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ABSTRACT

A computationally-efficient approach to
the calculation of the transient field of an
acoustic radiator was developed. With this
approach, a planar or curved source, ra-
diating either continuous or pulsed waves,
is divided into a finite number of shifted
and/or rotated versions of an incremental
source such that the Fraunhofer approxima-
tion holds at each field point. The acoustic
field from the incremental source is given
by a 2-D spatial Fourier transform. The
diffraction transfer function of the entire
source can be expressed as a sum of Fraun-
hofer diffraction pattern of the incremen-
tal sources with the appropriate coordinate
transformations for the particular geometry
of the radiator. For a given spectrum of ra-
diator velocity, the transient field can be
computed directly in the frequency domain
using the diffraction transfer function. To
determine the accuracy of the proposed ap-
proach, the impulse response was derived
using the inverse Fourier transform. The
results obtained agree well with published
data obtained using the impulse response
approach. The computational efficiency of
the proposed method compares favorably
to those of the point source method and the
impulse response approach.
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. INTRODUCTION

The calculation of the transient acoustic
field produced by an ultrasonic transducer has
been the subject of numerous investigations for
the past two decades. To date, the most efficient
analytic tool for this calculation on uniformly
vibrating pistons is the impulse response ap-
proach by Stepanishen [1,2]. This approach
has also been applied to the case of nonuni-
form axisymmetric vibrating pistons [3-5]. For
both of these cases the acoustic transient field
was related to the derivative of the radiating
source velocity waveform by means of tempo-
Tal convolution with an impulse response func-
tion. This function took into account the geo-
metrical shape of the vibrating surface, the po-
sition in space of the observation point. The
spatial impulse response, as a function of time
for a fixed field point, has been determined in
closed form for circular pistons [6], rectangu-
lar sources [7], conical radiators [8], and for
spherical sources [9-11].

To calculate the acoustic transient field, an
integral computation, which can be evaluated
either numerically [6,9] or by means of a fast
Fourier transform (FFT) algorithm [2], is re-
quired for each data point in the field. In either
case, it is necessary to sample the functions
mvolved in the convolution in order to per-
form the numerical integration. Unfortunately,
the discontinuities and break-point character-
istics of the impulse response complicate this
procedure. Moreover, the field calculation is

ETRI Journal, volume 16, number 1, April 1994

more intensive in the case of an arbitrary ex-
citation, especially when the amplitude is not
an analytic function [12]. To reduce the op-

erations involved in the convolutional integral,

the monodimensional radiating surface can be
expressed as a sum of small elements so that
the impulse response is simply given by the
sum of delta functions properly time shifted
and weighted [13]. However, in order to de-
rive the impulse response for arbitrary shaped
radiators, a laborious procedure resorting to
geometric interpretation is necessary. In many
cases, the off-axis impulse response for such
radiators is not amendable to an analytic solu-
tion, and thus must be computed by numerical
methods [8]. In addition, this approach is not
readily adaptable to consider the effects due to
attenuation and dispersion of the propagating
medium on radiating fields.

Among other approaches developed for
acoustic field calculations, one of the more no-
table is based on Huygens’ principle and uses a
double numerical integration of the Rayleigh-
Sommerfeld diffraction integral. For the nu-
merical integration, the surface of the radiator
was divided into incremental point sources for
a circular piston [14]. The total field is then ex-
pressed as a sum of each contributions, spheri-
cal wavefront, from the point sources. To obey
the sampling theorem in the temporal and spa-
tial domains, the size of the incremental point
source should be at most (A /4)? for the farfield
and even smaller for nearfield (A=wavelength
of sound in the propagating medium). Thus,
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even with this approximation, this approach is
still computationally intensive due to the large
number of point sources. With an assumption
of a sine-modulated Gaussian pulsed excita-
tion, this approach was applied to calculate the
transient field from various shapes of radiators
[15,16], with some loss in accuracy for the case
of curved radiators because the normal direc-
tions of the particle velocity on the radiating
surface are not identical, and attenuating me-
dia [17]. A A
' In this -paper, a computationally efficient
method, the diffraction transfer function ap-
proach, similar to the space linear system ap-
proach of Fourier optics [18], to an analysis of
wideband diffraction problems using the spa-
tial Fourier transform and coordinates trans-
formations is proposed. This approach can be
applied to any shape of radiator driven by con-
tinuous wave (CW) or pulsed excitations. Both
amplitude and time-delay control, as well as
nonuniform spatial efficiencies, can easily be
considered with this approach. Quantitative
comparisons of the computational efficiency
and accuracy of the proposed method with the
point source method and the impulse response
. approach are made to demonstrate its advan-
tages.

