
136 Munchurl Kim et al. ETRI Journal, Volume 26, Number 2, April 2004

It is expected that an intelligent broadcasting service
(IBS) will be able to provide broadcast programs based on
user preference and program-associated information
(metadata) in order to assist users in easy navigation of the
program content being broadcast. In this way, users will be
able to access program content anytime, anywhere, and in
the manner they wish. This type of IBS will be a basis for
future broadcasting services such as customized
broadcasting or personal casting.

In this paper, we introduce an agent-based multimedia
broadcasting framework using the Foundation for Intelligent
Physical Agents (FIPA) and MPEG-7 technologies within
MPEG-21. We use a FIPA implementation called FIPA open
source as a platform for exchanging user preferences and
program information as FIPA messages between a server
and its clients. The user preference is modeled as the User
Preference description scheme in MPEG-7 multimedia
description schemes. We discuss a framework structure and
implementation for the IBS.

Keywords: Intelligent broadcasting, MPEG-21, user
preference.

Manuscript received Apr. 9, 2003; revised Feb. 8, 2004.
This work was supported in part by the Ministry of Information and Communication of

Korea.
Munchurl Kim (phone: +82 42 866 6137, email: mkim@icu.ac.kr) and Jeongyeon Lim

(email: jylim@icu.ac.kr) are with the School of Engineering, Information and
Communications University (ICU), Daejeon, Korea.

Kyeongok Kang (email: kokang@etri.re.kr) and Jinwoong Kim (email: jwkim@etri.re.kr)
are with Digital Broadcasting Research Division, ETRI, Daejeon, Korea.

I. Introduction

Under the digital broadcasting environment, the number of
program channels is increasing, making many new broadcast
programs available for TV viewers. Furthermore, the program
contents are becoming richer with the evolution of content
authoring technologies, and user interaction with these new
contents is expected to become more natural as well as more
popular. The current broadcast services normally provide for
non-specific target groups. From a user’s perspective, the
excessive number of broadcast channels and program contents
makes it difficult for TV viewers to select and navigate
programs of their interest at a TV terminal [1].

In order to provide user-friendly environments for TV
terminals, an electronic program guide is normally offered so
that viewers can easily look over broadcast program
information for the provided channels such as, program titles,
program emission times, program synopses, and so on.
However such information is not tailored to expose TV
viewers to an excessive amount of information [1]. Thus, the
personalization of TV is becoming a necessary and essential
part of the future of intelligent broadcasting services. In order to
enhance the current broadcasting service technologies towards
more customized or personalized services, intelligent broadcast
service technologies are needed. Therefore, more specific
information on program contents will also become necessary
[2], [3].

In this paper, we address an agent-based intelligent
multimedia broadcasting framework for intelligent
broadcasting services (IBS). The IBS framework adopts an
agent software platform called Foundation for Intelligent
Physical Agents open source (OS), which is a FIPA-compliant
implementation. [4].

Agent-Based Intelligent Multimedia Broadcasting within
MPEG-21 Multimedia Framework

 Munchurl Kim, Jeongyeon Lim, Kyeongok Kang, and Jinwoong Kim

ETRI Journal, Volume 26, Number 2, April 2004 Munchurl Kim et al. 137

For the personalization of TV services, understanding users’
interests in TV programming and their consumption behaviors
is very important to a broadcasting server which, via a server
agent, will receive user preference information from a client
agent at a client terminal. The user preference data are
delivered as messages via agent communication channels
which are supported by the agent platform, FIPA-OS, between
the server agent and the client agents. We use the user
preference description scheme in MPEG-21 digital item
adaptation (DIA) specifications as description models for user
preferences on program contents, personal information, user
terminals, and user environments [5]. A description of such
context information about user preferences, personal
information, user terminals and user environments is
transmitted as a context digital item (XDI) by a client agent to
the server agent via the agent communication channels over a
FIPA agent platform. The delivered context information is
parsed at the server, and the appropriate program contents and
program information are then streamed to the client in a
personalized way according to the XDI.

This paper is organized as follows. In section II, we briefly
introduce the MPEG-21 multimedia framework and DIA for
universal multimedia access [5]. A description model of user
preference and usage history, which are specified in MPEG-21
DIA, is described in section III. We also address the FIPA agent
platform and its usage for intelligent broadcasting services in
conjunction with the MPEG-21 multimedia framework in
section IV. In section V, we describe the structure and
implementation of the IBS framework. The experimental
results are presented in section VI. Finally, the conclusion for
the IBS is addressed in section VII.

II. MPEG-21 Multimedia Framework and Digital
Item Adaptation

The MPEG-21 multimedia framework aims at a universally
accessible and uniquely consumable environment for
multimedia under various conditions such as user
characteristics, network characteristics, terminal capabilities,
and so on. The MPEG-21 multimedia framework makes it
possible to define inter-operable, transparent access to
advanced multimedia content between terminals and networks
as well as the provision of network and terminal resources to
form user communities which can create and share reliable and
flexible multimedia contents with agreed-upon or contracted
quality [6].

