
ETRI Journal, Volume 32, Number 3, June 2010 © 2010 Dowon Hong et al. 351

Multiple rotation-based transformation (MRBT) was
introduced recently for mitigating the apriori-knowledge
independent component analysis (AK-ICA) attack on
rotation-based transformation (RBT), which is used for
privacy-preserving data clustering. MRBT is shown to
mitigate the AK-ICA attack but at the expense of data
utility by not enabling conventional clustering. In this
paper, we extend the MRBT scheme and introduce an
augmented rotation-based transformation (ARBT)
scheme that utilizes linearity of transformation and that
both mitigates the AK-ICA attack and enables
conventional clustering on data subsets transformed using
the MRBT. In order to demonstrate the computational
feasibility aspect of ARBT along with RBT and MRBT, we
develop a toolkit and use it to empirically compare the
different schemes of privacy-preserving data clustering
based on data transformation in terms of their overhead
and privacy.

Keywords: Privacy preservation, data clustering,
measurements, rotation-based transformation.

Manuscript received June 9, 2009; revised Dec. 6, 2009; accepted Jan. 4, 2010.
This work was supported by the IT R&D program of MKE, Rep. of Korea (Development of

Privacy Enhancing Cryptography on Ubiquitous Computing Environment).
Dowon Hong (phone: +82 42 860 6147, email: dwhong@etri.re.kr) is with the Software

Research Laboratory, ETRI, Daejeon, Rep. of Korea.
Abedelaziz Mohaisen (email: mohaisen@cs.umn.edu) was with the Software and Content

Research Laboratory, ETRI, Daejeon, Rep. of Korea, and is now with the Department of
Computer Science, University of Minnesota Twin Cities, Minneapolis, USA.

doi:10.4218/etrij.10.0109.0333

I. Introduction

Data mining has grown to include powerful tools for
understanding unknown patterns in huge amounts of data and
benefits by drawing ideas from several fields including
machine learning, artificial intelligence, pattern recognition,
statistics, and database systems [1]. Though the data mining
area itself is young compared to other areas, it utilizes smart
and powerful algorithms which are adapted from other areas,
particularly from the database systems research area. These
smart algorithms are essential for understanding data and
building models over it, which is a fundamental goal in many
business intelligence related areas [2]. For instance, it is
possible to improve the quality of services by utilizing
patterns of interests using association role mining [3] or data
clustering [4], [5]. Also, it is very possible to build predictive
models for learning the data by applying the data classification
and Bayesian models among other data mining algorithms [6].

While the benefits realized by making data available for the
purpose of data mining are great, recent results have shown that
privacy is a significant requirement that must be considered
along with the data mining results [3]. For ethical and technical
reasons, data providers who provide their data for data mining
purposes are concerned that their data will not be used for
breaching their privacy. For that reason, several privacy-
preserving data mining algorithms have been crafted since the
initiation of privacy-preserving data mining studies in [3].
These algorithms are designed to provide data mining results
over data that conceals or limits access to user identity or data
that might lead to user identification. Also, these algorithms
have broadened to include most of the known conventional
data mining algorithms and consider the mining of data stored
at distributed settings for both vertically and horizontally

Augmented Rotation-Based Transformation for
Privacy-Preserving Data Clustering

 Dowon Hong and Abedelaziz Mohaisen

352 Dowon Hong et al. ETRI Journal, Volume 32, Number 3, June 2010

distributed databases while considering several adversarial
settings [7].

Recently, privacy-preserving data clustering has been studied
for its promising variety of applications in different fields.
Privacy-preserving data clustering is a special clustering problem
concerned by group data into exclusive sets according to some
similarity criterion without breaching the data privacy. To enable
this type of clustering, several algorithms have been introduced
with specific advantages and disadvantages. For instance,
Oliveira and others in [5] and Chen and others in [8]
simultaneously introduced the rotation-based transformation
(RBT) method in which the data is linearly (and orthogonally)
transformed while maintaining a distance-invariance property
between data records. This distance-invariance property enables
an accurate distance-based clustering over transformed data.
Though it is computationally feasible, the RBT was shown by
Guo and others in [9] to be vulnerable to the apriori-knowledge
independent component analysis (AK-ICA) attack. To mitigate
this attack, Mohaisen and others introduced a multiple rotation-
based transformation (MRBT) algorithm [4]. Though the
MRBT mitigates the AK-ICA attack and allows several distance-
based algorithms including special kinds of clustering, it does not
enable the conventional clustering on the transformed data [4].

The original contribution of this paper is twofold. First, to
enable the conventional clustering on data subsets to be
transformed using MRBT where conventional clustering was
not previously possible, we introduce an augmented rotation-
based transformation (ARBT) scheme which is shown to be
efficient for data transformation while mitigating the AK-ICA
attack. As a related contribution, we provide an optimization
technique which uses the fact that some data is already
clustered when applying ARBT and use that for improving the
conventional clustering. Second, since both RBT and MRBT
are shown theoretically to preserve privacy and to be practical
without any empirical evidence or verification, we introduce
ppCD, a Java-based toolkit that is designed and used for
privacy-preserving data clustering and for performing real
measurements for the known clustering algorithms on a typical
computing machine. Particularly, ppCD incorporates the RBT,
MRBT, and ARBT for privacy-preserving data clustering. Also,
it implements a conventional clustering algorithm, namely the
k-mean clustering algorithm, and an optimized clustering
algorithm designed specifically for and benefiting from the
application scenario of the ARBT. Among the interesting
results realized in this article, we show that transforming
130 MB of storage on a desk requires about 1.6 seconds on a
typical computing machine with any of the transformation
algorithms we tested in our experiments.

