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In this paper, we propose an efficient soft-output signal 
detection method for spatially multiplexed multiple-input 
multiple-output (MIMO) systems. The proposed method 
is based on the ordered successive interference 
cancellation (OSIC) algorithm, but it significantly 
improves the performance of the original OSIC algorithm 
by solving the error propagation problem. The proposed 
method combines this enhanced OSIC algorithm with a 
multiple-channel-ordering technique in a very efficient 
way. As a result, the log likelihood ratio values can be 
computed by using a very small set of candidate symbol 
vectors. The proposed method has been synthesized with a 
0.13-μm CMOS technology for a 4×4 16-QAM MIMO 
system. The simulation and implementation results show 
that the proposed detector provides a very good solution in 
terms of performance and hardware complexity. 
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I. Introduction 

Multiple-input multiple-output (MIMO) communication 
systems have received tremendous attention because of their 
high spectral efficiency and near-capacity performance. As a 
result, MIMO has become a key component in several wireless 
communication standards, including LTE-Advanced and IEEE 
802.16m [1]. 

Multiple antennas can be used to improve the reception 
reliability by sending the same data (spatial diversity) or to 
increase data rates by sending different data (spatial 
multiplexing) [1], [2]. There are several detection methods for 
spatially multiplexed MIMO systems. The maximum 
likelihood (ML) algorithm leads to the best error performance, 
but it involves considerable computational complexity [1]. On 
the other hand, linear detection methods such as the zero-
forcing algorithm or minimum mean-square-error algorithm 
are quite simple, but they show very poor performance. The 
ordered successive interference cancellation (OSIC) algorithm 
reduces the effect of interference signals by eliminating signals 
that are already detected [2]. Although the OSIC algorithm 
performs better than linear detection methods, it suffers from 
the error propagation problem [1], [2]. 

As a result, most recent works have focused on the detection 
methods that are based on tree searches, which achieve near-
optimal performance but involve significantly less complexity 
than the original ML method [3]-[15]. Although some methods 
are based on the depth-first search algorithm [12]-[15], there 
has been great interest in signal detection methods that are 
based on the breadth-first search algorithm [5]-[10]. Such 
methods lead to fixed throughput very-large-scale integration 
(VLSI) systems. The K-best method and many of its variants 
belong to this category. 
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While most of recent detection methods are based on the tree 
search algorithm [3]-[15], this paper proposes an efficient 
detection method that is based on the OSIC algorithm. The 
performance of the original OSIC method itself is usually 
unacceptable for actual use, and there have been several 
attempts to enhance the original OSIC algorithm [16], [17]. 
These methods, however, cannot provide the best solution for 
soft-decoding MIMO systems because of the empty set 
problem [12], [13]. The proposed method enhances the OSIC 
algorithm and combines the algorithm with a multiple-channel- 
ordering technique in a very efficient way. As a result, the 
proposed method shows excellent performance, especially for 
soft-decoding MIMO systems. 

The rest of this paper is organized as follows. In section II, 
the proposed method is explained and compared with the K-
best method. Sections III and IV compare the proposed method 
with the K-best method in terms of performance and hardware 
complexity. Finally, the conclusions are given in section V. 

II. Algorithm 

In a MIMO system with NT transmit antennas and NR 
receiver antennas, the transmitted signal and the received signal 
are related as  
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where r is the received symbol vector, x is the transmitted 
symbol vector, and z is an independent and identically 
distributed (i.i.d.) complex zero-mean Gaussian noise. The 
element hij of the NR×NT matrix H represents the complex 
transfer function from the j-th transmit antenna to the i-th 
receive antenna, and all hij’s are i.i.d. complex zero-mean 
Gaussian with a variance of 0.5 per dimension. For spatial 
multiplexing, the entries of x are chosen independently from a 
set Ω of complex-valued constellation points with B bits per 
symbol (that is, B=log2 |Ω|). In this paper, we assume that 
perfect synchronization and perfect channel estimation are 
achieved at the receiver side. Thus, it is assumed that temporal 
signal interference does not exist.  

The column ordering of the matrix H is important, and there 
have been several methods to obtain the optimal (column) 
ordering [3], [4]. 

By applying the QR-decomposition (QRD) on the matrix H, 
we obtain H=QR, where Q is an NR×NT unitary matrix and R 
is an NT×NT upper triangular matrix. Then, multiplying both  

 

Fig. 1. Pseudo-code for proposed method. 
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sides by QH results in 

     H H ,≅ = +Q r y Rx Q z              (2) 

where HQ z  has the same statistical characteristics as the 
original noise vector z. Since the upper triangular matrix R is 
more tractable than the original channel matrix H, many 
MIMO detection methods use (2) instead of (1) [6], [7]. 

