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The extraction of model parameters for embedded pas-
sive components is crucial for designing and characterizing 
the performance of multichip module (MCM) substrates. 
In this paper, a method for optimizing the extraction of 
these parameters using genetic algorithms is presented. 
The results of this method are compared with optimization 
using the Levenberg-Marquardt (LM) algorithm used in 
the HSPICE circuit modeling tool. A set of integrated resistor 
structures are fabricated, and their scattering parameters 
are measured for a range of frequencies from 45 MHz to 5 

GHz. Optimal equivalent circuit models for these structures 
are derived from the s-parameter measurements using each 
algorithm. Predicted s-parameters for the optimized equiva-
lent circuit are then obtained from HSPICE. The difference 
between the measured and predicted s-parameters in the 
frequency range of interest is used as a measure of the ac-
curacy of the two optimization algorithms. It is determined 
that the LM method is extremely dependent upon the initial 
starting point of the parameter search and is thus prone to 
become trapped in local minima. This drawback is allevi-
ated and the accuracy of the parameter values obtained is 
improved using genetic algorithms. 
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I. INTRODUCTION 

As electronics technology continues to develop, there is a 
continuous need for higher levels of system integration and 
miniaturization. For example, in many applications, it is desir-
able to package several integrated circuits (ICs) together in 
multichip modules (MCMs) to achieve further compactness and 
higher performance. Passive components (i.e., capacitors, resis-
tors, and inductors) are an essential requirement for many 
MCM applications [1]. A significant advantage of MCM tech-
nology is the ability to embed large numbers of these passive 
components directly into the substrate at low cost. Such an ar-
rangement provides further advantages in component minia-
turization, power consumption, reliability, and performance. 

It is common for high frequency systems to include filters 
with specifications into the gigahertz range. In order to success-
fully design passive filters at such high frequencies, the behavior 
of the passive components that comprise the filter must be 
modeled accurately up to those frequencies. Recently, computer-
aided design tools such as HSPICE [2] have become indispen-
sable in IC design. Accurate circuit simulation using HSPICE 
is dependent on both the validity of the device models and the 
accuracy of the values used as model parameters. Therefore, 
the extraction of an optimum set of device model parameter 
values is crucial to characterizing the precise relationship between 
the device model and the measured behavior. Even if the structure 
of a model is valid, it could lead to poor simulation results if 
model parameters are not extracted properly. 

In this paper, a method for optimizing the extraction of these 
parameters using genetic algorithms (GAs) is presented [3]. GAs 
are a set of guided stochastic search procedures based loosely on 
the principles of genetics. To investigate the use of GAs for the 
optimization of parameter extraction in passive devices operated 
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at high frequencies, a set of integrated passive structures were 
fabricated, and their scattering parameters were measured for a 
range of frequencies from 45 MHz to 5 GHz.  Optimal equiva-
lent circuit models for these structures were derived from the s-
parameter measurements. Predicted s-parameters for the opti-
mized equivalent circuit were then obtained from HSP  ICE. 
The difference between the measured and predicted    s-
parameters in the frequency range of interest is used as the meas-
ure of the accuracy of the optimization results.   

Conventional optimization techniques such as the Leven-
berg-Marquardt (LM) method [4], which is used by HSPICE 
for parameter extraction, are often subject to becoming trapped 
in local minima, leading to suboptimal parameter values.  
GAs represent an effective method for determining the global 
minimum and are less dependent upon the initial starting point 
of the search. Here, we compare optimization using the LM al-
gorithm to optimization using GAs. It is determined that draw-
backs of the LM method are alleviated, and the accuracy of the 
parameter values obtained is improved using GAs. 

