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This research is an attempt to obtain more accurate land 
cover information from LANDSAT images. Canonical cor-
relation analysis, which has not been widely used in the im-
age classification community, was applied to the classifica-
tion of a LANDSAT image. It was found that it is easy to 
select training areas on the classification using canonical 
correlation analysis in comparison with the maximum like-
lihood classifier of ERDAS  software. In other words, the 
selected positions of training areas hardly affect the classifi-
cation results using canonical correlation analysis. When 
the same training areas are used, the mapping accuracy of 
the canonical correlation classification results compared 
with the ground truth data is not lower than that of the 
maximum likelihood classifier. The kappa analysis for the 
canonical correlation classifier and the maximum likeli-
hood classifier showed that the two methods are alike in 
classification accuracy. However, the canonical correlation 
classifier has better points than the maximum likelihood 
classifier in classification characteristics. Therefore, the 
classification using canonical correlation analysis applied in 
this research is effective for the extraction of land cover in-
formation from LANDSAT images and will be able to be 
put to practical use.  
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I. INTRODUCTION 

Recently, new methods of classifying multispectral imagery 
have been developed and various implementations to improve 
the classification accuracy of satellite imagery have been per-
formed [16], [24]. These methods for image classification are 
based on multivariate statistical analysis. This paper is the study 
of image classification, applying canonical correlation analysis 
(CCA) of multivariate statistical analyses used, to the principle 
of image classification. Up until now, a few researches using 
CCA have been published in remote sensing journals [11], [12], 
[19], [20], [23], [25]. Besides, the canonical correlation analysis 
has been applied to many fields including quantitative geogra-
phy for spatial analysis; hydrology for snowmelt runoff fore-
cast; sociological literature for occupational mobility; psycho-
metrics; biometrics and so on [2], [10], [21]. The objective of 
this research is to obtain more accurate land cover information 
from LANDSAT images. In this experiment, the efficiency of 
the classification algorithm applying canonical correlation 
analysis was tested and evaluated.  

This report is composed of the following three parts; 
① Theoretical review of the canonical correlation analysis: 

The statistical theory of the canonical correlation analysis, 
which is based on the multivariate statistical analysis, is in-
troduced for programming of a ‘Canonical Correlation 
Classifier (CCC)’ for image classification. 

② Construction of an image classification algorithm using ca-
nonical correlation analysis: Various algorithms using the 
canonical correlation analysis are applied to image analysis, 
and an optimum algorithm among them is proposed. 
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③ Applications of the CCC to the LANDSAT image classifi-
cation: The CCC is applied to a LANDSAT image of the 
research area, and the results are compared and discussed. 
In this study, LANDSAT-5 TM data was used. The maxi-
mum likelihood classifier (MLC) [26] with the same data 
was employed to be compared with the CCC. ERDAS  
Image Processing System generated the land cover classi-
fication results using MLC [9]. The characteristics and ad-
vantages of CCC for image classification were examined. 
In addition, the significance of eigenvalue is tested, and the 
unclassified pixels are discriminated. MATLAB , which is 
a program for matrix calculations, was used for coding the 
algorithm of the canonical correlation classifier. The image 
file of ground truth data for accuracy assessment was ob-
tained from the .gis file generated by ERDAS  software 
through referencing a 1:10,000 topographic map and a   
1 : 20,000 aerial photo. 

II. THEORETICAL REVIEW OF THE  
CANONICAL CORRELATION ANALYSIS 

1. Conceptual Overview 

Canonical correlation analysis developed by H. Hotelling  
[22] in 1935 is a statistical method to identify and quantify the 
associations between two sets of variables. Canonical correla-
tion analysis focuses on the correlation between a linear com-
bination of the variables in one set and a linear combination of 
the variables in another set. The idea is, first, to determine the 
pair of linear combinations having the largest correlation. Next, 
we determine the pair of linear combinations having the largest 
correlation among all pairs uncorrelated with the initially se-
lected pair. The process continues. The pairs of linear combina-
tions are called the canonical variables, and their correlations 
are called canonical correlations. The canonical correlations 
measure the strength of association between the two sets of 
variables. The maximization aspect of the technique represents 
an attempt to concentrate a high-dimensional relationship be-
tween the two sets of variables into a few pairs of canonical 
variables. In this study, CCA relates each pixel of a LANDSAT 
image to a land cover type. 