[I. THEORY

For any plane piston radiator of area S
surrounded by an infinite plane rigid baffle
in an unbounded fluid, the velocity potential
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at the observation point r is given by [19]

¢(r’t)=if vn(rs,t—r/c)ds
27'[ Ky r

where r =| r—rg | is the distance be-

Y

tween the field point r and the source point
rs. The velocity of the piston, v,(:), in the
direction normal to the source plane is given by

vn(rs, 1) =vo(£)s(x, y), )

where the time dependence, v, (), is a function
of the input signal and electromechanical prop-
erties of the transducer, while the spatial func-
tion, s(x, y), depends on the sensitivity and
geometrical shape of the radiator.
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source{ plane

Fig. 1. The geometry for the diffraction calculation from

a rectangular source.

To calculate the surface integral, the radi-
ating surface is divided into a number of in-
cremental sources which are too large to be
represented as point sources but small enough
so that at the field point r, the computationally
efficient Fraunhofer diffraction approximation
can be applied. Fig. 1 shows the geometry for
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Fig. 2. Coordinate transformations used for field calculations (a) shift, (b) x — y rotation, (¢) y — z rotation.

the diffraction calculation from an incremental
source centered at the origin of the coordinates
axes. Since z < R, the width, Aw, and height,
Ah, of the incremental source which satisfy>the
far-field condition are given by

Aw, Ah <,/4)z/F,

where A is the wavelength and the constant F

(3

represents the distance from the source to the
field point relative to the distance to the near-
far field transition for a source of size Aw, Ak
[20]. Thus, the size of the incremental source
1s determined by the radiated wavelength and
the z distance of the field point. As F becomes
large, the incremental source looks more like a
point source.

The radiator surface can be constructed
with incremental sources which are shifted
and/or rotated versions of the source in Fig. 1.
The old and new coordinates are (x, y, z) and
«,y.2), respectively. Fig. 2(a) shows the

shift of an incremental source to (X, y). The
shift operator can be expressed by the delta
function defined by

1: if (x! .V):(xma Ym)
(X ~=Xm,y—yn)= :

0, otherwise.
4)
To describe a rotation, as illustrated in
Fig. 2(b), cylindrical coordinates are used. In
this example, the incremental source is rotated
through a positive (counter-clockwise) an-
gle of ¥m- The x-y rotation operator is given by

SIn ¥, €coS Yy, 0
Ry, =| —cos Y SiD Yy O (5)

0 0 1

For curved axisymmetric radiators, an addi-
tional rotation, as shown in Fig. 2(c), is nec-
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essary due to the 3-D geometry of the radiator
surface. The y-z rotation operator is given by
1 0 0
Rg,=| 0 cos6, —sinb, |- (6)

0 sin6, cos0,

The normal vector at the center of the trans-
formed incremental source, n,, can be express-
ed using the rotation operation on the normal
vector, n,, of the incremental source as

n =Ry, (Rs,(n))
= — sin 6, (cos Y, X+ sin ¥/, ¥)
+cos6,z, | ) @)

where 0 <y, < 27 for axisymmetric radiators
and 6,, depends on the curvature function of ra-
diator. For the planar radiators, 6, —0, n, —z.

1. Continuous Excitation

A time-independent expression of the ve-

locity potential of Eq. (1) for a sinusoidal field -

reduces to

Vo e—(oH—jk)r
(D(r):—/s(x,y)—dxdy, )
2 Jg r

where k(w) = w/c(w) is the wave number,
a(w) is the attenuation coefficient, and v,
is the complex velocity amplitude. If the
incremental source is an uniform rectangular
source, then

y

5 &)

s(x,y) =rect(—,
w

~ To find an expression for the acoustic field
which can be easily evaluated numerically,
suitable approximations and their regions of
applicability must be defined. In the far-field
region where the condition of Eq. (3) is satis-
fied, the omission of second and higher order
terms of a binomial expansion of » produces a
negligible phase error and yields

e @R & g@HiRR=TFE =] ()

* where R=/ x} + y% +z?. Using this approx-

imation and assuming 1/r =~ 1/R, Eq. (8) be-

comes

—(a+jE)R pAw/2 Yoex

Vg€ :

Po(r) = ———— f @i gy

2rR - J_puwp2
ARJ2 ey

x / DT gy (11)
—AR)2 '

The assumption that e**f2¥/?R ~ 1 and the
equivalent condition for y are used to simplify
the two integrals. The velocity potential from
an incremental source can now be expressed
by its 2-D spatial Fourier transform