The structure of the rest of this paper is as follows. In section
II, we introduce the preliminaries of this work by touching

upon the system and data model, data clustering, and data
transformation methods for privacy-preserving data clustering.
In section III, we introduce our augmented rotation-based
transformation (ARBT) scheme for data clustering
accompanied by an enhanced version of the k-mean clustering
algorithm which benefits from the settings of ARBT. In section
IV, we evaluate the ARBT in terms of privacy preservation, its
security, and overhead. In section V, we introduce our empirical
study on the different transformation schemes preceded by
developing an evaluation criteria and depiction of the ppCD
toolkit. Finally, we draw concluding remarks in section VI.

II. Preliminaries

In this section, we describe the models used in this article:
the system model and the data model. We describe user
classification. We define data and, finally, give a description of
the rotation-based transformation algorithms.

1. Models

A. System Model

General data mining systems are designed for mining data
according to two different models: the server to server (S2S)
model and the client to server (C2S) model [10]. In this work,
we consider the C2S model which is depicted in Fig. 1. The
C2S model consists of three entities: data providers, warehouse
servers, and mining servers [10]. Data providers provide data
for clustering and are simply the users whose data is of interest
to a potential attacker. The warehouse servers are storage
servers available publicly and accessible by both users and
mining servers. Generally, warehouse servers are not trusted,
and access to them is not controlled by any authentication or
authorization services. Finally, the mining servers are used for
mining data. Accordingly, mining servers may act maliciously.
In the general C2S model, servers do not have direct interaction
with users though they gain access to a user’s data by
requesting it from the warehouse server. In principle, having
the warehouse server in the system does not imply any
additional security constraints over the scenario of having a
miner communicate with users directly. For simplicity, we
merge both the mining server and warehouse server in a single
miner entity where the mining server initially gains access to
data by requesting it from the user.

The ARBT algorithm is a special case. Some interaction
takes place between the data miner and the users (clients) to
enable conventional clustering. Further details on all possible
interactions between users and the mining server concerning
the different algorithms are shown in Table 1. In Table 1, UA
and UB stand for two users (clients) and M stands for the

ETRI Journal, Volume 32, Number 3, June 2010 Dowon Hong et al. 353

Fig. 1. System model in general data mining application. Note
that the directions of arrows here are illustrative, and the
notation in Table 1 is considered for each algorithm
separately.

Clients (users) Mining server
Warehouse server

Table 1. Communication between users and miner where → and ↔
represent uni- and bi-directional, respectively.

Algorithm UA, UB UA, M UB, M

RBT → → →

MRBT ↔ → →

ARBT ↔ ↔ ↔

mining server. A single-user system scenario is realized by
considering either of the users, and a multi-user system
scenario is realized by considering both of them.

B. User Classification

Users are either honest or dishonest [11]. Honest users
provide their data for mining purposes and do not have any
interest in breaching the privacy of other users participating in
the protocol by trying to gain access to their private data.
Dishonest users may misbehave and seek access to the private
data of others by reconstructing it using secret parameters of
users participating in the protocol. In this work, we assume all
users to have a high incentive to act honestly. Work in [12]
suggests the rationale of such assumption.

C. Data Model

For data representation, we use the conventional relational
database model to store the data [13]. In this model, dataset A
consists of n records and a attributes. The index of a record is
denoted as i where 1≤i≤n and the index of an attribute is
denoted as j where 1≤j≤a. The data in our system is numerical
and describes geographical, locational, or financial data. A
sample of the data used in our implementation is shown in
Table 2, and its normalized image is shown in Table 3.
Mathematically, dataset A is represented as (aⅹn) matrix.

2. Data Clustering

Given dataset A of n records and a attributes, and given a

Table 2. Sample of dataset we use in our implementation.

Index A1 A2 A3 A4 A5

1 13.70 48.13 084.63 41.19 66.25

2 26.26 49.01 121.37 45.79 81.87

3 20.76 44.98 108.12 56.59 93.31

4 15.19 50.53 063.30 42.19 60.88

Table 3. Dataset in Table 1 normalized to unit. Note that, this data is
normalized along with larger dataset (50,000 records).

Index A1 A2 A3 A4 A5

1 0.3623 0.0170 0.3239 0.1114 0.0156

2 0.6450 0.0198 0.6752 0.2340 0.0760

3 0.5430 0.0072 0.5214 0.3238 0.2179

4 0.1982 0.0245 0.3656 0.0692 0.0288

similarity measure among these records, the data clustering is
concerned with dividing the dataset into groups (data subsets)
so that the records in one group (named cluster) are more
similar to one another, and data records in separate clusters are
less similar to one another. The Euclidean distance is a
commonly used similarity measure in the continuous data
clustering. The Euclidean distance between two records ři= (ri1,
…, ria) and řj = (rj1,…, rja) is Dist(ři, řj)=(Σ a

k=1 (rik–rjk)2)1/2.

Some of the known distance-based clustering algorithms that
utilize Euclidean distance include the k-mean algorithm [14]
and k-nearest-neighbor (k-NN) algorithm [15]. In this article,
we use the k-mean algorithm for comparing the performance of
the different transformation schemes. A slightly modified
k-mean clustering algorithm is depicted in Fig. 3.

3. Data Transformation Algorithms

In the context of data clustering, both privacy and data
mining results are equally important criteria. In order to
guarantee both criteria, several methods were introduced
considering several potential applications (for example, [16]-
[19]); most noticeably, data perturbation. One of these
perturbation methods is the RBT in which the data is
transformed geometrically while preserving the distance
between the data records to enable a distance-based data
clustering with high accuracy that reflexes a minimal data loss
when performing clustering. Considering several attackers’
capabilities, several studies are introduced to test the privacy
achieved in the RBT scheme. For instance, it was shown that a
combination of reconstruction and distance-based inference
attacks can be utilized to greatly breach the privacy of the RBT.

