
ETRI Journal, Volume 32, Number 1, February 2010 © 2010 Mohammed I. Younis et al. 73

Combinatorial testing has been an active research area in
recent years. One challenge in this area is dealing with the
combinatorial explosion problem, which typically requires a
very expensive computational process to find a good test set
that covers all the combinations for a given interaction
strength (t). Parallelization can be an effective approach to
manage this computational cost, that is, by taking
advantage of the recent advancement of multicore
architectures. In line with such alluring prospects, this
paper presents a new deterministic strategy, called
multicore modified input parameter order (MC-MIPOG)
based on an earlier strategy, input parameter order
generalized (IPOG). Unlike its predecessor strategy, MC-
MIPOG adopts a novel approach by removing control and
data dependency to permit the harnessing of multicore
systems. Experiments are undertaken to demonstrate
speedup gain and to compare the proposed strategy with
other strategies, including IPOG. The overall results
demonstrate that MC-MIPOG outperforms most existing
strategies (IPOG, IPOF, IPOF2, IPOG-D, ITCH, TConfig,
Jenny, and TVG) in terms of test size within acceptable
execution time. Unlike most strategies, MC-MIPOG is also
capable of supporting high interaction strengths of t > 6.

Keywords: t-way testing, multi-way testing,
combinatorial testing, parallel processing.

Manuscript received May 7, 2009; revised July 24, 2009; accepted Sept. 22, 2009.
This work was supported by the Research University Grant–‘Imaging’ & Post Graduate

Research Grant–‘T-Way Test Data Generation Strategy Utilizing Multicore System’ of
Universiti Sains Malaysia.

Mohammed I. Younis (phone: +60 4 5996003, email: younismi@gmail.com) and Kamal Z.
Zamli (email: eekamal@eng.usm.my) are with School of Electrical and Electronics
Engineering, USM Engineering Campus, Pulau Penang, Malaysia.

doi:10.4218/etrij.10.0109.0266

I. Introduction

As an activity for ensuring quality and improving reliability,
software testing is an important phase in the software
engineering lifecycle. Lack of testing often leads to disastrous
consequences including loss of data, fortunes, and even lives.
For these reasons, many input parameters and system
conditions need to be tested against the system’s specifications
for conformance. Although desirable, exhaustive testing can be
prohibitive due to resource and timing constraints.

Earlier works [1], [2] conclude that pairwise testing based on
2-way interaction of variables can be effective to detect most
faults in a typical software system. While this conclusion may
be true for some systems, it cannot be generalized to all
software system faults, especially when there are significant
interactions between variables. For example, the study by the
National Institute of Standards and Technology (NIST) [2]-[4]
reported that 95% of the actual faults on the test software
involve 4-way interaction. In fact, all of the faults are detected
with 6-way interaction [5], [6].

In general, the consideration of higher interaction strengths
(that is, from t = 3 upwards) can be problematic. When the
parameter interaction coverage t increases to more than 2, the
number of t-way test sets also increases exponentially. For
example, consider a system with 10 parameters, where each
parameter has 5 values. There are 1,125 2-way tuples (or pairs),
15,000 3-way tuples, 131,250 4-way tuples, 787,500 5-way
tuples, 3,281,250 6-way tuples, 9,375,000 7-way tuples,
17,578,125 8-way tuples, 19,531,250 9-way tuples, and
9,765,625 10-way tuples. From this illustrative example, it is
evident that for a large system with many parameters,
considering a higher-order t-way test set can lead toward a
combinatorial explosion problem.

MC-MIPOG: A Parallel t-Way Test Generation
Strategy for Multicore Systems

 Mohammed I. Younis and Kamal Z. Zamli

74 Mohammed I. Younis et al. ETRI Journal, Volume 32, Number 1, February 2010

Due to this combinatorial explosion problem, there are few
results reported in the literature on t-way testing for high t
values greater than 6. From one perspective, the recent
advances in computing and hardware technologies dictate that
software applications need to incorporate many new features
and functionalities based on consumer demands. As such,
software applications have grown tremendously from kilobytes
to terabytes. From another perspective, the net effect of
software growth can often lead to intertwined dependency
between parameters involved, thus justifying the need to
support high interaction strength.

Facing these challenges, this paper presents a new
deterministic strategy, called multicore modified input
parameter order (MC-MIPOG). Unlike its predecessor
strategy (IPOG), MC-MIPOG removes the control and data
dependency to permit the harnessing of multicore systems.
This paper also explores the current state-of-the-art and
discusses the similarities and differences among several
variants of IPOG within the literature. Additionally, a number
of experiments undertaken are discussed to demonstrate the
speedup gain. Finally, comparisons with other existing
strategies, namely, TConfig [7], Jenny [8], TVG [9], ITCH [10],
IPOG [3], IPOG_D [11], and IPOF [12], [13] are also
demonstrated. For most cases, MC-MIPOG outperforms other
existing strategies in terms of test size and supports a high
degree of interaction (t).

The rest of this paper is organized as follows. Section II
presents a state-of-the-art review of the existing strategies,
section III provides the details of the proposed MIPOG strategy
and how it varies from the original IPOG. Section IV provides
a detailed description of MC-MIPOG and discusses its
implementation. Section V reports evaluation experiments.
Finally, section VI states our conclusions and suggestions for
future works.

II. Related Work

Combinatorial testing strategies can be classified as either
computational or algebraic strategies [14], [15]. Most algebraic
approaches compute test sets directly by a mathematical
function [16]. Algebraic approaches are often based on the
extensions of mathematical methods for constructing
orthogonal arrays (OA) [17], [18]. Some variations of the
algebraic approach also exploit recursion in order to permit the
construction of larger test sets from smaller ones [19]. Thus, the
computations involved in algebraic approaches are typically
lightweight and not subject to the combinatorial explosion
problem. For this reason, strategies that are based on algebraic
approach are extremely fast. On the other hand, algebraic
approaches often impose restrictions on the system

configurations to which they can be applied [20], [21]. This
significantly limits the applicability of algebraic approaches for
software testing [11].

