
In Linux, real-time tasks are supported by separating 
real-time task priorities from non-real-time task priorities. 
However, this separation of priority ranges may not be 
effective when real-time tasks make the system calls that 
are taken care of by the kernel threads. Thus, Linux is 
considered a soft real-time system. Moreover, kernel 
threads are configured to have static priorities for 
throughputs. The static assignment of priorities to kernel 
threads causes trouble for real-time tasks when real-time 
tasks require kernel threads to be invoked to handle the 
system calls because kernel threads do not discriminate 
between real-time and non-real-time tasks. We present a 
dynamic kernel thread scheduling mechanism with 
weighted average priority inheritance protocol (PIP), a 
variation of the PIP. The scheduling algorithm assigns 
proper priorities to kernel threads at runtime by 
monitoring the activities of user-level real-time tasks. 
Experimental results show that the algorithms can greatly 
improve the unexpected execution latency of real-time 
tasks. 
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I. Introduction 

Wearable computers have gained wide interest as a basic 
platform for future ubiquitous computing. We are still unsure 
which operating systems are good enough for the platform. 
Currently, Linux is regarded as the most promising alternative 
due to its reliability, security, and flexibility. One main 
disadvantage of Linux is its restricted real-time support 
capability.  

With the advance of scheduling algorithms in the Linux 
kernel, Linux 2.6 provides O(1) scheduling complexity and 
enhances soft real-time requirements thereafter. Linux has 
recently gained interest in mobile terminals, automotives, robot 
controls, and wearable computers, which require a broad 
spectrum of real-time requirements. To promote Linux 
adoption in wearable computers, we need to further improve its 
real-time support capability. There has been much research 
conducted to improve the real-time performance of Linux. 
Ingo Molnar’s real-time preemption patch [1] is considered the 
most promising method. 

One of the most important features provided by Ingo 
Molnar’s patch is the threaded interrupt [2], an interrupt 
handling technique in the process context rather than the 
interrupt context. Through the threaded interrupt technique, the 
preemption latency caused by interrupt handling can be 
reduced remarkably, resulting in more deterministic behavior 
of real-time tasks. However, since we need to assign priorities 
to each interrupt statically, the priority inversion problem [3] 
is inevitable. For example, in Fig. 1, two real-time tasks are 
related to an IRQ thread. In order to execute the IRQ thread 
with the highest priority among them, its priority is set to 50 
while 50 and 40 are assigned to real-time tasks 1 and 2, 
respectively. In this situation, real-time task 1 experiences a  
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Fig. 1. The problem of IRQ thread of RT-preempt patch. 

RT task 1 (50) 

IRQ thread (50) 

RT task 2 (40) 

 
 

Table 1. Classification of kernel threads. 

Classification Name  Default priority

IRQ thread Real-time 40–50
Direct group 

ksoftirqd Real-time 1 

pdflush  Nice 0 System kernel 
thread group kswapd Nice 0 

keventd  Nice -5 

aio  Nice -5 

kthread  Nice -5 

Indirect 
group Worker kernel 

thread group 

khelper  Nice -5 

 

considerable latency caused by the execution of the IRQ thread, 
which handles interrupts of real-time task 2, as marked by the 
red arrow. This is because the priority of the IRQ thread is 
statically assigned, whereas the related real-time tasks are 
changing dynamically in the current execution of the IRQ 
thread. 

Linux kernel threads are special tasks which provide specific 
kernel services requested by both non-real-time and real-time 
tasks. They are different from user level application tasks in 
several points: they are automatically created by the kernel and 
are always executed at the kernel level. However, the kernel 
threads are treated as the same scheduling entities as user level 
application tasks [4]. 

In current Linux implementation, kernel threads are 
configured to have static priorities for throughputs. However, 
the static assignment of priorities to kernel threads causes 
trouble for real-time tasks when real-time tasks require kernel 
threads to be invoked for the kernel service via system calls. 
This is because kernel threads do not discriminate real-time 
tasks from non-real-time tasks. For example, the kernel thread 
called pdflush writes dirty memory pages back to the disk.  If 
real-time tasks have made several I/O requests for memory 
page updates, and pdflush is not scheduled sufficiently, then the 
responsiveness of the real-time tasks may be prolonged 
significantly due to a shortage of memory cache. 

