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Combinatorial testing has been an active research area in 
recent years. One challenge in this area is dealing with the 
combinatorial explosion problem, which typically requires a 
very expensive computational process to find a good test set 
that covers all the combinations for a given interaction 
strength (t). Parallelization can be an effective approach to 
manage this computational cost, that is, by taking 
advantage of the recent advancement of multicore 
architectures. In line with such alluring prospects, this 
paper presents a new deterministic strategy, called 
multicore modified input parameter order (MC-MIPOG) 
based on an earlier strategy, input parameter order 
generalized (IPOG). Unlike its predecessor strategy, MC-
MIPOG adopts a novel approach by removing control and 
data dependency to permit the harnessing of multicore 
systems. Experiments are undertaken to demonstrate 
speedup gain and to compare the proposed strategy with 
other strategies, including IPOG. The overall results 
demonstrate that MC-MIPOG outperforms most existing 
strategies (IPOG, IPOF, IPOF2, IPOG-D, ITCH, TConfig, 
Jenny, and TVG) in terms of test size within acceptable 
execution time. Unlike most strategies, MC-MIPOG is also 
capable of supporting high interaction strengths of t > 6. 
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I. Introduction 

As an activity for ensuring quality and improving reliability, 
software testing is an important phase in the software 
engineering lifecycle. Lack of testing often leads to disastrous 
consequences including loss of data, fortunes, and even lives. 
For these reasons, many input parameters and system 
conditions need to be tested against the system’s specifications 
for conformance. Although desirable, exhaustive testing can be 
prohibitive due to resource and timing constraints. 

Earlier works [1], [2] conclude that pairwise testing based on 
2-way interaction of variables can be effective to detect most 
faults in a typical software system. While this conclusion may 
be true for some systems, it cannot be generalized to all 
software system faults, especially when there are significant 
interactions between variables. For example, the study by the 
National Institute of Standards and Technology (NIST) [2]-[4] 
reported that 95% of the actual faults on the test software 
involve 4-way interaction. In fact, all of the faults are detected 
with 6-way interaction [5], [6].  

In general, the consideration of higher interaction strengths 
(that is, from t = 3 upwards) can be problematic. When the 
parameter interaction coverage t increases to more than 2, the 
number of t-way test sets also increases exponentially. For 
example, consider a system with 10 parameters, where each 
parameter has 5 values. There are 1,125 2-way tuples (or pairs), 
15,000 3-way tuples, 131,250 4-way tuples, 787,500 5-way 
tuples, 3,281,250 6-way tuples, 9,375,000 7-way tuples, 
17,578,125 8-way tuples, 19,531,250 9-way tuples, and 
9,765,625 10-way tuples. From this illustrative example, it is 
evident that for a large system with many parameters, 
considering a higher-order t-way test set can lead toward a 
combinatorial explosion problem. 
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Due to this combinatorial explosion problem, there are few 
results reported in the literature on t-way testing for high t 
values greater than 6. From one perspective, the recent 
advances in computing and hardware technologies dictate that 
software applications need to incorporate many new features 
and functionalities based on consumer demands. As such, 
software applications have grown tremendously from kilobytes 
to terabytes. From another perspective, the net effect of 
software growth can often lead to intertwined dependency 
between parameters involved, thus justifying the need to 
support high interaction strength. 

Facing these challenges, this paper presents a new 
deterministic strategy, called multicore modified input 
parameter order (MC-MIPOG). Unlike its predecessor 
strategy (IPOG), MC-MIPOG removes the control and data 
dependency to permit the harnessing of multicore systems. 
This paper also explores the current state-of-the-art and 
discusses the similarities and differences among several 
variants of IPOG within the literature. Additionally, a number 
of experiments undertaken are discussed to demonstrate the 
speedup gain. Finally, comparisons with other existing 
strategies, namely, TConfig [7], Jenny [8], TVG [9], ITCH [10], 
IPOG [3], IPOG_D [11], and IPOF [12], [13] are also 
demonstrated. For most cases, MC-MIPOG outperforms other 
existing strategies in terms of test size and supports a high 
degree of interaction (t).  

The rest of this paper is organized as follows. Section II 
presents a state-of-the-art review of the existing strategies, 
section III provides the details of the proposed MIPOG strategy 
and how it varies from the original IPOG. Section IV provides 
a detailed description of MC-MIPOG and discusses its 
implementation. Section V reports evaluation experiments. 
Finally, section VI states our conclusions and suggestions for 
future works.  