Unlike algebraic approaches, computational approaches often
rely on the generation of all tuples and search the tuple space to
generate the required test suite until all tuples have been covered.
When the number of tuples to be considered is significantly large,
adopting computational approaches can be expensive, especially
in terms of the space required to store the tuples and the time
required for explicit enumeration. Unlike algebraic approaches,
computational approaches can be applied to arbitrary system
configurations. Furthermore, computational approaches are more
adaptable for constraint handling [22] and test prioritization [23].

Earlier works in combinatorial testing identify two strategies,
namely the automatic efficient test generator (AETG) [24] and
input parameter order (IPO) [25]. The AETG builds a test set one
test at a time until all the tuples are covered [24], [26]. AETG and
its variants [27], [28] are later generalized into a general
framework to support multi-way interaction (t≤ 6) [29], [30].

In contrast, IPO covers one parameter at a time. This allows
IPO to achieve a lower order of complexity than AETG [1].
IPO is a pairwise strategy (interaction strength t = 2) based on
vertical and horizontal extension. The IPO strategy first
generates a pairwise test set for the first two parameters. It then
continues to extend the test set to generate a pairwise test set for
the first three parameters and continues to do so for each
additional parameter until all the parameters of the system are
covered via horizontal extension. If required for interaction
coverage, IPO also employs vertical extension in order to add
new tests after the completion of horizontal extension. Later,
IPO is generalized into IPOG [3]. Several IPOG variants have
been proposed to improve its performance, including IPOG-D
[11], IPOF [12], and IPOF2 [12].

Both IPOG and IPOG-D are deterministic strategies. Unlike
IPOG, IPOG-D combines the IPOG strategy with an algebraic
recursive construction called D-construction in order to reduce
the number of tuples to be covered. In fact, Lei and others
reported that when t = 3, IPOG-D is degraded to a D-construction
algebraic approach [31]. Here, when t > 3, a minor version of
IPOG is used to cover the uncovered tuples missed during
D-construction [11]. As such, IPOG-D tends to be faster than
IPOG, though with a larger test set.

Unlike IPOG and IPOG-D, IPOF is a non-deterministic
strategy. For this reason, IPOF produces a different test set for
each run. In short, the IPOF strategy is a refinement of IPO, the
base pairwise strategy for IPOG, which is used to generate test
sets for the uniform distribution of variables. Unlike IPOG,
IPOF rearranges the rows during horizontal extension in order
to cover more tuples per horizontal extension. Published results
have reported the performance of IPOF but with a small

ETRI Journal, Volume 32, Number 1, February 2010 Mohammed I. Younis et al. 75

number of parameter values. Similarly, a variant of IPOF called
IPOF2 [12] is also available but it has only been demonstrated
with a small number of parameter values. Unlike IPOF, IPOF2
uses a heuristic technique for covering the tuples, which allows
a faster execution time than IPOF but with a larger test set.
Currently, IPOG, IPOG_D, IPOF1, and IPOF2 are integrated
into one tool called the Advanced Combinatorial Testing Suite
(ACTS) available at NIST [32]. Four other strategy
implementations that are available for download with minimal
documentation are TConfig [7], Jenny [8], TVG [9], and ITCH
[10]. Note that all these strategies are implemented using Java
language except Jenny, which is implemented in C language.

While there are many useful variants of IPOG, little attention
has been given to parallelizing the test generation process.
Because existing IPOG variants appear to have many inherent
unwanted control and data dependencies which hinder
parallelism due to case specific optimization processes for
horizontal and vertical extension, we have opted for the
original IPOG as our base strategy. In fact, we have introduced
a new variant of IPOG, called modified IPOG (MIPOG) which
demonstrates the feasibility of removing the inherited
dependencies from IPOG and thus helps in the implementation
of MC-MIPOG. The MIPOG strategy will be elaborated in the
next section.

III. MIPOG Strategy

In this section, we introduce the MIPOG strategy and
demonstrate how it can be parallelized into MC-MIPOG. We
also highlight the similarities and differences between MIPOG
and IPOG.

Despite the fact that it is an efficient strategy, we note that the
generation of a test set (ts) can be unstable in IPOG (see Fig. 1)
due to the possibility of the current test case changing during
the vertical extension (especially for test cases that include
“don’t care” value). This raises the issue of dependency
between previously generated test cases and the new one.

To address this dependency issue, we have considered
variant algorithms for both horizontal and vertical extension to
remove dependencies (see the MIPOG strategy in Fig. 2).

For horizontal extension, the MIPOG strategy checks all the
values of the input parameter and chooses the value that
contains the maximum number of combinations for the
uncovered tuples in the π set. Also, MIPOG optimizes the don’t
care value. For this reason, MIPOG always generates a stable
test case which cannot be modified by searching for tuples that
can be covered by the same test. This is performed by means of
exhaustive searching of uncovered tuples that can be combined
with this test case during horizontal extension (to ensure that
the test case is indeed optimized). For vertical extension,

Algorithm IPOG-Test (int t, ParameterSet ps)
{
1. initialize test set ts to be an empty set;
2. denote the parameters in ps, in an arbitrary order, as P1,

P2,…, and Pn;
3. add into test set ts a test for each combination of values

of the first t parameters;
4. for (int i = t + 1; i ≤ n; i ++){
5. let π be the set of t-way combinations of values

involving parameter Pi and t – 1 parameters among
the first i – 1 parameters;

6. // horizontal extension for parameter Pi
7. for (each test τ = (v1, v2,…, vi–1) in test set ts) {
8. choose a value vi of Pi and replace τ with τ' =

(v1, v2,…, vi–1, vi) so that τ' covers the most
number of combinations of values in π;

9. remove from π the combinations of values
covered by τ';

10. }
11. // vertical extension for parameter Pi
12. for (each combination σ in set π){
13. if (there exists a test that already covers σ) {
14. remove σ from π;
15. } else {
16. change an existing test, if possible, or otherwise

add a new test to cover σ and remove it from π;
17. }
18. }
19. }
20. return ts;}

Fig. 1. IPOG strategy.