In this paper, we classify the kernel threads into three groups 
according to how they are associated with real-time tasks. The 
classifications are shown in Table 1. First, kernel threads are 
classified into two large groups of direct and indirect groups. 

Moreover, the kernel threads in the indirect group are classified 
into system and worker kernel thread groups.  

The first classification is based on whether the response time 
of real-time tasks is affected by the execution delay of the 
kernel thread directly or indirectly. A direct group includes IRQ 
thread and ksoftirqd kernel threads, which wake up the 
corresponding real-time task at the end of interrupt handling. 
Thus, whenever these two kernel threads suffer an execution 
delay, the response time of the real-time task increases by the 
same amount of time as the delay.  

The system kernel thread group in the indirect group 
includes kernel threads invoked when the current system state 
exceeds a system threshold configured for optimal throughputs. 
For example, a real-time task begins reclaiming the used 
memory pages instead of kswapd when the number of free 
pages becomes lower than the system threshold.  

The worker kernel threads are the kernel threads serving 
work queues, such as aio, kthread, and keventd. They do their 
jobs asynchronously with real-time tasks, and thus their 
execution delay does not directly affect the response time of 
real-time tasks. 

In this paper, we propose a dynamic scheduling algorithm 
for kernel threads in Linux, to monitor the activities of real-
time tasks and assign proper priorities to kernel threads 
dynamically.  

The remainder of this paper is organized as follows: In 
section II, we present related research works. The problems 
caused by kernel thread scheduling of current Linux 
implementation are exposed in section III. In section IV, we 
introduce our kernel thread scheduling algorithm, which solves 
the problems of section III. The performance evaluation of our 
algorithm is presented in section V. Finally, section VI presents 
our conclusions. 

II. Related Works 

There have been several research works to enhance the real-
time performance of Linux [1], [2], [5]-[7]. The approaches of 
using a separate module [8], [9] or separate microkernel [10] 
are excluded from further consideration due to their less 
generality. We only consider the approach of real-time patches 
that are applied to vanilla Linux. Among the real-time patches, 
Ingo Molnar’s patch [1], [2], [6] is considered to be promising. 
It introduces three techniques to enhance the real-time 
performance of Linux: an IRQ thread, RT mutex, and high-
resolution timer. The IRQ thread is a kernel thread handling the 
top-halves of interrupts and is woken up by the interrupt 
service routines (ISRs) when interrupts occur. This technique 
reduces preemption latency of a vanilla kernel. It is widely 
used for real-time Linux, and the performance is known to be 
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excellent [7]. However, it requires the system administrators to 
configure static priorities of IRQ threads, and assigning static 
priority to an IRQ thread inevitably causes the priority 
inversion problem.  

In [5], all interrupt handlers are configured to have static 
priorities and are executed in a process context like the IRQ 
threads of Ingo Molnar’s patch. Note that in the case of [5], the 
entire execution of an interrupt handler is conducted in the 
process context, whereas in the case of [1], only some parts of 
an interrupt handler are conducted in the process context. 
However, the priority inversion problem also appears in [5] due 
to its static assignment of priorities to interrupt handlers.   

Another real-time patch approach is MontaVista Linux [11]. 
This commercial extension of Linux has been enhanced to 
become a fully fledged real-time operating system, and various 
mobile phones and smart phones have been developed with it. 
Its core features, such as a preemptible kernel and O(1) 
scheduler, are adopted in mainstream Linux [11], [12]. 

Next, TimeSys Linux enhances real-time performance 
within the Linux kernel by adding mutual exclusion 
preemption mechanisms rather than spinlocks and improves 
real-time scheduling by supporting schedulable interrupts and 
up to 2048 process priorities. Moreover, TimeSys Linux/Real-
Time, a set of loadable modules, is provided to improve timer 
granularity to the system clock level [13]. 