Flrect(—, —)}

D)= ,
() 27R Aw’ Ak

_Xf e XS
'f"_xR’fy'"xR

Vo AAe @tibR (waf)
=T 2R YRR
. Ahyg
x sinc( TR ), (12)

where f, and f, are the spatial frequencies
in the x and y dimensions, respectively. This
simple Fourier expression is used as a basis
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function for synthesizing the total field pattern.
The total velocity potential ¢ at a point r in the
field is the sum of the pressure contributed from
each incremental source

N-1M-

<D(xyz)-22d> ®,y.2), (13)

n=0 m=0

where -MN 1s the number of incremental.

sources of size AA = AwAh. The necessary
transformations for the evaluation of ®, at each
incremental sources are the transpose operators
which give the normal vector of the elementary
source

R {Ry,, (n:}} =n,. (14)

- 2. Pulsed Excitation

For a pulsed excitation, the spatial impulse
response has been used to compute the field
[1,3-13]. The following analysis is based on
a frequency domain approach using the trans-
fer function of the impulse response [2]. The
convolution integral can be evaluated directly
in the frequency domain to obtain the time de-
pendent pressure. The instantaneous velocity
potential at a point in the frequency domain can
be written as

O(r,w)=V(0)H(r,w), (15)

where V (w) is the spectrum of the excitation
signal v, (r) in Eq. (2), and H (r, w), the diffrac-
tion transfer function, is the Fourier transform
of the impulse response, A(r, ¢). -The pressure
in the frequency domain is the diffraction trans-
fer function, developed in Eq. (13), weighted
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by the spectral shape of radiator velocity,

P(r,w) = jpod(r,w)
=jpoV(w)H{x, w). (16)

Thus, if H (r, w) is computed at every harmonic
frequency, wg =2nk/L, where L is the num-
ber of decomposed harmonic frequencies, the
Fourier transform of the pressure field for a
pulse-excited source can be found. The evalu-
ation of H (r, w) can be simplified if only those
portions of the radiator spectrum within 3-dB
or 6-dB of the fundamental are considered for
the synthesis of P(r,w). The instantaneous
field pressure is given by the inverse Fourier
transform, -

px, 1) =F HP(r, w)}. (17)

As shown in Eq. (3), the size of the in-
cremental source varies only with the z field
position for the CW excitation. However, for
the pulsed excitation, the size of the incremen-
tal source depends both on the wavelength and
z position of the field point

x
Aw,Ahg,/4;Z, (18)

where Ay =2mc¢/wy. Therefore, the the num-
ber of harmonic frequencies included in the

evaluation of the diffraction transfer function
and F control the trade-off between the com-
putational efficiency and accuracy.

For medical ultrasonic imaging and nonde
structive testing, theattenuation of the radiation

field and resulting shift in phase velocity are
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important features. The influence of attenua-
tion and dispersion in the propagating medium
on the radiation field can be considered by

including the complex wave number k into Eq.
(12),

k() =k() — ()
=w/c(w)— jo(w), (19)

where a(w) is the frequency dependent atten-
uation coefficient and (w) is the phase velocity
of the propagating medium.

1. SOURCE GEOMETRY
EXAMPLES

1. Planar Radiators

A Rectaﬁgular Sources

The rectangular radiator of width 2a and
height 2b, shown in Fig. 3(a), is given by a
finite number of shifted incremental sources

s(rg)—rect(— E)
N—1M—
Z Z (X—xm,y—)’n),
n=0 m=0

(20)

where the numbers of divisions are

M=2a/Aw, N=2b/Ah,

where Aw and Ak are chosen to satisfy Eq. (3)
and yield integer values for M and N. The
center of an incremental source is expressed by
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/e CXM,y'I)

/

- a

1))

Fig.3. Geometry used for calculation of an acoustic field
from planar radiators. (a) rectangular, (b) circular,

Xm=—a+(m+0.35)Aw,

Yu=—b+(n+0.5) Ah

and the field points in the new coordinates are
given by
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x’=Xf '_xm,
y :)’f“}’ns
z’=2f. 21

A similar expression was used by Ocheltree and
Frizzell for the field calculation of a rectangular
source [20]. This method can be easily adapted
to any shape of planar linear array transducer
by modifying Eq. (2).