MPEG-21 provides an integrated framework for the creation,
transaction, delivery, and consumption of digital items [6]. A
digital item (DI) is a fundamental unit for the distribution and
transaction of digital items in the MPEG-21 multimedia

framework, and is defined as a structured digital object in a
standard representation with a declaration and identification of
its resources (multimedia contents). In order to provide such an
integrated multimedia framework, MPEG-21 defines a set of
normative specifications: Digital Item Declaration in part 2;
Digital Item Identification in part 3; Intellectual Property
Management and Protection in part 4; Rights Expression
Language in part 5; Rights Rata Dictionary in part 6; Digital
Item Adaptation in part 7; Reference Software in part 8; File
Format in part 9; Digital Item Processing in part 10; Persistent
Association Technology in part 11; Testbed for MPEG-21
Resource Delivery in part 12; and Scalable Video Coding in
part 13 [6].

MPEG-21 DIA specifies the syntax and semantics of the
defined tools which are needed for universally accessible and
uniquely consumable multimedia environments. The current
MPEG-21 DIA provides the tools needed for the usage
environment, resource adaptability, and digital item adaptation
as depicted in Fig. 1.

Fig. 1. Concept of digital item adaptation (DIA) and DIA tools.

Digital item
adaptation engine

Scope of
standardization

(Adapted CDI)(Original CDI)

Resource
adaptation engine

Description
adaptation engine

DIA tools (XDI)

Adapted
digital
item

Digital
item

Usage environment tools
� User characteristics
� Terminal capabilities
� Network characteristics
� Natural environment characteristics

Digital item resource adaptation tools
� Bitstream syntax description
� Terminal and network QoS
� Metadata adaptability

Digital item declaration adaptation tools
� Session mobility
� DID configuration preference
� DIA description message

The usage environment tools include the descriptions for
user characteristics, terminal capabilities, network
characteristics and natural characteristics. The resource
adaptability tools are used for describing the structural
information for bitstreams and information about metadata
adaptability using Binary Syntax Description Language. And,

138 Munchurl Kim et al. ETRI Journal, Volume 26, Number 2, April 2004

DIA declaration tools provide a mechanism to preserve a user’s
state for interaction with a DI and the configuration preference
tools for the user’s intention of Digital Item Declaration choice
configuration preferences. These tools are used together to
constitute the MPEG-21 DIA framework [5].

III. User Preference Model

Understanding the characteristics of TV viewers is an
essential part of intelligent broadcasting services. User
characteristics can be modeled in terms of user preferences,
such as creation, source, classification filtering, browsing, and
user behaviors that record a user’s consumption history of
broadcast program contents.

MPEG-21 DIA provides a user description model for use as
a content preference description scheme in the usage
environment tools. This content preference description scheme
contains the user preference and the usage-history description
scheme, which are adopted from the MPEG-7 multimedia
description schemes (MDS) and TV Anytime specifications [7].
The user preference description scheme defines a structured
description model for a user’s preference in browsing and
filtering/searching. [7]. The usage-history description scheme
defines a structured model for describing the usage history of
content users. The description data for a user’s preference and
content usage history can be used in TV terminals such as a set-
top box or PC.

Figure 2 shows a content filtering, searching, and browsing
application using user preferences and usage history
information. Content broadcasters provide AV program
contents with their associated metadata, which describe the

Fig. 2. A filtering, search and browsing application using user
preference and a usage history description [7].

User
preference
description

Filter &
search

Preferred
content

User
AV

content Browser
engine

AV content
description

Usage history
description

Service provider,
Smartcard,

Other devices/
Equipment

contexts of the contents. At a user terminal, a filtering software
agent may be run to analyze the metadata and select the
program channels or contents that are preferred by the user. For
a searching scenario, a user can query his or her favorite
program title using the filter and search engine which then
analyzes the metadata, and he or she can then find the relevant
program information such as the channel number, program title,
emission time, casters, and so on. In addition to the filtering
and searching functionalities for metadata, a browsing
functionality can also be possible based on the user preferences.
Some users prefer to consume a summarized audiovisual skim
before watching the entire content. Users can retrieve and
browse their preferred contents based on their preferences. For
example, an audiovisual summary of a video can be browsed
in a poster manner with several key thumbnail images, or it can
be played with a short video skim.

User preferences are very valuable information for user-oriented
or personalized applications. However, user preferences need to
be defined in a somewhat quantitative way. One simple solution
is to let users set the values for given preference types. In this case,
the users should be aware of the preference types available and
the semantics of the specific values these types are set to.

It is more appropriate to compute user preferences based on
usage history of the program contents. By analyzing the usage
history data, the user preference values can be adaptively
computed according to the user preferences as they change
over time.

As shown in Fig. 2, the usage history description can be used
at a terminal application in order to automatically compute the
user preference values which are used in the filter and search
engine or browser engine. The MPEG-7 MDS and TV
Anytime metadata specifications define the syntax and
semantics of a user preference and usage history schema, but
the extraction methods for user preference values are not
specified in any standardized way.

1. User Preference Description Scheme

Figure 3 shows a hierarchical structure of a User Preference
description scheme (DS), and Table 1 shows User Preference
types.

The User Preference DS contains the Browsing Preference DS,
Filtering and Searching Preference DS, and the User Identifier.
The User Identifier is used to identify users for user preference
description data. The Filtering and Searching Preference DS
specifies creation preference, source preference and classification
preference. The Browsing Preference DS has the Summary
Preference DS which contains the SummaryTypePreference,
PreferredSummaryTheme, and other summary types. Figure 4
shows the syntax of the User Preference DS specified by

ETRI Journal, Volume 26, Number 2, April 2004 Munchurl Kim et al. 139

 Fig. 3. Hierarchical structure of User Preference description scheme.

