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The paper studies the so-called coaxial overhead transmission lines. The concentric
phases are considered. The mathematical analysis for voltage and current is pre-
sented. The telegraphic equations of the double circuit power lines with the mutual
effect between circuits are introduced. The condition for single circuit transmission
line is checked. The mutual effect between both circuits is studied on the basis of the
ratio between the two currents of both circuits. The appeared phase shift between the
two vectors of currents is inserted in the investigation. The magnetic field intensity at
an external point of a line is mathematically expressed. Its value is approximated for
the purpose of zero mutual inductance between phases of the same circuit. The
mutual inductance between the two nearest groups of phases due to the linkage flux
for the studied line is formulated. Its dependency on the distance from the phases as
well as on the ratio of currents of both circuits is analysed. Then, the effect of phase
shift on the mutual inductance is investigated. An idea for the control of the ratio
between currents of both circuits of a line is presented.

Key words: Coupling, mutual inductance, magnetic field, transmission, long lines,
spacing, transposition, power, configuration, telegraphic equations.

INTRODUCTION

It has been pointed out that UHV transmission systems up to 1600
kV are technically feasible and environmental concerns would not
be an obst.cle to their construction. With the movement to these
very high transmission voltages, some traditional relationships may be
changed significantly1’2. For example, at voltages such as 220 kV for
transmission, the cost of both towers and insulators is approximately
equivalent to the cost of the conductor system. Studies have showr
that the electric strength of air gaps between phase bundles and
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ground structures or the ground conductor is increased with larger
bundle radius or number of subconductors3’4. The situation will be
different at UHV levels where crossarmless towers may cost as little
as one third of the cost of conductor bundels. However, the UHV
power transmission will make it possible to maximize the concentra-
tion of power transmissible over a given strip of land and, therefore,
to minimize the occupation of land for power transmission purpose.
UHV transmission appears to offer particular advantages in

those countries where large generation sites are located far from
load centers. A very important factor in the future of UHV trans-
mission, which has not been presented in the past, will be the need to
move large blocks of energy over long distances. This problem is
created due to the change in the world’s fuel situation. An advantage
would be to concentrate energy sources in a few areas particularly
suitable for safety or environmental reasons to avoid constructing
generation plants all over the territory.

Although it has been concluded that UHV DC transmission re-
presents an alternative for very long distances (1000-1500 km), AC
transmission remains the main tool for such a transmission1.

PROBLEM FORMULATION

The subject of power transmission over long distances has been
studied5-8 and different configurations for the conductors of phases
of such long transmission lines have been tried5. The single line
diagram for these suggested double circuit lines is given in Figure 1s.
For exact results, the equivalent circuit for the given single line
diagram of Figure 1 can be represented for an incremental distance
dx as shown in Figure 2. The phases of the first circuit A, B and C

FIGURE Single line diagram for the studied type of lines.
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,I

FIGURE 2 The equivalent circuit for a section dx of the proposed transmission line.
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are connected only to the generating end with an opened receiving
end, while the phases of second circuit a, b and c are connected to
the load at the receiving end with an opened sending end. This
concept can be summaried as the mutual effect between both circuits
for each cosequent phases A-a, B-b and C-c. Also, the mutual
capacitance Cnm and the mutual inductance Mnm between phases n
and m must be accounted for.

CONFIGURATIONS OF CONDUCTORS

Since the mutual effect should be considered for power transmission,
various arrangements for conductors of phases must be studied. Dif-
ferent distributions for conductors of both circuits are shown in Figure
36. The spacing between phases of Figure 3,a may be large due to
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FIGURE 3 Different configurations for phases of the suggested type of transmission
lines.
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the placement of all phases on the same circle. Another efficient ar-
rangement with the given single line diagram of Figure 1 was pro-
posed as shown in Figure 3,b while the best configuration for the
conductors of phases appears to be the so-called coaxial arrange-
ment of Figure 3,cS.This geometry may be modified in the present
research in the form of Figure 3,d. This means an increase in the
number of conductors per each phase so that each-phase may be
approximated in a cylinderical form. The inner phases will be a, b
and c with n2 conductors per phase in a circular shape. Also, the
outer phases A, B and C will be located in a circle with na con-
ductors per phase.

