
In Linux, real-time tasks are supported by separating
real-time task priorities from non-real-time task priorities.
However, this separation of priority ranges may not be
effective when real-time tasks make the system calls that
are taken care of by the kernel threads. Thus, Linux is
considered a soft real-time system. Moreover, kernel
threads are configured to have static priorities for
throughputs. The static assignment of priorities to kernel
threads causes trouble for real-time tasks when real-time
tasks require kernel threads to be invoked to handle the
system calls because kernel threads do not discriminate
between real-time and non-real-time tasks. We present a
dynamic kernel thread scheduling mechanism with
weighted average priority inheritance protocol (PIP), a
variation of the PIP. The scheduling algorithm assigns
proper priorities to kernel threads at runtime by
monitoring the activities of user-level real-time tasks.
Experimental results show that the algorithms can greatly
improve the unexpected execution latency of real-time
tasks.

Keywords: Real-time scheduling, Linux, kernel threads,
priority inheritance, wearable computers.

Manuscript received received Oct. 1, 2006; revised Mar. 15, 2007.
This research was supported by the MIC, Korea, under the ITRC support program

supervised by the IITA, grant number IITA-2006-C1090-0603-0045. This research was also
supported in part by the wearable personal station project from the MIC and the BK21 program
of the Ministry of Education of Korea.

Dongwook Kang (phone: +82 42 860 6624, email: dkang@etri.re.kr) was with Department
of Computer Science & Engineeneering, POSTECH, and is currently with the Embedded
Software Research Division, ETRI, Daejeon, S, Korea.

Woojoong Lee (email: wjlee@postech.ac.kr) and Chanik Park (email:
chpark@postech.ac.kr) are with Department of Computer Science & Engineering, POSTECH,
Pohang, S. Korea.

I. Introduction

Wearable computers have gained wide interest as a basic
platform for future ubiquitous computing. We are still unsure
which operating systems are good enough for the platform.
Currently, Linux is regarded as the most promising alternative
due to its reliability, security, and flexibility. One main
disadvantage of Linux is its restricted real-time support
capability.

With the advance of scheduling algorithms in the Linux
kernel, Linux 2.6 provides O(1) scheduling complexity and
enhances soft real-time requirements thereafter. Linux has
recently gained interest in mobile terminals, automotives, robot
controls, and wearable computers, which require a broad
spectrum of real-time requirements. To promote Linux
adoption in wearable computers, we need to further improve its
real-time support capability. There has been much research
conducted to improve the real-time performance of Linux.
Ingo Molnar’s real-time preemption patch [1] is considered the
most promising method.

One of the most important features provided by Ingo
Molnar’s patch is the threaded interrupt [2], an interrupt
handling technique in the process context rather than the
interrupt context. Through the threaded interrupt technique, the
preemption latency caused by interrupt handling can be
reduced remarkably, resulting in more deterministic behavior
of real-time tasks. However, since we need to assign priorities
to each interrupt statically, the priority inversion problem [3]
is inevitable. For example, in Fig. 1, two real-time tasks are
related to an IRQ thread. In order to execute the IRQ thread
with the highest priority among them, its priority is set to 50
while 50 and 40 are assigned to real-time tasks 1 and 2,
respectively. In this situation, real-time task 1 experiences a

Kernel Thread Scheduling in Real-Time Linux for
Wearable Computers

 Dongwook Kang, Woojoong Lee, and Chanik Park

270 Dongwook Kang et al. ETRI Journal, Volume 29, Number 3, June 2007

Fig. 1. The problem of IRQ thread of RT-preempt patch.

RT task 1 (50)

IRQ thread (50)

RT task 2 (40)

Table 1. Classification of kernel threads.

Classification Name Default priority

IRQ thread Real-time 40–50
Direct group

ksoftirqd Real-time 1

pdflush Nice 0 System kernel
thread group kswapd Nice 0

keventd Nice -5

aio Nice -5

kthread Nice -5

Indirect
group Worker kernel

thread group

khelper Nice -5

considerable latency caused by the execution of the IRQ thread,
which handles interrupts of real-time task 2, as marked by the
red arrow. This is because the priority of the IRQ thread is
statically assigned, whereas the related real-time tasks are
changing dynamically in the current execution of the IRQ
thread.

Linux kernel threads are special tasks which provide specific
kernel services requested by both non-real-time and real-time
tasks. They are different from user level application tasks in
several points: they are automatically created by the kernel and
are always executed at the kernel level. However, the kernel
threads are treated as the same scheduling entities as user level
application tasks [4].

In current Linux implementation, kernel threads are
configured to have static priorities for throughputs. However,
the static assignment of priorities to kernel threads causes
trouble for real-time tasks when real-time tasks require kernel
threads to be invoked for the kernel service via system calls.
This is because kernel threads do not discriminate real-time
tasks from non-real-time tasks. For example, the kernel thread
called pdflush writes dirty memory pages back to the disk. If
real-time tasks have made several I/O requests for memory
page updates, and pdflush is not scheduled sufficiently, then the
responsiveness of the real-time tasks may be prolonged
significantly due to a shortage of memory cache.