2. The Mathematical Model 

We are interested in measures of association between two 
groups of variables. The first group of p variables is represented 
by the )( np ×  random vector )1(X . The second group of q  
variables is represented by the )( nq ×  random vector .)2(X  
We assume, in the theoretical development, that )1(X  represents 
the smaller sets, so that qp ≤ . For the random vectors )1(X  

and ,)2(X  let 
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It will be convenient to consider )1(X  and )2(X  jointly. 
The random vector  
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and covariance matrix, as following. 
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The covariances between pairs of variables from different 
sets-one variable from )1(X , one variable from )2(X  are con-
tained in ∑12  or, equivalently, in ∑21 . That is, the pq  ele-
ments of ∑12  measure the association between the two sets. 
When p  and q  are relatively large, interpreting the ele-
ments of ∑12  collectively is ordinarily hopeless. Moreover, it 
is often linear combinations of variables that are interesting and 
useful for predictive or comparative purposes. The main task of 
canonical correlation analysis is to summarize the associations 
between the )1(X and )2(X sets in terms of a few carefully chosen 
covariances (correlation) rather than the pq  covariances in 
∑12 . 

Linear combinations provide simple summary measures of a 
set of variables. Set  
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is as large as possible. The first pair of canonical variables are 
the pair of linear combinations 11,VU  having unit variances, 
which maximize the correlation (7). The kth pair of canonical 
variables are the pair of linear combinations kk VU ,  having 
unit variances, which maximize the correlation (7) among all 
choices uncorrelated with the previous k-1 canonical variable 
pairs. Then *
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III. AN IMAGE CLASSIFICATION ALGORITHM 
USING CANONICAL CORRELATION 
ANALYSIS 

1. Concept 

The concept of algorithm using canonical correlation analysis is 
as follows. 
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Selection of LANDSAT Data

No

Acquisition of Ground Truth Data

Accuracy Assessment

Unclassified
Pixel

Maximum Likelihood Classifier

   : Land Cover Classification Using
     ERDAS    Image Processing System®

   Canonical Equation
- Eigenvalue
- Canonical Vector

Calculation & Partition of
Correlation Coefficient Matrix

Decision of Land Cover
by Canonical Vector

     Organization of Source Matrix
 - Cluster of Predictor Variables
   (Training Areas Data)
 - Cluster of Criteria Variables
   (One Pixel of Image Data)

   Read Data
 - Training Areas Data
 - TM Image Data

Significant Test  of
  Eigenvalue

Selection of Training areas

Yes

    Canonical Correlation Classifier

:Programming of CCA Algorithm Using
 MATLAB®

Fig. 1. The flowchart of canonical correlation classifier.

)2(X  variables              )1(X  variable
T/A

Band
1   2   ………   q

Pixel
Band

1

1
2
.
.
n

X11   X12    ………  X1q

X21   X22    ………  X2q

.    .       .     .

.    .       .     .
Xn1   Xn2    ………  Xnq

1
2
.
.
n

Y1

Y2

.

.
Yn

Note:
T/A are training areas data.
Pixel is an individual pixel of LANDSAT image pixels for research area.
n is the number of band of LANDSAT image. MSS is 4, and TM is 7.

  The )2(X  variables are the mean pixel values of the training 
areas, which are clearly identified from the aerial photo, a LAND-
SAT image and the topographic map. Each pixel in the LAND-
SAT image was used as )1(X  variable. In CCA, for convenience, 
the original variables (Xji, Yj ) of data matrix are standardized with 

[ ]′= )1(
1Z(1)Z  and [ ] .,,, )2()2(

2
)2(

1
(2) ′= qZZZ LZ  

In the case of the rectangular LANDSAT image with dimen-
sion x (row) × y (column), the classification per pixel was per-
formed sequentially, scanning the image from upper-left corner 
to lower-right corner. Therefore, the number of the canonical 
correlation classifications for the study area was the same as the 
total pixel number. The classification class for each pixel of the 
study area image is decided as the class related to the largest 
value of the canonical weights, which are the q elements of the 
canonical vector 1b in .)2(2/1

22
/

1
)2(/

11 ZfZb −== ρV  The ca-
nonical weight means the weight that each pixel is assigned to 
the training area. 

2. Procedure 

The procedure of canonical correlation classification is 
shown in Fig. 1, and each step is as follows: 
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(1) Data Reading 
An original image data is converted into the binary raster 

files without header bytes according to the bands. In the case of 
Thematic Mapper data with 7 bands, 7 files are necessary. Also, 
a text file is created with the n-th band and q-th class from the 
average pixel value per band of training areas to obtain the 
training sample file representing the digital number of the 
classification classes. In this study, five classes were chosen. 