VOLTAGE AND CURRENT

The telegraphic equations of a line for voltage V(x) and current I(x)
at a distance x as a function of main parameters (resistance R,
inductance L, conductance G and capacitance C) may be expressed
in the form9:

6

-dVn(x)/dx (Rnn + jwLnn)In(x) + jwMnmlm(x)
m=l
m=#n

-dIn(x)/dx Gnn + jwCnn + (Gnm + jWfnm) Vn(X)
m=l

(1)

6

(Gnm q-jwCnm)Vm(x)
m=l
m=/=n

where w is the angular frequency.
For the simple ordinary single circuit transmission lines, these

equations can be transformed into the form"

82

dx2[V(x)] [Zl[Yl[V(x)]

82

dx--[I(x)l [Y][Zl[I(x)l

(2)
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where the matrices of series impedance [Z] and shunt admittance
[Y] may be defined as

[Z] --[R + jwL]

[Y]- [G + jwC]

In these equations the mutual effect between circuits is absent.
It must be noted that the solution of equations (2) may be given in

the general form9:

[V(x)] [cosh b(1- x)][V(1)] + [Zc][sinh b(1- x)][I(1)]

[I(x)] [Zc]-l[sinh b(1 x)][V(1)] + [cosh b(1 x)][I(1)]
(3)

where b propagation coefficient
V(1) the matrix of voltage at receiving end of a line
I(1) the matrix of current at receiving end of a line
Zc the matrix of characteristic impedance of a line

the line length

Similarly, the general solution for the fundamental telegraphic
equations (1) for the suggested double circuit transmission lines can
be deduced. This process was explained in in detail (See Appendix).
Then, the general expressions for voltage and current in both circuits
of a line may be formulated asS:

VA (X) A1 cosh blX + B1 sinh bx + C cosh b2X + D1 sinh b2x

Va(X) A2 cosh blX + B2 sinh blX + C2 cosh b2x + D2 sinh b2x

IA(X) A3 cosh blX + B3 sinh blX + C3 cosh b2x + D3 sinh b2x

Ia(X) A4 cosh blX + B4 sinh blX + C4 cosh b2X + D4 sinh b2x
(4)

The integration constants A1,2,3,4, B1,2,3,4, C1,2,3,4 and D1,2,3,4 can
be determined in terms of current I(0) and voltage V(0) at the
generating end for the line on the basis of terminal conditions5. If



COUPLING BETWEEN SEPARATE PHASES OF COAXIAL DOUBLE CIRCUIT 91

the mutual effect between the two circuits disappears, the deduced
equations (4) will be the same of ordinary line9.

It can be seen that there are two propagation coefficients ba
and b2 as concluded previously5’6’1. Also, each circuit of a line is
considered completely transposed. The propagation coefficients can
be expressed as

bl V(Ul t_ n2)/2 + V(H n2)2/4--nlu2

b2 l/(Ul + n2)/2- ]/(Ul- n2)2/4-nlu2

where H1 -(ZlYl -k- ZlYl2)
u2 -(Z2y2 + Z2Y12)
nl -(ZlYl2 + Z12Y2)
n2 (Z2Y12 "+" Z12Yl)

Hence, voltage V1 current I1 of the first circuit may be determined in
the final form6:

Vl(X) cosh bl(1- X)Vl(1) -t-
sinh bl(1 x)

I1 (1)blml

II(X)

+ cosh b2(1 x)V2(1) + sinh b2(1- x)
b2m2 12(1)

bm(sinh bl(1 X)Vl(1) + cosh bl(1 x) ii(1)
blml

+ b2m2(sinh b2(1- x)V2(1) + cosh b2(1- x)
b2m2

I2(1)

where ml -1/Zl Zl2fl/Zl
me 1/Z1 Zi2f2./Zl
fl Z12(1 -ql)/(Z2- Z2)
f2 Z12(1 -q2)/(Z2 Z122)
ql (bl4 u2 n21)/2nau
q2 (b- Ul n2)/2nul

Similarly for the second circuit, the voltage g2 as well as the current

I2 can be expressed6.
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It can be seen that the general constants for such a line are
highly depending on the fundamental parameters. Also, their values
have been previously checked for various conditions5’6’1. The
determined equations for voltage and current of the second circuit
will become the same as that for the first circuit only if the mutual
effect between both circuits is neglected.

