
ETRI Journal, Volume 32, Number 1, February 2010 © 2010 Young-Sik Kim et al. 93

A true random number generator (TRNG) is widely
used to generate secure random numbers for encryption,
digital signatures, authentication, and so on in crypto-
systems. Since TRNG is vulnerable to environmental
changes, a deterministic function is normally used to
reduce bias and improve the statistical properties of the
TRNG output. In this paper, we propose a linear corrector
for secure TRNG. The performance of a linear corrector is
bounded by the minimum distance of the corresponding
linear error correcting code. However, we show that it is
possible to construct a linear corrector overcoming the
minimum distance limitation. The proposed linear
corrector shows better performance in terms of removing
bias in that it can enlarge the acceptable bias range of the
raw TRNG output. Moreover, it is possible to efficiently
implement this linear corrector using only XOR gates,
which must have a suitable hardware size for embedded
security systems.

Keywords: AIS.31 standard, key generation, nonce,
post-processing, statistical tests, Shannon entropy, true
random number generator (TRNG).

Manuscript received Mar. 1, 2009; revised July 13, 2009; accepted Aug. 17, 2009.
This work was supported by Dongguk University.
Young-Sik Kim (phone: + 82 16 251 2418, email: mypurist@gmail.com) is with the

Department of System LSI, Samsung Electronics, Co., Ltd., Rep. of Korea.
Ji-Woong Jang (corresponding author, phone: +1 858 761 7275, email:

stasera.jang@gmail.com) is with the Department of Electrical and Computer Engineering,
University California San Diego, San Diego, California, USA.

Dae-Woon Lim (email: daewoonlim@gmail.com) is with the Department of Information
and Communication Engineering, Dongguk University, Seoul, Rep. of Korea.

doi:10.4218/etrij.10.0109.0141

I. Introduction

The security of most crypto-systems is strongly dependent
on the unpredictability and irreproducibility of the digital secret
key used. Therefore, most standards require the use of a
cryptographically secure random number generator (RNG), to
produce the digital key stream [1]. RNGs can be classified into
two classes: pseudo-random number generators (PRNGs) and
true random number generators (TRNGs). While PRNGs use
various mathematical algorithms to generate random numbers
[2]-[4], TRNGs use various physical noise sources [5]-[9];
therefore, TRNG is also called a physical random number
generator. Note that the output of various PRNGs can be
predicted by using previous output, and can be reproduced by
using the same initial value. On the other hand, it is not
possible to algorithmically predict and reproduce the TRNG
output. Therefore, many crypto-systems, such as smart cards
[10], [11], select a TRNG as their random number generator or
a random seed generator for a PRNG.

However, since a TRNG is based on a physical random
source, it can be influenced by environmental changes, such as
the temperature, electromagnetic field, and so on. Moreover,
the statistical quality of the random output can worsen as time
advances due to aging. Thus, various biases are commonly
expected in TRNG output, and these can be exploited to attack
the system by statistical estimation of the next TRNG output
bit. In that case, the TRNG output can fail a series of statistical
tests [1], [12]-[14] which are required for secure operation of a
crypto-system.

Therefore, TRNG should be used in combination with

Linear Corrector Overcoming Minimum
Distance Limitation for Secure TRNG from

(17, 9, 5) Quadratic Residue Code

 Young-Sik Kim, Ji-Woong Jang, and Dae-Woon Lim

94 Young-Sik Kim et al. ETRI Journal, Volume 32, Number 1, February 2010

complementary systems such as an online test [1], [14], [15], to
check the quality of the TRNG output in practice or post-
processing [6], [7], [16]-[21] to improve the statistical quality
of the TRNG output. Because hardware and software resources
are restricted in most applications, the cost of the
complementary TRNG systems should be minimized.

In [21], Dichtl showed that the bijective post-processing
functions proposed by Markovski and others [20] are not
sufficient for cryptographic applications. Instead, he proposed
new post-processing methods which were improved by a
heuristic approach. Recently, Lacharme [16] reinterpreted
Dichtl’s post-processing methods by using a linear code [22].
By using the generator matrix of a linear code, it is possible to
obtain various post-processing functions which have
comparable performance to Dichtl’s methods. Lacharme
expected that a post-processing function generated from a
linear code would be limited by the minimum distance of the
linear code. Therefore, he focused on non-linear functions to
further improve the performance of post-processing. As a result,
he discovered another non-linear post-processing method
which has better performance and is similar to Dichtl’s
heuristic corrector. Although Lacharme’s non-linear corrector is
easier to implement than Dichtl’s heuristic one, it is still more
complex to implement than the linear corrector.