Userldentifier +

FilteringAndSearchPreferences -

0..∞

BrowsingPreferences +

0..∞

CreationPreferences +

0..∞
ClassificationPreferences +

0..∞
SourcePreferences +

0..∞

PreferenceCondition +

0..∞

FilteringAndSearchPreferences +

0..∞

MPEG7:FilteringAndSearchPreferencesType
+

-

 UserPreferencesType -
MPEG7: DSType

-

+

Table 1. User Preference types.

FilteringAndSearchPreferences DS Browsing
Preferences
DS

Creation
Preferences

Classification
Preferences

Source
Preferences

� Summary
Type
Preference
� Preferred
Summary
Theme

� Title
� Creator
� Keyword
� Location
� DatePeriod

� Country
� DatePeriod
� Language
� Genre
� Subject
� MediaReview
� Parental
Guidance

� Publication
Type
� Publication
 Source
� Publication
Place
� Publication Date
� Publishier
� MediaFormat

Fig. 4. Syntax of User Preference DS.

<complexType name=“UserPreferencesType”>
<complexContents>

<extension base=“mpeg7:DSType”>
 <sequence>

 <element name=“FilteringAndSearchPreferences”
type=“mpeg7:FilteringAndSearchPreferencesType”

minOccurs=“0” maxOccurs=“unbounded”/>
<element name=“BrowsingPreferences”

type=“mpeg7:BrowsingPreferencesType”
minOccurs=“0” maxOccurs=“unbounded”/>

 </sequence>
 <attribute name=“allowAutomaticUpdate”

type=“mpeg7:userChoiceType”
use=“default” value=“false”/>

</extension>
</complexContents>

</complexType>

MPEG-7 Description Definition Language.

2. Usage History Description Scheme

The Usage History DS specifies the syntax and semantics for
describing usage behaviors for various contents. A user’s usage
behavior, or action types, include Record, Play, Pause, Fast
Forward, Fast Backward, and so on. Such user actions have
different meanings in terms of their preferences about the
content. For example, if a user presses Record, it can be
interpreted that the content being recorded is a preferred
content.

Figure 5 illustrates a hierarchical structure of the Usage
History DS. The Usage History DS contains the User Action
History DS and User Identifier descriptor. The User Identifier
descriptor is used to distinguish the usage-history description
data of various users. The User Action History DS contains the
Observation Period descriptor, which describes the total
duration of a user’s consumption of contents, and the User
Action List DS. The User Action List DS contains the Action
Type descriptor that describes the action types, playback, stop,
pause, Fastforward, and so forth. The User Action DS provides
detailed information about an individual user action such as the
time of occurrence, duration of use, associated program
identifier, and references to related content descriptions and
material. The numInstance describes the total number of user
actions, and the totalDuration describes the total time taken to
consume specific program content. The User Action DS
describes a user action with the time of occurrence,

140 Munchurl Kim et al. ETRI Journal, Volume 26, Number 2, April 2004

 Fig. 5. Hierarchical structure of the Usage History description scheme.

 UserHistoryType -
MPEG7: DSType

-

Userldentifier +

ObservationPeriod +

0..∞

MPEG7: UserActionHistoryType

+

UserActionHistory -

0..∞

+

-

UserActionList -

0..∞

+
MPEG7: UserActionListType

-

ActionType +

UserAction +

0..∞

duration, associated program identifier, and references to a
related content description and its associated content.

Figure 6 indicates the syntax of the Usage History DS and
User Action List DS.

 ----- User Action History DS -----
<complexType name=“UserActionHistoryType”>

<complexContent>
<extension base=“mpeg7:DSType”>

 <sequence minOccurs=“0”>
<element name=“ObservationPeriod” type=“mpeg7:TimeType”

minOccurs=“1” maxOccurs=“unbounded”/>
<element name=“UserActionList”

type=“mpeg7:UserActionListType”
minOccurs=“1” maxOccurs=“unbounded”/>

</sequence>
<attribute name=“protected” type=“mpeg7:userChoiceType”

use=“default” value=“true”/>
</extension>

</complexContent>
</complexType>

----- User Action List DS -----
<complexType name=“UserActionListType”>

<complexContent>
<extension base=“mpeg7:DSType>

<sequence minOccurs=“0”>
 <element name=“ActionType” type=“mpeg7:TermUseType”/>
 <element name=“UserAction” type=“mpeg7:UserActionType”

minOccurs=“0” maxOccurs=“unbounded”/>
</sequence>
<attribute name=“numInstances”

 type=“nonNegativeInteger” use=“optional”/>
<attribute name=“totalDuration”

 type=“mpeg7:durationType” use=“optional”/>
</extension>

</complexContent>
</complexType>

Fig. 6. Syntax of the Usage History DS and User Action List DS.

3. Computation of User Preference Values

A. Statistical Approach

Preferences based on categories can be modeled with
probabilities in a statistical framework. In Fig. 7, genre can be
represented as a tree structure. So the preference for each genre
can be represented as its probability, which reflects the
frequency of the genre visited.

 Fig. 7. An example of a genre tree.

