetation,  

Table 1. Specifications of Daejeon dataset. 

Model ALS ALTM 3070 system (Optech, Inc.) 
No. of points 3 million  

Point density 1.5 points/㎡ 

Formation of scan line 840 points/scan line 

Parameters tdist= 2 m, theight= 1.5 m, nSL=3 lines 

 

 

Fig. 4. Processing time comparison. 
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and continuously connected bare earth with slight undulations. 
As the point cloud retains scan line characteristics and is 
composed of long strips that cover a large area, we selected one 
of the strips to produce a dataset. The specifications of the 
dataset and parameters are seen in Table 1. 

Performance assessment was conducted on different 
combinations of the three strategies. The required time was 
checked for the overall process, from reading the data file to 
writing the results to a fixed disk. 

We observed that it took more than 3,600 seconds to process 
0.5 million points without any strategy. With strategy A, it took 
only 46 seconds for the same points, but it took 436 seconds for 
1 million points and 1,239 seconds for 1.5 million points, 
showing a nonlinear increment of processing time as seen in Fig. 
4. Combined with strategy B, it required much less time with an 
increase in processing time which was linearly proportional to 
the size of the dataset (R2=0.9992). Finally, when all three 
strategies were combined, there was about a 30% enhancement 
of performance over the previous combination:  144 seconds 
were required to process 3 million points as seen in Fig. 4. 

As expected in strategy B, the main memory occupancy of 
the application increased during the process because the earth 
is connected through the dataset. It took about 38 MB at the 
peak to process 1 million points and about 112 MB at the peak 
to process 3 million points. To evaluate the validity of the 
memory efficiency, we made an application by simply loading 
the same 3 million points into the main memory. The variable 
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Fig. 5. Segmentation result of a building zone.  
 

Fig. 6. Reference image of a building zone.  
 

Fig. 7. Segmentation of complexly shaped building.  
 
types for the stored points and the storage method, namely, 
linked-list, came exactly from the segmentation codes. Tests 
showed 130 MB of peak main memory occupancy and 153 
MB to store the same points with labels. This result means that 
our algorithm requires less memory than is required to store all 
of the input data and is, therefore, very memory-efficient. The 
test system was comprised of an AMD Athlon XP 2800+ 

Fig. 8. Reference image of a complexly shaped building.  
 

Table 2. Accuracy assessment. 

Type of building Samples Segments Rate 

Low-rise residence 311 286 92% 

Mid-high-rise building 146 146 100% 

 

 

Fig. 9. Closely neighboring residences of similar heights.  
 
CPU with 1 GB RAM. 

Segmentation results for a building zone are illustrated in Fig. 
5 with its corresponding reference image shown in Fig. 6. A 
visual inspection shows each building set completely apart 
from others and distinct from the surrounding ground. 

Some complexly shaped objects can be separated into 
several parts if they have sections at different heights. An 
example of this is shown in Fig. 7 with its reference image as 
shown in Fig. 8. It has parts with various heights. This 
characteristic can be utilized for further detailed building 
reconstruction. 

An accuracy assessment was made for building samples. 
According to their height, buildings are classified as low-rise 
and mid-high-rise. The results are summarized in Table 2. Here 
“segmented” means that the area of the buildings is clearly 
segmented in visual inspection. 

From this table, it can be seen that all the mid-high-rise 
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buildings may be segmented well, whereas 8% of the low-rise 
residence buildings fail to be segmentable. Such failure is 
mainly due to their close mutual proximity and similar height 
as shown in Fig. 9. 

2. ISPRS Data Test 

The ISPRS data is composed of eight datasets, and they have 
been chosen to compare filtering algorithms because they 
contain various characteristics expected to cause difficulty for 
automatic filtering. Reference information is also provided for 
some subsets of each site; this information is divided into two 
parts: object and bare earth. We adopted the data to show the 
efficiency of our algorithm when tested on differently 
conditioned data and parameters. 

The summary of the dataset is seen in Table 3. The first 
character of each dataset indicates where it came from: ‘C’ 
means city areas, and ‘F’ means forest or areas with more 
vegetation. We tested four parameter settings for each dataset, 
and the details are shown in Table 4. 

To compare the performance with the research conducted in 
[4], we tested the algorithm in an older system, a Pentium III, 
800 MHz with 256 MB RAM, equivalent to the system used in 
[4], which was an AMD 800 MHz with 256 MB RAM. 

Table 5 shows the time spent processing each dataset under 
four parameter settings. The first column of each test is the real 
 

Table 3. Summary of ISPRS dataset. 

 No. of points Point density Formation of scan line

CSite1 683,204 

CSite2 243,400 

CSite3 188,514 

CSite4 259,030 

Approx. 
0.67 points/㎡ 

135 points/scan line 

FSite5 314,288 

FSite6 275,849 

FSite7 196,632 

FSite8 172,983 

Approx. 
0.18 points/㎡ 

160 points/scan line 

Table 4. Parameter settings. 

 CSite1-CSite4 FSite5-FSite8 
 tdist theight nSL tdist theight nSL 

Test 1 1.8 3.8 

Test 2 2.0 4.0 

Test 3 2.2 4.2 

Test 4 2.4 

1 3 

4.4 

1 3 

 

Table 5. Processing time (s). 

 Test 1 Test 2 Test 3 Test 4 

CSite1 77 56 81 59 81 59 79 58 

CSite2 32 66 33 68 33 68 33 68 

CSite3 18 48 19 50 19 50 19 50 

CSite4 34 66 35 68 35 68 35 68 

FSite5 21 33 21 33 21 33 20 32 

FSite6 17 31 16 29 16 29 15 27 

FSite7 11 28 10 25 10 25 11 28 

FSite8 11 32 10 29 10 29 11 32 

Table 6. Segmentation error rate (%). 