II. Related Work 

Combinatorial testing strategies can be classified as either 
computational or algebraic strategies [14], [15]. Most algebraic 
approaches compute test sets directly by a mathematical 
function [16]. Algebraic approaches are often based on the 
extensions of mathematical methods for constructing 
orthogonal arrays (OA) [17], [18]. Some variations of the 
algebraic approach also exploit recursion in order to permit the 
construction of larger test sets from smaller ones [19]. Thus, the 
computations involved in algebraic approaches are typically 
lightweight and not subject to the combinatorial explosion 
problem. For this reason, strategies that are based on algebraic 
approach are extremely fast. On the other hand, algebraic 
approaches often impose restrictions on the system 

configurations to which they can be applied [20], [21]. This 
significantly limits the applicability of algebraic approaches for 
software testing [11].  

Unlike algebraic approaches, computational approaches often 
rely on the generation of all tuples and search the tuple space to 
generate the required test suite until all tuples have been covered. 
When the number of tuples to be considered is significantly large, 
adopting computational approaches can be expensive, especially 
in terms of the space required to store the tuples and the time 
required for explicit enumeration. Unlike algebraic approaches, 
computational approaches can be applied to arbitrary system 
configurations. Furthermore, computational approaches are more 
adaptable for constraint handling [22] and test prioritization [23]. 

Earlier works in combinatorial testing identify two strategies, 
namely the automatic efficient test generator (AETG) [24] and 
input parameter order (IPO) [25]. The AETG builds a test set one 
test at a time until all the tuples are covered [24], [26]. AETG and 
its variants [27], [28] are later generalized into a general 
framework to support multi-way interaction (t≤ 6) [29], [30].  

In contrast, IPO covers one parameter at a time. This allows 
IPO to achieve a lower order of complexity than AETG [1]. 
IPO is a pairwise strategy (interaction strength t = 2) based on 
vertical and horizontal extension. The IPO strategy first 
generates a pairwise test set for the first two parameters. It then 
continues to extend the test set to generate a pairwise test set for 
the first three parameters and continues to do so for each 
additional parameter until all the parameters of the system are 
covered via horizontal extension. If required for interaction 
coverage, IPO also employs vertical extension in order to add 
new tests after the completion of horizontal extension. Later, 
IPO is generalized into IPOG [3]. Several IPOG variants have 
been proposed to improve its performance, including IPOG-D 
[11], IPOF [12], and IPOF2 [12]. 

Both IPOG and IPOG-D are deterministic strategies. Unlike 
IPOG, IPOG-D combines the IPOG strategy with an algebraic 
recursive construction called D-construction in order to reduce 
the number of tuples to be covered. In fact, Lei and others 
reported that when t = 3, IPOG-D is degraded to a D-construction 
algebraic approach [31]. Here, when t > 3, a minor version of 
IPOG is used to cover the uncovered tuples missed during   
D-construction [11]. As such, IPOG-D tends to be faster than 
IPOG, though with a larger test set.  

Unlike IPOG and IPOG-D, IPOF is a non-deterministic 
strategy. For this reason, IPOF produces a different test set for 
each run. In short, the IPOF strategy is a refinement of IPO, the 
base pairwise strategy for IPOG, which is used to generate test 
sets for the uniform distribution of variables. Unlike IPOG, 
IPOF rearranges the rows during horizontal extension in order 
to cover more tuples per horizontal extension. Published results 
have reported the performance of IPOF but with a small 



ETRI Journal, Volume 32, Number 1, February 2010 Mohammed I. Younis et al.  75 

number of parameter values. Similarly, a variant of IPOF called 
IPOF2 [12] is also available but it has only been demonstrated 
with a small number of parameter values. Unlike IPOF, IPOF2 
uses a heuristic technique for covering the tuples, which allows 
a faster execution time than IPOF but with a larger test set. 
Currently, IPOG, IPOG_D, IPOF1, and IPOF2 are integrated 
into one tool called the Advanced Combinatorial Testing Suite 
(ACTS) available at NIST [32]. Four other strategy 
implementations that are available for download with minimal 
documentation are TConfig [7], Jenny [8], TVG [9], and ITCH 
[10]. Note that all these strategies are implemented using Java 
language except Jenny, which is implemented in C language. 

While there are many useful variants of IPOG, little attention 
has been given to parallelizing the test generation process. 
Because existing IPOG variants appear to have many inherent 
unwanted control and data dependencies which hinder 
parallelism due to case specific optimization processes for 
horizontal and vertical extension, we have opted for the 
original IPOG as our base strategy. In fact, we have introduced 
a new variant of IPOG, called modified IPOG (MIPOG) which 
demonstrates the feasibility of removing the inherited 
dependencies from IPOG and thus helps in the implementation 
of MC-MIPOG. The MIPOG strategy will be elaborated in the 
next section.  