In this paper, we classify the kernel threads into three groups
according to how they are associated with real-time tasks. The
classifications are shown in Table 1. First, kernel threads are
classified into two large groups of direct and indirect groups.

Moreover, the kernel threads in the indirect group are classified
into system and worker kernel thread groups.

The first classification is based on whether the response time
of real-time tasks is affected by the execution delay of the
kernel thread directly or indirectly. A direct group includes IRQ
thread and ksoftirqd kernel threads, which wake up the
corresponding real-time task at the end of interrupt handling.
Thus, whenever these two kernel threads suffer an execution
delay, the response time of the real-time task increases by the
same amount of time as the delay.

The system kernel thread group in the indirect group
includes kernel threads invoked when the current system state
exceeds a system threshold configured for optimal throughputs.
For example, a real-time task begins reclaiming the used
memory pages instead of kswapd when the number of free
pages becomes lower than the system threshold.

The worker kernel threads are the kernel threads serving
work queues, such as aio, kthread, and keventd. They do their
jobs asynchronously with real-time tasks, and thus their
execution delay does not directly affect the response time of
real-time tasks.

In this paper, we propose a dynamic scheduling algorithm
for kernel threads in Linux, to monitor the activities of real-
time tasks and assign proper priorities to kernel threads
dynamically.

The remainder of this paper is organized as follows: In
section II, we present related research works. The problems
caused by kernel thread scheduling of current Linux
implementation are exposed in section III. In section IV, we
introduce our kernel thread scheduling algorithm, which solves
the problems of section III. The performance evaluation of our
algorithm is presented in section V. Finally, section VI presents
our conclusions.

II. Related Works

There have been several research works to enhance the real-
time performance of Linux [1], [2], [5]-[7]. The approaches of
using a separate module [8], [9] or separate microkernel [10]
are excluded from further consideration due to their less
generality. We only consider the approach of real-time patches
that are applied to vanilla Linux. Among the real-time patches,
Ingo Molnar’s patch [1], [2], [6] is considered to be promising.
It introduces three techniques to enhance the real-time
performance of Linux: an IRQ thread, RT mutex, and high-
resolution timer. The IRQ thread is a kernel thread handling the
top-halves of interrupts and is woken up by the interrupt
service routines (ISRs) when interrupts occur. This technique
reduces preemption latency of a vanilla kernel. It is widely
used for real-time Linux, and the performance is known to be

ETRI Journal, Volume 29, Number 3, June 2007 Dongwook Kang et al. 271

excellent [7]. However, it requires the system administrators to
configure static priorities of IRQ threads, and assigning static
priority to an IRQ thread inevitably causes the priority
inversion problem.

In [5], all interrupt handlers are configured to have static
priorities and are executed in a process context like the IRQ
threads of Ingo Molnar’s patch. Note that in the case of [5], the
entire execution of an interrupt handler is conducted in the
process context, whereas in the case of [1], only some parts of
an interrupt handler are conducted in the process context.
However, the priority inversion problem also appears in [5] due
to its static assignment of priorities to interrupt handlers.

Another real-time patch approach is MontaVista Linux [11].
This commercial extension of Linux has been enhanced to
become a fully fledged real-time operating system, and various
mobile phones and smart phones have been developed with it.
Its core features, such as a preemptible kernel and O(1)
scheduler, are adopted in mainstream Linux [11], [12].

Next, TimeSys Linux enhances real-time performance
within the Linux kernel by adding mutual exclusion
preemption mechanisms rather than spinlocks and improves
real-time scheduling by supporting schedulable interrupts and
up to 2048 process priorities. Moreover, TimeSys Linux/Real-
Time, a set of loadable modules, is provided to improve timer
granularity to the system clock level [13].

Finally, Linux /RK, which stands for Linux/Resource Kernel,
incorporates real-time extensions to the Linux kernel to support
the abstractions of a resource kernel. A resource kernel is a real-
time operating system which provides timely, guaranteed, and
enforced access to system resources for applications [14].

III. Scheduling Problems of Kernel Threads

Real-time tasks in Linux may suffer from increased response
time when the associated kernel threads are not scheduled
appropriately. In the following subsections, we describe
examples of kernel threads which cause problems in the case of
the current Linux kernel.

1. IRQ Thread and ksoftirqd

In Linux, top-halves of interrupts are handled in the interrupt
context with a higher priority than all tasks, while the bottom-
halves are handled by a kernel thread, ksoftirqd. However,
when Ingo Molnar's real-time preemption patch is applied, top-
halves of interrupts are handled by an IRQ thread to allow real-
time tasks to preempt interrupt handlers.

To obtain the advantage to its fullest, the priorities of the IRQ
thread and ksoftirqd have to be properly assigned by users.
However, since the priorities are static, the priority inversion

problem may occur, which becomes more serious when the
higher priority task rarely uses an external device while the
lower priority task uses the device.