354 Dowon Hong et al. ETRI Journal, Volume 32, Number 3, June 2010

The principle component analysis (PCA) [20] and independent
component analysis (ICA) [21], two statistical tools, are shown
to be efficient for reconstructing private data transformed using
RBT under some operation conditions. In this section, we
describe the RBT scheme and the attack on it followed by the
MRBT used for mitigating this attack. Also, we provide
motivation for our ARBT scheme by showing shortcomings of
the MRBT.

A. RBT

The RBT is a distance-invariant transformation method. For
a dataset A and R represented as an aⅹn matrix and an aⅹa
transformation matrix, respectively, the RBT is mathematically
expressed as Y=RA. In order to satisfy the distance-invariant
property, the transformation matrix R needs to be orthonormal.
R is said to be orthonormal if R=R–1 (that is, RRT=I, where I is
the identity matrix). According to [5], [8], and [20], an
orthonormal matrix can be constructed as a square matrix with
two non-zero values in each row and column. An example of
that is R = [č1, č2], where č1 and č2 are column vectors and
defined as č1 = (cosθ, –sinθ) and č2 = (sinθ, cosθ). As an
elementary representation, a 2×2 orthonormal matrix can be
represented as R=f(θ)=[eij], where eij = cosθ iff i=j, eij = sinθ iff
i<j, and eij = –sinθ iff i>j. An aⅹa orthonormal matrix, where a
is an even number, is expressed in terms of a 2×2 orthonormal
matrix as a diagonal block matrix R = [Ri] where 1≤ i ≤ a/2
and R1 = R2 = … = Ra/2 [4]. For odd numbers of attributes, the
last attribute can be transformed manually with any other
previously transformed attribute [5].

RBT is shown to be vulnerable to the AK-ICA attack. The
ICA itself is a statistical tool used for signal separation. Given the
rotated data and a previously known portion of original private
data, with the help of the ICA, the attacker is able to estimate the
unknown private data from the rotated data. This attack has been
studied in [9] and mitigated in [4]. The mitigation procedure tries
to harden the applicability of the AK-ICA by defining several
rotation parameters and partitioning the dataset into several data
subsets. Then, the data subsets are rotated using rotation matrices
generated from the different rotation parameters independently
and released for data mining purposes. The detailed procedure of
mitigation is shown below.

B. MRBT

The MRBT for the mitigating AK-ICA attack uses the long-
standing technique of controlling data release to achieve higher
privacy. Since the column-wise control of release that provides
distance preservation between data columns is useless for data
clustering, which is basically performed over rows (records),
we use the row-wise control for limiting data release. In the

row-wise control, we block each set of records and transform
them independently using different transformation parameters.
In particular, we group the different records into different
groups and rotate them using different rotation matrices
generated by different random instances according to the
previously mentioned method. This control of transformation
and data release preserves full distance over records for parts of
the columns. In particular, this distance enables correct
clustering over the subsets. MRBT is performed as follows [4].

1. The data owner normalizes the data to the unit.
2. According to some parameter m, the data owner divides

the data into m equal parts defined as A= {A1,…, Am}. A is
expressed as the block matrix A= [Ai]: 1≤i≤m.

3. The data owner generates m different random seeds (s1,…,
sm). Using each seed si, the data owner generates an
orthogonal matrix Ri=f(si) (as detailed in section II.3.A) for
transforming the corresponding sub-matrix of A.

4. The data owner transforms his data as Y=[Yi]=[RiAi],
where 1≤i≤m and releases Y for data clustering purpose.

The resulting rotation preserves the inner product between
the corresponding records in the original data. Also, it preserves
the inner product between two records falling into the same
corresponding subsets. However, the inner product is not
preserved for records other than those mentioned here. The first
part can be easily proven to be correct given that these records
are transformed using the same matrix. Similarly, we prove the
second part as follows. Let YA=[YAi]=[RiAi] and YB =[YBj]=
[RjBj]. The inner product between YA and YB is YA

TYB = [YAi
T YBj],

where 1≤i≤m and 1≤j≤m. For the diagonal part of this product
matrix (i=j), it is easy to verify the preservation of the inner
product since YAi

TYBj = (RiAi)TRiBi = Ai
TRi

TRiBi = Ai
TIBi = Ai

TBi.
In spite of mitigating the AK-ICA attack, which is a great

merit [4], the MRBT does not allow conventional clustering on
data that belongs to two different subsets. To enable that, we
introduce an ARBT for conventional clustering of transformed
data and its privacy.

III. ARBT

In order to overcome the shortcoming of the MRBT, we
introduce the ARBT scheme that takes both conventional
clustering and privacy into account. The ARBT consists of two
parts applied separately on the side of the client (data owner)
and the server. Before detailing both parts, we motivate for the
ARBT by introducing the linearity property of transformation.

1. Motivation

The linearity of the RBT is an interesting property that can be

ETRI Journal, Volume 32, Number 3, June 2010 Dowon Hong et al. 355

used for enabling conventional clustering over data
transformed using the MRBT. Let R1= f(θ1), R2 = f(θ2), and
R3 = f(θ3). We state that R1R2 = R3 if θ1 + θ2 = θ3, where f is a
function that constructs an orthogonal matrix from a random
seed θ according to the procedure explained earlier. Proving
this statement for 2×2 transformation matrices is direct and can
be easily generalized to an orthonormal transformation matrix
of any size. Let R1 = [ř11, ř 12] and R2 = [č21, č22], where
ř11 = (cosθ1, sinθ1) and ř 12 = (–sinθ1, cosθ1) are row vectors of
R1, and č21 = (cosθ2, – sinθ2) and č22 = (sinθ2, cosθ2) are column
vectors of R2. The product, R3 = R1R2 = [ř31, ř32], is
řiřj = cos(θ1+θ2) = cosθ3 if i = j, řiřj = sin(θ1+θ2) = sinθ3 if i<j
and ři řj = –sin(θ1+θ2) = –sinθ3 when i>j, from which we
conclude the soundness of the claim.