III. MIPOG Strategy 

In this section, we introduce the MIPOG strategy and 
demonstrate how it can be parallelized into MC-MIPOG. We 
also highlight the similarities and differences between MIPOG 
and IPOG. 

Despite the fact that it is an efficient strategy, we note that the 
generation of a test set (ts) can be unstable in IPOG (see Fig. 1) 
due to the possibility of the current test case changing during 
the vertical extension (especially for test cases that include 
“don’t care” value). This raises the issue of dependency 
between previously generated test cases and the new one.  

To address this dependency issue, we have considered 
variant algorithms for both horizontal and vertical extension to 
remove dependencies (see the MIPOG strategy in Fig. 2). 

For horizontal extension, the MIPOG strategy checks all the 
values of the input parameter and chooses the value that 
contains the maximum number of combinations for the 
uncovered tuples in the π set. Also, MIPOG optimizes the don’t 
care value. For this reason, MIPOG always generates a stable 
test case which cannot be modified by searching for tuples that 
can be covered by the same test. This is performed by means of 
exhaustive searching of uncovered tuples that can be combined 
with this test case during horizontal extension (to ensure that 
the test case is indeed optimized). For vertical extension,  

 
Algorithm IPOG-Test (int t, ParameterSet ps) 
{ 
1. initialize test set ts to be an empty set; 
2. denote the parameters in ps, in an arbitrary order, as P1, 

P2,…, and Pn; 
3. add into test set ts a test for each combination of values 

of the first t parameters; 
4. for (int i = t + 1; i ≤ n; i ++){ 
5.  let π be the set of t-way combinations of values 

involving parameter Pi and t – 1 parameters among 
the first i – 1 parameters; 

6.  // horizontal extension for parameter Pi 
7.   for (each test τ = (v1, v2,…, vi–1) in test set ts) { 
8.      choose a value vi of Pi and replace τ with τ' = 

(v1, v2,…, vi–1, vi) so that τ' covers the most 
number of combinations of values in π; 

9. remove from π the combinations of values 
covered by τ'; 

10.   } 
11.   // vertical extension for parameter Pi 
12.   for (each combination σ in set π){ 
13.     if (there exists a test that already covers σ) { 
14.       remove σ from π; 
15.     } else { 
16. change an existing test, if possible, or otherwise

add a new test to cover σ and remove it from π;
17.     } 
18.   } 
19. } 
20. return ts;} 

Fig. 1. IPOG strategy.  
 
MIPOG rearranges the π set in decremented size order. After 
that, MIPOG chooses the first tuple from the rearranged π set 
and combines that tuple with other suitable tuples in the π set. 
That is, the resulting test case must have the maximum weight 
of the uncovered tuples found through exhaustive searching of 
uncovered tuples. Once combined, all these tuples are removed 
from the π set. This process is repeated until the π set is empty 
to ensure complete interaction coverage. 

To illustrate the differences between IPOG and MIPOG 
horizontal and vertical extension, we consider a system with 4 
parameters (three 2-valued and one 3-valued parameters). 
Figures 3 and 4 show the process of generating a 3-way test 
set using IPOG and MIPOG, respectively. Here, MIPOG 
generates a minimal test set (3×2×2=12 values), while IPOG 
generates 14 test cases. 

As shown in Fig. 3, IPOG decides on the parameter value 
assignment early in horizontal extension. Apart from ensuring 
most pairs are covered at the instant of assignment, IPOG also 
ensures that each parameter value is as equally balanced as 
possible. In contrast, MIPOG decides on the parameter value 
assignment late (see Fig. 4), that is, only after first scanning all 
the parameter values to yield the most optimal solution (with 
maximum weight). 

In vertical extension, IPOG iteratively checks for uncovered  
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 Algorithm MIPOG-Test (int t, ParameterSet ps) 
{ 
1. initialize test set ts to be an empty set; 
2. denote the parameters in ps, in an arbitrary order, as P1, 

P2,…, and Pn; 
3. add into test set ts a test for each combination of       

values of the first t parameters; 
4. for (int i = t + 1; i ≤ n; i ++){ 
5.    let π be the set of t-way combinations of values 

involving parameter Pi and t -1 parameters among 
the first i – 1 parameters; 

6.    // horizontal extension for parameter Pi 
7.    for (each test τ = (v1, v2,…, vi–1) in test set ts) { 
8.      if (τ does not contain don’t care){choose a value vi

of Pi and replace τ with τ'= (v1, v2, dc,…, vi-1, 
vi) so that τ' covers the maximum number of 
combinations of values in π;} 

9.      else {choose a value vi of Pi and search all 
possible tuples that can optimize the don’t care 
(dc) to construct τ' = (v1, v2,…, vi–1, vi) so that 
τ' covers the maximum number of 
combinations of values in π and optimized dc;}

10.      remove from π the combinations of values covered 
by τ';}                         

11.     // vertical extension for parameter Pi 
12. while (π is not empty){ 
13.   rearrange π in decreasing order; 
14.   choose the first tuple and generate test case (τ) to                

combine maximum number of tuples; 
15.   delete the tuples covered by τ, add τ to local ts; 
16. } //while 
17. } // for 
18. return ts;} 

Fig. 2. MIPOG strategy.  
 