2. pdflush

A pdflush kernel thread writes back dirty pages to disks to
control the dirty ratio of the system. When it is not scheduled
for a long time, it can affect the response time of real-time tasks
requesting disk writes or requiring additional free memory
pages. To be more specific, when a real-time task performs
disk read I/Os, the kernel tries to allocate multiple free pages to
buffer read data. At that time, if the number of free pages is
below the specified threshold due to the starvation of pdflush,
then the real-time task reclaims used pages by itself to keep the
number of free pages above the threshold. This is required
because if all free memory has been used, the kernel might
easily get trapped in a deadly chain of memory requests that
leads to a system crash [5].

The case of a disk write task is similar. For the same reason
of maintaining the dirty ratio below a specific threshold, the
real-time task writes back dirty pages to the disk by itself, and
its response time increases consequently when the dirty ratio
crosses the threshold.

3. kswapd

A kswpad kernel thread swaps out the least recently used
pages to maintain a number of free pages. Since this kernel
thread also helps normal tasks to allocate free pages, its
starvation causes the identical problems introduced in
subsection III.2. For instance, when kswapd suffers from a long
execution delay and the number of free pages enters a critical
state, real-time tasks requesting additional pages have to
reclaim the used pages instead of kswapd.

4. Worker Kernel Threads

Worker kernel threads are based on work queues. Each
worker kernel thread has its own work queue, and the normal
tasks insert work structures to the worker kernel threads. Then,
the worker kernel thread sequentially handles the work
structures in the work queue.

Execution delays of the worker kernel threads can affect the
performance of real-time tasks. For example, kthread, a type of
worker kernel thread, plays a role in creating a new kernel
thread. When pdflush or a normal task tries to create an
additional pdflush to help write back dirty pages, a work
structure is inserted into the work queue of kthread. If the
kthread is starved and the creation of the new pdflush is
delayed, then the dirty ratio of the system cannot be controlled

272 Dongwook Kang et al. ETRI Journal, Volume 29, Number 3, June 2007

properly. As a result, the real-time tasks can experience the
same problems introduced in subsection III. 2.

As another example, an aio worker kernel thread performs
I/O requests of normal tasks asynchronously. When a real-time
task requests an I/O job from the aio worker kernel thread that
is suffering starvation, the performance of the real-time task
may decrease.

IV. Dynamic Kernel Thread Scheduling for Real-
Time Systems

To solve the problems mentioned in section III, we suggest a
dynamic kernel thread scheduling algorithm, weighted average
priority inheritance protocol (PIP). The weighted average PIP
algorithm is a variation of PIP, the priority inheritance protocol [3].

When PIP is applied to kernel thread scheduling, the priority of
a kernel thread k is the maximum priority of real-time tasks in R
which is a set of real-time tasks related to k:

i i,

i

⎪⎩

⎪
⎨
⎧

≠

=
=

.0if)max_prio(

,0if)io(default_pr
)prio(

ii

ii
i RR

Rk
k (1)

In this case, the weak point is that the kernel thread can use the
CPU excessively and other real-time tasks can suffer
unnecessary execution latency. Originally, the kernel threads
are executed in the background and perform their jobs in a
manner that minimizes the interruption of normal tasks.

Thus, the alternative plan is the weighted average PIP:

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≠
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⋅

=

= ∑
∈

.0if)max_prio(,
)(prio

min

,0if)io(default_pr

)prio(
ii

i

j
Rr

i

ii

i RR
R

r
w

Rk

k
ij

(2)
When there are no real-time tasks related with the kernel thread
ki, the default priority is assigned to ki. Otherwise, the priority
of a kernel thread is the average value of the priorities of Ri
multiplied by wi, the weight values of ki. Since the average
priority reflects the priorities of all real-time tasks associated
with the kernel threads and the weight value reflects each
kernel thread's own characteristics, the weighted average PIP
can make up for the weak point of PIP. This priority is bounded
on the maximum priority of Ri, not to disturb higher priority
real-time tasks.

1. IRQ thread and ksoftirqd

To apply the weighted average PIP to an IRQ thread and
ksoftirqd, the set of real-time tasks related to the two kernel

threads, Rirq, is required. A real-time task has the relation since it
requests an I/O job until the request is fulfilled by the IRQ
thread and ksoftirqd. Whenever a relation is created or
terminated, the priorities of the two kernel threads are
recalculated using (2).

2. pdflush

A real-time task is maintained in Rpdflush during which the
dirty pages written by the real-time task exist in the page cache.
In other words, the relation is started when the real-time task
writes to a file yielding dirty pages, and is terminated when the
dirty pages are written back to the disks.

To apply the relative importance of each real-time task to
computation of the average priority, the number of files or inodes
that the real-time task makes dirty is taken into consideration. For
example, if a real-time task opens and writes to three different
files, then the task is inserted to Rpdflush three times. When the dirty
pages in one of the three files are written back, one element of the
task is removed from Rpdflush. As a result, the priority of pdflush
becomes higher when the number of files written by higher
priority tasks increases, while the priority becomes lower when
the number of files written by lower priority tasks increases. This
mechanism is efficient because the dirty pages are managed in the
inode unit and are written back in the inode unit as well.