MIPOG rearranges the π set in decremented size order. After
that, MIPOG chooses the first tuple from the rearranged π set
and combines that tuple with other suitable tuples in the π set.
That is, the resulting test case must have the maximum weight
of the uncovered tuples found through exhaustive searching of
uncovered tuples. Once combined, all these tuples are removed
from the π set. This process is repeated until the π set is empty
to ensure complete interaction coverage.

To illustrate the differences between IPOG and MIPOG
horizontal and vertical extension, we consider a system with 4
parameters (three 2-valued and one 3-valued parameters).
Figures 3 and 4 show the process of generating a 3-way test
set using IPOG and MIPOG, respectively. Here, MIPOG
generates a minimal test set (3×2×2=12 values), while IPOG
generates 14 test cases.

As shown in Fig. 3, IPOG decides on the parameter value
assignment early in horizontal extension. Apart from ensuring
most pairs are covered at the instant of assignment, IPOG also
ensures that each parameter value is as equally balanced as
possible. In contrast, MIPOG decides on the parameter value
assignment late (see Fig. 4), that is, only after first scanning all
the parameter values to yield the most optimal solution (with
maximum weight).

In vertical extension, IPOG iteratively checks for uncovered

76 Mohammed I. Younis et al. ETRI Journal, Volume 32, Number 1, February 2010

 Algorithm MIPOG-Test (int t, ParameterSet ps)
{
1. initialize test set ts to be an empty set;
2. denote the parameters in ps, in an arbitrary order, as P1,

P2,…, and Pn;
3. add into test set ts a test for each combination of

values of the first t parameters;
4. for (int i = t + 1; i ≤ n; i ++){
5. let π be the set of t-way combinations of values

involving parameter Pi and t -1 parameters among
the first i – 1 parameters;

6. // horizontal extension for parameter Pi
7. for (each test τ = (v1, v2,…, vi–1) in test set ts) {
8. if (τ does not contain don’t care){choose a value vi

of Pi and replace τ with τ'= (v1, v2, dc,…, vi-1,
vi) so that τ' covers the maximum number of
combinations of values in π;}

9. else {choose a value vi of Pi and search all
possible tuples that can optimize the don’t care
(dc) to construct τ' = (v1, v2,…, vi–1, vi) so that
τ' covers the maximum number of
combinations of values in π and optimized dc;}

10. remove from π the combinations of values covered
by τ';}

11. // vertical extension for parameter Pi
12. while (π is not empty){
13. rearrange π in decreasing order;
14. choose the first tuple and generate test case (τ) to

combine maximum number of tuples;
15. delete the tuples covered by τ, add τ to local ts;
16. } //while
17. } // for
18. return ts;}

Fig. 2. MIPOG strategy.

Fig. 3. Generation of test set using IPOG.

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Horizontal
extension

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 0
1 0 0 1
1 0 1 2
1 1 0 0
1 1 1 1

Vertical
extension

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 0
1 0 0 1
1 0 1 2
1 1 0 0
1 1 1 1
1 0 1 0
0 1 0 1
0 0 1 2
1 1 0 2
* 0 0 2
* 1 1 2

P1 P2 P3 P1 P2 P3 P4

P1 P2 P3 P4

t-way combinations from the horizontal extension and adds the
combination into a new test in the vertical extension, often
using already covered t-way combinations. In a similar manner,
MIPOG also checks for uncovered t-way combinations from
the horizontal extension. However, MIPOG optimizes the
addition of a new test in the vertical extension by combining

Fig. 4. Generation of test set using MIPOG.

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Horizontal
extension

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Vertical
extension

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
0 0 0 2
1 0 1 2
1 1 0 2
0 1 1 2

P1 P2 P3 P1 P2 P3 P4

P1 P2 P3 P4

the most uncovered t-way combinations whenever possible.
This is efficiently done when there are don’t care values. This
step, while improving the test size, also increases the overall
computation of MIPOG.

The net effect of the variant extension algorithms in MIPOG
is twofold. First, we can always get a more optimal test set
which would be at least the same size or even smaller than that
of IPOG. Secondly, there are no dependencies between
subsequently generated test values, thus, permitting the
possibility of parallelization.

To parallelize MIPOG, we can partition the π set for
parameter Pi into vi partitions (see Fig. 2). As a result, the
generation of each partition can be performed in a separate
thread. Additionally, both horizontal and vertical extension can
be performed in separate guarded (synchronized) threads.

In the next section, we discuss the parallel version of MIPOG,
called MC-MIPOG designed specifically for Intel Multicore
system [33].

IV. MC-MIPOG Strategy

Built from MIPOG, the MC-MIPOG strategy distributes the
computational processes and memory into pieces. In summary,
the MC-MIPOG strategy implementation is based on the
following design criteria:

• Memory needs to be distributed in order to hold Pi in
relatively independent cells, called π[Vi]. Here, each π[Vi]
needs to have its own memory to hold the t-way
combinations for a unique particular value for the
parameter Pi; that is, there are Vi partitions for π. In this
case, each partition is generated by a separate thread, called
a combinatorial thread.

• There are Vi separate threads for horizontal extension,
called horizontal extension threads.

• Similarly, there are also Vi separate threads for vertical
extension, called vertical extension threads.