Figure 1 shows the pseudo-code of the proposed method, 
where NT=NR=4 is assumed for convenience. Instead of 
deciding the optimal ordering and using a single channel 
matrix H, the proposed method uses multiple channel matrices, 
without deciding the optimal channel ordering. This can be 
seen from the first two lines of the code, where Hi represents a 
column-reordered version of H. In other words, each column 
vector hik in Hi is chosen from the column vectors {h1, h2, h3, 
h4} in H. Since there are NT columns in H, there are as many as 
NT×(NT –1)×···×1 different ways of making Hi. Among them, 
the proposed method uses only NT channel matrices whose last 
columns are different from one another. There is no 
requirement for the orders of the other columns. The reason for 
using these multiple matrices will be explained later in this 
section. 

Each Hi is QR-decomposed, and yi is obtained as can be 
seen from lines 3 and 4 in Fig. 1. Then, as can be seen from (2), 
xi has to be computed (that is, estimated) for each yi and Ri. 
Instead of computing a single xi, the proposed method obtains 
several candidates and chooses the best one. This can be seen 
from the inner for-loop in Fig. 1, where Ω(j) represents the j-th 
symbol from Ω and Q(x) represents a slicing function, which 
selects the nearest symbol near x.  
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The inner for-loop is similar to the OSIC algorithm [2], but it 
is a new enhanced version that will be termed the enhanced 
OSIC (ESIC) algorithm. Unlike the original OSIC algorithm 
that obtains a single xi_4 by computing Q(yi_4/r44) [2], the ESIC 
algorithm tries every Ω(j) for xij_4. In other words, the ESIC 
method has multiple (that is, |Ω|) candidates for xi_4. A 
candidate symbol vector is obtained for each xij_4, as can be 
seen from lines 7 to 10, and the squared Euclidean distance 
(SED) is computed for each candidate vector as can be seen 
from line 11 in Fig. 1. For a hard decoding system, the 
candidate vector with the smallest SED becomes the estimated 
solution to the given detection problem. 

As can be expected, the ESIC algorithm requires more 
computation and hardware. It, however, serves as an efficient 
solution to the error propagation problem since the candidate 
vector which is severely affected by the error propagation 
problem is not likely to have the minimum SED. The 
performance improvement far outweighs the hardware 
overhead, as can be seen in sections III and IV. More 
importantly, this ESIC algorithm can be efficiently combined 
with a multiple-channel-ordering technique for soft-output 
MIMO systems, as will be explained shortly in this section. 

For a soft decoding system, the likelihood ratio (LLR) 
computation (or estimation) is required for each bit of the 
decoded symbol vectors in addition to the SED computation 
[13], [15]. Since there are NT symbols where each symbol has 
B bits (that is, B=log2 |Ω|), there are NT×B bits in a decoded 
symbol vector. The LLR for a bit bij is defined as follows [12], 
[13]: 
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where bij represents the j-th bit in the i-th symbol. Since the 
direct computation of (3) is very difficult, the following max-
log approximation is usually adopted [12], [13]: 
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where the sets ( 1)
ij
−X  and (1)

ijX  include all the symbol vectors 
whose j-th bit in the i-th symbol are –1 and +1, respectively. 
This approximation greatly reduces complexity at a cost of 
slight performance degradation [13].  

Since ( 1)
ij
−X  and (1)

ijX  satisfy ( 1) (1)
ij ij
− = ∅X XI and 

T( 1) (1) ,N
ij ij
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computations. To reduce this enormous complexity, most tree 
search-based detection methods use some subset S of TNΩ  
and use the following approximation:  
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Fig. 2. Proposed method for 4×4 QPSK system. 
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( 1) (1) .ij ij
− ∪ =S S S  For example, the K-best method usually uses 

the survivor candidates in the last stage as the subset S. 
Although this reduces the complexity very much, it has a 
problem in that ( 1)

ij
−S  or (1)

ijS  may be empty for some i and j. 
For example, it is possible that b11 in every symbol vector in S 
happens to be −1, which makes it impossible to compute the 
second term in (5). Although there have been several attempts 
to overcome this kind of problem, these solutions use extra 
hardware to estimate the LLR values or use some constant 
values, which causes performance degradation [12], [13]. 

On the other hand, the proposed method makes use of the 
multiple channel matrices to solve this problem. The outer for-
loop in Fig. 1 describes the proposed multiple-channel-
ordering technique. From now on, the ESIC algorithm with 
this multiple-channel-ordering technique will be called the 
MESIC method. 