II. TEST STRUCTURE DESCRIPTION 

Three different types of passive devices were considered in 
this study. These test structures are shown in Fig. 1. The first 
structure is simply a straight-line resistor with probe pads on its 
ends. This structure is needed to characterize basic uncoupled 
material parameters including self resistance, inductance, and 
capacitance. The second test structure is an interdigitated ca-
pacitor. This type of device is used in a wide variety of circuits, 
including resonators, oscillators, and filters to perform func-
tions such as DC blocking, frequency filtering and impedance 
transformation. The final test structure is a three-dimensional 
solenoid inductor made using a low-temperature cofired ceramic 
(LTCC) process [1], [5]. 

The resistor and capacitor test structures were built using 
Ti/Au deposited on a 96 % alumina substrate. An electron beam 
evaporation system was used to deposit 0.04 um of titanium 
followed by a 0.2 um layer of gold. The thin layer of titanium 
was used to improve adhesion of the gold to the substrate.  
Following deposition, the resistors were defined using standard 
photolithography and etch back techniques. The photoresist 
was hard-baked for five minutes at 125 °C in order to stabilize it 
before etching. The gold was etched in a heated KCN solution 
for one minute, followed by a buffered oxide etch to remove 
the titanium. Due to the surface roughness of the substrate (ap-
proximately +/− 1.5 um), the edges of the resistor were jagged, 
but the lines were continuous. All processing was done at the 
Georgia Tech Microelectronics Research Center. 

The LTCC inductor structure was designed within the Ca-
dence Virtuoso design environment. A custom technology file 
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Fig.1. Schematic three test structures: (a) straight-line resistor;
(b) interdigitated capacitor; and (c) LTCC inductor.

for a 12-layer process was developed, and a process design rule 
compliant test structure coupon was fabricated at the National 
Semiconductor Corporation LTCC fabrication facility. The size 
of the completed coupon was approximately 2.25" × 2.25". 
Each layer of ceramic tape was specified to be 3.6 mils thick 
with a dielectric constant of 7.8. The metal lines were drawn to 
be 10 mils wide, and the vias were a diameter of 5.6 mils. 

III. MODELING SCHEME 

High frequency analysis of complex geometrical structures is 
required to investigate their electrical performance in a frequency 
range of interest. This analysis is especially important to determine 
the effects of unwanted spurious couplings and resonances which 
can greatly affect the overall system response. Analysis such as this 
is usually only achievable through the use of electromagnetic or 
RF/microwave simulation tools. The derivation of equivalent cir-
cuit models is very useful to designers who would   
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Fig. 2. Building blocks with associated circuit topologies and model parameters for (a) the straight-line resistor; (b) the interdigitated
capacitor; and (c) the LTCC inductor.
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like to incorporate the complex behavior of these structures in a 
system level circuit simulation. However, the process of obtain-
ing lumped models from these simulators is a slow and compu-
tationally challenging task.  

The modeling procedure implemented here involves deter-
mining a set of fundamental building blocks for the passive 
structures and then characterizing test structures comprised of 
combinations of those blocks [6]. The test structures are meas-
ured up to a desired frequency, and the electrical contribution to 
the overall response by the building blocks can then be deter-
mined. Equivalent circuits of each of the building blocks are 
then extracted using a hierarchical extraction procedure that 
will be described. Simulation of the derived circuit in a standard 
SPICE-compatible circuit simulator then provides the desired 
prediction of electrical behavior. Test structure models are veri-
fied experimentally by comparing the predicted electrical re-
sponse with the measured response. 

1. Test Structure Characterization 

The test structures described in Section II above were meas-
ured using standard network analysis techniques. For high fre-
quency measurements, an HP 8,510 C network analyzer was 
used in conjunction with a Cascade Microtech probe station 
and ground-signal-ground configuration probes. Calibration 
was accomplished using a supplied substrate and the line-
reflect-match (LRM) calibration method. After calibration was 
completed, s-parameters were obtained for each of the test 
structures at 201 frequency points between 45 MHz and 5 GHz.  
This data was stored with the aid of computer data acquisition 
software and equipment. 