Since any diagonal block matrix such as the one used in
ARBT is also orthonormal, the above statement can be
generalized to transformation of any size. Given this linearity
property, now we explain the ARBT by discussing the
procedure performed at the client and server sides, respectively.

Given the linearity property, our goal can be achieved in a
straightforward manner: if we are given two datasets that are
transformed using two different parameters, we can make
them look as though they are transformed using a single
parameter, and hence maintain distance invariance property
over their records using the unification property that utilizes
linearity.

2. Client Side

The procedure of the ARBT at the client side consists of
three phases. Two of these phases are performed for rotating
the data initially and are typically the same as the procedure
performed in the MRBT scheme. On the other hand, the third
phase is performed when clustering results are to be computed
over two data subsets using the conventional clustering method.
In the description below, we consider a single user model
though it should be clear that extension to a multi-user model is
straightforward as shown in [4]. The three different phases of
the client side are detailed in Fig. 2.

3. Server Side

The data miner follows the same procedure as in MRBT in
response to steps 1 and 2 of the client side: the server will be
able to learn clusters over each data subset separately [4].
However, after the client performs step 3 and releases the
parameter θij upon the server’s request, the server performs the
following. First, the server computes aⅹa orthonormal matrix
Rij. Then, assuming that Ai is the least transformed data set, the
server computes Yi

*=RijYi, constructs the block matrix Y=
[Yi

*,Yj], and learns the clusters over Y. Note that the parameter

Fig. 2. Description of the client side procedure in ARBT.

1. Initialization: Data is divided and transformation
parameters are generated as follows:

a. Data owner with dataset A as a×n matrix divides A
vertically into m block-matrices, where each has
c=(n/m) records (where c>a). A is then notated as
A=[Ai].

b. The data owner generates m different seeds s1,…,sm

and computes R1 = f(s1),…, Rm = f(sm), where Ri is an
a×a orthonormal matrix. Each Ri is associated with Ai
with the same index.

2. Data rotation and release: Each block-matrix is
transformed independently and released to the miner.
That is, the data owner computes and publishes YA =
[YAi], where YAi

 = RiAi. Note that mining is only possible
on records in each subset (as in MRBT scheme [4]).

3. Further data release: Upon request, the data owner
computes and releases parameters that make clustering on
records that belong to two different subsets possible. For
two datasets, Ai and Aj, transformed using Ri and Rj,
which are defined as Ri = f(θi) and Rj = f(θj), the user
computes and releases θij

, ,
360 (), .

j i j i
ij

i j i j

θ θ θ θ
θ

θ θ θ θ
− >⎧⎪= ⎨ − − >⎪⎩

Fig. 3. Description of the modified k-mean clustering algorithm
used to cluster two subsets transformed by ARBT.

This algorithm takes Yi
* and Yj as two clustered subsets and

computes a single set of clusters over their merged dataset.
Recall that the two subsets are unified according Fig. 2.

1. For each cluster C in data subset Yi
* with a centroid Ce

a. Compute the distance between Ce and the
centroid of different clusters in the subset Yj.

b. Add the data records of the cluster C to the
cluster in Yj that has the closest direct (that is,
Euclidian) distance to Ce.

2. Lloyd algorithm: For each record in each cluster in the
merged clusters set in step 1:

a. Compute the distance between the record in
question and the centroid of each cluster in the
merged set of clusters.

b. Attach the record to the cluster that has the
closest direct distance to it (with respect to the
cluster’s centroid).

c. Re-compute the centroid of updated cluster as the
average of data records in that cluster.

d. Repeat step 2 until no (or almost no) records
move out of their current cluster.

θij always unifies the transformation of data subset Ai to Aj in a
clock-wise direction.

Now, in order to exploit the fact that both of the data subsets
are already clustered, we introduce a method that reduces the
overall clustering overhead in terms of computation in our
ARBT scheme. To achieve that, we introduce a modified
clustering algorithm by assuming that the number of clusters to
be learned from the whole dataset which results from merging

356 Dowon Hong et al. ETRI Journal, Volume 32, Number 3, June 2010

the two subsets is same as the number of clusters computed
over each of the two subsets separately.

In our modified clustering algorithm, we consider one of the
two subsets as an initial set of clusters (either Yi, after its
transformation into Yi,* or Yj itself). After that, we add the
different records into one among the different clusters
according to their distance to that cluster’s centroid. Then, a
Lloyd procedure is performed for stabilizing the final clusters.
The procedure of the modified algorithm is in Fig. 3.

Note that step 2d considers a stop criterion of iterations
which is realized after a constant number of iterations or real
monitoring of the change in each cluster.

IV. Theoretical Evaluation of ARBT

In this section, we evaluate the ARBT. We consider both
privacy and security of the scheme under possible threats. For
privacy, we consider how much benefit the ARBT exposes
for an attacker by revealing larger subsets of data that enables
higher accuracy when applying AK-ICA. For security, we
study how linear regression can be used for reconstructing
original transformation parameters and point out the number
of operation times at which the ARBT is considered safe. We
further evaluate the resource requirements of ARBT in terms
of computation, communication, and additional memory, if
any.