Figure 2 is an example that shows how the candidate vectors 
are generated in the MESIC method for a 4×4 quadrature 
phase shift keying (QPSK) system. A QPSK system has 4 
constellation points (that is, |Ω|=4), which can be represented 
by 2 bits (that is, B=log2 |Ω|). For example, the 4 constellation 
points can be represented by 

{ } { }(1) (2) (3) (4), , , ( 1, 1), ( 1,1), (1, 1), (1,1) .Ω Ω Ω Ω = − − − −  (6) 

As can be seen in the figure, there are 4 (=NT) groups, where 
each group has 4 (=|Ω|) candidate vectors. Thus, there are 16 
(that is, NT×|Ω|) candidate vectors. For each candidate vector, 
the SED value is calculated, and then used for the LLR update 
in (5). The LLR update function in Fig. 1 (line 12) checks if the 
new SEDij value is smaller than the existing one for each i  
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Fig. 3. FER comparison for hard decoding 4×4 16-QAM MIMO
system (Viterbi decoding, rate: 0.5). 
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and j and keeps the smallest SEDij value for each i and j. Since 
the candidate vectors in each group are generated by using the 
ESIC method, the last elements (which correspond to the first 
row) of the candidate vectors in each group include all the 
elements from Ω. Also, since the last columns of Hi are all 
different, every xk (1≤k≤NT) appears once (and only once) in 
the first rows of the four groups. Thus, ( 1)

ij
−S and (1)

ijS  are 
non-empty for all i and j. In other words, by combining the 
ESIC algorithm and multiple orderings in an efficient way, the 
MESIC method can generate the LLR values for all the bits 
without using any LLR estimation methods. 

It is possible to solve the empty set problem by adding some 
candidate vectors such as {1, 1,…, 1} and {–1, –1,…, –1}. 
However, this does not guarantee a good decoding 
performance since it is very likely that the SED value by an 
arbitrary vector is very high. On the other hand, the candidate 
vectors in the proposed method are obtained by the ESIC 
method as can be seen from Fig. 1. Thus, it is very likely that 
the SED values by these candidate vectors are much smaller 
than the SED value by an arbitrary candidate vector. 

It is very important to note that, in the proposed MESIC 
method, the orders of the multiple channel matrices can be 
fixed without knowing the channel condition. On the other 
hand, the OSIC and the K-best methods require the channel 
information to obtain the optimal ordering for the single 
channel matrix, which requires additional computation or 
hardware [3]. A more detailed comparison in terms of 
hardware requirements can be found in section IV. 

Figure 3 shows the simulation results of the MESIC 
algorithm for a hard decoding 4×4 16-QAM MIMO system. 
The three graphs in the figure are based on the optimal channel 
ordering, the fixed channel ordering, and the worst channel 
ordering, respectively. The following channel matrices are used 

 

Fig. 4. FER comparison for soft decoding 4×4 16-QAM MIMO 
system (turbo coding, iteration: 3, rate: 0.5). 
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for the fixed channel ordering method. 
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Although the three graphs are not identical, it can be seen 
that the frame error rate (FER) difference is very small. This is 
mainly because there is no empty set problem in the optimal 
ordering case or the fixed/worst ordering cases. The situation is 
similar for a soft decoding system as can be seen in Fig. 4. In 
summary, the FER performance can be improved slightly by 
finding the best (optimal) column ordering, but the FER 
difference is too small to warrant the extra complexity required 
for finding the best ordering. 

III. Performance Comparison 

Table 1 summarizes the simulation parameters that are used 
in the performance comparison in this section. Figure 5 
compares several detection methods in terms of the FER 
performance for the MIMO system in Table 1 when hard 
decoding is used. First of all, it can be seen that the 
performance of the original OSIC method is too poor to be 
used in practice. On the other hand, the ESIC method shows 
much better performance than the OSIC method.  

This is because the OSIC method determines the first 
symbol without considering the remaining symbols, whereas 
the ESIC method makes a decision after considering all |Ω| 
candidate vectors. Thus, as explained in section II, the ESIC 
method is less likely to be affected by the error propagation 
problem. In fact, it can be seen that the ESIC method shows 
slightly better performance than the K-best method with K=12. 
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Table 1. Simulation parameters. 