2. Device Model Parameter Extraction 

For passive device structures, it is desirable to predict their 
electrical behavior in a standard circuit simulator. In order to 
accomplish this, circuit models for each of the defined building 
blocks need to be extracted. The fundamental circuit for the 
building blocks is based on the partial element equivalent circuit 
(PEEC) [7] which has been used extensively for interconnect 
analysis [8] and general three-dimensional high frequency 
structure simulation [9]. Coupling behavior is represented by 
the coupling capacitance between center nodes of the two 
PEEC circuits, as well as by mutual inductances between the 
left upper and left lower branch inductors in the model, and 
likewise for the right hand side. These circuits represent models 
for the building blocks only. The test structure circuits are com-
prised of many of the building block circuits connected in ac-
cordance with the structure geometry. The various circuit mod-
els and parameters for the different building blocks are shown 
in Fig. 2. 

After the circuit models for the different building blocks 
were obtained, the extraction of the circuit model parameters 
was achieved using two different optimization techniques. The 
first method chosen was the Levenberg-Marquardt (LM) algo-
rithm [10]. Since the LM algorithm is built into HSPICE, all 
LM-based optimization and simulations were done using the 
HSPICE simulator on a Sun Sparc 20 workstation. Since the 
starting point or initial guesses for the circuit parameters were 
crucial for achieving convergence, an initial optimization was 
done assuming that each test structure was comprised of just 
one building block, utilized repetitively across the length of the 
structure on a per square basis. The initial guesses for the circuit 
parameters were derived by converting the measured s-
parameters to z-parameters, and then dividing by the number of 
blocks used in order to extract the valid R, L, and C, values for 
the circuit model. Figure 3 shows a flow chart for the s-
parameter extraction procedure. 

However, since small changes in the initial guesses often led 
to non-convergence or incorrect optimization results, another 
optimization method which used genetic algorithms (GAs) was 
investigated. GA optimization was performed by software writ-
ten in ANSI standard C++, and was compiled for use in the 
UNIX environment. HSPICE circuit simulations were still 
needed to obtain s-parameter data to complete GA optimization. 
GAs represent a guided stochastic approach to optimization 
which establishes a parallel search of the solution space. Since 
GAs use a large population of trial solutions, they can explore 
many regions of the search space simultaneously. Therefore, 
GAs are insensitive to initial guesses, and they are less likely to 
become trapped in local optima compared to  conventional 
optimization methods. Further details on both  the LM algo-
rithm and GAs are provided in the following  section. 

IV. PARAMETER OPTIMIZATION METHODS 

The equivalent circuit model parameter values required by 
the HSPICE simulator are usually obtained by curve fitting the 
model equations to device measured data. This curve fitting is 
accomplished using nonlinear least squares optimization tech-
niques. Optimization is the process by which the set of model 
parameter values which best fit the data are selected. This op-
timum parameter set is created by adjusting an initial estimate 
of model parameter values using an iterative process. The 
process continues until simulated output data matches the ac-
tual measured output data within specified tolerances. In short, 
given a set of measured data, the optimizer solves for a set of 
model parameters which produce simulated data that optimally 
approximates the measured data.  
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Fig. 3. Flow chart for s-parameter extraction.
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1. Levenberg-Marquardt Algorithm 

The optimization method used in the HSPICE simulator is 
the well-known Levenberg-Marquardt (LM) algorithm imple-
mented with the Marquardt scaling parameter to prevent unex-
pected deviation of the parameter values. The LM search 
method is a combination of steepest descent and the Gauss-
Newton method. 

Gradient descent is a commonly used search method where 
parameters are moved in the opposite direction to the error gra-
dient. Each step down the gradient results in smaller errors until 
minimum error is achieved. However, simple gradient descent 
suffers from slow convergence, in particular when a minimum 
is approached. Another commonly used method is the gradient 
with momentum that updates parameters proportionally to a  
running average of the gradient. In general, this technique can 
decrease the probability of becoming trapped in local minima.  
Nevertheless, the final iterations of the gradient with momen-
tum method are still not effective when approaching a solution.  
The Gauss-Newton method provides better convergence prop-
erties near the solution. However, at a point away from the so-
lution, this method suffers from the fact that prescribed the di-
rection may not be a descent direction, and the associated in-
verted Hessian matrix may not exist.   