Genre NewsSports

Baseball

Drama

Economy

Political

Soccer

Basketball Society

Weather
Subgenre

• • •

The probability)(igP of the i-th genre ig is expressed as

,)(Ggi TTgP
i

=

where
igT is the total time taken in watching program

contents of the i-th genre, and GT indicates the total time
needed for viewing the program contents of all the genres.
Note that

.1)(∑ =
i igP

For the probabilities of the subgenres, the conditional
probability)(ij gsgP of the j-th subgenre jsg given the
i-th genre ig is expressed as

ETRI Journal, Volume 26, Number 2, April 2004 Munchurl Kim et al. 141

ij gsgij TTgsgP =)(,

where
jsgT is the total time taken in watching the program

contents of the j-th subgenre.
The preference for a specific genre can be modeled by

the relative amount of time taken to consume all the
broadcast contents belonging to that genre. The higher the
probability value for a specific genre, the more preferred
the genre is. The probability density function values can
be obtained by histogram computation over the content
watching time. This preference can be combined with the
probability value of the subgenre preference to support the
recommendation functionality for preference genres at the
preferred times.

B. Rule-Based Approach

The preferences for such genre/subgenre, actors, and
directors can be modeled as a probability. Sometimes the user
behaviors need be interpreted for the computation of the
preference values. For example, a user action such as Record
while watching the program content implies the relative
importance of the content. On the other hand, a user action type
such as Fast Forward indicates a relatively lesser importance
for the content. Such series of user action types are very
common and can be utilized in reasoning a degree of
preference for specific program content.

We set up a rule in order to interpret such user action types
taken in a series as follows:

 Case 1: Preview -> Play (high)
Case 2: Play -> Stop (middle):: refresh
Case 3: Play -> Preview (middle):: refresh
Case 4: Play -> Fast Backward -> Play (high)
Case 5: Play -> Fast Forward -> Play (middle)
Case 6: Play -> Fast Backward -> Pause -> Play (high)
Case 7: Play -> Pause -> Fast Backward -> Play (high)
Case 8: Play -> Fast Forward -> Pause -> Play (middle)
Case 9: Play -> Pause -> Fast Forward -> Play (middle)
Case 10: Any other action (low)

The user action types include Preview, Play, Pause, Stop,
Fast Forward, Fast Backward, Skip one frame, and Back one
frame. Cases 1 through 10 indicate the possible combinations
of user actions in order and their corresponding significance on
the content being played.

IV. FIPA

1. FIPA Standard

FIPA aims at providing a set of standard specifications for

inter-operable agent applications and agent systems. The visual
description of all components for FIPA is shown in Fig. 8.

Fig. 8. Normative components in FIPA standard [8].

Software

Internal platform message transport

Agent
management

system

Directory
facilitator

Agent
communication

channel

Agent

In order to provide an inter-operable platform among agents
in a multi-agent management environment, FIPA specifies a
minimal set of normative components. The first component is a
message transport service (MTS) which consists of an agent
communication channel used to route messages between
agents within the platform and agents that reside on other
platforms, and an internal platform message transport to route
messages among agents that reside in the same platform. The
second component is an agent management system that
controls the creation, deletion, suspension, resumption,
authentication and migration of agents on the agent platform
and acts as a “white pages” directory for all agents resident on
the agent platform—the mapping between globally unique
agent names and local transport addresses used by the platform
are maintained by this agent management system. The final
component is a directory facilitator that acts as a “yellow
pages” directory for the agents and maintains descriptions of
the agents and their services [4], [9].

2. FIPA-OS

The FIPA-open source (OS) is a multi-agent platform which
was designed and implemented to support the FIPA agent
standards [9]. It not only implements the mandatory
components of the FIPA architecture but also provides an agent
shell, a multi-layered agent communication scheme, and a
message and conversion scheme so that agent applications can
be easily built up on top of it.

Messaging in FIPA-OS is handled by the MTS which is
logically designed with a stack of services. Messages enter
the stack and then exit into a transport layer along with an
appropriate message transport protocol (MTP) which is
selected by the MTS. Each service does transformation and
inverse transformation for outgoing and incoming messages.
The advantage of a services stack design is that every service
can be tested independently [9].

142 Munchurl Kim et al. ETRI Journal, Volume 26, Number 2, April 2004

MTP provides a mechanism for sending and receiving
messages from one agent to another. It consists of an internal
transport and external transport. The internal transport is used
for agent communication within the platform. The external
transport is mainly used by the Agent Communication Channel
(ACC) for inter-platform communication [9]. Implementing
normative components according to FIPA standards, as shown
in Fig. 8, FIPA-OS implements both the internal platform
message transport component and the ACC component in the
MTP by using the internal transport and the external transport,
respectively.

MTP in FIPA-OS currently supports the following four
protocols: the internet inter-ORB (object request broker)
protocol, which uses Sun’s CORBA (common object request
broker architecture) implementation by default; HTTP, based
on FIPA HTTP specifications and currently used only by ACC;
FIPAOS-RMI (remote method invocation), based on RMI; and
FIPAOS-SSL-RMI, based on RMI over a SSL (secure socket
layer [9].

There are several advantages of a multi-layer and multi-
component design for MTS. First, this design makes every
layer and component independent of each other so that they
can be tested independently [9]. Second, we can replace every
component with our own implementation if needed. In the next
section, we will introduce MicroFIPA-OS and give a brief
explanation of communication between FIPA-OS and
MicroFIPA-OS.