Finally, Linux /RK, which stands for Linux/Resource Kernel, 
incorporates real-time extensions to the Linux kernel to support 
the abstractions of a resource kernel. A resource kernel is a real-
time operating system which provides timely, guaranteed, and 
enforced access to system resources for applications [14]. 

III. Scheduling Problems of Kernel Threads 

Real-time tasks in Linux may suffer from increased response 
time when the associated kernel threads are not scheduled 
appropriately. In the following subsections, we describe 
examples of kernel threads which cause problems in the case of 
the current Linux kernel. 

1. IRQ Thread and ksoftirqd  

In Linux, top-halves of interrupts are handled in the interrupt 
context with a higher priority than all tasks, while the bottom-
halves are handled by a kernel thread, ksoftirqd. However, 
when Ingo Molnar's real-time preemption patch is applied, top-
halves of interrupts are handled by an IRQ thread to allow real-
time tasks to preempt interrupt handlers. 

To obtain the advantage to its fullest, the priorities of the IRQ 
thread and ksoftirqd have to be properly assigned by users. 
However, since the priorities are static, the priority inversion 

problem may occur, which becomes more serious when the 
higher priority task rarely uses an external device while the 
lower priority task uses the device. 

2. pdflush 

A pdflush kernel thread writes back dirty pages to disks to 
control the dirty ratio of the system. When it is not scheduled 
for a long time, it can affect the response time of real-time tasks 
requesting disk writes or requiring additional free memory 
pages. To be more specific, when a real-time task performs 
disk read I/Os, the kernel tries to allocate multiple free pages to 
buffer read data. At that time, if the number of free pages is 
below the specified threshold due to the starvation of pdflush, 
then the real-time task reclaims used pages by itself to keep the 
number of free pages above the threshold. This is required 
because if all free memory has been used, the kernel might 
easily get trapped in a deadly chain of memory requests that 
leads to a system crash [5]. 

The case of a disk write task is similar. For the same reason 
of maintaining the dirty ratio below a specific threshold, the 
real-time task writes back dirty pages to the disk by itself, and 
its response time increases consequently when the dirty ratio 
crosses the threshold. 

3. kswapd 

A kswpad kernel thread swaps out the least recently used 
pages to maintain a number of free pages. Since this kernel 
thread also helps normal tasks to allocate free pages, its 
starvation causes the identical problems introduced in 
subsection III.2. For instance, when kswapd suffers from a long 
execution delay and the number of free pages enters a critical 
state, real-time tasks requesting additional pages have to 
reclaim the used pages instead of kswapd. 

4. Worker Kernel Threads 

Worker kernel threads are based on work queues. Each 
worker kernel thread has its own work queue, and the normal 
tasks insert work structures to the worker kernel threads. Then, 
the worker kernel thread sequentially handles the work 
structures in the work queue.  

Execution delays of the worker kernel threads can affect the 
performance of real-time tasks. For example, kthread, a type of 
worker kernel thread, plays a role in creating a new kernel 
thread. When pdflush or a normal task tries to create an 
additional pdflush to help write back dirty pages, a work 
structure is inserted into the work queue of kthread. If the 
kthread is starved and the creation of the new pdflush is 
delayed, then the dirty ratio of the system cannot be controlled 
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properly. As a result, the real-time tasks can experience the 
same problems introduced in subsection III. 2.  

As another example, an aio worker kernel thread performs 
I/O requests of normal tasks asynchronously. When a real-time 
task requests an I/O job from the aio worker kernel thread that 
is suffering starvation, the performance of the real-time task 
may decrease. 

IV. Dynamic Kernel Thread Scheduling for Real-
Time Systems 

To solve the problems mentioned in section III, we suggest a 
dynamic kernel thread scheduling algorithm, weighted average 
priority inheritance protocol (PIP). The weighted average PIP 
algorithm is a variation of PIP, the priority inheritance protocol [3].  