In the LM algorithm, steepest descent is used initially to ap-
proach the solution, and then the Gauss-Newton method is used 
to refine the solution. During this search, the Marquardt scaling 
parameter becomes very small, but increases if the solution starts 
to deviate. If this happens, the LM technique optimizer becomes  

purely gradient descent when the Marquardt scaling parameter 
is very large, whereas the LM method is equivalent to the 
Gauss-Newton method when the Marquardt scaling parameter 
is zero. 

The objective function of LM algorithm is  
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where X = (x1, x2, ..., xn) are the model parameters to be ex-
tracted, n is the total number of the model parameters, Fi

meas is 
the measured value of the ith model parameter, m is the total 
number of measurements, fi(X) is the simulated value of the ith 
point, and wi is a weight factor for the ith measured data point 
(used for giving higher significance to a given data point). 
Therefore, the HSPICE optimizer finds the vector X of the device 
model parameters that minimizes Fo(X). 

2. Genetic Algorithms 

Genetic algorithms (GAs) refer to a family of computational 
models inspired by evolution. In the last few years, GAs have 
started to be explored for several applications in industry [11], 
[12]. These algorithms encode a potential solution to a specific 
problem on a simple chromosome-like binary data structure 
and apply recombination operators to these structures so as to 
preserve critical information. An implementation of a genetic 
algorithm begins with a population of (typically random) 
chromosomes. To implement a GA, the set of parameters to be 
optimized are first mapped onto a set of binary strings, with 
each string representing a potential solution. The GA then ma-
nipulates the most promising strings in searching for improved 
solutions. A GA typically operates iteratively through a simple 
cycle of four stages: 1) creation of a population of strings, 2) 
evaluation of each string, 3) selection of the best strings, and 4) 
genetic manipulation to create a new population of strings. The 
process for optimizing passive device model parameters using 
GAs is shown in Fig. 4. 

The genetic manipulation includes three genetic operations 
—reproduction, crossover, and mutation—to search the optimal 
solution in the entire search space. Using these operations, GAs 
can search through large, irregularly shaped spaces effectively, 
requiring only the information of the objective function. This is 
a desirable characteristic, considering that the majority of com-
monly used search techniques require not only the complete in-
formation of the objective function but also derivative informa-
tion, continuity of the search space. 

In coding genetic searches, binary strings are typically used.  
One successful method for coding multiparameter optimization 
problems is concatenated, multiparameter, mapped, fixed-point  
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Fig. 4. Optimization process for device model parameters using GAs.
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coding [3]. If x ∈  [0, 2b] is the parameter of interest (where b is 
the number of bits in the string), the decoded unsigned integer 
x can be mapped linearly from [0,2b] to a specified interval 
[Umin, Umax]. In this way, both the range and precision of the  
decision variables can be controlled. To construct a multi-
parameter coding, required single parameters can simply be 
concatenated. Each coding may have its own sub-length (i.e., 
its own Umin and Umax). Figure 5 shows an example of a 2-
parameter coding with four bits in each parameter. The ranges 
of the first and second parameters are 2-5 and 0-15, respectively. 

The string manipulation process employs the aforemen-
tioned genetic operators to produce a new population of indi-
viduals (called offspring) by modifying the genetic code pos-
sessed by members of the current population (called parents). 
Reproduction is the process by which strings with high fitness 
values (i.e., good solutions to the optimization problem under 
consideration) receive larger numbers of copies in the new 
population. A popular method of reproduction is elitist roulette 
wheel selection [13]. In this method, those strings with large  

Fig. 6. Illustration of the crossover operation.
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Thus, an individual string whose fitness is n times better than 
another will produce n times the number of offspring in the 
subsequent generation. Once the strings have reproduced, they 
are stored in a mating pool awaiting the actions of the crossover  
and mutation operators. 