B. Circular Sources

Cylindfical coordinates are used to de-

scribe planar axisymmetric radiators. An
annular radiator with inner radius « and
outer radius b, as shown in Fig. 3(b), can be
approximated by a finite number of shifted
and rotated incremental sources

N-1M- y '
s(rs)—;”;)m,.{rect(r AL
*%8(r — 1y, ¥ —VYm), (22)

where the integer numbers of divisions are

M=2nr,/Aw,
N=(b—a)/Ah.

The center of an incremental source is ex-
pressed by

rn=a+(n-+0.5)Ah,
Ym=(m+0.5)Aw/r,

and the field points in the new coordinates are
given by
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X Xf =Ty COS Yy,

yl = I'é‘/,m - .Vf —r Sin -Wm . (23)
ZI Zf

This method can be easily adapted to any shape
of planar axisymmetric radiator including an
annular array.

2. Curved Radiators

Only conical and spherical surfaces will
be considered here, but this approach can be
applied to any shape of curved axisymmetric
radiators [21]. Using cylindrical coordinates,
an axisymmetric curved radiator can be
approximated by a finite number of shifted
and rotated incremental sources as

N-1M-1 x y
SE=D_ > Ryn (Rg,frect(—. =)}

n=0 m=0

*k¥8(r —rp, U —Ym,z—2,). (24)

For the case of a curved radiator, it is as-
sumed that the surface of the radiator is only
slightly curved, where the diameter of the ra-
diator is large compared to the wavelength and
the radiator depth, so that the secondary diffrac-
tion caused by the curvature of the radiator is
negligible [5,11]. Thus, the velocity poten-
tial can be represented approximately by the
Rayleigh integral.

A. Conical Radiators
A conical radiator of angle 6,, =6, with inner
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g, 4. Geometry used for calculation of the acoustic
fields from curved axisymetric radiators. (a) con-
ical, (b) spherical radiator.

and outer radii ry and r,, is shown in cross
section in Fig. 4(a). Eq. (3) can not be used
directly, due to the 3-D shape of the radia-
tor, to determine the size of the incremental
source. Therefore, z in Eq. (3) is replaced by
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[ which is the minimum distance between the
field points and the radiator surface. This sub-
stitution yields

M=2ar,/Aw,
N =(22—2z1)/(sin6 Ah).

The center of an incremental source is ex-

pressed by
Zn
'n=—"H1,
tanf
(m+0.5)Aw
Ym=———,
T

zZp=21+m~+0.5)Ahsing -

and the field points in the new coordinates are
given by

7

X Xf =Ty, COS Yy,

y' =Rg, Ry, - Yr—rasing, |- (25)

7

F4 Zf—2Zn

B. Spherical Radiator

A spherical radiator with a radius of cur-
vature a, and inner and outer radii r; and r, is
shown in cross section in Fig. 4(b). The num-
bers of divisions for this case are determined

-1n the same manner as for the conical radiator.

Thus, M and N are given by

M =2xnr,/Aw,
N =a(cos  ((a —z2)/a)
—cos~}((a —z1)/a))/ Ah.
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Fig. 5. Impulse response of a circular piston radiator (a =0, z/b= 5), for several off-axis distances r, as a function of

normalized time. Impulse response approach (solid)

The center of an incremental source is ex-

pressed by
rp=asing,,
(m+0.5)Aw
Wm e -____——7

T'n
Zy =a(1 ——COSQ,,),

6, =cos™" ((a—zy)/a)+ ﬂ(ifiﬁ

and the field points in the new coordinates are
given by Eq. (23).

and diffraction transfer function approach (dashed) curves.
@r/a=12,(b)r/a=09, ©r/a=0.5,(d)r/a=0.0.

IV. SIMULATION RESULTS
AND DISCUSSION

To determine the accuracy of the transient
fields obtained with the proposed approach,
a direct comparison can be made with pub-
lished results obtained using the impulse re-
sponse approach. To accomplish this, V (wy)

~ is set equal to unity in Eg. (14) and sampled

atwg =2n fik/L k=0,1, -+, L/2, where f;
is the sampling frequency. For an L-point real
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| PRESSURE |

Fig. 6. Normalized on-axis response of a circular pis-
ton radiator (@ =0, b=>51) as a function of nor-
malized axial distance Z = zA/b?. (solid: exact
solution; dashed: F=15; dotted: F =10; dashdot:
F=5)

sequence, the Fourier transform is conjugate
symmetric, where

Hk)=H*(L —k),
k=1,---,L/2—1. (26)

The resulting inverse FFT of H (k) yields a fi-
nite duration sequence as one period of circular
periodic sequence, /, with the duration of pe-
riod T =L / f;. This sequence can be expressed
as

ﬁ(r,n), O0<n<lL
h(r,n)= 27

0, otherwise

where

he,my= 3" h(r,n+qL).

g=—00
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Unfortunately, the discontinuities and break-
point characteristics of A(r, ¢) complicate this
procedure. This problem is particularly severe
for field points close to the boundary of the ge-
ometric projection of the source. Therefore,
the sampling rate f; should be high enough to
approximate this sudden slope. If the duration
of the impulse response is greater than T, there
will be overlap of nonzero samples, resulting
in aliasing. Thus, L/ f; should be chosen large
enough to avoid aliasing for the calculation of
the impulse response.