Mutual Effect
For,simplicity, the conductors of the inner phases a, b, and c will be
assumed as a single equivalent conductor with radius r (Figure 4).
The ratio between currents may be related by

ia/iA N ei (6)

where N is a scaler value for the ratio between the magnitudes of
both currents and Q will be the phase shift between them. The
magnitude of both currents at no load was calculated as given in
Figure 56. The ratio N is computed as shown in Figure 5. This means
that the value N is distance dependent. On the other hand it was
concluded that the angle Q is a constant along the line6.

In order to find the suitable spacing between phases of the given

I-I2

be/’kq, ,

FIGURE 4 The study of mutual effect at a distance d from the phase a.
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FIGURE 5 The distribution of current ratio along the line at a no load operation
based on ref11.

coaxial transmission line, the magnetic field between each of the two
respective phases should be estimated. Then at a point F, which is
located at a distance d from phase a as shown in Figure 4,a, the
strength of magnetic field lid may be evaluated by

n nl nl

ILId ILia -I- ILIiA d- ILIb d- ILIiB "" ILIc + ILIic (7)
i=l i=l i=l

In this equation, the phases a, b, and c are simulated by a solid
conductor as given above. The mutual effect of phases A and a at
point F must disappear in order to get the required suitable spacing.

As the total inductance between point F and phases A and a
becomes zero, the mutual effect due to the other two groups of
phases will also become zero. Therefore, only the first two terms of
the right hand side of equation (7) could be considered for the next
analysis. The total field intensity at a point F may be approximated
as the deduced part of field I:-I. This will be expressed mathematically
by:

nl

ILia d- ILIiA (8)
i=l

Also, it is known that the magnetic field intesity I:-Iz at a point
located at a distance z from the wire carrying capacity I can be
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expressed by1’12:

I2Iz [/2z (9)

This equation is valid for all points inside the magnetic field. Thus,
the given approximated formula for the field intesity of a point at a
distance d from the phases A and a (See Figure 4) will be formulated
according to equation (10) as:

nl

ILI ia/2gd + 2 (iA/2gnldi) (10)
i=l

where the distance di; 1 6; can be evaluated mathematically
through the known dimensions rl and d. Therefore, the approxi-
mated value of field intesity H may be formulated as

nl

I2I ([A/2gnl) NnaeJQ/d + ’. 1/1/ d2 + r 2 2dr1 cos
i=1

2(i- 1),)nl
(11)

It should be noted that the conductors na of phase A must be com-
pletely transposed as shown in Figure 6. But this process leads to
an equivalent field which will be concentrated at the approximate
center of the circle. In this case the total equivalent field intensity
may be deduced as

ISI IA(Nnl ejQ + 1)/(2nld) (12)

Equation (12) appears to be a special case of equation (11). There-
fore, the general formula of equation (12) may be used in order to
evaluate the linkage flux for the studied transmission line with a
length t. Then, the total flux including internal leakage and external
linkage fluxes is defined as

d d

!} f ldzf f/*oI:Idze (13)
-r -r
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FIGURE 6 The transposition diagram for the conductors of phases of the coaxial
type transmission lines.

where t --the flux density
/o- the permeability of free space.

Therefore, the magnetic flux can be finally estimated in the form

27r (NeJOlnz) + (l/n1) ln(21/d2 + r2a- 2dra cos a

+ 2d(1 ra cos c))] }
--rl

(14)

where a 2:r(i 1)/nl

COUPLING BETWEEN PHASES

In order to find the mutual inductance M due to linkage flux between
the groups of conductors B-b and A-a, integration limits of S + ra
and S + 3rl must be inserted. The mutual inductance per unit length
may be deduced in the form

M (/Zo/2z0(NdQln[(3 + k)/(1 + k)l

ln(4 + k)(7 + 5k + k2)(13 + 7k + k2),]+ (1/6) k(1 + k + k2)(3 + 3k + k2) (15)
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where k S/r

Now, the dependency of mutual inductance between phases
should be investigated in detail. However, the value of mutual in-
ductance M is influenced by the ratio between the magnitudes of cur-
rents Ia/IA, where the currents are varying with the change of point
of measurement at different conditions of operation (See Figure 5).
Also, the mutual inductance depends on the ratio k as shown from
equation (15) so that this ratio may be controlled to get the required
spading. It can be noted that, as concluded previously5, the phase
angle Q appears to be constant along all points of a line.