When PIP is applied to kernel thread scheduling, the priority of 
a kernel thread k is the maximum priority of real-time tasks in R
which is a set of real-time tasks related to k:  
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(2) 
When there are no real-time tasks related with the kernel thread 
ki, the default priority is assigned to ki. Otherwise, the priority 
of a kernel thread is the average value of the priorities of Ri 
multiplied by wi, the weight values of ki. Since the average 
priority reflects the priorities of all real-time tasks associated 
with the kernel threads and the weight value reflects each 
kernel thread's own characteristics, the weighted average PIP 
can make up for the weak point of PIP. This priority is bounded 
on the maximum priority of Ri, not to disturb higher priority 
real-time tasks. 

1. IRQ thread and ksoftirqd 

To apply the weighted average PIP to an IRQ thread and 
ksoftirqd, the set of real-time tasks related to the two kernel 

threads, Rirq, is required. A real-time task has the relation since it 
requests an I/O job until the request is fulfilled by the IRQ 
thread and ksoftirqd. Whenever a relation is created or 
terminated, the priorities of the two kernel threads are 
recalculated using (2). 

2. pdflush 

A real-time task is maintained in Rpdflush during which the 
dirty pages written by the real-time task exist in the page cache. 
In other words, the relation is started when the real-time task 
writes to a file yielding dirty pages, and is terminated when the 
dirty pages are written back to the disks.  

To apply the relative importance of each real-time task to 
computation of the average priority, the number of files or inodes 
that the real-time task makes dirty is taken into consideration. For 
example, if a real-time task opens and writes to three different 
files, then the task is inserted to Rpdflush three times. When the dirty 
pages in one of the three files are written back, one element of the 
task is removed from Rpdflush. As a result, the priority of pdflush 
becomes higher when the number of files written by higher 
priority tasks increases, while the priority becomes lower when 
the number of files written by lower priority tasks increases. This 
mechanism is efficient because the dirty pages are managed in the 
inode unit and are written back in the inode unit as well.  

3. kswapd 

In the case of kswapd, real-time tasks whose pages are in the 
LRU cache are the elements of Rkswapd. However, it is very 
complex to maintain the set Rkswapd because the number of 
pages in the LRU cache is in the hundreds of thousands and the 
pages can be shared by multiple tasks of different priorities. To 
simplify this problem, we assume that each real-time task has 
the same number of pages in the LRU cache.  

In addition to wkswapd and the average priority, the ratio of 
LRU cache pages used by all real-time tasks, rt_page_ratio, is 
used to calculate the priority of kswapd. The average priority is 
multiplied by rt_page_ratio to increase and decrease the 
priority according to the value of rt_page_ratio: 
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This prohibits increasing the priority of kswapd when real-time 
tasks use a few memory pages. 

4. Worker Kernel Threads 

The set of real-time tasks related to a worker kernel thread is 
denoted by Rworker. The relation begins when the real-time tasks 
insert a work structure to the work queue, and the relation ends 
when handling of the work structure is completed. Thus, 
whenever a new work structure is inserted or its handling is 
completed, the priority of the worker kernel thread is recalculated. 

V. Experimental Evaluation 

1. Implementation in Linux 2.6 

Whenever a change occurs in Ri, a set of real-time tasks 
related to a kernel thread ki, the priority of ki is recalculated 
using (2). To conduct this recalculation, some information is 
maintained for each kernel thread, such as the default priority 
of ki, Ri, current average and maximum priority of Ri, and the 
number of real-time tasks in Ri. Thus we add this information 
as member variables in TCB, which is defined as a structure 
task_struct in Linux. In the following subsections, we explain 
how these new variables are maintained in each kernel thread. 

However, managing the set Ri is a complex routine, as Ri is 
needed to recalculate the maximum priority of Ri whenever a 
real-time task is added to or removed from it. In contrast, it is 
not required when obtaining the average priority of Ri. The 
average priority can be calculated from the previous average 
priority, the number of tasks in Ri, and the priority of the real-
time tasks newly added to or removed from Ri. If wi is less than 1, 
then the weighted average priority is always less than the 
maximum priority of Ri. Thus, in this case, it is not required to 
manage Ri. Among the kernel threads we have mentioned, 
pdflush, kswapd, and worker kernel threads belong to this case. 