3. MicroFIPA-OS

MicroFIPA-OS is a lightweight FIPA-OS. It was designed
for small footprint devices such as mobile phones, personal
digital assistants, and so on. Although it is a lightweight version,
MicroFIPA-OS, like FIPA-OS, implements the standard
specifications of FIPA with the support of an agent
communication protocol. In this way, inter-operability between
FIPA-OS and MicroFIPA-OS can be achieved so that a FIPA-
OS agent can also process messages sent from agents running
on the MicroFIPA-OS platform, and vice versa.

The agents deployed on MicroFIPA-OS run on devices that
have some limitations in processing power, memory capability
and communication flexibility. To deal with these limitations,
the transport architecture of MicroFIPA-OS is optimized for
small devices. The MicroFIPA-OS transport architecture is
designed to be platform-centric, which means MicroFIPA-OS
agents share one MTS, while FIPA-OS is agent-centric, giving
each FIPA-OS agent its own MTS. Also, MicroFIPA-OS
doesn’t use a stack of services, but employs the protocol
components of a different default MTP. And, it only allows
either an internal HTTP transport or the FIPA specified HTTP

protocol for inter-operability, while the FIPA-OS supports RMI
or CORBA for message delivery [10].

The scenarios used for deploying FIPA-OS and MicroFIPA-
OS together are shown in Fig. 9. In the first scenario, a
MicroFIPA-OS agent runs as a part of a FIPA-OS platform. It
requires that both MicroFIPA-OS and FIPA-OS employ the
same internal transport. This means we can implement the
HTTP transport for the FIPA-OS internal protocol or adopt
either RMI or CORBA as an internal protocol for MicroFIPA-
OS. In the second scenario, both MicroFIPA-OS and FIPA-OS
stand independently by running their own agent management
system and directory facilitator, implementing the same
external transport to communicate with each other [10].

 Fig. 9. Deployment of FIPA-OS and MicroFIPA-OS [10].

Internal transport

MicroFIPA-OS

Agents

Internal transport

FIPA-OS (ACC, router)

AMS, DF, agents

Terminal Agent platform

FIPA-specified transport

MicroFIPA-OS

AMS, DF, agents

FIPA-specified transport

FIPA-OS (ACC)

AMS, DF, agents

Agent platform Agent platform on a terminal

V. Design and Implementation of IBS Framework
Based on FIPA

The IBS framework includes a server agent and several
client agents in the FIPA agent platform, FIPA-OS . The server,
at which a server agent is running, contains a metabase and a
content archive which maintain the information about
broadcast program contents and which store the program
contents to be broadcast to the client sides. A client agent in the
IBS framework recommends to the user the received program
information from the server agent. Therefore, a user can easily
navigate and browse his or her favorite programs from the
tailored program information provided by the server agent
based on user preference information.

Figure 10 illustrates the architecture of the IBS framework.
The broadcast server includes a media streaming server, a
metabase (program information database), a streaming server, a
content archive and a server agent. Each client terminal has
client agents running on it.

1. Broadcasting Server Agent

The broadcasting server agent provides program information

ETRI Journal, Volume 26, Number 2, April 2004 Munchurl Kim et al. 143

Fig. 10. Architecture of agent-based IBS framework.

Networks

Intelligent broadcasting terminal

XDI
parser

CDI

XDI

PDA

Mobile
phone

XDI

Presentation
engine

MPEG-21
CDI parsing
engine

Execution
engine

Usage history analysis
and user preference
update agent

User behavior
monitoring agent

Client agent· Request Info (XML file) for broadcast program
· Send user preference and terminal

· Send CDI for broadcast program based on

user preference and terminal capability

· Request a specific program
· Send a message

· Stream an adapted content

gBSDL

Media streaming
server

Metabase

Content
achieve

Server agent

Content
adaptation

MPEG-21
DIA

Engine

Metadata
adaptation

to client agents according to user preference in the IBS
framework and requests the streaming server to stream the
corresponding program contents upon user request when the
user selects one of the programs delivered by the server agent
and presented by the client agent. Notice that the tailored
program content information is represented as an MPEG-21
content digital item (CDI) based on the MPEG-21 context
digital item (XDI) which contains the user characteristics
description delivered from the client. Communication between
a client agent and the server agent is performed by agent
communication language (ACL) messages. Here, MPEG-21
CDI and XDI are encapsulated as ACL messages, and the
delivery is performed on the agent platform. The server agent
controls the client agent connections and sends program
information to the client agents. All information related to
program resources, user preference and terminal characteristics,
is represented by metadata (MPEG-21 CDI and XDI)
according to the MPEG-21 Digital Item Declaration
specification [11], by which the MPEG-21 CDI is instantiated.
Again, metadata is encapsulated in an ACL message to deliver
and communicate between inter-platforms.

The broadcasting server agent parses the XDI received from
the client agents and then processes the user preference and
user terminal characteristics information included in the XDI.
The broadcasting server agent sends to the client agent the
program information according to the user preference. Here,
the broadcast program content information is represented as an
MPEG-21 CDI and is encapsulated in a FIPA message by the
FIPA ACL. The client agent can then receive the CDI from the

server agent.

2. Client Agent

The client agent interacts with both users and the
broadcasting server agent. It also interfaces with users. It
presents the broadcast program lists embedded in the MPEG-
21 CDI and delivered from the broadcasting server agent.
Notice that the presented broadcast program lists are based on
user preference, so the user can easily navigate and access his
or her favorite broadcast program contents. The user-behavior
monitoring agent monitors user actions by recording them as
the usage history description data which are then analyzed by
the usage history analysis and user preference update agent.
The accumulated usage history data is maintained in the usage
history repository, which is shown in Fig. 11.