The phase shift between currents appears to be a constant alonge
the line and its value will be initially considered as zero. This means
that both currents are in phase. In this case, the dependency of
mutual inductance between phases A-a and B-b can be estimated.
The results of calculations are plotted in Figure 7 at different values

0.1

0.5

i- KS relati

FIGURE 7 The calculated values of coefficient (KS) at zero angle.

0.1

l0

0.15

I0
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of ratio k as well as for various ratios of currents N. For small ratios
of currents, the results are listed in Table I. For all above results,
equation (15) is transformed into a simple formula as

M (o/2)KS (16)

where KS is a computed function while the term o/2 is constant.
This means that the mutual inductance can be represented through
the value KS.

Therefore, the value of mutual inductance is highly dependent on
the spacing between the group of conductors of phases A-a and B-b
so that the suitable required spacing S can be determined. This
effect is given in Table II, which illustrates the percentage decrease
in the value of the mutual inductive coupling between groups of
phases relative to the base ratio k of 0.5 at different ratios of
currents.

The above calculations are repeated for the condition of 90
phase shift Q as shown in Figure 8. It should be noted that the
relation between the ratio N and the function KS becomes nonlinear
although it is linear for zero phase shift (See Figure 7). This
phenomena occurs since the phase angle is contineously changing.
Also, the negative angle causes a variation in the direction of KS.
The curves in Figure 8 are the absolute values. At a constant ratio of
N in the region of 0.01-0.1, the computed values of KS are listed in
Table III.

TABLE
The computed values of the function KS at small ratios of currents (zero phase shift)

N 0.01 0.05 0.08 0.10
k

0.5 0.871 0.905 0.930 0.947
1.0 0.702 0.730 0.750 0.764
1.5 0.594 0.618 0.635 0.647
2.0 0.517 0.538 0.553 0.563
3.0 0.409 0.426 0.438 0.446
4.0 0.340 0.354 0.364 0.371
5.0 0.290 0.303 0.311 0.317
6.0 0.255 0.265 0.272 0.277
8.0 0.202 0.210 0.216 0.220
10 0.169 0.176 0.181 0.184
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TABLE II
The percentage decrease in the value of mutual inductance between the nearest

groups of phases

N
k

0.01 0.05 0.10 0.40 0.80 1.0

24.4 23.9 23.9 23.8 23.4 23.6
1.5 46.6 46.4 46.4 45.9 45.5. 45.3
2 68.5 68.2 48.2 47.9 67.6 67.5
3 112.9 112.4 111.3 110.2 110.4 110.1
4 156.2 155.6 155.3 154.1 153.2 152.9
5 199.3 198.7 198.7 197.5 196.5 196.2
6 241.6 241.5 241.9 241.5 241.2 241.0
8 331.2 330.9 330.5 329.3 328.3 328.0
10 415.4 414.2 414.7 411.5 408.9 408.0

1.0

0.8

0.6

0.4

02

0o
1.2 I,

r k
I0

FIGURE 8 The dependency of coefficient KS on factors k and N at a constant angle
Q of 90.
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TABLE III
The calculated function KS for various ratios k at a constant angle Q of 180

k 0.5 2 3 4 6 8 10
N

0.01 0.854 0.688 0.507 0.401 0.334 0.250 0.198 0.165
0.10 0.777 0.626 0.461 0.364 0.303 0.227 0.180 0.150

For a constant phase angle of 180, the results are plotted in
Figure 9. The relation between variable KS and ratio N is again
linear but with a reverse direction. This may be due to the reverse of
the current vector in phase with respect to the other. Also, the curve
for the unity current ratio is approximately at the k-axis.