 

Fig. 3. Generation of test set using IPOG. 
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t-way combinations from the horizontal extension and adds the 
combination into a new test in the vertical extension, often 
using already covered t-way combinations. In a similar manner, 
MIPOG also checks for uncovered t-way combinations from 
the horizontal extension. However, MIPOG optimizes the 
addition of a new test in the vertical extension by combining  

 

Fig. 4. Generation of test set using MIPOG. 
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the most uncovered t-way combinations whenever possible. 
This is efficiently done when there are don’t care values. This 
step, while improving the test size, also increases the overall 
computation of MIPOG. 

The net effect of the variant extension algorithms in MIPOG 
is twofold. First, we can always get a more optimal test set 
which would be at least the same size or even smaller than that 
of IPOG. Secondly, there are no dependencies between 
subsequently generated test values, thus, permitting the 
possibility of parallelization. 

To parallelize MIPOG, we can partition the π set for 
parameter Pi into vi partitions (see Fig. 2). As a result, the 
generation of each partition can be performed in a separate 
thread. Additionally, both horizontal and vertical extension can 
be performed in separate guarded (synchronized) threads. 

In the next section, we discuss the parallel version of MIPOG, 
called MC-MIPOG designed specifically for Intel Multicore 
system [33].  

IV. MC-MIPOG Strategy 

Built from MIPOG, the MC-MIPOG strategy distributes the 
computational processes and memory into pieces. In summary, 
the MC-MIPOG strategy implementation is based on the 
following design criteria:  

• Memory needs to be distributed in order to hold Pi in 
relatively independent cells, called π[Vi]. Here, each π[Vi] 
needs to have its own memory to hold the t-way 
combinations for a unique particular value for the 
parameter Pi; that is, there are Vi partitions for π. In this 
case, each partition is generated by a separate thread, called 
a combinatorial thread. 

• There are Vi separate threads for horizontal extension, 
called horizontal extension threads. 

• Similarly, there are also Vi separate threads for vertical 
extension, called vertical extension threads. 
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• The selected test set is stored into a shared memory 
controlled by the test generator (master) program which 
controls the creation, synchronization, and deletion of all 
of these mentioned threads. 

Note that the latest optimization in multicore systems with 
multitasking operating systems (as in Linux and Windows) 
manages processor/affinity in an optimal way [34]. This 
optimization enables each software thread to be mapped into 
the same hardware thread while keeping the data close to the 
processor through a process called a cache worm [33], [35]. 
Thus, the actual control of processor and memory affinity is 
automatically performed by the operating system.  

1. Test Generator (Main Program)  

As implied earlier, the main program roles are to manage the 
shared memory and to coordinate threads. Briefly, the main 
program works as follows: 

1) Start with an empty test set (ts), and generates all tuples for 
the first t-parameters.  

2) Create combinational threads (equal to the number of 
values in Pi), passing to them parameters values (P1…Pi-1).  

3) Wait for all combinational threads to finish their generation, 
and then read π[Vi’s]. 

4) Shut down the combinational threads. 
5) Create horizontal extension threads (equal to the number of 

values in Pi), passing to them π[Vi’s], and Vi’s for 
parameter Pi.  

6) For horizontal extension: 
a. For each test case τ in test set ts: 
b. Wait until all threads have validated results.  
c. Read the weight (that is, the number of covered tuples 

after adding the assigned value) from each thread. Then, 
choose the value corresponding to the maximum 
weight to be added to ts if no tuples match (weight 
zero) don’t care added to τ. 

d. Notify the horizontal extension threads that validate that 
selection is done. 

e. According to the selection in c, issue command to the 
selected thread to delete tuples from their own π set (πv). 
Allow the selected threads to update τ. 

f. Wait for selected thread to finish its work.  
7) Shut down the horizontal threads. 
8) Create vertical extension threads equal to the number of 

values in Pi, pass them to π[Vi’s], and Vi’s for parameter Pi.  
9) In vertical extension: 

a. Wait for the threads to finish their partial test set (tsvth). 
b. Collect tsvths from the threads. Then add each tsvth to ts. 