We implemented our new kernel thread scheduling 
algorithm on Linux 2.6.15 with Ingo Molnar's real-time 
preemption patch. 

A. IRQ Thread and ksoftirqd 

In subsection IV.1, we explained that a real-time task has the 
relation with Rirq since it requests an I/O job from external devices 
until the I/O job is completed by IRQ thread and ksoftirqd.  

Thus, we add the real-time task to Rirq right before this task adds 
the I/O job to the I/O request queue and is blocked, and we remove 
it right after the I/O job is finished and the task is woken up. 

B. pdflush 

To support the dynamic scheduling of pdflush, a few 

variables are added to the inode structure, which have the 
number of related real-time tasks and their average priority. 
These are required to know the priorities of real-time tasks 
accessing each file. 

When real-time tasks invoke a write system call to a file and 
pages of the file become dirty, the variables in the inode 
structure are updated and the priority of pdflush is recalculated 
based on the updated variables. If all dirty pages of the inode 
are written back to the file, then the priority of pdflush is also 
recalculated with the variables of the inode structure. 

C. kswapd 

As mentioned in subsection IV.3, to calculate the priority of 
kswapd, rt_page_ratio as well as the average priority of the 
real-time tasks are needed. To obtain rt_page_ratio, each page 
descriptor has the information of which kinds of tasks are using 
the corresponding page.  

To record the information without additional member 
variables, we use a redundant bit of the flags member variable 
of the page descriptor. 

D. Worker Kernel Threads 

A member variable is added to the work structure, which has 
the priority of a real-time task that inserts the work structure 
into the work queue.  

When work structures are inserted into work queues, the 
priority of the real-time task is assigned to the newly added 
variable and the priority of the corresponding worker kernel 
thread is recalculated. The priority is also recalculated when a 
work structure is handled completely by the worker kernel 
thread. 

2. Performance Evaluation 

We compared the performance of our implementation to that 
of Linux 2.6.15 which was applied with the Ingo Molnar's real-
time preemption patch of version rt16 in several experiments. 
We used the Ubuntu 5.10 Linux distribution with NPTL 2.3.5. 
The run level was set to 3, where X server is not run 
automatically. 

The experiments were performed on a machine with a 2 
GHz Intel Pentium IV CPU without supporting the hyper 
threading technique and 256 MB DDR SDRAM. Also, an 
IBM IC35L080AVVA07-0 IDE disk was used. 

To show the problems exposed in section III and the 
performance improvement made by the proposed algorithm, 
the experiments were conducted for kernel threads of three 
classifications such as IRQ thread, ksoftirqd, pdflush, kswapd 
and kthread worker kernel thread. The weight values were 1.2 
in the case of IRQ thread and 0.8 otherwise. These were 
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selected experimentally by trial-and-error method. 

A. IRQ Thread and ksoftirqd 

To show the problem of static priorities of IRQ thread and 
ksoftirqd and how they are solved in our implementation, we 
measured the response time of a real-time task writing data to a 
file when another real-time task of lower priority reads data 
from another file. The first task writes 16 bytes in each period 
of 250 μs, while the second task reads 100 kB continuously. 
The two real-time tasks are related with the same IRQ thread 
and ksoftirqd because they use the same disk, and the first 
task’s code snippet is presented in Fig. 2. 

As shown in Figs. 3 and 4, the response time on the existing 
Linux with real-time preemption patch is larger than that on 
our implementation due to the problem explained in subsection 
III .1. As a result, it is proven that the problem can be solved by 
the weighted average PIP algorithm. 

Figure 5 shows the results of the same experiment performed 
on Linux 2.6.18 with real-time preemption patch. This result 
demonstrates that the problem also occurs with the real-time 
preemption patch, which is enhanced with several new features 

sleep_usec = 0; tsc1 = gettsc(); 

for (i = 0; i < sampling; i++) { 

tsc1 += (sleep_usec * CPU_CLOCK); 

memcpy(buf2, buf1, MEMCPY_LEN * 1024); 

write(fd, buf2, WRITE_LEN); 

tsc2 = gettsc(); 

sleep_usec =  

WRITE_PERIOD - (tsc2 - tsc1) / CPU_CLOCK; 

tsc1 = gettsc(); 

if (sleep_usec > 0) usleep(sleep_usec); 

else sleep_usec = 0; 

} 

 

Fig. 2. Essential code snippet of the disk write task used for
experiments with IRQ threads.  