ETRI Journal, Volume 32, Number 1, February 2010 Mohammed I. Younis et al. 77

• The selected test set is stored into a shared memory
controlled by the test generator (master) program which
controls the creation, synchronization, and deletion of all
of these mentioned threads.

Note that the latest optimization in multicore systems with
multitasking operating systems (as in Linux and Windows)
manages processor/affinity in an optimal way [34]. This
optimization enables each software thread to be mapped into
the same hardware thread while keeping the data close to the
processor through a process called a cache worm [33], [35].
Thus, the actual control of processor and memory affinity is
automatically performed by the operating system.

1. Test Generator (Main Program)

As implied earlier, the main program roles are to manage the
shared memory and to coordinate threads. Briefly, the main
program works as follows:

1) Start with an empty test set (ts), and generates all tuples for
the first t-parameters.

2) Create combinational threads (equal to the number of
values in Pi), passing to them parameters values (P1…Pi-1).

3) Wait for all combinational threads to finish their generation,
and then read π[Vi’s].

4) Shut down the combinational threads.
5) Create horizontal extension threads (equal to the number of

values in Pi), passing to them π[Vi’s], and Vi’s for
parameter Pi.

6) For horizontal extension:
a. For each test case τ in test set ts:
b. Wait until all threads have validated results.
c. Read the weight (that is, the number of covered tuples

after adding the assigned value) from each thread. Then,
choose the value corresponding to the maximum
weight to be added to ts if no tuples match (weight
zero) don’t care added to τ.

d. Notify the horizontal extension threads that validate that
selection is done.

e. According to the selection in c, issue command to the
selected thread to delete tuples from their own π set (πv).
Allow the selected threads to update τ.

f. Wait for selected thread to finish its work.
7) Shut down the horizontal threads.
8) Create vertical extension threads equal to the number of

values in Pi, pass them to π[Vi’s], and Vi’s for parameter Pi.
9) In vertical extension:

a. Wait for the threads to finish their partial test set (tsvth).
b. Collect tsvths from the threads. Then add each tsvth to ts.

10) Shut down the vertical threads.

Fig. 5. Algorithm for master program.

Algorithm Main (int t, ParameterSet ps)
{
1. initialize test set ts to be an empty set;
2. denote the parameters in ps, in an arbitrary order, as P1,

P2,…, and Pn;
3. add into test set ts a test for each combination of values

of the first t parameters;
4. for (int i = t + 1; i ≤ n; i ++){
5. //create combinational
6. for (each value (v) in Pi) {

start combinational thread (t, ps, i, set π[v]);
7. wait for combinational threads to finish;}
8. // horizontal extension for parameter Pi
9. for (each value (v) in Pi) {

start horizontal thread (ts, set π[v],v); }
10. for (each test τ = (v1, v2,…, vi-1) in test set ts) {
11. wait for notification;
12. read the weight from each horizontal thread;

choose vi corresponding to maximum weight;
13. if (max weight !=0) {
14. issue command delete to horizontal thread [vi],

and cancel commands to all others threads }//if
15. else { append don’t care to τ;
16. issue cancel commands to all threads; } //else
17. notify all waiting threads;
18. } //for
19. wait for horizontal threads to finish;
20. // vertical extension for parameter Pi
21. for (each value (v) in Pi) {

start vertical thread (lts[v], set π[v],v);
22. wait for vertical threads to finish;}
23. for (each value (v) in Pi){
24. add each lts[v] to ts;}// loop v
25. }//loop i
26. return ts;}// algorithm

For clarity, the complete algorithm for the master program is
given in Fig. 5.

2. Working Threads

In this section, we will describe how each thread work.

1) For combinational threads:
a. Each thread generates its own partial tuples set (πv).
b. Each thread notifies the master.

2) For horizontal extension threads:
a. Read next test case τ in test set ts.
b. If τ does not contain don’t care, determine the weight of τ.
c. If τ contains don’t care, the thread optimizes the don’t

care value to have as much weight as possible.
d. Validate the weight by notification.
e. Wait for notification.
f. Read the command issued from main, if it contains

delete then the thread deletes tuples covered by τ from
(πv); then, append v to τ (in case b) or delete τo (in case

78 Mohammed I. Younis et al. ETRI Journal, Volume 32, Number 1, February 2010

Fig. 6. Algorithm for combinational thread.

Algorithm Combinational Thread
(int t, ParameterSet ps, int i, set πv)
{
1. generate local π, where π is the set of t-way Combinations

of values and t – 1 among the first i – 1 parameters;
2. notify the waiting process;

 }//algorithm

c) from (πv); then, replace τ with τo.
g. In the case of deletion in f, notify the waiting process.

3) For vertical extension threads:
a. Arrange πv in decreasing order, choose the first tuple,

and generate the test case with maximum weight.
b. Repeat step (a) until (πv) is empty.
c. Notify the waiting process.

The complete algorithms for the combinational thread,
horizontal extension thread, and vertical extension thread are
given in Figs. 6, 7, and 8, respectively.

V. Evaluation

Our evaluation has three main aims. First, we compare the
behavior of MC-MIPOG to that of IPOG in terms of the test
size ratio. Secondly, we investigate whether there is speedup
gain from parallelizing MIPOG in MC-MIPOG. Finally, we
compare the effectiveness of the MC-MIPOG strategy to that
of other strategies (including that of other IPOG variants) in
terms of the generated execution time and test size.

1. MC-MIPOG Behavior against IPOG

To compare the behavior of MC-MIPOG and IPOG, we
performed a group of experiments adopted from Lei and others
[3]. In these experiments, we are interested to compare the test
sizes of MC-MIPOG and IPOG. Note that the IPOG test size is
obtained from [3].

• Group 1: The number of parameters (P) and the values (V)
are constant, but the coverage strength (t) is varied from 2 to 7.

• Group 2: The coverage strength (t) and the values (V) are
constant to 4 and 5, but the number of parameter (P) is varied
from 5 to 15.