1. Privacy Evaluation

The privacy achieved in the MRBT basically depends on the
number of data subsets, m, according to which the whole
dataset is divided. In ARBT, in order to enable conventional
clustering, we merge different subsets as if they are
transformed using a single transformation parameter. Therefore,
the ARBT directly reduces m, which is an essential parameter
for the degree of mitigation of the AK-ICA attack. That is,
reducing m will directly reduce the mitigation of the AK-ICA
attack achieved in MRBT. As pointed out in [4], both AK-ICA
and MRBT are data-driven algorithms. For instance, the AK-
ICA attack may work efficiently on data with Gaussian
distribution while it works less efficiently on data with
geometrical distribution. Also, the MRBT can mitigate the AK-
ICA attack greatly with smaller m for some data distributions
while other distributions require larger m at the expense of data
utility [4]. Therefore, given a mitigation level of the AK-ICA to
be achieved in the ARBT on a specific dataset, we can
certainly compute and experimentally verify the minimum m
and the maximum allowed number of data subsets to be
merged in a single subset at average. This aspect is verified in
our experimentation on the Banker dataset used in [4].

2. Security Evaluation

To illustrate the security issue related to ARBT, consider the
following example. Let A1, A2, and A3 be three different
datasets and their transformed images be Y1, Y2, and Y3.
Assume that the released parameters for further transformation
in ARBT are θ12, θ13, and θ23 which are released for computing
R12, R13, and R23, respectively. Using these parameters, we can
compute the following linear system of equations (a) θ12=
θ2 – θ1, (b) θ13= θ3 – θ1, and (c) θ23= θ3 – θ2. One can easily
check the solvability of this system by observing that the
system consists of three linearly independent equations in three
variables from which the attacker can break the security of the
original RBT. To prevent that, we limit the released parameters
so that they can not be used for recovering the original
transformation parameters. For instance, releasing m–1
parameters that construct m–1 linearly independent equations is
considered safe.

Note that the transformation to unify more than two datasets
can be safely performed as well since it is not necessarily
required to release parameters to unify all of the m–1 pairs of
two basic data subsets unification. Also, note that the ARBT is
basically designed for data of limited use under the assumption
that data collected for clustering purpose will not be of interest
once clusters are learned from it. However, we can strengthen
the ARBT for permanent data by reapplying the procedure in
Fig. 2 periodically and changing the initial parameters so their
revelation will not affect the scheme.

Though our scheme does not provide any guarantee against
colluding mining servers since we assume a single miner
motivated by our application settings, users can wisely release
parameters so that colluding servers don’t breach their privacy
through these parameters. If users respond with unification
parameters for each requesting server, the utility of our scheme
will degrade linearly in relation with the number of miners at
worst. On the other hand, if the user limits the set of parameters
that she would like to release, the utility can be maintained as
high as in the single server model.

Note that the security analyzed as per the example in this
section implies two party settings (single user and single miner)
while three-party settings can be either with two miners and
one user (as in the case above) or two users and one miner. The
later case of three-party settings is similar to the two party case
since we assume honest and trusted users. Though this
assumption is not the optimal desirable form of separation
between users, it has been used and advocated for applications
in literature such as the one in [6].

3. Overhead Evaluation

While the memory required in the ARBT scheme is the same

ETRI Journal, Volume 32, Number 3, June 2010 Dowon Hong et al. 357

as in RBT and MRBT, additional computation is required for
learning clusters over unified data subsets, and communication
is required for exchanging additional parameters. Since the
client generates an additional parameter, θij, and passes it to the
mining server to compute Rij communication required for
transferring, this parameter is constant per single ARBT
operation. Computation required for computing clusters over
the unified data is shown in section V where we suggest
methods to reduce the overhead required in the naive scenario
with MRBT. The extra overhead required for generating an
orthonormal matrix of unification on the server is negligible
compared to the processing required for clustering tasks.

While in ARBT one of the two subsets is transformed in the
further release step, both subsets are transformed in the naive
scenario using a single transformation parameter. At the server
side, while the ARBT reduces the overhead of clustering by
considering previously clustered subsets as initial clusters, the
naive scenario necessitates clustering with initially empty
clusters with more overhead. Further details on this note are
shown in experiment 10.

V. Empirical Study

Here we introduce an empirical study on privacy-preserving
data clustering. Though the overhead of the client is probably
the most essential element in the context of PPDM feasibility
and applicability, this study considers the overhead consumed
of the client and server to compare the different schemes fairly.

1. Evaluation Criteria

In this study, we develop two criteria for evaluating the
different schemes. These criteria are resources consumption
(that is, overhead) and the achieved privacy. While the
overhead is mainly expressed as time of computation, the
achieved privacy is evaluated based on the degree of mitigation
to the AK-ICA attack. The two criteria used are detailed as
follows.

A. Overhead

We study the overhead required on the client and the server
sides. Concerning the client, we evaluate the overall
computation overhead required for data transformation in the
different schemes. We also consider the additional overhead
required for both the MRBT and ARBT as they differ from the
conventional RBT scheme. On the server side, we evaluate the
computation overhead required for clustering different sets of
data. We also study the impact of initial centroids’ selection on
the required computation overhead in term of iterations and
time. All measurements for the overhead evaluation are

computed using the privacy-preserving data clustering (ppCD)
toolkit.

B. Privacy

We study the privacy achieved using the different
transformation schemes based on their mitigation to the AK-
ICA attack. For ARBT, since the transformation part of ARBT
is performed at the server side, we study both privacy and
overhead for different percents of pairs of subsets that are
transformed using the ARBT in order to enable conventional
clustering.