(2) Construction of Source Data Matrix 
Using the image data obtained from (1), one pixel is chosen 

and 1×n  matrix defined as the )1(X  variable set is then 
constructed. Also, qn ×  matrix defined as the )2(X  vari-
ables set is constructed from the training areas file. Finally, by 
combining the )1(X  variable set matrix and the )2(X  vari-
ables set matrix, n × (1 + q) source data matrix is produced [3], 
[5]. 

(3) Standardization of Source Data Matrix 
All variables of data matrix are standardized to carry out all 

processes easily and simply. 

(4) Calculation of Correlation Coefficient Matrix 
The (1 + q) × (1 + q) correlation coefficient matrix is constructed 

from the standardized data matrix, which is used as the source ma-
trix to produce the eigenvalue and the eigenvector for CCA. 

(5) Partition of Correlation Coefficient Matrix 
The (1 + q) × (1 + q) correlation coefficient matrix is parti-

tioned into individual independent matrix including 1 × 1, 1 × q,  
q × 1 and  q × q matrices. Then, the inverse matrix, the square-
root matrix, and the inverse matrix of the square-root matrix for 
each individual matrix can be respectively obtained. 

(6) Solution of Canonical Equation 
Considering the theoretical model, the newly created matri-

ces in (5) are reconstructed to the source matrix (M). Using this 
matrix, the canonical equation is formulated and then the ei-
genvalue and the eigenvector can be obtained. This eigenvector 
produces the column vector a, b which indicate the canonical 
vectors of the two sets of variables. The number of the eigen-
value is determined as one, the number of )1(X variable in this 
study. The element number of the column vector b corresponds 
to the number of land cover classes and each value of b vector 
elements indicates the weight of each pixel to the land cover 
class to the canonical correlation. Therefore, the main theme of 
the image classification process by CCA is that the land cover 
class corresponding to the largest element value is determined 
as the land cover class of a classified pixel. 

(7) Statistical Significant Test of Eigenvalue 
To determine the land cover types from CCA, the covariance 

∑12 or the canonical correlation coefficient between two sets 
of variables must not be zero. The distribution function of eigen 
value proposed by Fisher is adopted for the statistical signifi-
cant test of eigenvalue [4] with a 95 % or 99 % confidence 
level to find the canonical correlation between two sets of vari-
ables. The statistical significance of one pixel, being less than 
0.05 (or 0.01), rejects the null hypothesis, and then the class is 
classified with a 95 % (or 99 %) confidence level. Conversely, 
if the null hypothesis is adopted, the pixel cannot be assigned to 
one of the classes and the pixel is defined as an unclassified 
pixel. The unclassified pixel indicates that there is an area of a 
different feature from the selected training sites within the re-
search area. 

IV. THE APPLICATION OF CANONICAL  
CORRELATION CLASSIFIER FOR LANDSAT 
IMAGE CLASSIFICATION 

1. Research Area 

The research area for this study is a rectangular area of about 
2.85 km × 2.14 km. It includes various land covers which con-
sist of bareland, forest, grass, urban, water areas and includes 
the national cemetery, Tongjak Grand Bridge, Panp’o-Dong in 
Seoul. The topographic map (1994, revised) of the research 
area is shown in Picture 1 and the aerial photo of the same area, 
taken in October 1995, is shown in Picture 2. Picture 3 shows 
the LANDSAT image of the research area expressed by the 
natural color composite with RGB color assignments. The sat-
ellite image data for classification was obtained from the 
LANDSAT-5 TM with a 116–35 path-row and was the metro-
politan area image including Seoul on June 2, 1992. 

2. Image Registration to the Ground 

The larger area, including the whole research area, was cut 
from the full scene. The twenty ground control points were dis-
tributed evenly among all. And, the research area image was 
geometrically transformed using the affine transformation 
equation to correspond to the map coordinate system [1]. The 
root mean square error (RMSE) of image registration to the 
ground was under 0.5 pixels. Then, a new image was generated 
through resampling using the bilinear interpolation method 
with the pixel values of the original image [26]. In the geomet-
ric correction and resampling, the dimension of one pixel was 
determined as 28.5 m × 28.5 m. Finally, the rectangular area 
with 100 pixels (column) × 75 pixels (row) was  obtained 
from the geometrically corrected and resampled image. The 
map coordinate of the upper-left corner of this data is (X, Y) = 
(196,855.3 m, 445,245.5 m). 
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Picture 1. The topographic map of research area.