THE EFFECT OF PHASE SHIFT

The effect of phase shift Q on the mutual inductance between the
two groups is shown in Figure 10-Figure 12. The curves show the

0o0

I0

8

6

FIGURE 9 The values of KS at a constant phase angle of 180.
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FIGURE 10 The relationship between values of coefficient KS and factors k and Q
at different current ratios.

absolute magnitude of the vector KS at different ratios of currents
for various values of ratio k. For smaller ratios of currents (0.01 and
0.1), the calculated absolute values of variable KS are listed in
Table IV.

In Table IV the ratios of currents of 0.01 up to 0.1 approximate
straight lines. At large values of ratio of currents N the curves give
more deflection as shown in Figure 10-Figure 12. The ratio of
currents cannot reach unity since the current IA appears to be the
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)

FIGURE 11 The angle characteristics for the coefficient KS at a constant current
ratio of 0.8.

source for the current Ia. The small ratios of currents mean a degree
of mutual coupling, and must be excluded from the practical point of
view. Therefore, the suitable values of ratio N may be in the region
of 0.4-0.8.

It can be concluded that the mutual inductance does not depend
upon the phase shift Q at small ratios of currents but is highly
depending on phase shift at high ratios N. At an angle of 180, the
mutual inductance is minimum and may be zero.
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FIGURE 12 The values of KS at various values of k.

TABLE IV
The calculated values of the vector KS at different ratios of currents with

various ratios k

N 0.01 0.1

Q O.0 90 180 O.0 90 180
k

1.5 0.871 0.862 0.854 0.947 0.866 0.777
1.0 0.702 0.695 0.688 0.764 0.698 0.626
2.0 0.517 0.512 0.507 0.563 0.514 0.461
4.0 0.340 0.338 0.334 0.371 0.339 0.303
6.0 0.255 0.253 0.250 0.277 0.254 0.227
8.0 0.202 0.200 0.198 0.220 0.201 0.180

10.0 0.169 0.167 0.165 0.184 0.168 0.150
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THE CONTROL OF RATIO OF CURRENTS

As shown in Figure 5, the current ratio is highly varied and its values
become infinity at the receiving end due to zero current IA at the no-
load condition. Thus, a continuously connected impedance must be
connected at the receiving end. Using the external capacitance Cex
at the receiving end the no load zero current will disappear com-
pletely. This may modify somewhat the current distribution along
the conductor A.

Similarly, an external impedance Zs may be connected at the
sending end in order to minimize the variation in current Ia.
Consequently, the ratio of currents N may be varied in a smaller
region so that the proposed line will have the connection shown in
Figure 13. Thus, the ratio between currents of both circuits can be
controlled.

Connection ofPhases
Since the variation in the mutual inductive coupling between the
groups of phases is increased with higher ratio of currents, replace-
ment of the connection for the groups of phases will lead to a signifi-
cant increase of the ratio of currents N. This ratio should be greater
than unity. In this case phase a must be connected to the generator
end while phase A will be connected to the load. Therefore, the
larger ratio of currents may be introduced in the investigation.
A zero phase shift (Q 0) is assumed and the magnitudes of

FIGURE 13 The single line diagram for the deduced modified line with limited
distribution of current ratio.



104 M. HAMED

vector KS are estimated at different values of both ratios of currents
N and distances k. The results are plotted in Figure 14. It is impor-
tant to mention that the vector KS is still linearly dependent on the
ratio of currents N at constant ratio of distances k. Also, calcula-
tions at other values of phase shift are illustrated in Figure 15 and in
Figure 16. Two cases as listed in Table V.

K elatimt
k- KS relatiea

lO

i0 8 6 4 2 0
Cxs)

FIGURE 14 The calculated values of the coefficient KS at zero angle Q for different
current ratios and distances.

TABLE V
The calculated magnitudes of vector KS at different conditions

ratio of ratio of
currents distances

(N) phase (k)
shift

4 8

90
180

1.697
1.401
1.023

1.000
0.825
0.600

90
180

2.037
1.733
1.363

1.200
1.020
0.800
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FIGURE 15 The dependency of values KS on the variation of angle Q.
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for N 3
for N $
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18o 2
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" ’-..