• Group 3: The number of parameter (P) and the coverage
strength (t) are constant from t to 10 and 4, respectively, but the
values (V) are varied from 2 to 10.

The results of the experiments are shown in Tables 1, 2, and
3, respectively. Here, we define the size ratio as the size of the
test set from MC-MIPOG to the size obtained from IPOG.

Fig. 7. Algorithm for horizontal extension thread.

Algorithm Horizontal Extension Thread
(test set ts, set π, value v)
{
1. for (i=1..ts size) {
2. τ=ts[i]+v;
3. if (τ not contains don’t care) {
4. determine the weight of τ in π;
5. notify the waiting process;
6. wait for notification of master command;
7. if (delete command){
8. delete tuples covered by τ from π;
9. ts[i]=ts[i]+v;

10. notify the master that the delete done;
11. }//if delete
12. }
13. else {produce τo (optimize don’t care in τ);
14. determine the weight of τ in π;
15. notify the waiting process;
16. wait for notification of master command;
17. if (delete command{
18. delete tuples covered by τ from π;
19. ts[i]= τo;
20. notify the master that the delete done; }//if delete
21. }//else
28. }//loop i
29. } //algorithm

Fig. 8. Algorithm for vertical extension thread.

Algorithm vertical extension thread
(local test set lts,set π,value v)
{
1. while (π!empty){
2. arrange π in decreasing order;
3. choose the first tuple and generate test case that

combine maximum number of tuples (τ);
4. delete the tuples covered by τ;
5. append v to τ;
6. add τ to lts;
7. } //while
8. notify waiting process;
9. } //algorithm

From Tables 1 to 3, it is evident that MC-MIPOG performs
better than IPOG in terms of test size because the size ratio is
always < 1. In Table 3, NS indicates that the parameter and
values chosen with a given strength are not supported.

Although comparing quite well with IPOG, MIPOG’s test
size is not the most optimal compared to Colbourn’s best-
known published results [36]. Nonetheless, on a positive note,
MIPOG contributes to finding the optimal test size for (t = 5,
p = 10, v = 5) that yields 8,169 instead of 8,555 as reported by
Colbourn. In fact, MIPOG also reports a new optimal test size
for (t = 7, p = 10, v = 5) that yields 186,664. Note that this
result for (t = 7, p = 10, v = 5) has not been reported by
Colbourn.

ETRI Journal, Volume 32, Number 1, February 2010 Mohammed I. Younis et al. 79

Table 1. Size ratio results for 5 to 15 parameters with 5 values in 4-way testing.

of parameters 5 6 7 8 9 10 11 12 13 14 15

MC-MIPOG size 625 625 1,125 1,348 1,543 1,643 1,722 1,837 1,956 2,051 2,150

IPOG size 784 1,064 1,290 1,491 1,677 1,843 1,990 2,132 2,254 2,378 2,497

Size ratio 0.797 0.587 0.872 0.928 0.92 0.891 0.865 0.861 0.868 0.862 0.861

Table 2. Size ratio results for 10 parameters with 2 to 10 values in 4-way testing.

of values 2 3 4 5 6 7 8 9 10

MC-MIPOG size 43 217 637 1,643 3,657 5,927 11,355 18,036 27,306

IPOG size 46 229 649 1,843 3,808 7,061 11,993 19,098 28,985

Size ratio 0.934 0.948 0.981 0.891 0.96 0.839 0.946 0.944 0.942

Table 3. Size ratio results for 10 parameters with 5 values for t = 2 to 7.

t-way 2 3 4 5 6 7

MC-MIPOG size 45 281 1,643 8,169 45,168 186,664

IPOG size 48 308 1,843 10,119 50,920 NS

Size ratio 0.938 0.912 0.891 0.807 0.887 -

Table 4. Speedup results for 5 to 15 parameters with 5 values in 4-way testing.

of parameters 5 6 7 8 9 10 11 12 13 14 15

MIPOG 0.128 0.31 0.778 1.981 3.735 6.9 10.642 19.39 44.169 71.104 143.29

MC-MIPOG 0.15 0.269 0.57 1.272 2.275 3.818 5.803 10.298 21.171 33.213 60.931

Speedup 0.8533 1.152 1.365 1.557 1.642 1.807 1.833 1.883 2.086 2.14 2.352

Table 5. Speedup results for 10 parameters with 2 to 10 values in 4-way testing.

of values 2 3 4 5 6 7 8 9 10

MIPOG 0.148 0.408 1.39 6.9 68.031 70.495 4,767.778 5,203.01 56,786.346

MC-MIPOG 0.141 0.383 0.983 3.818 35.62 36.151 1,538.719 1,605.372 16,220.036

Speedup 1.05 1.065 1.414 1.807 1.91 1.95 3.099 3.241 3.501

Table 6. Speedup results for 10 parameters with 5 values for t = 2 to 7.

t-way 2 3 4 5 6 7

MIPOG 0.074 0.327 6.9 197.928 4,025.442 82,668.19

MC-MIPOG 0.09 0.281 3.818 94.498 1,311.209 23,512.7

Speedup 0.822 1.163 1.807 2.095 3.07 3.516

2. Speedup Gain in MC-MIPOG

To measure the speedup gain from parallelizing MIPOG, we
subjected both MIPOG and MC-MIPOG to three experimental
groups described earlier. The results of the experiments are
shown in Tables 4, 5, and 6. Here, the speedup is defined as the

ratio of the time taken by the sequential MIPOG algorithm to
the time taken by MC-MIPOG algorithm. All the results were
obtained using the Linux Centos OS with a 2.4 GHz Core 2
Quad CPU [34] and 2 GB RAM with JDK 1.5 installed. Note
that the execution time is in seconds, and both MIPOG and
MC-MIPOG produce the same test set in all cases.