2. Overview of ppCD

The Java-based ppCD toolkit implements RBT, ARBT, and
MRBT. It also implements several normalization procedures
such as unary-norm, z-norm, and min-max norm. It also
incorporates different clustering methods, including the k-mean
clustering algorithm, k-nearest-neighbor clustering algorithm,
and a modified k-mean clustering algorithm which is designed
specifically for the ARBT scheme. The functional client of
ppCD, depicted in Fig. 4, takes raw data, normalizes it using
the user’s inputs for a normalization procedure, enables users to
input transformation parameters (or assign them at random),
and transforms data according to the selected algorithm.

The functional server enables the administrator to load
transformed data for processing, select a clustering algorithm,
supply parameters for the clustering algorithm, and compute
the clusters over the transformed data using the selected
algorithm. The server also provides the capabilities of
computing statistical properties on the transformed data and
save them along with the computed clusters. A functional
description of the server side is depicted in Fig. 5.

The data used in our implementation and experiments
includes real and synthetic data. The real data, which was also
used in [4], is the Banker dataset which consists of 50,000

Fig. 4. Client module of the ppCD.

Raw
database

Normalized
database

Rotated
database

Parameters Parameters

Normalization
algorithm

Rotation
algorithm

Fig. 5. Server module of the ppCD.

Rotated
database

C4

C3 Clustering
algorithm

Parameters

C2

C1

358 Dowon Hong et al. ETRI Journal, Volume 32, Number 3, June 2010

Table 4. Datasets. ‘Size’ stands for the theoretically computed size as
double data type, ‘Size (d)’ stands for the size on the desk,
and ‘time’ stands for the time required for rotating the
corresponding dataset on the experimentation machine.

Set Record Attribute Type Size Size (d) Time (ms)

s1 3,125 4 num 100 170 2.147

s2 6,250 4 num 200 338 4.088

s3 9,375 4 num 300 507 5.037

s4 12,500 4 num 400 677 8.005

s5 15,625 4 num 500 847 10.060

s6 18,750 4 num 600 1,016 12.060

s7 21,875 4 num 700 1,186 14.041

s8 25,000 4 num 800 1,356 15.963

s9 28,125 4 num 900 1,525 18.025

s10 31,250 4 num 1,000 1,697 20.029

s11 34,357 4 num 1,100 1,868 21.814

s12 37,500 4 num 1,200 2,035 23.871

s13 40,625 4 num 1,300 2,205 25.822

s14 43,750 4 num 1,400 2,376 27.974

s15 46,875 4 num 1,500 2,546 30.220

Fig. 6. Mean time required for transforming different datasets.
The time linearly depends on the number of records.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15
0

5

10

15

20

25

30

35

Data sample

Ti
m

e
(m

s)

records. Our synthesis data consists of 106 records and was
generated using a random generator with specific distribution
(details are in experiment 4). To trace the precise impact of data
size on the different criteria in the different schemes, we divide
the Banker dataset incrementally as shown in Table 4.

3. Empirical Study

To study the feasibility of the different RBT schemes

Fig. 7. Raw time measurements of time required for MRBT on
dataset s10 for 500 times (rounds).

0 100 200 300 400 500 600 700 800 900 1,000
0

20

40

60

80

100

Running round

Ti
m

e
(m

s)

Fig. 8. Filtered time measurements of time required for MRBT on
s10 applied for 500 times.

0 50 100 150 200 250 300 350 400 450 500
18

20

22

24

26

Running round
Ti

m
e

(m
s)

empirically, we use our ppCD toolkit. In our experiments, we
consider the overhead required by the client and server alike.
We compare the different schemes in term of their resource
consumption and privacy achieved as detailed in the following
experiments. Note that all of the experiments are performed on
a computing machine equipped with an Intel Core 2 Quad
CPU that utilizes a 32-bit data bus and operates at 2.5 GHz
with 3.25 GB of RAM.

Experiment 1. In this experiment, we measure the average
time required for transforming different datasets according to
the RBT scheme in section II.3.A. For different datasets
(shown in Table 4), we execute RBT and measure the required
computation. As expected, we found that, on average, the
required computation time linearly depends on the number of
records as shown in Table 4 and rendered in Fig. 6.

Experiment 2. In this experiment, we tried to maximize the
accuracy of the time measurement in the MRBT case. Because
the ppCD toolkit shares the computing machine’s resources
with other running processes, measured time in an experiment
may not be as accurate as needed. To eliminate the error in
measurement that results from this scenario, we run the MRBT
on s10 500 times and measure the execution time (shown in Fig.
7). We observed that some of the measured times are greatly
higher than the majority of measurements. For higher accuracy,
we filtered these ambiguous measurements and replaced them
with the average measurements (shown in Fig. 8). The average
time required for processing is then computed over all the
measurements, including the filtered measurements, which
greatly matches with results in experiment 3.

Experiment 3. We evaluate additional computation

ETRI Journal, Volume 32, Number 3, June 2010 Dowon Hong et al. 359

Fig. 9. Running time of the MRBT vs. RBT on the client side
(transformation only) for s10. The average times required
for MRBT and RBT are 20.78 ms and 19.8910 ms,
respectively.

5 10 15 20 25 30 35 40
18.5

19.0

19.5

20.0

20.5

21.0

21.5

22.0

22.5

Running round

Ti
m

e
(m

s)

MRBT (s10/m=100)
RBT (s10/m=1)

overhead represented as time and required for the MRBT over
the RBT. As shown in Fig. 9, for a dataset of 31,250 records
transformed using the MRBT at m=100, we found that the
additional computation required in MRBT is slight compared
to the initial overhead required in RBT. While RBT requires
19.8910 ms, the MRBT requires 20.7804 ms for the same
dataset. The extra time in MRBT over the time required in
RBT is 0.8894 ms, which is 4.47% of the overall overhead.
Though this overhead is small in relation with merit realized in
MRBT, it is even smaller for larger datasets.