3. Result of Application 

A. Selection of Class 

In this study, the U.S. Geological Survey Land Use/Land 
Cover Classification System [13], which are widely used class 
codes for classifying a remotely sensed image, was adopted to 
apply the CCC method and the MLC method. Also, the classi-
fication level I was employed considering the resolution of TM 
data. Table 1 shows the class name in this study and U.S.G.S. 
reference comparatively. 

B. Selection of Training Areas 

The training areas have to be selected to apply CCC to 
LANDSAT image and to carry out MLC using the ERDAS  
software for the same image. The training areas are the repre-
sentative sample sites of known cover type. The training areas 
are used to compile a numerical “interpretation key” that de-
scribes the spectral attributes for each feature type of interest. 
Nevertheless, the specific criterion for selection of training areas 
was not adopted because it was more important to evaluate the 
efficiency and accuracy of CCC for LANDSAT TM image. 
Therefore, the positions of the training areas have only to be re-
spectively clear when comparing the image of the research area 
with the aerial photo and the topographic map. Picture 7 shows 
the positions of the training areas. Each training area was se-
lected based on the above-mentioned classes, and consists of 
the five following representative components. 

① Bareland: In general, it consists of a schoolyard and soil 
with little plants. 

② Forest: Its area consists of trees taller than 2 m. 
③ Grass: It consists of shrubbery, grass, field, etc. 
④ Urban: It has apartment sites, roads, small buildings, resi-

dences, concrete facilities, artificial constructions, etc. 

Picture 2. The aerial photo of research area.

Picture 3. Natural color image of research area.

Table 1. Class name of this study & U.S.G.S. classification system.

Class Name in This Study U.S.G.S. Classification System
(Level I)

Bareland Barren Land
Forest Forest Land
Grass Range land
Urban Urban or Built-up Land
Water Water

⑤ Water: It has rivers, water in rice fields, reservoirs, pools, etc. 

C. Results of Canonical Correlation Classifier & Maximum 
Likelihood Classifier 

The classified results using the selected training areas are 
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Picture 4. Result image by CCC.

bareland forest grass urban water

Picture 5. Result image by MLC.

bareland forest grass urban water

Table 2. Result of each classification method.
 (Units: Pixels)

Class
Method Bareland Forest Grass Urban Water

CCC 424 1,440 1,374 3,437 825
MLC 170 1,497 289 4,873 671

shown in Table 2 (Note that the ‘CCC’ is the Canonical Corre-
lation Classifier and the ‘MLC’ is the Maximum Likelihood 
Classifier.). Picture 4 and 5 show the displays of Table 2 (Note 
that in the pictures, Bareland, Forest, Grass, Urban, and Water 
are expressed by white, pine green, yellow green, magenta, and 
blue, respectively.). The processing time of CCC and MLC, re- 

Picture 6. Ground truth data.

bareland forest grass urban water

Picture 7. The positions of training areas.

spectively, is about 87 seconds and 4 seconds for 75× 100 sizes 
image with a Pentium 133 MHz PC. It is difficult to compare  
the processing time of two techniques with each other. The 
MLC using ERDAS  is a commercial software but the CCC 
using MATLAB  is an imperfect program coded by authors. It 
is predicted that the processing time of CCC will take more 
than that of MLC in the same condition. 

4. Assessment & Analysis of Classification Accuracy 

A. Acquisition of Ground Truth Data 

The ground truth data were used to evaluate the classification 
accuracy of the two methods. It was obtained from the 1: 10,000 
topographic map of the research area with a digitizer, and stored 
in a file of the same format as the classification results image. 
The aerial photo was identified for more accurate digitizing of 



48   Jong-hun Lee et al. ETRI Journal, Volume 21, Number 4, December 1999 

land 

Table 3. Pixels by each class of ground truth data.
(Units: Pixels)