3. kswapd

In the case of kswapd, real-time tasks whose pages are in the
LRU cache are the elements of Rkswapd. However, it is very
complex to maintain the set Rkswapd because the number of
pages in the LRU cache is in the hundreds of thousands and the
pages can be shared by multiple tasks of different priorities. To
simplify this problem, we assume that each real-time task has
the same number of pages in the LRU cache.

In addition to wkswapd and the average priority, the ratio of
LRU cache pages used by all real-time tasks, rt_page_ratio, is
used to calculate the priority of kswapd. The average priority is
multiplied by rt_page_ratio to increase and decrease the
priority according to the value of rt_page_ratio:

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

≠⎟⎟
⎠

⎞

⋅⎜⎜
⎝

⎛

=

=
∑

∈

.0if)max_prio(

,__
)(prio

min

,0if)prio(_default

)prio(

kswapdkswapd

kswapd

j
Rr

kswapd

kswapdkswapd

kswapd

RR

ratiopagert
R

rw

Rk

k

kswapdj

(3)

ETRI Journal, Volume 29, Number 3, June 2007 Dongwook Kang et al. 273

This prohibits increasing the priority of kswapd when real-time
tasks use a few memory pages.

4. Worker Kernel Threads

The set of real-time tasks related to a worker kernel thread is
denoted by Rworker. The relation begins when the real-time tasks
insert a work structure to the work queue, and the relation ends
when handling of the work structure is completed. Thus,
whenever a new work structure is inserted or its handling is
completed, the priority of the worker kernel thread is recalculated.

V. Experimental Evaluation

1. Implementation in Linux 2.6

Whenever a change occurs in Ri, a set of real-time tasks
related to a kernel thread ki, the priority of ki is recalculated
using (2). To conduct this recalculation, some information is
maintained for each kernel thread, such as the default priority
of ki, Ri, current average and maximum priority of Ri, and the
number of real-time tasks in Ri. Thus we add this information
as member variables in TCB, which is defined as a structure
task_struct in Linux. In the following subsections, we explain
how these new variables are maintained in each kernel thread.

However, managing the set Ri is a complex routine, as Ri is
needed to recalculate the maximum priority of Ri whenever a
real-time task is added to or removed from it. In contrast, it is
not required when obtaining the average priority of Ri. The
average priority can be calculated from the previous average
priority, the number of tasks in Ri, and the priority of the real-
time tasks newly added to or removed from Ri. If wi is less than 1,
then the weighted average priority is always less than the
maximum priority of Ri. Thus, in this case, it is not required to
manage Ri. Among the kernel threads we have mentioned,
pdflush, kswapd, and worker kernel threads belong to this case.

We implemented our new kernel thread scheduling
algorithm on Linux 2.6.15 with Ingo Molnar's real-time
preemption patch.

A. IRQ Thread and ksoftirqd

In subsection IV.1, we explained that a real-time task has the
relation with Rirq since it requests an I/O job from external devices
until the I/O job is completed by IRQ thread and ksoftirqd.

Thus, we add the real-time task to Rirq right before this task adds
the I/O job to the I/O request queue and is blocked, and we remove
it right after the I/O job is finished and the task is woken up.

B. pdflush

To support the dynamic scheduling of pdflush, a few

variables are added to the inode structure, which have the
number of related real-time tasks and their average priority.
These are required to know the priorities of real-time tasks
accessing each file.

When real-time tasks invoke a write system call to a file and
pages of the file become dirty, the variables in the inode
structure are updated and the priority of pdflush is recalculated
based on the updated variables. If all dirty pages of the inode
are written back to the file, then the priority of pdflush is also
recalculated with the variables of the inode structure.

C. kswapd

As mentioned in subsection IV.3, to calculate the priority of
kswapd, rt_page_ratio as well as the average priority of the
real-time tasks are needed. To obtain rt_page_ratio, each page
descriptor has the information of which kinds of tasks are using
the corresponding page.

To record the information without additional member
variables, we use a redundant bit of the flags member variable
of the page descriptor.

D. Worker Kernel Threads

A member variable is added to the work structure, which has
the priority of a real-time task that inserts the work structure
into the work queue.

When work structures are inserted into work queues, the
priority of the real-time task is assigned to the newly added
variable and the priority of the corresponding worker kernel
thread is recalculated. The priority is also recalculated when a
work structure is handled completely by the worker kernel
thread.

2. Performance Evaluation

We compared the performance of our implementation to that
of Linux 2.6.15 which was applied with the Ingo Molnar's real-
time preemption patch of version rt16 in several experiments.
We used the Ubuntu 5.10 Linux distribution with NPTL 2.3.5.
The run level was set to 3, where X server is not run
automatically.

The experiments were performed on a machine with a 2
GHz Intel Pentium IV CPU without supporting the hyper
threading technique and 256 MB DDR SDRAM. Also, an
IBM IC35L080AVVA07-0 IDE disk was used.