Parameter Value 

Channel i.i.d. Rayleigh fading (8 tap) 

Number of antennas 4×4 

Data modulation 16 QAM 

FFT size 64 

Frame length 10 OFDM symbols 
Channel coding 
(Hard decoding) 

Convolutional coding (rate: 1/2) 
Viterbi decoding 

Channel coding 
(Soft decoding) 

Convolutional coding (rate: 1/2) 
Viterbi decoding 

Turbo coding (rate: 1/2) 
Turbo decoding (iteration: 3) 

 

 

Fig. 5. FER comparison for hard decoding 4×4 MIMO system
(Viterbi decoding, rate: 0.5). 
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Although the MESIC method shows better performance than 
the ESIC method, the difference (in the hard decoding case) is 
too small to justify the computational overhead incurred by the 
MESIC method. 

Figures 6 and 7 show the FER comparison for the MIMO 
system in Table 1 when soft decoding is used. As in the hard 
decoding case, the OSIC method shows very poor 
performance, while the ESIC method shows much better 
performance. Unlike the hard decoding case, however, the 
MESIC method shows much better performance than the 
ESIC method and the K-best method. 

As explained in the previous section, this is mainly because 
the LLR values for all the bits are obtained efficiently in the 
proposed MESIC method. Although the ML search (max-log) 
method shows the best performance, it uses (4) instead of (5), 
and as a result, it requires enormous computational complexity. 

It should be emphasized that the MESIC method does not 

 

Fig. 6. FER comparison for soft decoding 4×4 MIMO system 
(Viterbi decoding, rate: 0.5). 
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Fig. 7. FER comparison for soft decoding 4×4 MIMO system
(turbo coding, iteration: 3, rate: 0.5). 
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require more candidate vectors than the K-best method in order 
to achieve the performance improvement. On the contrary, the 
MESIC method generally requires a smaller number of 
candidate vectors. As can be seen from section II, the number 
of candidate vectors in the K-best method is K×|Ω|, whereas the 
number of candidate vectors in the proposed method is NT×|Ω|. 
In most cases, the value for K is the same as (or just a little bit 
smaller than) |Ω|, whereas NT is usually much smaller than |Ω|. 
Table 2 shows the number of candidate vectors required for 
both the proposed and the K-best methods in several scenarios, 
which shows that the proposed method generally requires a 
much smaller number of candidate vectors. 

Figures 8 and 9 show the simulation results for 4×4 16-
QAM and 64-QAM MIMO systems. Both figures are based 
on the same parameters in Table 1 except the constellation sizes. 
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Table 2. Number of candidate vectors. 

 K-best  MESIC  

4×4 MIMO, QPSK (K=4) 16 16 (100%) 

4×4 MIMO, 16-QAM (K=12) 192 64 (33.3%) 

4×4 MIMO, 16-QAM (K=16) 256 64 (25%) 

4×4 MIMO, 64-QAM (K=32) 2,048 256 (12.5%)

4×4 MIMO, 64-QAM (K=64) 3,072 256 (6.3%) 

General case K×|Ω| NT×|Ω| 

  
 

Fig. 8. FER comparison for hard decoding 4×4 16-QAM and 64-
QAM MIMO systems (Viterbi decoding, rate: 0.5). 
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Fig. 9. FER comparison for soft decoding 4×4 16-QAM and 64-
QAM MIMO systems (turbo coding, iteration: 3, rate: 0.5).
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As can be seen in the figures, the MESIC method shows good 
performance (especially in the soft-decoding MIMO systems) 
regardless of the constellation sizes. Although the K-best 
method shows slightly better performance in the hard decoding 
case, it requires a much larger number of candidate vectors 
than the MESIC method (especially in the 64-QAM system) as 
can be seen from Table 2. 

IV. Complexity Comparison 

Figure 10 shows the block diagram of the proposed MESIC 
method for a 4×4 MIMO system. Among several methods for 
the implementation of the QRD algorithm, the proposed 
implementation is based on the modified Gran-Schmidt 
orthogonalization method, which is known to be very stable for 
a well-conditioned non-singular matrix [18]. Since the QRD 
requires a large number of multiplications and divisions, we 
used the log domain conversion technique [18]. 

The multiple-QRD unit is basically composed of 4 QRD 
units. Figure 11 shows the VLSI architecture of the basic QRD 
block. Since the QRD requires a large number of 
multiplications and divisions, the architecture in Fig. 11 uses 
the log domain conversion technique. We could have used 4 
(basic) QRD blocks instead of using 1 multiple-QRD unit. In 
the implementation process, however, we found out that some 
of the blocks can be efficiently shared as follows. The multiple- 
QRD unit in Fig. 10 performs the QRD for 4 matrices in line 2 
of Fig. 1. In other words, it performs the QRD on H1, H2, H3, 
and H4. As mentioned, the proposed method requires the last 
columns of H1, H2, H3, and H4 be different, but there is no 
requirement for the orders of the other columns. Since the first 
two columns of H1 and H2 in (7) are the same and the first two 
columns of H3 and H4 are the same, the C1 and C2 blocks in 
Fig. 11 could be shared between H1 and H2 and between H3 
and H4. As a result, the multiple-QRD block in Fig. 10 uses 2 
C1 blocks, 2 C2 blocks, 4 C3 blocks, and 4 C4 blocks instead of 
4 C1 blocks, 4 C2 blocks, 4 C3 blocks, and 4 C4 blocks. It 
should be mentioned that this sharing does not affect the 
throughput. 
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Fig. 10. High-level pipelined architecture for MESIC method.
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Table 3. Implementation results for 4×4 MIMO detectors. 