The crossover operator takes two chromosomes and inter-
changes part of their genetic information to produce two new 
chromosomes (Fig. 6). After the crossover point has been ran-
domly chosen, portions of the parent strings (P1 and P2) are 
swapped to produce the new offspring (O1 and O2) based 
upon a specified crossover probability. Mutation is motivated 
by the possibility that the initially defined population might not 
contain all of the information necessary to solve the problem.  
This operation is implemented by randomly changing a fixed 
number of bits every generation based upon a specified muta-
tion probability (Fig. 7). Typical values for the probabilities of 
crossover and bit mutation range from 0.6 to 0.95 and 0.001 to 
0.01, respectively. Higher mutation and crossover rates disrupt 
good “building blocks” (schemata) more often, and for smaller 
populations, sampling errors tend to wash out the predictions. 
For this reason, the greater the mutation and crossover rates and 
the smaller the population size, the less frequently predicted  
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Table 1. Genetic algorithm parameters.

Parameters Value

Crossover Probability 0.9

Mutation Probability 0.01

Population Size 8

Chromosome Length 80 bits

solutions are confirmed. 
In this study, the genetic algorithms have been implemented 

to extract the passive device circuit model parameters for the 
test structures described above using the following fitness func-
tion (Ffit): 
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where n is the number of s-parameter measurements taken, 
ymeas are the actual s-parameter measurements, and ysim are the 
simulated s-parameters found using HSPICE. The probabilities  
of crossover and mutation were set to 0.9 and 0.01, respectively 
(see Table 1). A population size of 8 was used in each genera-
tion. Each of the eight device model parameters were encoded 
as a 10-bit string, resulting in a total chromosome length of 80 
bits. The optimization procedure was stopped after 100 itera-
tions or when Ffit was within a predefined tolerance.   

V. RESULTS AND DISCUSSION 

The optimization results using the LM algorithm in the 
HSPICE optimizer and GAs for the three test structures de-
scribed in Section II are presented here. Each structure requires 
the extraction of eight passive device values from s-parameter 
measurements. The root mean square error (RMSE) between 
the measured and simulated s-parameters has been calculated 
for each optimization method. 

For the extraction of the passive device model parameters in the 
straight-line resistor, 20 different sets of parameters were used as 
the initial starting points for the LM algorithm. These initial sets of 
parameters were randomly selected using 10 % deviation from a 
previously analyzed set of parameters which had converged to a 
solution. Among the 20 simulations, only three converged to a so-
lution. Table 2 shows the results of extracting the passive device 
model parameters for the straight line resistor using the LM algo-
rithm and GAs. The results illustrate that the LM algorithm can be 
trapped in local minima, and the use of GAs can improve the accu-
racy of the model parameter values. 

Table 2. Optimization results for the straight-line resistor.

HSPICE Optimizer results GA result

Parameter run1 run2 run3 GA_run

C_cou 1.52E−14 1.63E−13 5.15E−14 2.19E−14

Rsq 5.38E−02 1.00E−02 3.04E−02 4.83E−02

Lsq 1.13E−15 9.36E−12 9.36E−12 9.32E−12

Csq 2.72E−15 2.59E−16 2.61E−15 2.70E−15

C_cou2 1.00E−15 6.23E−11 7.75E−11 9.22E−11

R2sq 9.85E−02 1.37E−01 1.15E−01 9.80E−02

L2sq 8.88E−12 1.15E−12 1.03E−12 9.32E−13

C2sq 3.35E−17 2.46E−15 8.98E−17 1.20E−17

RMSE 1.50E−03 1.40E−03 1.40E−03 1.20E−03

Table 3. Optimization results for the interdigitated capacitor.