To show the problems exposed in section III and the
performance improvement made by the proposed algorithm,
the experiments were conducted for kernel threads of three
classifications such as IRQ thread, ksoftirqd, pdflush, kswapd
and kthread worker kernel thread. The weight values were 1.2
in the case of IRQ thread and 0.8 otherwise. These were

274 Dongwook Kang et al. ETRI Journal, Volume 29, Number 3, June 2007

selected experimentally by trial-and-error method.

A. IRQ Thread and ksoftirqd

To show the problem of static priorities of IRQ thread and
ksoftirqd and how they are solved in our implementation, we
measured the response time of a real-time task writing data to a
file when another real-time task of lower priority reads data
from another file. The first task writes 16 bytes in each period
of 250 μs, while the second task reads 100 kB continuously.
The two real-time tasks are related with the same IRQ thread
and ksoftirqd because they use the same disk, and the first
task’s code snippet is presented in Fig. 2.

As shown in Figs. 3 and 4, the response time on the existing
Linux with real-time preemption patch is larger than that on
our implementation due to the problem explained in subsection
III .1. As a result, it is proven that the problem can be solved by
the weighted average PIP algorithm.

Figure 5 shows the results of the same experiment performed
on Linux 2.6.18 with real-time preemption patch. This result
demonstrates that the problem also occurs with the real-time
preemption patch, which is enhanced with several new features

sleep_usec = 0; tsc1 = gettsc();

for (i = 0; i < sampling; i++) {

tsc1 += (sleep_usec * CPU_CLOCK);

memcpy(buf2, buf1, MEMCPY_LEN * 1024);

write(fd, buf2, WRITE_LEN);

tsc2 = gettsc();

sleep_usec =

WRITE_PERIOD - (tsc2 - tsc1) / CPU_CLOCK;

tsc1 = gettsc();

if (sleep_usec > 0) usleep(sleep_usec);

else sleep_usec = 0;

}

Fig. 2. Essential code snippet of the disk write task used for
experiments with IRQ threads.

Fig. 3. Response time of the disk write task on Linux with RT-
preempt patch (Linux 2.6.15).

1 295872465619725 14794 9863 4932
No. of disk writes

100
90
80
70
60
50
40
30
20

10
0

R
es

po
ns

e
tim

e
(μ

s)

such as a dynamic tick mechanism.
To show the effect of changing the disk read tasks’ periods,

we measured the response time of the disk write task,
increasing the period from 0 to 200 ms.

Figure 6 shows the results. On Linux with a real-time
preemption patch, the response time becomes longer as the
period is increased. This is because the longer period means the
more infrequent occurrence of interrupts, and disturbance from
the interrupts to higher priority tasks also decreases. However,
on Linux with dynamic kernel thread scheduling, changing the
period does not affect the response time much. In Fig. 6, only

Fig. 4. Response time of the disk write task on Linux with RT-
preempt patch and weighted average PIP (Linux 2.6.15).

1 313052683322361 17889 13417 89454473

100
90
80
70
60
50
40
30
20
10

0

No. of disk writes

R
es

po
ns

e
tim

e
(μ

s)

Fig. 5. Response time of the disk write task on Linux with RT-
preempt patch (Linux 2.6.18).

1 2918420846 16677 12508 83394170 25015

140

120

100

80

60

40

20

0

No. of disk writes

R
es

po
ns

e
tim

e
(μ

s)

Fig. 6. Cumulative rate of response time of the disk write task on
Linux with RT-preempt patch (Linux 2.6.15).

0 10 20 30 40 50 60 70 80 90 100
Response time (μs)

0.98

0.985

0.99

0.995

1

C
um

ul
at

iv
e

ra
te

100 kB continuous read
100 kB read/10 ms
100 kB read/25 ms
100 kB read/50 ms
100 kB read/100 ms
100 kB continuous read (DKTS)

ETRI Journal, Volume 29, Number 3, June 2007 Dongwook Kang et al. 275

Fig. 7. Essential code snippet of the disk write task used for
experiments with pdflush.

sleep_usec = 0; tsc1 = gettsc();

for (i = 0; i < sampling; i++) {

tsc1 += (sleep_usec * CPU_CLOCK);

memcpy(buf2, buf1, MEMCPY_LEN * 1024);

write(fd, buf2, WRITE_LEN)

tsc2 = gettsc();

sleep_usec =

WRITE_PERIOD - (tsc2 - tsc1) / CPU_CLOCK;

tsc1 = gettsc();

if (sleep_usec > 0) usleep(sleep_usec);

else sleep_usec = 0;

}

Fig. 8. Architecture of the FPGA module.

1 81 41 121 161 201 241 321 281 361 401 441 481 521 561 601
0

200

400

600

800

1000

1200

No. of writes

R
es

po
ns

e
tim

e
(m

s)

Fig. 9. Response time of the disk write task executed with a CPU-
bound task on Linux with RT-preempt patch and weighted
average PIP.

1 673631589547505 463 421 379 337 295 253 211 169 127 85 43
No. of writes

0
5

10
15
20
25
30
35
40
45
50

R
es

po
ns

e
tim

e
(m

s)

one case of continuous read is shown.