’0 360 90* L80
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FIGURE 16 The calculated coefficient KS with the variation of angle Q at different
values of current ratios.
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From the above study it can be seen from Figures 15, 16 and
Table V that:

1. the mutual coupling is still minimum at phase shift of 180 for
each constant ratio of distances k;

2. the inductive coupling is increased with the decrease in the
ratio of distances k;

3. the coupling at ratio of currents more than unity is greater
than that at ratio of currents less than unity;

4. at large ratios of distances k, the minimum coupling with zero
angle of phase shift is slowly moved. It can be considered as a
constant.

5. the same value of coupling is depending on the ratio of
currents N as well as on the ratio of distances k and on the
phase shift between both currents in the same moment.

Practically, the phase shift may be varied around 90 since the
coupling is achieved using the reactive mutual effect. This means
that the connection condition of 90 phase shift appears to be more
practicable.

CONCLUSIONS

The mutual coupling between phases of coaxial overhead transmis-
sion lines is constant at small ratios of currents and independent on
the phase shift between currents. The mutual coupling between
groups of phases is highly varied with the change in the phase shift
between the currents at large ratios of currents.

The mutual inductance between groups of phases of coaxial lines
is highly increased with the increase of current ratio.

The ratio of currents may be controlled by using the compensating
impedances at both ends of the double circuit transmission lines so
that the mutual inductance between phases can be controlled.

The mutual coupling between groups of phases depends on the
ratio of currents, ratio of distances, and on the phase shift between
currents.
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APPENDIX1 The Mathematical Analysis

As the spacing of the conductors is symmetrical and the phase
voltages applied to conductors A, B, and C are balanced, the relation
between the charges Q on the conductors and the voltages V applied
to the conductors is given by

VA- 2QALn(-)- 2QaLn2

ga
(1)

where d is the distance between adjacent conductors and r is the
radius of the conductors.

From equations (1), the following equations can be deduced:

diA -YsVAdx

dia -YsVa- YmVAdx

dVA ZsiA Zmiadx

(2)

dVa _Zsia ZmiAdx

where the self and mutual admittances Ys and Ym and the self and
mutual impedances Z and Zm of the line can be computed.

Differentiating equations (2) with respect to x and then differen-
tiating again twice more, we have

d4VA 2as2dzVA VA(a4m as4) 0 (3)dx4 dx2

Equation (3) has the general solution:
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VA(X) A. cosh alx + B sinh alx + C. cosh a2x + D sinh a2x

Va(X) A. cosh alx + B sinh alx C. cosh a2x D sinh a2x
(4)

where the first and second propagation coefficients ala and a2 are
given in the form

2 I/as2- amal VasE + am and a2
2

Integrating equations (2), the current at a point x of the line will be

ia(X)
A Bya Cy2 Dy2

-a--Y11 sinh alx cosh alx + sinh a2x + cosh
al a2 a2

a2x

iA(X) -Aylsinh ax + By1
cosh alx

Cy2
sinh a2x Dy2cosh a2xal al a2 a2

(5)

where Yl Ys + Ym and Y2 Ys- Ym

These equations (4) and (5) are the general equations for the
suggested coaxial transmission line. Only the constants A, B, C, and
D are unknown, since all the other constants can be determined from
the parameters of the transmission line.

In order to express the general equations in terms of the
parameters of the circuit, the generator voltage VG and the generator
current IG only, the constants A, B, C, and D in these terms must be
computed using the terminal conditions.

As we have all the four constants expressed in terms of the
generator-voltage and current and the parameters of the transmission
line, then using equation (4) for voltages VA and Va and equation (5)
for currents IA and ia, the general equations for the coaxial lines can
be obtained in the final form as:
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IG{al a2 a2x)VA(X A. cosh alx + C. cosh azx 2 \Yl
sinh alx 4- --’Y2 sinh

Iofa_.!.a a2 a2x)Va(x) A" cosh alx C. cosh a2x 2 \Ya
sinh ax --’Y2 sinh

(6)
A C IoIA(X) --’al Y sinh alx . Y2" sinh azx 4- -- maia(X)
A C I

-a" Yl" sinh alx + . Y2" sinh azx + -m3
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