The User Behavior Monitoring agent stores the usage history
data analysis. The Usage History Analysis and User Preference

Fig. 11. Information flow at a client side.

Usage history
repository

XDI User
pref.

CDI

Broadcast
program

info

Usage
envir.
desc.

Usage history
analysis and

user preference
update agent

Graphical user interface

User behavior
monitoring agent

C
lie

nt
 a

ge
nt

 MPEG 21 CDI
parsing engine

144 Munchurl Kim et al. ETRI Journal, Volume 26, Number 2, April 2004

Update agent learns a user’s changes in preference by
analyzing the usage history data and updates the user
preference adaptively.

VI. Experimental Results

The IBS framework was implemented on Microsoft
Windows XP with FIPA-OS v2.1 on JDK 1.4.0.
Communication between agents was made on ACL using an
MPEG-21 CDI and XDI. Program information was
maintained in the metabase—we used Microsoft SQL Server
2000. To query the metabase, we used Java Database
Connectivity connected with Open Database Connectivity. Our
program runs on a java virtual machine so the agents can be
transplanted among different OS. Metadata processing was
performed by JDOM-8. To play streaming media data,
Windows Media Player was used in the form of an ActiveX
control. The metabase has meta data on 776 programs in 11
different genres.

1. Delivery of Context Information

Every agent attached to FIPA-OS or MicroFIPA-OS
communicates by using a standard messaging system defined by
FIPA. In the FIPA standard, a message is made up of two parts, a
message envelope expressing transport information and a
message body comprising the ACL [12]. A FIPA message
envelope consists of a collection of name/value pairs that
comprises the necessary parameters. It contains at least the
mandatory :to, :from, :date, and :acl-representation
parameters [9]. This minimal set of parameters is enough to
perform essential communication. For the full set of
envelope parameters, FIPA defined additional parameters
such as :comments, :payload-length, :payload-
encoding, :encrypted, and :transport-behavior [13].

ACL message representation is based on XML. It contains a
set of one or more message elements. ACL must include the
following minimal set of elements: sender, receiver, content,
and performative. In our application, we attach both XDI and
CDI in the content element of the ACL message.

When we construct the message in the agent application
level, FIPA-OS implementation provides a template object that
includes values which need to be filled in as necessary. All the
information is encapsulated in a field/value-pair message object
as shown in Fig. 12.

The FIPA message contains the context metadata in
the :content component. As shown in Fig. 12, the context
metadata such as user name, age, and preference values on
content genres, and so on, resides inside the :content
component.

 (request
:sender PC-Client@http://210.107.133.128:40
:receiver Server@http://210.107.133.70:50
:content
(<?xml version=“1.0 encoding=“UTF-8”?>

<Person>
<name>yumi</name>

<age>23</age>
<genre preferenceValue=“30”>Drama</genre>
<genre preferenceValue=“21”>Sports</genre>
<genre preferenceValue=“30”>Movie</genre>
<genre preferenceValue=“30”>News</genre>

M
</Person>

M
)
:language SL10
:protocol fipa-request
:ontology fipa-agent-management

)

Fig. 12. Presentation of FIPA message.

2. Delivery and Processing of FIPA Messages

Before a message is sent from the sender agent to the
destination agent, it must be processed through several
transformations. The message which is constructed in the agent
application level contains only the minimum information that
is familiar to users or developers. But that information is not
enough for the delivery mechanism between agents.

Figure 13 shows that the transformation needed to process
messages starts from the agent application level and ends at
the message transport level. At the agent application level, a
message is constructed only with the simple information
needed for user application purposes. Then, FIPA
implementation needs to add additional information such as a

Fig. 13. Message transformation for delivery [8].

Sender:
Receiver(s)

Sender: transport-dec

Message Message

Content

Transport-message envelope

Message
encoding

Payload
Receiver(s): transport-dec

Message

Sender:
Receiver(s)

Content

Sender:
Receiver(s)

Content

ETRI Journal, Volume 26, Number 2, April 2004 Munchurl Kim et al. 145

conversation ID, time-stamp, and so on, for its conversation
control. Finally, for the purpose of communication efficiency,
this message is packed into the payload, or payloads if needed,
which have been optimized to the selected transport protocol
such as HTTP or FIPAOS-RMI, and so on [8]. Reverse
transformation will be applied to the message received at the
destination site.

At the agent application level, a message is constructed only
with the simple information needed for user application
purposes. Then, FIPA implementation needs to add additional
information such as a conversation ID or time stamp for its
conversation control. Finally, for the purpose of
communication efficiency, this message is packed into the
payload which has been optimized to the selected transport
protocol such as HTTP or FIPAOS-RMI [4]. Reverse
transformation will be applied to the message received at the
destination site.

3. Application Scenario

Figure 14 shows a sequence diagram of our application
scenario. In the initial step, a client module sends to the server
module an XDI metadata, which is the MPEG-21 DIA
context information. The server module parses the XDI
metadata, and then creates and sends to the client module the
CDI metadata which carries information about titles, genres,
sources, and so forth, for the contents available on the server
side.

A user may select and request a preferred multimedia content
from the server side to be displayed in the client GUI. The
server derives the content-adaptation module to retrieve the
requested CDI and adapts the retrieved original content, thus
producing an adapted content according to the context
information received from the client as a user’s XDI. Then, the
adapted content is delivered by the media streaming module to
the client.