By comparing the results of the two kernels, the result of the
new kernel crosses the results of three short periods on existing
Linux, such as continuous read, 10 ms, and 25 ms. This means
that the dynamic kernel thread mechanism involves additional
overhead, but it stabilized the overall response time in the three
cases. In the cases of periods of 50 ms and 100 ms, interrupt
frequency becomes low and the disturbance to the disk write

Fig. 10. Dirty ratio with and without applying weighted average
PIP.

Time
0

5
10

15

20

25

30

35

40

45

D
irt

y
ra

tic
 (%

) RT-preempt
RT-preempt+
weighted average

Fig. 11. Cumulative rate of response time of the disk write task
on Linux with RT-preempt patch (Linux 2.6.15).

0 50 100 150 200 250 300 350 400

Response time (μs)

0.8

0.85

0.9

0.95

1

C
um

ul
at

iv
e

ra
te

400 μs (RT_preempt)
600 μs (RT_preempt)
800 μs (RT_preempt)
1000 μs (RT_preempt)
400 μs (DKTS)

task weakens. Thus, in these cases, dynamic kernel thread
scheduling has few benefits.

B. pdflush

To prove the problem caused by starvation of pdflush and
whether the proposed algorithm eliminates it to determine, we
measure the response time of a real-time task writing of 800 kB
to a file every 200 ms while a CPU-bound real-time task runs
with lower priority. In this situation, the lower priority cpu-
bound task disturbs the execution of pdflush. In addition to the
response time, the dirty page ratio of the system is also
measured. The rough source code of the disk write task is
shown in Fig. 7.

Figures 8 and 9 show the response times of the two cases,
respectively, and Fig. 10 shows how their dirty ratios change.
The response time in the case of existing Linux with a real-time
preemption patch increases from the time when the dirty ratio
reaches the threshold and the real-time task writes back dirty
pages by itself. In contrast, in the case of our implementation,
the response time is stable since the dirty ratio is controlled
below the threshold.

Figure 11 shows how changing periods of CPU-bound tasks
affects the response time of the disk write task. Increasing the

276 Dongwook Kang et al. ETRI Journal, Volume 29, Number 3, June 2007

sleep_usec = 0; tsc1 = gettsc();

for (i = 0; i < sampling; i++) {

tsc1 += (sleep_usec * CPU_CLOCK);

memcpy(buf2, buf1, MEMCPY_LEN * 1024);

offset = rand() % READ_FILE_SIZE;

lseek(fd, offset, SEEK_SET);

read(fd, buf, READ_LEN);

tsc2 = gettsc();

sleep_usec =

WRITE_PERIOD - (tsc2 - tsc1) / CPU_CLOCK;

tsc1 = gettsc();

if (sleep_usec > 0) usleep(sleep_usec);

else sleep_usec = 0;

}

Fig. 12. Essential code snippet of the disk read task used for
experiments about kswapd.

Fig. 13. Response time of disk read task executed with a CPU-
bound task on Linux with RT-preempt patch.

0

50

100

150

200

250

300

350

1 377 753 1129 1505 1881 2257 2633 3009 3385 3761 4137 4513 4889

No. of disk reads

R
es

po
ns

e
tim

e
(m

s)

Fig. 14. Response time of disk read task executed with a CPU-
bound task on Linux with RT-preempt patch and
weighted average PIP.

0

50

100

150

200

250

300

350

1 388 775 1162 1549 1936 2323 2710 3097 3484 3871 4258 4645
No. of reads

R
es

po
ns

e
tim

e
(m

s)

period from 400 μs to 1 ms, we performed the same
experiments. On the existing Linux, the responsibility of the
disk write task improves when the period is increased and the
results of the periods of 800 μs and 1000 μs are very similar
to the result on the new Linux. This is because the longer
period of CPU-bound tasks means less CPU consumption and
less interruption to pdflush kernel threads.

Fig. 15. The number of free pages with and without applying
weighted average PIP to kswapd.

0

500

1000

1500

2000

2500

3000

3500

4000

1 375 749 1497 1871 2245 2619 2993 3367 3741 4115 4489 4863

No. of reads

RT-preempt
RT-preempt +
weighted average

1123

N
o.

 o
f f

re
e

pa
ge

s

Fig. 16. Cumulative rate of response time of the disk read task on
Linux with RT-preempt patch (Linux 2.6.15).

0 30 60 90
0.8

120 150 180 210 240 240 270
Resposne time (ms)

0.85

0.9

0.95

1

C
um

ul
at

iv
e

ra
te

4 kB read (DKTS)
16 kB read (DKTS)
32 kB read (DKTS)
4 kB read (RT_preempt)
16 kB read (RT_preempt)
32 kB read (RT_preempt)

In the case of dynamic kernel thread scheduling, there is little
change of response time when the period is increased. The
reason is that the priority of pdflush becomes higher than the
CPU-bound tasks and there is no disturbance from CPU-bound
tasks. Only the result of the period of 400 μs on the new Linux
is presented.