HSPICE Optimizer results GA result

Parameter run1 run2 run3 run4 GA_run

C_cou 1.00E−15 1.00E−15 1.00E−15 1.00E−09 4.40E−16

R_pad 1.54E−01 1.50E−01 1.59E−01 1.70E−01 5.67E−02

L_pad 1.54E−11 1.50E−11 1.59E−11 1.20E−11 8.99E−11

C_pad 3.54E−15 3.50E−15 3.59E−15 3.20E−15 3.59E−15

Rsq 1.55E−01 1.55E−01 1.55E−01 1.39E−01 1.88E−01

Lsq 8.87E−12 8.87E−12 8.87E−12 9.15E−12 9.42E−12

Csq 2.76E−15 2.76E−15 2.76E−15 2.25E−15 2.51E−15

RMSE 1.13E−03 1.58E−03 1.29E−03 2.03E−03 5.81E−04

 
Similar results were found for the interdigitated capacitor test 

structure (see Table 3). In this case, 30 sets of randomly gener-
ated initial model parameters were used for the LM algorithm, 
and a solution was found for only four of these. The model pa-
rameter values found using GAs were much more accurate 
compared those found by means of the LM method. 

Table 4 shows the results of extracting the passive device 
model parameters for the LTCC inductor. In this case, 20 sets 
of randomly generated initial model parameters were used for 
the LM algorithm, and a solution was found for ten of these 
cases. From these results, it was found that the LM algorithm 
yields a large variation in the extracted model parameters.  
For example, C_cou varies from 10−15 to 10−10 F, and Rsq var-
ies from 10−3 to 10−6 ohms. However, since GAs can explore 
the search space more effectively, a single solution representing 
the global optimum is found using this method. 
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Table 4. Optimization results for the LTCC inductor.

HSPICE Optimizer results GA result

Parameter run1 run2 run3 run4 run5 run6 run7 run8 run9 run10 GA_run

C_cou 1.36E−10 1.00E−15 1.00E−15 1.00E−15 5.75E−10 1.28E−10 8.36E−11 8.98E−11 1.00E−15 9.23E−11 6.90E−10

R_pad 1.00E−06 1.00E−06 1.00E−06 1.00E−06 1.00E−06 1.00E−06 1.00E−06 1.00E−06 1.00E−06 1.00E−06 1.03E−16

L_pad 5.68E−10 2.80E−10 3.01E−10 2.96E−10 5.99E−10 5.67E−10 5.52E−10 5.53E−10 2.95E−10 5.54E−10 6.45E−10

C_pad 4.03E−13 4.31E−13 4.35E−13 4.29E−13 4.06E−13 4.04E−13 4.05E−13 4.04E−13 4.20E−13 4.04E−13 3.11E−13

Rsq 1.00E−06 3.18E−03 1.00E−06 1.00E−06 1.83E−03 1.00E−06 1.00E−06 1.00E−06 1.00E−06 1.00E−06 3.40E−03

Lsq 5.94E−12 6.56E−11 6.25E−11 6.37E−11 1.74E−12 6.21E−12 8.72E−12 8.28E−12 6.40E−11 8.11E−12 8.64E−12

Csq 1.00E−17 2.90E−15 1.46E−15 2.90E−15 1.00E−17 1.00E−17 1.00E−17 1.00E−17 4.80E−15 1.00E−17 2.35E−17

RMSE 1.70E−03 1.49E−03 1.31E−03 1.32E−03 1.33E−03 2.49E−03 1.32E−03 1.31E−03 1.32E−03 1.66E−03 8.98E−04

 
VI. CONCLUSION 

The extraction of circuit model parameters for the three pas-
sive device test structures using genetic algorithms has been in-
vestigated and compared with optimization using the Levenberg-
Marquardt algorithm used in the HSPICE circuit simulation pro-
gram. Results indicate that GAs tend to provide improved accu-
racy and are better in finding global optima, whereas the LM 
method is extremely sensitive to the initial starting point of the 
parameter search and easily trapped in local optima. However, 
GAs are generally slower and the number of GA iterations and 
the optimum set of GA parameters must be ascertained empiri-
cally. Thus, a trade-off exists between computational time and 
achieving acceptable accuracy in optimizing model parameters. 
Nevertheless, GAs appear to show much promise in this area. 
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