Class Barela Forest Grass Urban Water
Number of

Pixels 351 1,415 997 3,942 795

Percentage (%) 4.68 18.87 13.29 52.56 10.60

cover boundaries. In performing the digitization, some errors be-
tween the boundary lines of land covers might be included. Also, 
areas with land covers that are not found in the topographic map 
and the aerial photo exist. These were very small areas expressed 
by one or two pixels. In this paper, the acquisition of ground truth 
data contains some limitation. The limitations are; the disagree-
ment of the year in which the LANDSAT image, the topog-
raphic map and the aerial photo were produced; the simplifica-
tion of ground truth data by the omission of small land cover 
area; and the indistinct representation of land cover information 
in the topographic map. In addition, there are the digitizing errors 
of land cover boundary lines, the registering error of the image to 
the ground. However, despite the above problems, the assess-
ment of producer’s accuracy, user’s accuracy, mapping accuracy 
and overall accuracy in CCC and MLC was useful. The ground 
truth data are shown  in Picture 6. Table 3 shows the number of 
pixels belonging to each class of ground truth data. 

B. Construction and Evaluation of Contingency Table 

Tables 4 and 5 show the contingency tables for the accuracy 
comparison of CCC with MLC [15], [17]. The total number of 
pixels in the research area is 7,500 and the number of correctly 
classified pixels is equal to the sum of five diagonal element 
values of the contingency table as shown in Tables 4 and 5 [7]. 
From these values, overall accuracy, producer’s accuracy, 
user’s accuracy and mapping accuracy can be calculated [26]. 
Mapping accuracy for each class is stated as the number of cor-
rectly identified pixels within each ground class divided by that 
number plus error pixels of commission and omission [14], 
[18]. Also, the classification accuracy of CCC after extracting 
the unclassified pixels is calculated, and that of MLC is ob-
tained through excluding the pixels with the same positions as 
the unclassified pixels produced by CCC. 

Table 6 shows the comparison results of accuracies between 
CCC and MLC. The original image for both classifying meth-
ods consists of 7,500 pixels in total, respectively. The accura-
cies of the modified image with 7,015 pixels, excluding the 485 
unclassified pixels, are obtained. Table 6 indicates that both 
classified results of the image, excluding the unclassified pixels, 

Table 4. Contingency table of CCC.
(Units: Pixels)

Ground Class

LANDSAT
Class

B F G U W Sum
(row)

B 227 0 13 174 10 424
F 1 1,261 88 84 6 1,440
G 61 95 693 521 4 1,374
U 57 59 201 3,097 23 3,437
W 5 0 2 66 752 825

Sum (column) 351 1,415 997 3,942 795 7,500

Table 5. Contingency table of MLC.
(Units : Pixels)

Ground Class

LANDSAT
Class

B F G U W Sum
(row)

B 145 0 0 25 0 170
F 0 1,278 86 61 72 1,497
G 0 0 278 11 0 289
U 206 137 633 3,843 54 4,873
W 0 0 0 2 669 671

Sum (column) 351 1,415 997 3,942 795 7,500

are more accurate than the original image. Therefore, the ex-
traction of unclassified pixels by CCC is useful for classifying 
the image. The user’s accuracy of bareland through extracting 
the unclassified pixels was reduced compared with that of the 
original image, since the bareland area of ground truth data has 
a high variation in itself and a new land cover type may exist.  

Since the research area of this study was more than 50 % urban 
area, and the overall accuracy was mainly affected by the accu-
racy of the urban area, the overall accuracy of MLC was better 
than that of CCC as shown in Table 6. The land cover type and 
the size of land cover area can have an influence on the overall 
accuracy. To analyze each accuracy of land covers, producer’s 
accuracy, user’s accuracy and mapping accuracy were calcu-
lated. In the case of bareland, grass and water, the producer’s 
accuracies of CCC were much higher than MLC. Considering 
the results of MLC, the accuracies of bareland and grass were 
very low, while that of urban area was very high. It is because 
MLC tends to classify the areas that are not urban area into urban 
area. Since there are various land cover types in an urban area, 
the variation of its numerical data is generally large. Considering 
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Table 6. The comparison results of accuracies between CCC and MLC.
 (Units: %)

Producer’s AccuracyType of Accuracy
Classification Method

Overall
Accuracy B F G U W

Original Image 80.4 64.7 89.1 69.5 78.6 94.6
CCC

Excluding Unclassified Pixel 82.2 71.1 89.5 69.3 80.5 96.5
Original Image 82.8 41.3 90.3 27.9 97.5 84.2

MLC
Excluding Unclassified Pixel 84.4 48.5 91.6 28.5 97.6 87.9

User’s Accuracy Mapping AccuracyType of Accuracy
Classification Method B F G U W B F G U W

Original Image 53.5 87.6 50.4 90.1 91.2 41.4 79.1 41.3 72.3 86.6
CCC

Excluding Unclassified Pixel 47.0 88.6 53.5 90.1 94.2 N/A N/A N/A N/A N/A
Original Image 85.3 85.4 96.2 78.9 99.7 38.6 78.2 27.6 77.3 83.9

MLC
Excluding Unclassified Pixel 81.8 86.0 97.5 80.8 99.7 N/A N/A N/A N/A N/A

*N/A: Not Available

Table 7. Individual error matrix kappa analysis results.