Fig. 14. Sequence diagram of application scenario.

Client

Stream adapted DI
Adapt DI

Server Content adaptation

Request a specific DI

Parse & display CDI

Parse XDI

Parse CDI

4. System Implementation and Experiments

When a client agent is executed at a terminal, it connects to
the BroadcastingServer agent which is activated by the server
agent loader, as shown in Fig. 15(a). Notice that two other
agents, ams (agent management system) and df (directory
facilitator), are activated by the server agent loader in the left
part of the display window in Fig. 15(a). The ams agent
manages all the agents running on the server. The df agent acts
like a telephone directory by providing a client agent with the
possible service information from other agents.

Figure 15(b) shows a graphical user interface of a server that
shows a list of the client agents connected to the server. Here,
two clients are shown being served by the server agent.

The connection between a client agent and the broadcasting
server agent is made by clicking a connect button in the GUI of
the client terminal. At this time, the user preference data in the
MPEG-21 XDI is transmitted to the broadcasting server agent
in a FIPA message form. The broadcasting server agent parses
the MPEG-21 XDI that includes the user preference data and
then acquires from the metabase the relevant program content
information conformed to the user preference. The tailored
program content information is then delivered in an MPEG-21
CDI as a message to the client agent which will present it to the
user.

Fig. 15. GUIs of a broadcasting server agent.

(a) Agent loader at the server.

(b) Event window at the server.

146 Munchurl Kim et al. ETRI Journal, Volume 26, Number 2, April 2004

Figure 16 indicates an example of user preference within a
particular genre. The preference on genre is indicated by the
attribute “preferenceValue.” In Fig. 16, education is the favored
genre with users and has a preference value of 87.

Fig. 16. An example of user preference description data.

<?xml version=“1.0” encoding=“UTF-8”?>
<Mpeg7 xmlns= “http://www.w3.org/2000/XMLSchema-instance”
type=“complete”>

<UserPreferences>
<UserIdentifier protected=“true”>

<UserName>icu</UserName>
</UserIdentifier>
<UsagePreferences allowAutomaticUpdate=“true”>

<FilteringAndSearchPreferences protected=“true”>
<ClassificationPreference>

<Genre href=“urn:mpeg:GenreCS” preferenceValue=“62”>
<Name>Movies</Name>

</Genre>
<Genre href=“urn:mpeg:GenreCS” preferenceValue=“87”>

<Name>Education</Name>
</Genre>
<Genre href=“urn:mpeg:GenreCS” preferenceValue=“71”>

<Name>Drama</Name>
</Genre>
<Genre href=“urn:mpeg:GenreCS” preferenceValue=“32”>

<Name>News</Name>
</Genre>
<Genre href=“urn:mpeg:GenreCS” preferenceValue=“14”>

<Name>Music</Name>
</Genre>

………………
</ClassificationPreference>

</FilteringAndSearchPreferences>
</UsagePreferences>

</UserPreferences>
</Mpeg7>

Based on the preference values for genre in the user
preference data, the program information is presented in the
GUI, as shown in Fig. 17. The program information for the
most and least favorite genres is displayed from the top to the
bottom in the ALL tab menu in the figure. The program content
information is also presented in groups starting with the most
favored genre, which is presented by the menu tab just to the
right of the ALL menu tab, followed by the lesser favored
genre tabs, presented in order of preference.

Users can watch the program, which is selected in the
program list via the client GUI at the client terminal. The
client agent sends a request for the selected program to the
broadcasting server agent and then receives multimedia
streaming data from the streaming server.

In this implementation we used Windows Media Player for
browsing the program contents being streamed from the
streaming server, as shown in Fig. 18.

Figure 19 shows graphical user interfaces at a client terminal

Fig. 17. Graphical user interface at the client terminal.

Fig. 18. The user interface to watch program.

with a user terminal, PDA. The left GUI in Fig. 15(a) shows
the user preferred program list in terms of program sources
(TV channels), and the right GUI lists the user preferred
programs into program genres. By presenting the tailored
program information at the client side, a user can easily
navigate and access his or her program contents of interest.
When the user finds an interesting program and clicks on it
through the GUI, the client agent sends a request signal with
the usage characteristics description as an XDI, including the
terminal characteristics to the server agent. Then, the
corresponding program contents are streamed from the
streaming server on the server side according to the decoding
and display capabilities of the client terminal. Figure 19 (b)
exhibits streamed user-selected program contents.

ETRI Journal, Volume 26, Number 2, April 2004 Munchurl Kim et al. 147

Fig. 19. TV program viewing on a graphical user interface of
a PDA.

(a) Program information list based on user preferences on TV
channels and program genres.

(b) User-selected program contents being streamed.

VII. Conclusion

In this paper, we present an agent-based intelligent
multimedia broadcasting framework. We use FIPA-OS as a
platform for exchanging the MPEG-21 XDI of a usage
characteristics description and the MPEG-21 CDI of user
preferred broadcast program information as FIPA messages
between the agents. The user preference is especially modeled
as the User Preference description scheme in an MPEG-7 MDS.