10) Shut down the vertical threads. 

 

Fig. 5. Algorithm for master program. 

Algorithm Main (int t, ParameterSet ps) 
{ 
1. initialize test set ts to be an empty set; 
2. denote the parameters in ps, in an arbitrary order, as P1, 

P2,…, and Pn; 
3. add into test set ts a test for each combination of values 

of the first t parameters; 
4. for (int i = t + 1; i ≤ n; i ++){ 
5.    //create combinational  
6.    for (each value (v) in Pi) { 

start combinational thread (t, ps, i, set π[v]); 
7.      wait for combinational threads to finish;} 
8.      // horizontal extension for parameter Pi 
9.    for (each value (v) in Pi) { 

start horizontal thread (ts, set π[v],v); } 
10.   for (each test τ = (v1, v2,…, vi-1) in test set ts) {  
11. wait for notification; 
12.     read the weight from each horizontal thread;

choose vi corresponding to maximum weight; 
13.  if (max weight !=0) { 
14.       issue command delete to horizontal thread [vi], 

and cancel commands to all others threads }//if
15.  else { append don’t care to τ; 
16.       issue cancel commands to all threads; } //else
17.     notify all waiting threads; 
18.    } //for 
19.    wait for horizontal threads to finish; 
20.     // vertical extension for parameter Pi 
21.    for (each value (v) in Pi) { 

start vertical thread (lts[v], set π[v],v); 
22.       wait for vertical threads to finish;} 
23.    for (each value (v) in Pi){ 
24.       add each lts[v] to ts;}// loop v 
25. }//loop i 
26. return ts;}// algorithm 

 
 

For clarity, the complete algorithm for the master program is 
given in Fig. 5. 

2. Working Threads 

In this section, we will describe how each thread work.  

1) For combinational threads: 
a. Each thread generates its own partial tuples set (πv). 
b. Each thread notifies the master.  

2) For horizontal extension threads: 
a. Read next test case τ in test set ts. 
b. If τ does not contain don’t care, determine the weight of τ.  
c. If τ contains don’t care, the thread optimizes the don’t 

care value to have as much weight as possible. 
d. Validate the weight by notification. 
e. Wait for notification. 
f. Read the command issued from main, if it contains 

delete then the thread deletes tuples covered by τ from 
(πv); then, append v to τ (in case b) or delete τo (in case  
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Fig. 6. Algorithm for combinational thread. 

Algorithm Combinational Thread  
(int t, ParameterSet ps, int i, set πv ) 
{  
1. generate local π, where π is the set of t-way Combinations 

of values and  t – 1 among the first i – 1 parameters; 
2. notify the waiting process; 

  }//algorithm 

 
 

c) from (πv); then, replace τ with τo.  
g. In the case of deletion in f, notify the waiting process. 

3) For vertical extension threads: 
a. Arrange πv in decreasing order, choose the first tuple, 

and generate the test case with maximum weight.  
b. Repeat step (a) until (πv) is empty.  
c. Notify the waiting process. 

The complete algorithms for the combinational thread, 
horizontal extension thread, and vertical extension thread are 
given in Figs. 6, 7, and 8, respectively. 

V. Evaluation  

Our evaluation has three main aims. First, we compare the 
behavior of MC-MIPOG to that of IPOG in terms of the test 
size ratio. Secondly, we investigate whether there is speedup 
gain from parallelizing MIPOG in MC-MIPOG. Finally, we 
compare the effectiveness of the MC-MIPOG strategy to that 
of other strategies (including that of other IPOG variants) in 
terms of the generated execution time and test size. 

1. MC-MIPOG Behavior against IPOG 

To compare the behavior of MC-MIPOG and IPOG, we 
performed a group of experiments adopted from Lei and others 
[3]. In these experiments, we are interested to compare the test 
sizes of MC-MIPOG and IPOG. Note that the IPOG test size is 
obtained from [3]. 

• Group 1: The number of parameters (P) and the values (V) 
are constant, but the coverage strength (t) is varied from 2 to 7. 

• Group 2: The coverage strength (t) and the values (V) are 
constant to 4 and 5, but the number of parameter (P) is varied 
from 5 to 15. 

• Group 3: The number of parameter (P) and the coverage 
strength (t) are constant from t to 10 and 4, respectively, but the 
values (V) are varied from 2 to 10. 

The results of the experiments are shown in Tables 1, 2, and 
3, respectively. Here, we define the size ratio as the size of the 
test set from MC-MIPOG to the size obtained from IPOG.  