80 Mohammed I. Younis et al. ETRI Journal, Volume 32, Number 1, February 2010

Table 7. Comparative test size results using the TCAS module for t = 2 to 12.

t MC-MIPOG IPOG IPOG-D IPOF1 IPOF2 ITCH Jenny TConfig TVGII
2 100 100 130 100 100 120 106 100 101
3 400 401 487 402 427 2,388 411 472 434
4 1,265 1,367 2,522 1,352 1,644 1,484 1,527 1,476 1,599
5 4,196 4,230 5,306 4,290 5,018 NS 4,680 NS 4,773
6 10,851 10,956 14,480 11,234 13,310 NS 11,608 NS 12,732
7 26,061 NS NS NS NS NS 27,630 NS NS

8 56,742 NS NS NS NS NS 58,865 NS NS

9 120,361 NS NS NS NS NS NS NS NS

10 201,601 NS NS NS NS NS NS NS NS

11 230,400 NS NS NS NS NS NS NS NS

12 460,800 NS NS NS NS NS NS NS NS

Table 8. Comparative test generation time using the TCAS module for t = 2 to 12.

t MC-MIPOG MIPOG IPOG IPOG-D IPOF1 IPOF2 ITCH Jenny TConfig TVGII

2 0.166 0.125 0.047 <0.001 0.015 0.016 0.68 0.001 >1 hour 2.56

3 0.28 0.324 0.313 0.015 0.078 0.109 1,015.2 0.697 >12 hour 2.96

4 2.303 3.027 2.156 0.302 1.805 1.52 5,102.1 3.35 >20 hour 101.1

5 21.672 32.074 13.39 3.11 8.566 8.611 NS 41.32 >1 day 1,369.3

6 194.135 288.485 60.05 33.22 55.11 46.86 NS 466.27 >1 day >20 hours

7 959.124 1,564.332 NS NS NS NS NS 235.4 NS >1 day

8 5,739.74 9,441.872 NS NS NS NS NS 11698.2 NS >1 day

9 18,857.175 32,245.77 NS NS NS NS NS >1 day NS >1 day

10 21,903.542 38,594.041 NS NS NS NS NS >1 day NS >1 day

11 7,910.768 14,263.114 NS NS NS NS NS >1 day NS >1 day

12 25.031 25.031 NS NS NS NS NS >1 day NS >1 day

As seen in Table 4, the speedup increases linearly as the
number of parameters increases. Here, extra overhead is added
for the fifth parameters due to the need to start and shut down
the corresponding threads. As seen in Table 5, the speedup gain
also increases quadratically as the number of values increases.
Extrapolating and performing curve fitting of the results from
Table 6, we observe that the speedup increases logarithmically
as the strength of coverage increases. In this case, there is also
no speedup gain for this strategy when t = 2, possibly due to the
overhead required for creation, synchronization, and deletion of
threads for a small degree of interaction.

3. Comparison with Other Strategies

To investigate the effectiveness of the MC-MIPOG strategy
against other strategies, including IPOG and its variants, in

terms of test size and the number of generated test sets, we
adopt a common configuration system, the TCAS module. The
TCAS module is an aircraft collision avoidance system
developed by the Federal Aviation Administration which has
been used as case study in other related works [2], [11]. The
TCAS module has twelve parameters; seven parameters have
2 values, two parameters have three values, one parameter has
four values, and two parameters have 10 values.

As highlighted earlier, we chose the TCAS module because
the same parameters and values have been used by other
researchers. By adopting the same parameters and values,
objective comparison may be made between various strategy
implementations. To ensure that the results obtained are up-to-
date given the fact that some of the implementations have
evolved tremendously over the years, we downloaded all the
available implementations within our environment to ensure

ETRI Journal, Volume 32, Number 1, February 2010 Mohammed I. Younis et al. 81

fair comparison. Here, we are also interested to investigate
whether or not each strategy supports high t (t > 6).

Specifically, we downloaded ACTS (implementing IPOG,
IPOG-D, IPOF1, and IPOF2) from NIST, ITCH, Jenny,
TConfig, and TVGII. We were not able to download AETG
because the implementation is a commercial product; therefore
it was not considered for comparison in our study. To
compensate the fact that that Jenny is an MSDOS-based
executable program, we chose a running environment
consisting of Windows XP 2.0 GHz, an Intel Core 2 Duo CPU,
and 1 GB RAM with JDK 1.6 installed.

Tables 7 and 8 summarize the complete results. As in Table 3
NS indicates that the parameter and values chosen with a given
strength are not supported. Also, darkened cell rows indicate
the best performance in term of test size.

As seen in Table 7, MC-MIPOG, IPOG, IPOF1, and IPOF2
gave the optimum test size at t = 2. At t = 3, both MC-MIPOG
and IPOG gave the optimum test size. For all other cases, MC-
MIPOG always outperforms other strategies. Besides MC-
MIPOG, only Jenny can support more than t = 6 for the TCAS
module. However, we have not been successful in summoning
Jenny for t > 8 because the program implementation crashes.

Even though TVG enables the user to select t from a range
from 2 to 9, we cannot obtain any result for t = 5 because the
program execution crashes. Note that our experiment with
TVGII produced different results than the published results
(here, we used the tool with the “T_ Reduced” option), perhaps
due to a new update of the implementation.

Allowing the user to select t between 2 and 6, our experience
indicates that for the TCAS module, TConfig merely gives a
result for t < 5. Here, an exception occurs when we attempt to
get a result for t > 5. A similar observation can be seen for
ITCH. Note that ITCH does not support t > 4. Also, in the case
of ITCH, the test size for t = 3 is greater than that for t = 4.

In comparison with all other IPOG variants (except MC-
MIPOG), it is clear that IPOG outperformed IPOG_D, IPOF1,
and IPOF2 in terms of test size for the TCAS module. Like
other strategies (except MC-MIPOG), this family of strategies
cannot produce a test suite for t > 6. That is, no option is given
for t > 6.