C. kswapd

Similar to the case of pdflush, we measured the response
time of a real-time task accessing a file to read 32 kB of data
every 20 ms. Along with the real-time task, multiple CPU-
bound real-time tasks were executed with lower bound
priorities to starve kswapd, and the number of free pages was
also measured to monitor the behavior of kswapd. The snippet
codes of the disk read task are shown in Fig. 12.

Figures 13 and 14 show the response times of the disk read
task on the current implementation and on our
implementation. Occasionally, some peaks are shown in
Fig. 13, while Fig. 14 shows stable results. We confirmed that
when a peak occurred, the real-time task reclaimed the used
pages instead of kswapd.

This can also be inferred from Fig. 15. In the beginning of
this figure, the numbers of free pages of both cases decrease at

ETRI Journal, Volume 29, Number 3, June 2007 Dongwook Kang et al. 277

the same rate. However, when reaching the points waking up
kswapd, the number of free pages in our implementation stays
larger than that of the current Linux implementation. This
difference is caused by whether kswapd is scheduled
adequately or not.

Figure 16 shows the change of the disk read tasks’
responsibilities according to the read data size. For all the six
cases of the two types of Linux kernel and three read data sizes,
the results look similar. This is because the peak occurs on the
existing Linux very infrequently as shown in Fig. 12. In fact,
the peaks occurred on Linux with a real-time preemption patch
for all read data sizes.

D. Worker Kernel Threads

Among the various kernel threads, the experimental target is
kthread. As mentioned in subsection III.3, kthread is used to
create a new pdflush. To show the problem introduced when
kthread suffers starvation and creation of a new pdflush is
delayed, we use the same experimental scenario of subsection
V.2.B except that the new pdflush kernel threads are
occasionally created by force.

In Figs. 17 and 18, the response times of the two cases are
shown respectively, and Fig. 19 shows the change of their dirty

Fig. 17. Response time of the disk write task executed with
kthread on Linux with RT-preempt patch.

1 433406379352 325 298 271 244 217190 163 136 109 82 55 28

900

800

700

600

500

400

300

200

100
0

No. of writes

R
es

po
ns

e
tim

e
(m

s)

Fig. 18. Response time of the disk write task executed with
kthread on Linux with RT-preempt patch and weighted
average PIP.

4771 443409375 341 307 273 239 205 171 137 103 69 35
No. of writes

50

45
40

35
30
25
20
15

10
5
0

R
es

po
ns

e
tim

e
(m

s)

Fig. 19. Dirty ratio with and without applying weighted average
PIP to kthread worker kernel thread.

Time

45
40
35
30
25
20
15
10
5

0

D
irt

y
ra

tio
 (%

) RT-preempt
RT-preempt+
weighted average

ratios. In the case of the existing Linux, the dirty ratio and the
response time increase because the kthread is not scheduled for
a long time by the CPU-bound tasks and the corresponding
pdflush waits idly until kthread completes the creation of the
new pdflush. However, in our implementation, the response
time and dirty ratio are stable because the priority of kthread
becomes higher.

E. Lmbench

The following tables show the results of the lmbench
benchmark tool [15] performed on Linux 2.6.15 with real-time
preemption patch and Linux 2.6.15 with a real-time preemption
patch and dynamic kernel thread scheduling mechanism.

Lmbench measures the latencies and bandwidths of the
target system. Tables 2 to 6 show the latencies of system calls,
signal handling, process creation, context switching, file
creation and deletion, local communication, and memory read.
Table 7 presents the bandwidth of cached file read, memory
read and write, and local communications.

As shown in the tables, the system latencies and bandwidths
of the two kernels do not show large differences. Consequently,
the dynamic kernel thread scheduling mechanism does not

Table 2. Latencies for processor/process activities.
(μs)

null
call

null
I/O

stat open
clos

selct
TCP

sig
inst

sig
hndl

fork
proc

exec
proc

sh
proc

rt 0.22 0.44 2.81 4.23 21 0.91 3.17 142 624 7996

dkts 0.22 0.44 2.82 4.24 21 0.91 3.19 148 627 7964

Table 3. Latencies for context switches .
(μs)

 2p/0k 2p/16k 2p/64k 8p/16k 8p/64k 16p/16k
rt 2.38 3.58 6.66 4.43 32.3 9.74

dkts 2.39 3.55 6.65 4.43 31.9 8.84

278 Dongwook Kang et al. ETRI Journal, Volume 29, Number 3, June 2007

Table 4. Latencies for file accesses and VM.
(μs)

0k file
create

0k file
delete

10k file
create

10k file
delete

mmap
latency

prot
fault

page
fault

rt 28.9 12.4 85.4 31.2 980.0 1.312 2.0

dkts 29.1 12.4 90.8 31.2 983.0 1.309 2.0

Table 5. Latencies for local communications.
(μs)

 2p/0k pipe AF UNIX UDP TCP TCP conn

rt 2.380 7.674 14.0 20.5 21.8 77.4

dkts 2.390 7.715 14.0 20.3 21.7 77.1

Table 6. Memory latencies.
(ns)

 L1 cache L2 cache Main mem
rt 0.999 9.215 116.0

dkts 0.999 9.222 116.0

Table 7. Bandwidths for local communications.
(MB/s)

 pipe
AF

UNIX TCP
file

reread
mmap
reread

bcopy
(libc)

bcopy
(hand)

mem
read

mem
write

rt 1448 1665 465 1313 1666.6 426.5 443.5 1658 662.4

dkts 1448 1683 478 1306 1661.9 424.1 443.5 1660 650.4

make an impact on the overall performance in general cases
except those of the mentioned workloads.