 

Fig. 3. Response time of the disk write task on Linux with RT-
preempt patch (Linux 2.6.15). 
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such as a dynamic tick mechanism. 
To show the effect of changing the disk read tasks’ periods, 

we measured the response time of the disk write task, 
increasing the period from 0 to 200 ms. 

Figure 6 shows the results. On Linux with a real-time 
preemption patch, the response time becomes longer as the 
period is increased. This is because the longer period means the 
more infrequent occurrence of interrupts, and disturbance from 
the interrupts to higher priority tasks also decreases. However, 
on Linux with dynamic kernel thread scheduling, changing the 
period does not affect the response time much. In Fig. 6, only 

 

Fig. 4. Response time of the disk write task on Linux with RT-
preempt patch and weighted average PIP (Linux 2.6.15).
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Fig. 5. Response time of the disk write task on Linux with RT-
preempt patch (Linux 2.6.18). 
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Fig. 6. Cumulative rate of response time of the disk write task on 
Linux with RT-preempt patch (Linux 2.6.15). 
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Fig. 7. Essential code snippet of the disk write task used for
experiments with pdflush. 

sleep_usec = 0; tsc1 = gettsc(); 

for (i = 0; i < sampling; i++) { 

tsc1 += (sleep_usec * CPU_CLOCK); 

memcpy(buf2, buf1, MEMCPY_LEN * 1024); 

write(fd, buf2, WRITE_LEN) 

tsc2 = gettsc(); 

sleep_usec =  

WRITE_PERIOD - (tsc2 - tsc1) / CPU_CLOCK; 

tsc1 = gettsc(); 

if (sleep_usec > 0) usleep(sleep_usec); 

else sleep_usec = 0; 

} 

 
 

 

Fig. 8. Architecture of the FPGA module. 
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Fig. 9. Response time of the disk write task executed with a CPU-
bound task on Linux with RT-preempt patch and weighted
average PIP. 
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one case of continuous read is shown. 

By comparing the results of the two kernels, the result of the 
new kernel crosses the results of three short periods on existing 
Linux, such as continuous read, 10 ms, and 25 ms. This means 
that the dynamic kernel thread mechanism involves additional 
overhead, but it stabilized the overall response time in the three 
cases. In the cases of periods of 50 ms and 100 ms, interrupt 
frequency becomes low and the disturbance to the disk write  

 

Fig. 10. Dirty ratio with and without applying weighted average 
PIP. 
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Fig. 11. Cumulative rate of response time of the disk write task 
on Linux with RT-preempt patch (Linux 2.6.15). 
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task weakens. Thus, in these cases, dynamic kernel thread 
scheduling has few benefits. 

B. pdflush 

To prove the problem caused by starvation of pdflush and 
whether the proposed algorithm eliminates it to determine, we 
measure the response time of a real-time task writing of 800 kB 
to a file every 200 ms while a CPU-bound real-time task runs 
with lower priority. In this situation, the lower priority cpu-
bound task disturbs the execution of pdflush. In addition to the 
response time, the dirty page ratio of the system is also 
measured. The rough source code of the disk write task is 
shown in Fig. 7. 

Figures 8 and 9 show the response times of the two cases, 
respectively, and Fig. 10 shows how their dirty ratios change. 
The response time in the case of existing Linux with a real-time 
preemption patch increases from the time when the dirty ratio 
reaches the threshold and the real-time task writes back dirty 
pages by itself. In contrast, in the case of our implementation, 
the response time is stable since the dirty ratio is controlled 
below the threshold. 