 Shen [10] Guo [5] Mondal [9] Wenk [6] K-best MESIC ESIC OSIC 

|Ω| 64-QAM 16-QAM 64-QAM 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM 

K 8 10 64 5 16 N/A N/A N/A 

Throughput (Mbps) 252.6 106.6 100 376 2,400 

Area (KGE) 210 97 1,760 115 1,762 1,487 386 229 

FOM 9.62 11.0 3.64 16.3 21.8 N/A N/A N/A 

Technology 65 nm 0.35 μm 65 nm 0.25 μm 0.13 μm 

 

 

Fig. 11. Block diagram for QRD based on modified Gram-
Schmidt algorithm. 
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The ESIC unit performs the enhanced SIC operation, as 
described from line 6 to line 10 in Fig. 1. For each candidate 
vector, the squared Euclidean distance calculation unit  
computes the squared Euclidean distance, as described in line 
11 in Fig. 1. Finally, the LLR unit updates the LLR values in 
(5) by using the SED values obtained in the previous blocks. 
This corresponds to line 12 in Fig. 1.  

The proposed detectors have been designed and synthesized 
with a 0.13-μm CMOS technology. Table 3 shows a 
comparison of several 4×4 MIMO detector implementations. It 
should be mentioned that it is difficult to directly compare 
several implementations which are developed in different 

environments since different parameters and different 
implementation options can all affect the final implementation 
results. In order to compare different implementations, [9] used 
a figure of merit (FOM) which is defined as  

Throughput (Mbps)FOM
Area (KGE)

K≅ ×   .         (8) 

Unfortunately, the proposed methods are not based on the K-
best method, and there are no K values for the MESIC and 
ESIC methods.  

For a more direct comparison, we implemented not only the 
proposed ESIC and MESIC algorithms, but also the K-best and 
the OSIC algorithms. The last 4 columns of Table 3 represent 
our synthesis results, where we used the same modulation 
scheme (16 QAM), clock frequency (150 MHz), technology 
library (0.13 μm), and bit precisions.  

As might be expected, the ESIC method occupies more area 
than the OSIC method as it requires multiple (that is, 4) OSIC 
blocks. The area of the ESIC method, however, is only 169% 
(not 400%) because the other blocks, including the QRD block, 
can be shared. On the other hand, the performance 
improvement is significant as can be seen in Fig. 5. Thus, 
considering the results in Fig. 5 and Table 3, it can be said that 
the ESIC method is a very good solution in terms of 
performance and area for hard decoding systems. 

Although the area required by the MESIC method is nearly 
four times as large as that required by the ESIC method, it is 
still based on the simple OSIC algorithm, and as a result, it 
requires less area than the K-best method. It should be noted 
that the K-best method requires large sorting blocks that select 
K minimum numbers among K×|Ω| candidates, whereas the 
MESIC method requires small sorting blocks that select the 
minimum number (that is, one minimum number) among NT 
or |Ω| candidates. Thus, considering the results in Figs. 6 and 7, 
it can be said that the MESIC method is a very good solution 
for soft decoding systems.  

In Table 3, it can be also seen that the FOM of our K-best 
implementation is higher than those of the other K-best 
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implementations. Although the area of our K-best 
implementation is very large, the throughput is also very high 
when compared with other K-best implementations. Thus, it 
can be indirectly concluded that the MESIC method yields a 
better solution even when it is compared with other K-best 
implementation results. 

V. Conclusion 

Although the ESIC method is based on the OSIC method, it 
shows significantly better performance because it solves the 
error propagation problem inherent in the original OSIC 
algorithm. By efficiently combining the ESIC method with a 
multiple-channel-ordering technique, the MESIC method can 
obtain all the LLR values without using an LLR estimation 
method, and thus it shows very good FER performance. The 
MESIC method also requires a small number of candidate 
symbol vectors and small sorting blocks. As a result, the 
MESIC method is very efficient in terms of both performance 
and area, especially in soft decoding systems. 
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