Experiment 4. In this experiment, we generated normally
distributed synthesis data which has a statistical mean equal to
its variance (μ=σ2=100). The dataset has 106 records and each
record has 10 attributes (about 130 MB on a desk). We
transformed the dataset using the RBT to measure its feasibility.
We realized that transforming the whole dataset takes about
1.601 seconds. In the same dataset, MRBT with m=100, took
1.614 seconds, which is about 0.88% additional overhead.

Experiment 5. We observed that required computation
overhead for transforming data in the ARBT, as shown in steps
1 and 2 of Fig. 2, are equal to the overhead required in MRBT.
Furthermore, we observed that the computational overheard
required for step 3 in Fig. 2 is equal to that required in the RBT
scheme for half of the dataset over which conventional
clustering is to be performed. For instance, if a dataset is
divided into two parts, then transformed using ARBT and re-
transformed to enable conventional cluster, the overall
computation overhead required at the client side is one and a
half times of the overheard required in the RBT or the MRBT
(since both schemes require almost the same amount of
overhead). However, compared to the naive scenario described
in section IV.3, ARBT requires only half of the overhead
required for further data transformation.

Fig. 10. Number of iterations for achieving stabilized clusters for
random vs. sequential selection of initial centroids

1 2 3 4 5 6 7 8 9 10 110

5

10

15

20

25

30

35

Dataset

N
um

be
r o

f i
te

ra
tio

ns

Random
Sequential

Fig. 11. Time required for achieving stabilized clusters.

1 2 3 4 5 6 7 8 9 10 110

5

10

15

20

Dataset

Ti
m

e
(s

)

Random
Sequential

Experiment 6. We learned the impact of initial centroids on
the number of required iterations for the Lloyd algorithm used
for computing final clusters. We studied the case of random
against sequential centroid assignment. Figure 10 shows the
number of iterations required for data subsets in Table 4. We
realized that though the random selection of initial centroids
does not necessarily reduce the number of iterations as shown
for small data subsets, it reduces the overhead when the
number of records to be clustered is large. For instance, the
average number of iterations required in the random scenario is
23.2727 iterations per dataset, while it is 24.2727 per dataset
for sequential scenario with the final clusters k=7.

Experiment 7. The previous experiment was performed
again to measure the time required for clustering datasets in
both of the random and sequential assignment scenarios. We
realized that the average time required for clustering a set for
the random scenario is 6,620.4 ms, while it is 7,980 ms for the
sequential assignment scenario. A comparison between the two
scenarios for the different datasets is shown in Fig. 11.

Experiment 8 (AK-ICA on ARBT-1). We studied the
impact of the AK-ICA attack on ARBT. Particularly, we
considered the scenario where several percents of all possible
data subset pairs (that is, m–1 for safety) are transformed to
enable the conventional clustering and measured the mitigation

360 Dowon Hong et al. ETRI Journal, Volume 32, Number 3, June 2010

Table 5. Impact of AK-ICA attack on ARBT for different percents of
private data known to attacker and transformed subsets
(initial m = 100 and final m = 50).

Known
percent MRBT 25% 50% 75% 100%

Mitigation
(5%) 0.970 0.835 0.724 0.590 0.251

Mitigation
(10%) 0.963 0.817 0.698 0.531 0.220

Table 6. Impact of AK-ICA attack on ARBT for different percents of
private data known to attacker and transformed subsets
(initial m = 200 and final m = 100).

Known
percent MRBT 25% 50% 75% 100%

Mitigation
(5%) 0.981 0.978 0.977 0.973 0.972

Mitigation
(10%)

0.974 0.971 0.970 0.968 0.965

of the AK-ICA attack on the resulting dataset for fixed percent
of known private data to an attacker. In this experiment, we
considered the whole banker dataset and m=100. We also set
initial percents of known private data to the attacker (as 5% and
10%) and studied the impact of AK-ICA on ARBT when
different portions of data are transformed. The results of this
experiment are shown in Table 5. Note that MRBT indicates
0% of the subsets are transformed using ARBT. Also, 100%
for all two-subset pairs (that is, m–1) in ARBT is equivalent to
the case of MRBT at m=50 [4]. Though the error of the
attacker’s estimation of the private data is relatively lower than
that achieved by MRBT, a degree of mitigation of the AK-ICA
attack is possible when applying ARBT.

Experiment 9 (AK-ICA on ARBT-2). We repeated the
previous experiment with different initial parameters of MRBT.
We initially set m=200 and performed the same experiment for
the same percents of known private data to the attacker against
the same percents of transformed pairs of data subsets using the
ARBT. The mitigation degree of the AK-ICA attack is shown
in Table 6, where the final value of m is 100 if all pairs of
subsets (m–1) are transformed using ARBT. From this
experiment we conclude that ARBT provides high mitigation
of the AK-ICA attack for carefully assigned parameters.

Experiment 10 (Optimization of ARBT). To test the
optimization scenario described in Fig. 3, we performed this
experiment and compared the result to the naive scenario in
which the user transforms both of the original two subsets
using a single parameter at the same time and releases them to
the miner. On the miner side, the whole procedure of the

k-mean clustering is performed. In this experiment, we realized
that clustering s10 in our ARBT scheme can save up to 32% of
the computation overhead. More precisely, while the naive
scenario takes 14.7 seconds for clustering s10, the optimization
scenario for RBT takes only 9.96 seconds.

VI. Conclusion

In this article, we introduced the ARBT that enables
conventional clustering over data transformed using MRBT. To
improve its applicability for data clustering, we introduced an
enhanced clustering algorithm that considers the scenarios of
ARBT deployment where some of the data transformed using
ARBT is already clustered. Unlike RBT and MRBT, the
ARBT scheme both mitigates the AK-ICA attack and enables
conventional data clustering.