In terms of execution time, IPOG-D has the fastest overall
time for t ≤ 6 (see Table 8). For t > 6, MC-MIPOG is fastest
because no other strategies are able to provide t-way test
generation support (Jenny supports up to t = 8). From one
perspective, MIPOG is similar to IPOG and IPOG_D in the
sense that they are all deterministic strategies. From another
perspective, IPOF and IPOF2, are non-deterministic strategies.
The general aim of IPOG_D, IPOF, and IPOF2 is to achieve a
faster execution time than that of IPOG. Generally, obtaining an
optimized test size and a fast execution time are two sides of the

same coin. Obtaining an optimized test size requires more
processing time for choosing the most optimized tuple. On the
other hand, obtaining fast execution time means that little
optimization is performed to obtain the optimum test size. This is
evident as far as the test sizes are concerned for IPOG_D, IPOF,
and IPOF2. MIPOG is a strategy that is designed to produce a
smaller test size than that of IPOG under the cost of more
processing time during horizontal extension. As discussed earlier,
unlike IPOG, IPOG_D, and IPOF, MIPOG adopts a different
type of vertical extension which is more heavyweight than that
of IPOG (for optimization of vertical extension). For this reason,
MIPOG’s execution time tends to be slower than most of the
IPOG variants. Nevertheless, the implementation of MC-
MIPOG has alleviated this drawback through the adoption of a
multicore architecture. In fact, MIPOG is the only strategy
within the IPOG family that can be parallelized.

VI. Conclusion

As computer manufacturers make multicore CPUs
pervasively available within reasonable costs, harnessing this
technology is no longer a luxury but a viable and useful option.

In this paper, we investigated and evaluated a parallel strategy
called MC-MIPOG for t-way test data generation on multicore
architecture. Our results indicate that MC-MIPOG scales well
against existing strategies. In preparation for our future work, we
are currently porting MIPOG and MC-MIPOG into the grid
environment. Our initial implementation results have been
encouraging. We are also planning to perform more extensive
comparisons with Colburn’s best-known results.

Acknowledgement

We would like to acknowledge all the anonymous
reviewers. We would also like to thank Jeff Lei, Rick Kuhn,
and Raghu Kacker from NIST for making the ACTS tool
available to us. This work is partly sponsored by generous
grants–“Development of a Mobile Agent Based Parallel and
Automated Java Testing Tool” from MOSTI. The first author,
Mohammed Issam Younis, is a USM fellowship recipient.

References

[1] K.C. Tai and Y. Lei, “A Test Generating Strategy for Pairwise
Testing,” IEEE Trans. Software Engineering, vol. 28, no. 1, 2002,
pp. 109-111.

[2] D.R. Kuhn and V. Okun, “Pseudo-Exhaustive Testing for
Software,” Proc. 30th Annual IEEE/NASA Software Engineering
Workshop, Apr. 25-27, 2006, pp. 153-158.

[3] Y. Lei et al., “IPOG: A General Strategy for t-Way Software

82 Mohammed I. Younis et al. ETRI Journal, Volume 32, Number 1, February 2010

Testing,” Proc. 14th Annual IEEE Intl. Conf. and Workshops on the
Engineering of Computer-Based Systems, Tucson, AZ, Mar. 26-29,
2007, pp. 549-556.

[4] M. Hutchins et al., “Experiments on the Effectiveness of Dataflow-
and Controlflow-Based Test Adequacy Criteria,” Proc. 16th Intl.
Conf. Software Engineering, May 16-21, 1994, pp. 191-200.

[5] R. Kuhn, Y. Lei, and R. Kacker, “Practical Combinatorial Testing:
Beyond Pairwise,” IEEE IT Professional, vol. 10, no. 3, 2008, pp.
19-23.

[6] M. Ellims, D. Ince, and M. Petre, “The Effectiveness of t-Way Test
Data Generation,” Proc. 27th Int. Con. Computer Safety, Reliability,
and Security, Sept. 22-25, 2008, pp. 16-29.

[7] A. Williams, TConfig Java Test Tool. Available: http://www.site.
uottawa.ca /~awilliam. Last accessed on April 30, 2009.

[8] B. Jenkins, Jenny test tool. http://www.burtleburtle.net./bob/
math/jenny.html. Last accessed on May 7, 2009.

[9] J. Arshem, TVG test tool, http://sourceforge.net/projects/tvg/. Last
accessed on May 7, 2009.

[10] A. Hartman, T. Klinger, and L. Raskin, IBM Intelligent Test Case
Handler, http://www.alphaworks.ibm.com/tech/whitch. Last accessed
on May 7, 2009.

[11] Y. Lei et al., “IPOG/IPOG-D: Efficient Test Generation for Multi-
way Combinatorial Testing,” Software Testing, Verification and
Reliability, vol. 18, no. 3, 2007, pp. 125-148.

[12] M. Forbes et al., “Refining the In-Parameter-Order Strategy for
Constructing Covering Arrays,” J. Research of the National
Institute of Standards and Technology, vol. 113, no. 5, 2008, pp.
287-297.

[13] R.N. Kacker et al., “Automated Combinatorial Testing for Software
Systems,” Mathematical and Computational Sciences Division,
NIST Report, Jan. 2008, pp. 38-40.

[14] M.B. Cohen et al., “Constructing Test Suites for Interaction
Testing,” Proc. 25th IEEE Int. Conf. Software Engineering, May 3-
10, 2003, pp. 38-48.

[15] A. Hartman and L. Raskin, “Problems and Algorithms for Covering
Arrays,” Discrete Mathematics, vol. 284, no. 1, 2004, pp. 149-156.