In this paper, we show that it is possible to construct linear
correctors that overcome the minimum distance limitation. As an
example, a binary (17, 9, 5) quadratic residue (QR) code [22]
which is a cyclic code (also a linear code) is used to construct a
linear corrector that achieves better performance than
Lacharme’s non-linear corrector and Dichtl’s heuristic corrector.
The compression rate of the proposed corrector from the (17, 9,
5) QR code is 0.53 because the input size is 17 bits and the
output size is 9 bits. We analyze and compare the performance of
the proposed correctors with previous ones. Because the
proposed correctors are based on a linear code, it is possible to
implement them simply by using a series of XOR gates. The
proposed corrector from the (17, 9, 5) QR code with 2 iterations
can be implemented by using a hardware area smaller than 500
NAND gates, which is a small enough hardware size to be
suitable for many types of embedded crypto-systems.

The remainder of this paper is organized as follows. In
section II, previous post-processing methods are briefly
reviewed. In section III, a criterion to construct a good corrector
is presented using an information theoretic analysis, and the
new linear corrector is presented using a cyclic code, namely,
QR code. The performance of the proposed corrector is
compared with previous correctors in section IV. Then, the
possible hardware architecture of the proposed method is
discussed and estimated in section V. Finally, concluding
remarks are given in section VI.

II. Post-processing of TRNG

1. Classification of Post-processing Method

In this paper, we assume that the random numbers from a
given random source are statistically independent. The bias of
the random number is defined as

1 (Pr(0) Pr(1)).
2 i ie x x= = − =

We also assume that the random source is stationary. That is,
the bias does not change as time advances. Because the
random numbers are statistically independent, the bias of a
linear combination of random numbers can be represented by
using the bias e. In that case, the following definition [16] is
useful for estimating the performance of a corrector.

Definition 1. Let P be a polynomial of degree d, defined by

0

() .
d

i
i

i

P x a x
=

= ∑

The valuation of P is the minimal i > 0 such that 0.ia ≠

Post-processing methods of TRNG can be classified into two
groups according to the required input bits. The first one
improves the TRNG output for a fixed length of input, and the
other produces perfectly unbiased TRNG output for an infinite
length of input. For the latter group, it is sometimes necessary
to wait until the required amount of output is collected. The
most famous method in this class is the von Neumann
corrector [17]. However, because there is usually a time
limitation in an actual system, a time-out violation occurs and
the operation may be stopped if the response for a random
number request is not generated within a limited time. For this
reason, the latter group is not suitable for most systems.

Conversely, methods in the former group generate a k-bit
output using an n-bit input, where .n k≥ In that case, a
corrector can be considered as a deterministic function. Since it
is information theoretically impossible to increase the entropy
per se of a given sequence by using deterministic processing,
we focus on increasing the entropy per bit. Note that if the
corresponding function is bijective, then it is impossible to
increase the entropy per bit. Therefore, to obtain the desired
unbiased output, the input size must be greater than the output
size.

2. Bounded Performance with Fixed Length of Input

One of the widely used correctors with a fixed length input is
the XOR corrector, given as

yi = x2i + x2i+1 mod 2.

Because this corrector produces one output bit by using two

ETRI Journal, Volume 32, Number 1, February 2010 Young-Sik Kim et al. 95

input bits, the compression rate is 0.5. Dichtl [21] proposed
new linear correctors, namely, the D1, D2, and D3

1) correctors.
Let X1 and X2 be two input bytes. Let + be bit-wise XOR,

and let RL(X, i) be i-bit cyclic rotation. Then, D1, D2, and D3
correctors can be represented as in [16] as

1 1 2 1 1 2

2 1 2 1 1 2 1

3 1 2 2 1 2 1

(,) (,1) ,
(,) (,) (, 2),
(,) (,) (, 4).

D X X X RL X X
D X X H X X RL X
D X X H X X RL X

= + +
= +
= +

The valuations of the bias terms of D1, D2, and D3 are 3, 4,
and 5, respectively. Lacharme analyzed these functions using a
linear code. In the next section, we examine the details.