VI. Conclusion

In this paper, we classified the kernel threads into three
groups based on how they are associated with real-time tasks
and showed how they affect real-time tasks with some
examples of each kernel thread classification. Based on this
information, we proposed a new scheduling algorithm for all
kernel threads using a weighted average PIP mechanism. The
proposed method dynamically adjusts the priorities of kernel
threads by monitoring the activities of related real-time tasks.
The priority computation is based on two factors: the average
priority of real-time tasks related to the kernel thread and the
weight value of each kernel thread representing its own
characteristics.

We demonstrated by experiment that, in the case of five
kernel threads, IRQ thread, ksoftirqd, pdflush, kswapd, and
kthread, the response time of real-time tasks was greatly
reduced when compared to the current Linux system.

References

[1] Ingo Molnar Real-time Preempt Patch, http://people.redhat.com/
mingo/realtime-preempt

[2] S.T. Dietrich and D. Walker, “The Evolution of Real-Time
Linux,” 7th Real-Time Linux Workshop, 2005.

[3] L. Sha, R. Rajkumar, and J.P. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization,” IEEE
Trans. Computers, 1990, pp. 1175-1185.

[4] R. Love, Linux Kernel Development, 2nd ed., Novel Press, 2005.
[5] L.E. Leyva-del-Foyo, P. Mejia-Alvarez, and D. De Niz,

“Predictable Interrupt Management for Real-Time Kernels over
Conventional PC Hardware,” Proc. 12th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’06),
2006.

[6] CE Linux Forum Realtime Preemption, http://tree.celinuxforum.
org/CelfPubWiki/RealtimePreemption

[7] Patch: PREEMPT_RT and I-PIPE: The Numbers, part 4,
http://lwn.net/Articles/143414/

[8] RTAI, https://www.rtai.org/
[9] RTLinux, http://www.fsmlabs.com/rtlinuxfree.html

[10] L4Linux, http://os.inf.tu-dresden.de/L4/LinuxOnL4/
[11] Montavista Real-Time Linux, http://www.mvista.com/products/

realtime.html
[12] Wikipedia Montavista Linux, http://en.wikipedia.org/wiki/

Montavista_Linux/
[13] Timesys Linux, http://www.realtimelinuxfoundation.org/solutions/

solutions.html#SOLUTIONS_TIMESYS
[14] Linux /RK, http://www.cs.cmu.edu/~rajkumar/linux-rk.html
[15] Lmbench, http://www.bitmover.com/lmbench/
[16] D.P. Bovet and M. Cesati, Understanding the Linux Kernel,

O'Reilly, 2005.
[17] REAL-TIME LINUX BENCHMARKS, http://www.mvista.

com/products/realtime_benchmarks.html
[18] J. Mehaffey, “MontaVista Linux Open Source Real Time Project

(White Paper),” MontaVista Software, 2004.

Dongwook Kang received the BS degree in
computer engineering from Dongguk
University, Korea, in 2004. He also received the
MS degree from the Graduate School for
Information Technology of POSTECH, Korea,
in 2007. After graduation, he joined Electronics
and Telecommunications Research Institute,

Daejeon, Korea. His research interests include real-time systems and
embedded systems.

ETRI Journal, Volume 29, Number 3, June 2007 Dongwook Kang et al. 279

Woojoong Lee received the BE degree in
chemical engineering and the MS degree in
computer science from Hanyang University,
Korea, in 2002 and 2004, respectively. He is
currently a PhD candidate in the Department of
Computer Science and Engineering,
POSTECH, Korea. His research interests

include pervasive computing, storage systems, and embedded systems.

Chanik Park received the BE degree from
Seoul National University, Seoul, Korea, in
1983, and the MS and PhD degrees from Korea
Advanced Institute of Science and Technology,
Korea, in 1985 and 1988, respectively. Since
1989, he has been working for POSTECH,
where he is currently a professor in the

Department of Computer Science and Engineering. He was a visiting
scholar with the Parallel Systems group in the IBM Thomas J. Watson
Research Center in 1991. He was also a visiting professor with the
Storage Systems group in the IBM Almaden Research Center in 1999.
He has contributed to a number of international conferences, serving as
a program committee member. His research interests include storage
systems, embedded systems, and pervasive computing.

280 Dongwook Kang et al. ETRI Journal, Volume 29, Number 3, June 2007

	I. Introduction
	II. Related Works
	III. Scheduling Problems of Kernel Threads
	IV. Dynamic Kernel Thread Scheduling for Real-Time Systems
	V. Experimental Evaluation
	VI. Conclusion
	References