The communications between the server and clients are
made using ACL. The adoption of the agent platform can
provide a flexible framework in providing intelligent
broadcasting services. We expect that more sophisticated tasks
can be easily developed for specific dedicated processing
within the IBS framework. We believe that the IBS framework
is well suited for the MPEG-21 Multimedia Framework
environment by considering user, terminal and network
characteristics under multimedia environments of various types
and will provide a platform for target-oriented intelligent

broadcasting services such as personal casting.

References
[1] Munchurl Kim, Geewoong Ryu, Beetnara Bae, Jeho Nam,

Kyoungok Kang, ang Jinwoong Kim, “Intelligent Program Guide
for Digital Broadcasting,” Proc. Int’l Workshop Advanced Image
Technology, Jan. 16-19, 2002, Hualien, Taiwan, pp. 257-263.

[2] Seongjoon Pak, Geewoong Ryu, and Munchurl Kim, “Agent-
Based Multimedia Personalcasting,” Proc. Int’l Workshop
Advanced Image Technology, Jan. 21-22, 2003, Nagasaki, Japan,
pp. 311-316.

[3] Mark T. Maybury, “Personalcasting: Tailored Broadcasting
News,” Proc. 1st Workshop Personalization in Future TV,
Sonhofen, German, 2001, pp. 39-41.

[4] Nortel Network, FIPA-OS v.2.1.0 Distributions Notes, http://fipa-
os.sourceforge.net/.

[5] ISO/IEC JTC1/SC29/WG11, ISO/IEC 21000-10 FDIS: Digital
Item Adaptation, MPEG2003/N6168, Hawaii, USA, Dec. 2003.

[6] ISO/IEC JTC1/SC29/WG11, ISO/IEC 21000-1 PDTR Second
Edition: Vision, Technology and Strategy, MPEG2003/N6269,
Hawaii, USA, Dec. 2003.

[7] ISO/IEC JTC1/SC29/WG11, ISO/IEC 15938-5 FDIS:
Multimedia content Description Interface, MPEG2001/N4242,
Sydney, Australia , July 2001.

[8] FIPA, http://www.fipa.org/.
[9] FIPA-OS Developers Guide, http://sourceforge.net/projects/fipa-os/.

[10] MicroFIPA-OS User Guide, http://www.cs.helsinki.fi/group/crumpet/.
[11] ISO/IEC JTC1/SC29/WG11, ISO/IEC 21000-2 FDIS: Digital

Item Declaration, MPEG2002/N4813, Fairfax, USA, May 2002.
[12] FIPA TC Architecture, FIPA Agent Message Transport Service

Specification, XC00067D, Aug. 2001.
[13] FIPA TC Architecture, FIPA ACL Message Structure Specification,

XC00061E, Aug. 2001.
[14] Jae-Gon Kim, Hyun Sung Chang, Young-tae Kim, Kyeongok

Kang, Munchurl Kim, Jinwoong Kim, and Hyung-Myung Kim,
“Multimodal Approach for Summarizing and Indexing News
Video,” ETRI J., vol. 24, no. 1, Feb. 2002, pp. 1-11.

Munchurl Kim received the BE degree in
electronics from Kyungpook National University,
Korea in 1989, and the ME and PhD degrees in
electrical and computer engineering from
University of Florida, Gainesville, USA, in 1992
and 1996. After his graduation, he joined the
Electronics and Telecommunications Research

Institute (ETRI) where he worked in the MPEG-4/7 standardization-
related research areas. Since 2000, he has been involved in the project
management for the development of a data broadcasting end-to-end
system for terrestrial digital broadcasting. In 2001, he joined, as Assistant
Professor of School of Engineering, the Information and
Communications University (ICU) in Daejeon, Korea. His research areas
of interest include MPEG-4/7/21, video compression/communications,
intelligent and interactive multimedia, and pattern recognition.

148 Munchurl Kim et al. ETRI Journal, Volume 26, Number 2, April 2004

Jeongyeon Lim received the BE and ME
degrees in information and communications
engineering from Chungnam National
University, Korea in 1999, and 2001. Since
2001, she has been a PhD student in
Information and Communications University
(ICU), Korea. Her research areas of interest

include intelligent and interactive multimedia, multimedia information
processing, and MPEG-4/7/21.

Kyeongok Kang received the BS and MS
degrees in physics from Pusan National
University in 1985 and 1988. Also, he received
the PhD degree in electrical engineering at
Hankuk Aviation University in 2004. He has
been in ETRI since 1991, and he is now a
Senior Member of the Engineering Staff and a

leader of the 3D Media Research Team. His major interests are in
personalized broadcasting technology based on MPEG-7 and TV-
Anytime, and three dimensional audio processing technology.

Jinwoong Kim received the BS and MS
degrees in electronics engineering from Seoul
National University, Korea in 1981 and 1983,
and the PhD degree in electrical engineering
from Texas A&M University, USA in 1993.
Since 1983, he has been on the research staff in
the Electronics and Telecommunications

Research Institute (ETRI), Korea, working for the development of a
TDX digital switching system, MPEG-2 video encoder, HDTV
encoder system, MPEG-7 technology and data broadcasting system.
He is currently Director of the Broadcast Media Technology Group.
His research interests include digital signal processing in the fields of
video communications, multimedia systems, and interactive broadcast
systems.

	I. Introduction
	II. MPEG-21 Multimedia Framework and Digital Item Adaptation
	III. User Preference Model
	IV. FIPA
	V. Design and Implementation of IBS Framework Based on FIPA
	VI. Experimental Results
	VII. Conclusion
	References