 

Fig. 7. Algorithm for horizontal extension thread. 

Algorithm Horizontal Extension Thread  
(test set ts, set π, value v) 
{ 
1. for (i=1..ts size) { 
2.  τ=ts[i]+v; 
3.  if (τ not contains don’t care) { 
4.    determine the weight of τ in π; 
5.    notify the waiting process; 
6.    wait for notification of master command; 
7.    if (delete command){ 
8.       delete tuples covered by τ from π; 
9.       ts[i]=ts[i]+v; 

10.       notify the master that the delete done; 
11.    }//if delete 
12.  } 
13.  else {produce τo (optimize don’t care in τ ); 
14.    determine the weight of τ in π; 
15.    notify the waiting process; 
16.    wait for notification of master command; 
17.    if (delete command{ 
18.      delete tuples covered by τ from π; 
19.      ts[i]= τo; 
20.      notify the master that the delete done; }//if delete
21.  }//else 
28. }//loop i 
29. } //algorithm 

 
 

 

Fig. 8. Algorithm for vertical extension thread. 

Algorithm vertical extension thread  
(local test set lts,set π,value v) 
{ 
1. while (π!empty){  
2.  arrange π in decreasing order; 
3.  choose the first tuple and generate test case that 

combine maximum number of tuples (τ); 
4.  delete the tuples covered by τ; 
5.  append v to τ; 
6.  add τ to lts; 
7. } //while 
8. notify waiting process; 
9. } //algorithm 

 
 
From Tables 1 to 3, it is evident that MC-MIPOG performs 
better than IPOG in terms of test size because the size ratio is 
always < 1. In Table 3, NS indicates that the parameter and 
values chosen with a given strength are not supported. 

Although comparing quite well with IPOG, MIPOG’s test 
size is not the most optimal compared to Colbourn’s best-
known published results [36]. Nonetheless, on a positive note, 
MIPOG contributes to finding the optimal test size for (t = 5,  
p = 10, v = 5) that yields 8,169 instead of 8,555 as reported by 
Colbourn. In fact, MIPOG also reports a new optimal test size 
for (t = 7, p = 10, v = 5) that yields 186,664. Note that this 
result for (t = 7, p = 10, v = 5) has not been reported by 
Colbourn. 
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Table 1. Size ratio results for 5 to 15 parameters with 5 values in 4-way testing. 

# of parameters 5 6 7 8 9 10 11 12 13 14 15 

MC-MIPOG size 625 625 1,125 1,348 1,543 1,643 1,722 1,837 1,956 2,051 2,150 

IPOG size 784 1,064 1,290 1,491 1,677 1,843 1,990 2,132 2,254 2,378 2,497 

Size ratio 0.797 0.587 0.872 0.928 0.92 0.891 0.865 0.861 0.868 0.862 0.861 

Table 2. Size ratio results for 10 parameters with 2 to 10 values in 4-way testing. 

# of values 2 3 4 5 6 7 8 9 10 

MC-MIPOG size 43 217 637 1,643 3,657 5,927 11,355 18,036 27,306 

IPOG size 46 229 649 1,843 3,808 7,061 11,993 19,098 28,985 

Size ratio 0.934 0.948 0.981 0.891 0.96 0.839 0.946 0.944 0.942 

Table 3. Size ratio results for 10 parameters with 5 values for t = 2 to 7. 

t-way 2 3 4 5 6 7 

MC-MIPOG size 45 281 1,643 8,169 45,168 186,664 

IPOG size 48 308 1,843 10,119 50,920 NS 

Size ratio 0.938 0.912 0.891 0.807 0.887 - 

Table 4. Speedup results for 5 to 15 parameters with 5 values in 4-way testing. 

# of parameters 5 6 7 8 9 10 11 12 13 14 15 

MIPOG 0.128 0.31 0.778 1.981 3.735 6.9 10.642 19.39 44.169 71.104 143.29

MC-MIPOG 0.15 0.269 0.57 1.272 2.275 3.818 5.803 10.298 21.171 33.213 60.931

Speedup 0.8533 1.152 1.365 1.557 1.642 1.807 1.833 1.883 2.086 2.14 2.352 

Table 5. Speedup results for 10 parameters with 2 to 10 values in 4-way testing. 