 Test 1 Test 2 Test 3 Test 4 

Samp11 13.99 17.24 23.21 26.66 

Samp12 6.07 7.17 9.36 10.68 

Samp21 6.75 7.82 9.27 10.3 

Samp22 5.56 9.67 10.78 10.85 

Samp23 6.32 6.47 6.88 8.77 

Samp24 7.29 9.17 11.31 12.09 

Samp31 6.2 8.28 9.61 10.66 

Samp41 1.95 2.17 2.19 2.21 

Samp42 1.55 1.57 1.83 1.85 

Samp51 7.43 8.6 8.89 8.99 

Samp52 3.26 3.42 3.73 3.96 

Samp53 2.2 2.32 2.4 2.56 

Samp54 5.9 6.61 8.24 10.53 

Samp61 1.53 1.65 1.69 1.71 

Samp71 5.69 5.72 6 7.36 

 

time lapse for processing given points, and the second is the 
expected time for processing 0.5 million points. From the results, 
it can be concluded that the parameters do have an effect on 
processing time, but not a significant one, and a dominant factor 
is the size of segmented point groups. More points in a group 
lead to more delay in finding the points lying on old scan lines 
that need to be moved to the storage subgroup described in 
strategy A. In this sense, FSites could be processed faster than 
CSites because FSites contain fewer buildings but more trees and 
consist of non-overlapping strips. This results in fewer points in 
each segmented group. This agrees with the inference that CSite 
2 and CSite 4 took more time to process because they have 
relatively larger buildings than CSite 1 and CSite 3. 

Additionally, when tested on the Daejeon dataset, processing 
took about 85 seconds for 0.5 million points. This was 
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expected because the dataset has various large buildings and 
continuous bare earth. There is, however, still an unexpected 
gap in the time used for the ISPRS dataset. This can be 
explained because the Daejeon dataset has more than five 
times the points per scan line than the ISPRS datasets. This 
makes the query subgroup larger, as described in strategy A; 
thus, generating more query operation. 

The main memory occupancy for each dataset of the ISPRS 
did not exceed 10 MB. Compared with Daejeon dataset, this low 
memory occupancy is related to the fact that the ISPRS datasets 
have the characteristics of a narrow scanning swath, 
discontinuities in bare earth, and not overlapping strips. 

Segmentation error was checked for subsets in each dataset 
with the provided reference information. The result is shown in 
Table 6. The first digit in the sample name is the dataset 
number in Table 5, and the second is the subset number in the 
dataset. We determined the segmentation error as the state of 
heterogeneity. That is, if the greater part of a group is identified 
to be classified into class A and the remainder into class B, the 
error is calculated as the ratio of the number of points classified 
into class B and the total number of points of the group. 

As shown in Table 6, the error rate is at an acceptable level 
except for Samp11, which contains a mixture of vegetation and 
buildings, data gaps, and so on. A lower tdist can drop the error 
ratio and a similar situation is expected to be applicable to theight, 
but it can also bring about over-fractionation of groups. In 
conclusion, the accuracy assessment does not have much 
significance at this stage. This is because an automatic 
classification routine executed after segmentation may lower 
the final accuracy in general, but delicately designed additional 
routines, such as iterations of segmentation and classification, 
suited for specific target extraction, can bring about the 
opposite result. 

3. Performance Comparison 

We compared the performance of our approach with the 
result in [4]. The segmentation routine adopted in [4] can be 
summarized as follows. A point cloud is partitioned in several 
directions (more than three directions for a better result) to 
yield a series of profiles in a given width. The point cloud is the 
union of all the profiles with the same orientation, such that no 
two profiles with the same orientation share common points, 
and points in the profiles are sequentially ordered. Each profile 
was segmented to yield line segments, and several labeling 
methods, including consecutive labeling, labeling by proximity, 
and labeling using minimum spanning trees, were tested. 
Overlapping line segments were then gathered from differently 
oriented profiles to yield surfaces. The algorithm is thus 
memory-intensive for producing the series of profiles, the 

overlapping labels for each point, and so on. 
In [4], it took about 120 seconds to process 0.5 million points 

with consecutive labeling, which is most comparable to our 
algorithm because it labels points according to the planimetric 
and height difference between two consecutive points in a 
profile. With the other labeling methods, more than 50% of this 
processing time was expected, whereas it took at most 70 
seconds for the ISPRS datasets and 85 seconds for the Daejeon 
datasets using our algorithm. 

Furthermore, according to Sithole [4], it was expected that 
about 240 seconds would be required to process 1 million 
points with sufficient memory available. In comparision, our 
algorithm required 183 seconds with a maximum main 
memory occupancy of about 38 MB and 538 seconds with 
about 112 MB for 3 million points of the Daejeon dataset. This 
demonstrates that the proposed algorithm provides a faster and 
more memory-efficient approach, despite the variance of data. 

IV. Conclusion 

In this study, we proposed a new segmentation algorithm for 
airborne laser point clouds utilizing scan-line characteristics. 
The algorithm proved to be faster and more memory-efficient 
than previous approaches. It notably requires an almost linear 
increase in the time taken to process enormous quantities of 
data as the amounts increase. With regard to accuracy, 
experiments showed that the algorithm allowed a good 
segmentation of building areas, giving a generally acceptable 
outcome. Based upon these results, we anticipate that the 
method will be used for many applications when data 
processing on an enormous scale is needed. 

For future work, we have plans to give more functions to the 
segmentation algorithm in supporting topology within 
segmented groups, and we intend to build up a classification 
routine to cope with this. In addition, to reconstruct detailed 
three-dimensional building models, we will make use of 
segmented parts belonging to the same object. 
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