The impulse response of a circular piston
radiator is computed and compared directly
with the exact solutions obtained with the im-
pulse response approach in Fig. 5. The source
geometry and field point are the same as those
considered by Lockwood and Willette [6]. For
this simulation, F = 10, fs = 100 MHz and
L =1024. This figure demonstrates that good
agreement is achieved with the exact solution.
To consider the effect of F on the accuracy
of the proposed method, the normalized axial
pressure for a circular piston radiator with ra-
dius b= 5) was calculated and compared with
the exact solution. Fig. 6 shows that the am-
plitude and location of the minimum and max-
imum match well with the exact solution for
F>10.

The impulse responses with a proposed
method were also computed for rectangular,
conical, and spherical radiators in Figs, 7, 8,
and 9, respectively. For the cases of curved
axisymmetric radiators, f; = 100 MHz and
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Fig. 7. Impulse response of a rectangular piston radiator (a=1mm, b=1.6mm), for z=10.0mm, as a function of time.
@x=1.0,y=20,(b)x=1.0,y=12,(c)x=0.6,y=1.2, (d) x=0.6, y=0.0.

L =2048 points were used. Comparing these
results to those obtained with impulse response
approaches [7,8,11] again revealed that good
agreement is obtained.

To make an estimate of the computational
efficiency of the proposed method relative to
those of the point source method and impulse
response approach, a circular piston radiator
radius of @ is considered. The efficiency of the
proposed approach is greater than that of the
point source method by a factor equivalent to

the ratio of the number of point sources to the
number of incremental sources in a radiator.
As the distance from the radiator increases,
the number of incremental sources required
will decrease by virtue of the relationship
of Eq. (3).
[14], the required number of divisions was
(ma®)/(A/4)? to attain a convergent field. In
the proposed method, the number of divisions
is given by (wa®)/(4Az/F). Thus, for F =10,
the efficiency of the proposed approach is

In the point source method
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Fig. 8. Impulse response of a 45° conical radiator (z; =25 mm, z; = 50 mm) as a function of time. (a)-(d) on the axis.

greater than the point source method over
the region of z > 1/6. The impulse response
approach requires the sampling of the impulse
response in the time domain and a temporal
convolution. The high-speed method proposed
by Lockwood and Willette [6], used a sam-
pling rate of 10 times per cycle of the driving
frequency for a convergent field. Because the
maximum length of the nonconstant part of
the impulse response is 2a/c, the upper bound
on the number of calculations in that method is
10f -2a/c. Thus, the number of calculations
is proportional to a/A, whereas that of the

proposed method is proportional to a?/Az.
Therefore, a rough approximation indicates
the proposed method is more efficient than
the Lockwood and Willette method over
the region z > a/20 for CW excitations and
z > B-L/fs-a/20 for pulsed excitations,
where B [MHz] is the bandwidth of a radiator
employed in the computation. This implies
that a computationally efficient region of the
proposed method decreases as B, L /f;, and a
increases.
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Fig. 9. Impulse response of a spherical radiator (r; =
0,ry/a=1/ «/i) as a function of normalized time
at z=a field point.

V. CONCLUSION

The diffraction integral for arbitrary shaped
radiators can be computed using a spatial Four-
ier transform approach and coordinate trans-
formations. The diffraction transfer function
derived using this approach provides a sim-
ple and accurate computational expression for
the calculation of the transient field. In addi-
tion, this approach is applicable to both CW
and pulsed excitations for any radiator geom-
etry where the exact closed-form solution for
the impulse response can not be derived and
is readily adaptable to consider either the ef-
fects due to attenuation and dispersion of the
propagating medium on radiating fields or the
radiation from secondary sources such as an
acoustic lens/mirror.

The simulation results show that F = 10
was sufficient to attain the convergent field
which matches well with those obtained with
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the impulse response approach for both pla-
nar and axisymmetric curved radiators. The
relative computational efficiency of the pro-
posed method compares favorably to those of
the point source method and the impulse re-
sponse approach.
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