Error Matrix KHAT Variance Z statistic
Canonical Correlation

Classifier 0.7136 0.000044562 106.89

Maximum Likelihood
Classifier 0.7164 0.000048647 102.72

that MLC method uses the variances of classes, the ambiguous 
pixels for classifying can be easily included in urban area. There-
fore, to improve the accuracies of bareland and grass using 
MLC method, many trials are necessary with increased training 
areas and larger variance of each class. 

CCC method can be useful for classifying LANDSAT image 
data, considering that the producer's accuracy of CCC is not 
less than that of MLC. Especially, CCC for areas including  
grass and water can produce good results. The user’s accuracy  
of MLC is lower than that of CCC in urban and forest areas. It 
shows that most of the pixels with omission errors in MLC 
were classified into urban area and forest area. The very mean-
ingful accuracy for the comparison of classification methods is 
mapping accuracy. The mapping accuracy of each class in 
CCC is better than that of the same class in MLC excluding ur-
ban class. This point shows that CCC is considerably efficient 
to classification of LANDSAT TM image data compared with 
MLC. 

For more complete comparison and accuracy assessment be-
tween the two classification methods, the kappa analysis as a 
statistical test of significance between the two error matrices 

Table 8. Kappa analysis results for the pairwise comparison of the
error matrices.

Pairwise Comparison Z statistic
CCC vs. MLC 0.2994

was used [6], [8]. For the performance of kappa analysis, the 
KHAT statistic (the estimate of the Kappa statistic), Z statistic, 
for testing the significance of a single error matrix, and Z statistic 
for testing, if two independent error matrices are significantly 
different, were computed. Table 7 shows the kappa analysis  
results of individual error matrix. Table 8 shows the kappa 
analysis results for the comparison of the two error matrices. 

The KHAT values for the two error matrices in Table 7 are 
0.7136 and 0.7164, respectively, and so both classifications 
represent moderate agreement. Also the Z statistic values for 
the two error matrices in Table 7 are both more than 100, and 
so both classifications are significantly better than random. The 
Z statistic for pairwise comparison of the two classifications in 
Table 8 is 0.2994, and so this value reveals that the two matrices 
are not significantly different. Therefore, it could be concluded 
that CCC might be useful because both CCC and MLC produce 
approximately equal classifications. 

V. CONCLUSIONS 

Conclusively, the principal difference in classification crite-
rion between MLC and CCC is that MLC uses normal prob-
ability density function as the discriminant function while CCC 
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uses the canonical vector of linear combination of )2(X  vari-
ables, when the correlation between two linear combinations is 
largest, as the discriminant function. In other words, MLC is 
concerned about the covariance of image data within each class 
in training areas, but CCC is concerned about the covariance of 
the average values of each class and each band in training areas. 
Actually, the spatial distribution of satellite image data is not 
usually a normal distribution. Therefore, CCC does not have 
the defect of MLC, which assumes the normal distribution of 
data. 

Especially, the characteristics and advantages of the CCC 
method compared with the MLC method are as follows; 

(1) Using the significance test for eigenvalue, unclassified 
areas can be extracted. 

(2) Training areas can be easily selected without trials and  
errors. In other words, even though only the distinct areas for 
training areas are selected, the classification results of CCC are 
not degraded as much as the classification results of MLC. 

(3) In the case of grass and water areas, the CCC method can 
be more accurate and effective. That is, the small grass areas 
and water within urban areas can be classified better. Therefore, 
CCC method can be used for harvest forecasting and surface 
water detection. 

VI. FURTHER STUDIES AND  
RECOMMENDATIONS 

Since the proposed CCC method makes independent classi 
fication criterion for each pixel, the process requires a long 
processing time when using a personal computer. The confi-
dence level for significance test to extract unclassified pixels 
must be decided through more experiments and analyses for 
various areas. Also, the selection of effective bands is required 
to adopt the most efficient band number for CCC. 
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