Figure 11 shows how changing periods of CPU-bound tasks 
affects the response time of the disk write task. Increasing the  
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sleep_usec = 0; tsc1 = gettsc(); 

for (i = 0; i < sampling; i++) { 

tsc1 += (sleep_usec * CPU_CLOCK); 

memcpy(buf2, buf1, MEMCPY_LEN * 1024); 

offset = rand() % READ_FILE_SIZE; 

lseek(fd, offset, SEEK_SET); 

read(fd, buf, READ_LEN); 

tsc2 = gettsc(); 

sleep_usec =  

WRITE_PERIOD - (tsc2 - tsc1) / CPU_CLOCK; 

tsc1 = gettsc(); 

if (sleep_usec > 0) usleep(sleep_usec); 

else sleep_usec = 0; 

} 

 

Fig. 12. Essential code snippet of the disk read task used for
experiments about kswapd.  

 
 

Fig. 13. Response time of disk read task executed with a CPU-
bound task on Linux with RT-preempt patch. 
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Fig. 14. Response time of disk read task executed with a CPU-
bound task on Linux with RT-preempt patch and
weighted average PIP. 

0

50

100

150

200

250

300

350

1 388 775 1162 1549 1936 2323 2710 3097 3484 3871 4258 4645
No. of reads 

R
es

po
ns

e 
tim

e 
(m

s)
 

 
 
period from 400 μs to 1 ms, we performed the same 
experiments. On the existing Linux, the responsibility of the 
disk write task improves when the period is increased and the 
results of the periods of 800 μs and 1000 μs are very similar 
to the result on the new Linux. This is because the longer 
period of CPU-bound tasks means less CPU consumption and 
less interruption to pdflush kernel threads. 

Fig. 15. The number of free pages with and without applying 
weighted average PIP to kswapd. 
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Fig. 16. Cumulative rate of response time of the disk read task on 
Linux with RT-preempt patch (Linux 2.6.15). 
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In the case of dynamic kernel thread scheduling, there is little 
change of response time when the period is increased. The 
reason is that the priority of pdflush becomes higher than the 
CPU-bound tasks and there is no disturbance from CPU-bound 
tasks. Only the result of the period of 400 μs on the new Linux 
is presented. 

C. kswapd 

Similar to the case of pdflush, we measured the response 
time of a real-time task accessing a file to read 32 kB of data 
every 20 ms. Along with the real-time task, multiple CPU-
bound real-time tasks were executed with lower bound 
priorities to starve kswapd, and the number of free pages was 
also measured to monitor the behavior of kswapd. The snippet 
codes of the disk read task are shown in Fig. 12. 

Figures 13 and 14 show the response times of the disk read 
task on the current implementation and on our 
implementation. Occasionally, some peaks are shown in  
Fig. 13, while Fig. 14 shows stable results. We confirmed that 
when a peak occurred, the real-time task reclaimed the used 
pages instead of kswapd.  

This can also be inferred from Fig. 15. In the beginning of 
this figure, the numbers of free pages of both cases decrease at 
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the same rate. However, when reaching the points waking up 
kswapd, the number of free pages in our implementation stays 
larger than that of the current Linux implementation. This 
difference is caused by whether kswapd is scheduled 
adequately or not. 

Figure 16 shows the change of the disk read tasks’ 
responsibilities according to the read data size. For all the six 
cases of the two types of Linux kernel and three read data sizes, 
the results look similar. This is because the peak occurs on the 
existing Linux very infrequently as shown in Fig. 12. In fact, 
the peaks occurred on Linux with a real-time preemption patch 
for all read data sizes. 

D. Worker Kernel Threads 

Among the various kernel threads, the experimental target is 
kthread. As mentioned in subsection III.3, kthread is used to 
create a new pdflush. To show the problem introduced when 
kthread suffers starvation and creation of a new pdflush is 
delayed, we use the same experimental scenario of subsection 
V.2.B except that the new pdflush kernel threads are 
occasionally created by force. 