# of values 2 3 4 5 6 7 8 9 10 

MIPOG 0.148 0.408 1.39 6.9 68.031 70.495 4,767.778 5,203.01 56,786.346

MC-MIPOG 0.141 0.383 0.983 3.818 35.62 36.151 1,538.719 1,605.372 16,220.036

Speedup 1.05 1.065 1.414 1.807 1.91 1.95 3.099 3.241 3.501 

Table 6. Speedup results for 10 parameters with 5 values for t = 2 to 7. 

t-way 2 3 4 5 6 7 

MIPOG 0.074 0.327 6.9 197.928 4,025.442 82,668.19 

MC-MIPOG 0.09 0.281 3.818 94.498 1,311.209 23,512.7 

Speedup 0.822 1.163 1.807 2.095 3.07 3.516 

 

 
2. Speedup Gain in MC-MIPOG 

To measure the speedup gain from parallelizing MIPOG, we 
subjected both MIPOG and MC-MIPOG to three experimental 
groups described earlier. The results of the experiments are 
shown in Tables 4, 5, and 6. Here, the speedup is defined as the 

ratio of the time taken by the sequential MIPOG algorithm to 
the time taken by MC-MIPOG algorithm. All the results were 
obtained using the Linux Centos OS with a 2.4 GHz Core 2 
Quad CPU [34] and 2 GB RAM with JDK 1.5 installed. Note 
that the execution time is in seconds, and both MIPOG and 
MC-MIPOG produce the same test set in all cases.  
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Table 7. Comparative test size results using the TCAS module for t = 2 to 12. 

t MC-MIPOG IPOG IPOG-D IPOF1 IPOF2 ITCH Jenny TConfig TVGII 
2 100 100 130 100 100 120 106 100 101 
3 400 401 487 402 427 2,388 411 472 434 
4 1,265 1,367 2,522 1,352 1,644 1,484 1,527 1,476 1,599 
5 4,196 4,230 5,306 4,290 5,018 NS 4,680 NS 4,773 
6 10,851 10,956 14,480 11,234 13,310 NS 11,608 NS 12,732 
7 26,061 NS NS NS NS NS 27,630 NS NS 

8 56,742 NS NS NS NS NS 58,865 NS NS 

9 120,361 NS NS NS NS NS NS NS NS 

10 201,601 NS NS NS NS NS NS NS NS 

11 230,400 NS NS NS NS NS NS NS NS 

12 460,800 NS NS NS NS NS NS NS NS 

Table 8. Comparative test generation time using the TCAS module for t = 2 to 12. 

t MC-MIPOG MIPOG IPOG IPOG-D IPOF1 IPOF2 ITCH Jenny TConfig TVGII 

2 0.166 0.125 0.047 <0.001 0.015 0.016 0.68 0.001 >1 hour 2.56 

3 0.28 0.324 0.313 0.015 0.078 0.109 1,015.2 0.697 >12 hour 2.96 

4 2.303 3.027 2.156 0.302 1.805 1.52 5,102.1 3.35 >20 hour 101.1 

5 21.672 32.074 13.39 3.11 8.566 8.611 NS 41.32 >1 day 1,369.3 

6 194.135 288.485 60.05 33.22 55.11 46.86 NS 466.27 >1 day >20 hours

7 959.124 1,564.332 NS NS NS NS NS 235.4 NS >1 day 

8 5,739.74 9,441.872 NS NS NS NS NS 11698.2 NS >1 day 

9 18,857.175 32,245.77 NS NS NS NS NS >1 day NS >1 day 

10 21,903.542 38,594.041 NS NS NS NS NS >1 day NS >1 day 

11 7,910.768 14,263.114 NS NS NS NS NS >1 day NS >1 day 

12 25.031 25.031 NS NS NS NS NS >1 day NS >1 day 

 

As seen in Table 4, the speedup increases linearly as the 
number of parameters increases. Here, extra overhead is added 
for the fifth parameters due to the need to start and shut down 
the corresponding threads. As seen in Table 5, the speedup gain 
also increases quadratically as the number of values increases. 
Extrapolating and performing curve fitting of the results from 
Table 6, we observe that the speedup increases logarithmically 
as the strength of coverage increases. In this case, there is also 
no speedup gain for this strategy when t = 2, possibly due to the 
overhead required for creation, synchronization, and deletion of 
threads for a small degree of interaction. 

3. Comparison with Other Strategies 

To investigate the effectiveness of the MC-MIPOG strategy 
against other strategies, including IPOG and its variants, in 

terms of test size and the number of generated test sets, we 
adopt a common configuration system, the TCAS module. The 
TCAS module is an aircraft collision avoidance system 
developed by the Federal Aviation Administration which has 
been used as case study in other related works [2], [11]. The 
TCAS module has twelve parameters; seven parameters have 
2 values, two parameters have three values, one parameter has 
four values, and two parameters have 10 values.  