[16] M. Grindal, J. Offutt, and S.F. Andler, “Combination Testing
Strategies: A Survey,” J. Software Testing, Verification, and
Reliability, vol. 5, no. 3, 2004, pp. 167-199.

[17] K.A. Bush, “Orthogonal Arrays of Index Unity,” Annals of
Mathematical Statistics, vol. 23, no. 3, 1952, pp. 426-434.

[18] D.R. Kuhn, D. Wallace, and A. Gallo, “Software Fault Interactions
and Implications for Software Testing,” IEEE Trans. Software
Engineering, vol. 30, no. 6, 2004, pp. 418-421.

[19] A.W. Williams, “Determination of Test Configurations for Pair-
Wise Interaction Coverage,” Proc. 13th Int. Conf. Testing
Communicating Systems, Aug. 29 -Sept. 1, 2000, pp. 59-74.

[20] M. I. Younis et al., “Assessing IRPS as an Efficient Pairwise Test
Data Generation Strategy,” Int. J. Advanced Intelligence
Paradigms, vol. 2, no. 1, 2010, pp. 90-104.

[21] M.F.J. Klaib et al., “G2Way A Backtracking Strategy for Pairwise
Test Data Generation,” Proc. 15th Asia-Pacific Software Engineering
Conference, vol. 3, no. 5, Dec. 03-05, 2008, pp. 463-470.

[22] M. Grindal, J. Offutt, and J. Mellin, “Conflict Management when
Using Combination Strategies for Software Testing,” Proc. 18th
Australian Software Engineering Conference, Apr. 10-13, 2007, pp.
255-264.

[23] R.C. Bryce and C.J. Colbourn, “Prioritized Interaction Testing for
Pairwise Coverage with Seeding and Constraints,” Information and
Software Technology Journal, vol. 48, no. 10, 2006, pp. 960-970.

[24] D.M. Cohen et al., “The Combinatorial Design Approach to
Automatic Test Generation,” IEEE Software, vol. 13, no. 5, 1996,
pp. 83-88.

[25] Y. Lei and K.C. Tai, “In-Parameter-Order: A Test Generation
Strategy for Pairwise Testing,” Proc. 3rd IEEE Int. Conf. High-
Assurance Systems Engineering Symposium, Nov. 13-14, 1998, pp.
254-261.

[26] D.M. Cohen et al., “The AETG System: An Approach to Testing
Based on Combinatorial Design,” IEEE Trans. Software
Engineering, vol. 23, no. 7, 1997, pp. 437-444.

[27] R.C. Bryce and C.J. Colbourn, “The Density Algorithm for Pairwise
Interaction Coverage,” J. Software Testing, Verification and
Reliability, vol. 17, no. 3, 2007, pp. 159-182.

[28] Y.W. Tung and W.S. Aldiwan, “Automating Test Case Generation
for the New Generation Mission Software System,” Proc. IEEE
Aerospace Conference, Mar. 18-25, 2000, pp. 431-437.

[29] R.C. Bryce, C.J. Colbourn, and M.B. Cohen, “A Framework of
Greedy Methods for Constructing Interaction Test Suites,” Proc.
27th IEEE Int. Conf. Software Engineering, May 15-21, 2005, pp.
146-155.

[30] R.C. Bryce and C.J. Colbourn, “A Density-Based Greedy
Algorithm for Higher Strength Covering Arrays,” Software Testing,
Verification, and Reliability, vol. 19, no. 1, 2009, pp. 37-53.

[31] M.A. Chateauneuf, C.J. Colbourn, and D.L. Kreher, “Covering
Arrays of Strength Three,” Designs, Codes, and Cryptography, vol.
16, no. 1, 1999, pp. 235-242.

[32] Website for the NIST Automated Combinatorial Testing for
Software (ACTS) project: http://csrc.nist.gov/groups/SNS/acts/
index.html. Last accessed on May 7, 2009.

[33] Intel web site: http://www.intel.com/products/desktop/processors/
index.htm. Last accessed on May 7, 2009.

[34] Intel Core 2 Quad Processors. Available at http://www.intel.com/
products/processor/core2quad/index.htm. Last accessed on May 7,
2009.

[35] K. Chow and D. Dagastine, “How to Get the Most Performance
from Sun JVM on Intel Multicore Servers,” Sun Teach Day
Developer Conference, Oct. 23-25, 2007.

[36] C.J. Colbourn, Covering Array Tables, Available: http://www.
public.asu.edu/~ccolbou/src/tabby/catable.html. Last accessed on
July 12, 2009.

ETRI Journal, Volume 32, Number 1, February 2010 Mohammed I. Younis et al. 83

Mohammed I. Younis obtained his BSc in
computer engineering from the University of
Baghdad in 1997 and his MSc degree from the
same university in 2001. He is a senior lecturer
with the Computer Engineering Department,
College of Engineering, University of Baghdad.
He has been also a member of the Iraqi Union of

Engineers since 1997. He is currently a PhD candidate and a USM
fellowship recipient attached to the Software Engineering Research
Group of the School of Electrical and Electronics Engineering, Universiti
Sains, Malaysia. His research interests include software engineering,
parallel and distributed computing, algorithm design, networking and
security, cryptography, embedded systems, and RFID development.

Kamal Z. Zamli obtained his BSc in electrical
engineering from WPI, USA, in 1992; his MSc
degree in real-time software engineering from
Universiti Teknologi, Malaysia in 2001; and his
PhD in software engineering from University of
Newcastle upon Tyne, UK, in 2003. He is
currently attached to the Software Engineering

Research Group of the School of Electrical and Electronics
Engineering, Universiti Sains, Malaysia. His research interests include
software engineering, software testing automation, parallel processing,
and algorithm design.

	I. Introduction
	II. Related Work
	III. MIPOG Strategy
	IV. MC-MIPOG Strategy
	V. Evaluation
	VI. Conclusion
	References