In Figs. 17 and 18, the response times of the two cases are 
shown respectively, and Fig. 19 shows the change of their dirty  
 

 

Fig. 17. Response time of the disk write task executed with
kthread on Linux with RT-preempt patch. 
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Fig. 18. Response time of the disk write task executed with
kthread on Linux with RT-preempt patch and weighted
average PIP. 
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Fig. 19. Dirty ratio with and without applying weighted average 
PIP to kthread worker kernel thread. 
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ratios. In the case of the existing Linux, the dirty ratio and the 
response time increase because the kthread is not scheduled for 
a long time by the CPU-bound tasks and the corresponding 
pdflush waits idly until kthread completes the creation of the 
new pdflush. However, in our implementation, the response 
time and dirty ratio are stable because the priority of kthread 
becomes higher. 

E. Lmbench  

The following tables show the results of the lmbench 
benchmark tool [15] performed on Linux 2.6.15 with real-time 
preemption patch and Linux 2.6.15 with a real-time preemption 
patch and dynamic kernel thread scheduling mechanism.  

Lmbench measures the latencies and bandwidths of the 
target system. Tables 2 to 6 show the latencies of system calls, 
signal handling, process creation, context switching, file 
creation and deletion, local communication, and memory read. 
Table 7 presents the bandwidth of cached file read, memory 
read and write, and local communications. 

As shown in the tables, the system latencies and bandwidths 
of the two kernels do not show large differences. Consequently, 
the dynamic kernel thread scheduling mechanism does not  

 

Table 2. Latencies for processor/process activities. 
(μs)

 
null 
call

null 
I/O

stat open 
clos

selct 
TCP 

sig 
inst 

sig 
hndl 

fork 
proc

exec 
proc

sh 
proc

rt 0.22 0.44 2.81 4.23 21 0.91 3.17 142 624 7996

dkts 0.22 0.44 2.82 4.24 21 0.91 3.19 148 627 7964

Table 3. Latencies for context switches . 
(μs)

 2p/0k 2p/16k 2p/64k 8p/16k 8p/64k 16p/16k
rt 2.38 3.58 6.66 4.43 32.3 9.74 

dkts 2.39 3.55 6.65 4.43 31.9 8.84 
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Table 4. Latencies for file accesses and VM. 
(μs)

 
0k file 
create 

0k file 
delete 

10k file 
create 

10k file 
delete 

mmap 
latency 

prot 
fault 

page 
fault 

rt 28.9 12.4 85.4 31.2 980.0 1.312 2.0 

dkts 29.1 12.4 90.8 31.2 983.0 1.309 2.0 

Table 5. Latencies for local communications. 
(μs)

 2p/0k pipe AF UNIX UDP TCP TCP conn

rt 2.380 7.674 14.0 20.5 21.8 77.4 

dkts 2.390 7.715 14.0 20.3 21.7 77.1 

Table 6. Memory latencies. 
(ns)

 L1 cache L2 cache Main mem 
rt 0.999 9.215 116.0 

dkts 0.999 9.222 116.0 

Table 7. Bandwidths for local communications. 
(MB/s)

 pipe 
AF 

UNIX TCP 
file 

reread 
mmap 
reread

bcopy 
(libc) 

bcopy 
(hand) 

mem 
read

mem 
write

rt 1448 1665 465 1313 1666.6 426.5 443.5 1658 662.4

dkts 1448 1683 478 1306 1661.9 424.1 443.5 1660 650.4

  
 
make an impact on the overall performance in general cases 
except those of the mentioned workloads. 

VI. Conclusion 

In this paper, we classified the kernel threads into three 
groups based on how they are associated with real-time tasks 
and showed how they affect real-time tasks with some 
examples of each kernel thread classification. Based on this 
information, we proposed a new scheduling algorithm for all 
kernel threads using a weighted average PIP mechanism. The 
proposed method dynamically adjusts the priorities of kernel 
threads by monitoring the activities of related real-time tasks. 
The priority computation is based on two factors: the average 
priority of real-time tasks related to the kernel thread and the 
weight value of each kernel thread representing its own 
characteristics. 

We demonstrated by experiment that, in the case of five 
kernel threads, IRQ thread, ksoftirqd, pdflush, kswapd, and 
kthread, the response time of real-time tasks was greatly 
reduced when compared to the current Linux system. 
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