As highlighted earlier, we chose the TCAS module because 
the same parameters and values have been used by other 
researchers. By adopting the same parameters and values, 
objective comparison may be made between various strategy 
implementations. To ensure that the results obtained are up-to-
date given the fact that some of the implementations have 
evolved tremendously over the years, we downloaded all the 
available implementations within our environment to ensure 
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fair comparison. Here, we are also interested to investigate 
whether or not each strategy supports high t (t > 6). 

Specifically, we downloaded ACTS (implementing IPOG, 
IPOG-D, IPOF1, and IPOF2) from NIST, ITCH, Jenny, 
TConfig, and TVGII. We were not able to download AETG 
because the implementation is a commercial product; therefore 
it was not considered for comparison in our study. To 
compensate the fact that that Jenny is an MSDOS-based 
executable program, we chose a running environment 
consisting of Windows XP 2.0 GHz, an Intel Core 2 Duo CPU, 
and 1 GB RAM with JDK 1.6 installed. 

Tables 7 and 8 summarize the complete results. As in Table 3 
NS indicates that the parameter and values chosen with a given 
strength are not supported. Also, darkened cell rows indicate 
the best performance in term of test size. 

As seen in Table 7, MC-MIPOG, IPOG, IPOF1, and IPOF2 
gave the optimum test size at t = 2. At t = 3, both MC-MIPOG 
and IPOG gave the optimum test size. For all other cases, MC-
MIPOG always outperforms other strategies. Besides MC-
MIPOG, only Jenny can support more than t = 6 for the TCAS 
module. However, we have not been successful in summoning 
Jenny for t > 8 because the program implementation crashes. 

Even though TVG enables the user to select t from a range 
from 2 to 9, we cannot obtain any result for t = 5 because the 
program execution crashes. Note that our experiment with 
TVGII produced different results than the published results 
(here, we used the tool with the “T_ Reduced” option), perhaps 
due to a new update of the implementation. 

Allowing the user to select t between 2 and 6, our experience 
indicates that for the TCAS module, TConfig merely gives a 
result for t < 5. Here, an exception occurs when we attempt to 
get a result for t > 5. A similar observation can be seen for 
ITCH. Note that ITCH does not support t > 4. Also, in the case 
of ITCH, the test size for t = 3 is greater than that for t = 4. 

In comparison with all other IPOG variants (except MC-
MIPOG), it is clear that IPOG outperformed IPOG_D, IPOF1, 
and IPOF2 in terms of test size for the TCAS module. Like 
other strategies (except MC-MIPOG), this family of strategies 
cannot produce a test suite for t > 6. That is, no option is given 
for t > 6.  

In terms of execution time, IPOG-D has the fastest overall 
time for t ≤ 6 (see Table 8). For t > 6, MC-MIPOG is fastest 
because no other strategies are able to provide t-way test 
generation support (Jenny supports up to t = 8). From one 
perspective, MIPOG is similar to IPOG and IPOG_D in the 
sense that they are all deterministic strategies. From another 
perspective, IPOF and IPOF2, are non-deterministic strategies. 
The general aim of IPOG_D, IPOF, and IPOF2 is to achieve a 
faster execution time than that of IPOG. Generally, obtaining an 
optimized test size and a fast execution time are two sides of the 

same coin. Obtaining an optimized test size requires more 
processing time for choosing the most optimized tuple. On the 
other hand, obtaining fast execution time means that little 
optimization is performed to obtain the optimum test size. This is 
evident as far as the test sizes are concerned for IPOG_D, IPOF, 
and IPOF2. MIPOG is a strategy that is designed to produce a 
smaller test size than that of IPOG under the cost of more 
processing time during horizontal extension. As discussed earlier, 
unlike IPOG, IPOG_D, and IPOF, MIPOG adopts a different 
type of vertical extension which is more heavyweight than that 
of IPOG (for optimization of vertical extension). For this reason, 
MIPOG’s execution time tends to be slower than most of the 
IPOG variants. Nevertheless, the implementation of MC-
MIPOG has alleviated this drawback through the adoption of a 
multicore architecture. In fact, MIPOG is the only strategy 
within the IPOG family that can be parallelized.  

VI. Conclusion 

As computer manufacturers make multicore CPUs 
pervasively available within reasonable costs, harnessing this 
technology is no longer a luxury but a viable and useful option.  

In this paper, we investigated and evaluated a parallel strategy 
called MC-MIPOG for t-way test data generation on multicore 
architecture. Our results indicate that MC-MIPOG scales well 
against existing strategies. In preparation for our future work, we 
are currently porting MIPOG and MC-MIPOG into the grid 
environment. Our initial implementation results have been 
encouraging. We are also planning to perform more extensive 
comparisons with Colburn’s best-known results.  
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