To show the feasibility of the different transformation
schemes, we introduced an extensive experimental study using
the ppCD toolkit. This study concluded that the overhead
required for mitigating the AK-ICA attack, in both of ARBT
and MRBT, is almost negligible on the server side. Also, it
showed that all transformation schemes are very feasible on
typical computing machines even for large datasets.

Since this study considered only empirical measurements for
the impact of the AK-ICA, which is a necessary contribution
for understanding the behavior of the different transformation
schemes, in the near future we will investigate the development
of mathematical framework that expresses the relationship
between the AK-ICA attack, its mitigation level, and the
different parameters of the ARBT.

References

[1] M. F. Mokbel, “Privacy in Location-Based Services: State-of-the-Art
and Research Directions,” Proc. MDM, 2007, pp. 228-229.

[2] M. Goebel and L. Gruenwald, “A Survey of Data Mining and
Knowledge Discovery Software Tools,” SIGKDD Explorations, vol.
1, no. 1, 1999, pp. 20-33.

[3] R. Agrawal and R. Srikant, “Privacy Preserving Data Mining,” Proc.
ACM SIGMOD, 2000, pp. 439-450.

[4] A. Mohaisen and D. Hong, “Mitigating the ICA Attack against
Rotation-Based Transformation for Privacy Preserving Clustering,”
ETRI J., vol. 30, no. 6, 2008, pp. 868-870.

[5] S.R.M. Oliveira and O.R. Zaïane, “Achieving Privacy Preservation
When Sharing Data for Clustering,” Proc. SDM, 2004, pp. 67-82.

[6] K. Liu, H. Kargupta, and J. Ryan, “Random Projection-Based
Multiplicative Data Perturbation for Privacy Preserving Distributed
Data Mining,” IEEE Trans. Knowl. Data Eng., vol. 18, no. 1, 2006,
pp. 92-106.

[7] E. Bertino, I. Fovino, and L.P. Provenza, “A Framework for

ETRI Journal, Volume 32, Number 3, June 2010 Dowon Hong et al. 361

Evaluating Privacy Preserving Data Mining Algorithms,” Data Min.
Knowl. Discov., vol. 11, no. 2, 2005, pp. 121-154.

[8] K. Chen and L. Liu, “Privacy Preserving Data Classification with
Rotation Perturbation,” Proc. ICDM, 2005, pp. 589-592.

[9] S. Guo and X. Wu, “Deriving Private Information from Arbitrarily
Projected Data,” Proc. PAKDD, 2007, pp. 84-95.

[10] N. Zhang, W. Zhao, and J. Chen, “Performance Measurements for
Privacy Preserving Data Mining,” Proc. PAKDD, 2005, pp. 43-49.

[11] N Zhang, S. Wang, and W. Zhao, “A New Scheme on Privacy-
Preserving Data Classification,” Proc. KDD, 2005, pp. 374-383.

[12] H. Kargupta, K. Das, and K. Liu, “Multi-Party, Privacy-Preserving
Distributed Data Mining Using a Game Theoretic Framework,” Proc.
PKDD, 2007, pp. 523-531.

[13] H. Garcia-Molina, J.D. Ullman, and J. Widom, Database Systems:
The Complete Book, Prentice Hall, 2001, pp. 61-65.

[14] S.K. Gupta, K.S. Rao, and V. Bhatnagar, “K-Means Clustering for
Categorical Attributes,” Proc. DaWaK, 1999, pp. 203-208.

[15] L. Xiong, S. Chitti, and L. Liu, “Mining Multiple Private Databases
Using a kNN Classifier,” Proc. SAC, 2007, pp. 435-440.

[16] A. Evfimievski et al., “Privacy Preserving Mining of Association
Rules,” Proc. KDD, 2002, pp. 217-228.

[17] J.L. Lin and J.Y.C. Liu, “Privacy Preserving Itemset Mining through
Fake Transactions,” Proc. SAC, 2007, pp. 375-379.

[18] H. Jin et al., “Privacy-Preserving Sequential Pattern Release,” Proc.
PAKDD, 2007, pp. 547-554.

[19] M. Atzori et al., “Towards Low-Perturbation Anonymity Preserving
Pattern Discovery,” Proc. SAC, 2006, pp. 588-592.

[20] K. Liu, H. Kargupta, and J. Ryan, “Random Projection-Based
Multiplicative Data Perturbation for Privacy Preserving Distributed
Data Mining,” IEEE Trans. Knowl. Data Eng., vol. 18, no. 1, 2006,
pp. 929-106.

[21] A. Hyvarinen, J. Karhunen, and E. Oja, “Independent Component
Analysis,” Proc. Conf. Uncertainty in Artificial Intelligence, 2000, pp.
21-30.

Dowon Hong received his BS, MS, and PhD
degrees in mathematics from Korea University,
Seoul, Korea, in 1994, 1996, and 2000,
respectively. He is currently a principal member
of the engineering staff and team leader of the
Cryptography Research team at ETRI, Korea,
where his research interests are broadly in the

area of applied cryptography, networks security, and digital forensics.

Abedelaziz Mohaisen is a PhD student at the
University of Minnesota, USA. He was a
member of the engineering staff at ETRI, Korea,
from 2007 to 2009. He received his BE degree
in computer engineering from the University of
Gaza, Palestine, in 2005, and the ME degree in
information and telecommunication engineering

from Inha University, Korea, in 2007. His research interests include
networks security, data privacy, and cryptography. He is a member of
ACM, IEEE, and KSII.

	I. Introduction
	II. Preliminaries
	III. ARBT
	IV. Theoretical Evaluation of ARBT
	V. Empirical Study
	VI. Conclusion
	References