3. Perfect Performance with Infinite Length of Input

The von Neumann corrector can generate unbiased output if
the raw random numbers are generated from an independent
identically distributed (i.i.d.) random source. In the von
Neumann corrector, a pair of inputs, 01 or 10, produces the
output 0 and 1. Otherwise, there is no output and the corrector
tests the next pair of inputs. Since the probabilities of pairs 01

and 10 are 1 1
2 2

e e⎛ ⎞⎛ ⎞− +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

, the von Neumann corrector

generates an unbiased output for the case of an i.i.d. random
source.

Suppose that e is in the range [1/ 2,1/ 2].− Denote e as

1 .
2

ε− Then,
2

2 21 1 1 .
4 4 2

e ε ε ε⎛ ⎞− = − − = −⎜ ⎟
⎝ ⎠

 If 0,ε →

then the probability of 01 or 10 in the raw inputs approaches
zero. To obtain a k-bit post-processed output, we need a / 2k ε
bit raw input. That is, a large input size is needed to produce an
unbiased output for a small .ε At best, the probability of
producing output is 1/4; thus, the maximum compression rate
is 0.25. Moreover, if the assumption of statistical independence
does not hold, the von Neumann corrector can no longer
ensure an unbiased output.

III. Linear Corrector from Linear Code

1. Performance Estimation of Individual Output Bits

Let C be a linear code. For , ,a b C∈ a+b is also a
codeword in C. An [n, k] linear code is constructed from a set
of k linearly independent codewords with length n. It can be
represented by using a n×k generating matrix G as

mG = c,

1) Actually, Dichtl proposed the H, H2, and H3 correctors [21]. However, we use the
notation H to denote the Shannon entropy. In order to avoid confusion, the H, H2, and H3
correctors are denoted using the D1, D2, and D3 correctors, respectively.

where m is a k-bit message, and c is the corresponding
codeword.

In Lacharme’s analysis, Dichtl’s methods can be interpreted
as a generator matrix of linear code. Let x be a raw random
input from TRNG, and let y be a post-processed random output.
Then, Dichtl’s D1 corrector can be represented by using the
generator matrix as

1

0000000100000011
0000001000000110

.

1000000010000001

DG

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

In a linear code, except for some special code such as
simplex code with equidistance property, many codewords
have a larger Hamming weight than the minimum distance of
the code. Moreover, since a generator matrix can be generated
using any k linearly independent codewords in the code, it is
possible to construct a generator matrix using the codewords
with a larger Hamming weight than the minimum distance.

In [16], Lacharme derived the following result to obtain the
representation of the bias for some Boolean functions. Define
the linear combination of a Boolean function using non-zero
k-tuple vector u as

1
() () ().

m

u i i
i

x u f x u f xϕ
=

= = ⋅∑

Then, the bias Δu can be defined as

1 (Pr(() 1) Pr(() 0)).
2u u ux xϕ ϕΔ = = − =

For a non-zero linear combination (),u xϕ the bias is
dependent on the input bias e as in the theorem 1 [16].

Theorem 1. Let f be a mapping from n-tuple binary vector to
k-tuple binary vector, and let v be a k-tuple binary vector
obtained by f. Let e be the input bit bias. Then, the bias

()u eΔ of v is given as

2

() 1 ()
1

1 ˆ() (2) (1) (),
2 n

w v w v
u un

v F

e e vϕ+
+

∈

Δ = −∑

where w(v) is the Hamming weight of vector v.

Corollary 1. Let e be the bias of X. The bias of linear
Boolean function f(x)=a·x is given as

()
1

1() (2) .
2

w ae eΔ = − −

Proof. For u=1, since 1() ,x a xϕ = ⋅ the Walsh transform
1̂()vϕ of 1()xϕ can be derived as

2

()
1

2 , for ,ˆ () (1)
0, for .n

n
a v x

x F

a v
v

a v
ϕ + ⋅

∈

⎧ = −⎪= − = ⎨
≠ −⎪⎩

∑

96 Young-Sik Kim et al. ETRI Journal, Volume 32, Number 1, February 2010

Thus, from theorem 1, the bias Δ1(e) of the linear Boolean
function is given as

() 1 ()
1 1

() 1 () 1 ()

2() (2) (1)
2
2 (1) .

n
w a w a

n

w a w a w a

e e

e

+
+

− +

Δ = −

= −
 □

Because each post-processed output bit is generated by a
linear combination of raw TRNG output, the probabilities of 0
and 1 can be directly determined by using the Hamming
weight w(a) of the linear combination function. Therefore,
magnitudes of bias of Dichtl’s correctors, D1, D2, and D3 are
given as 22e3, 23e4, and 24 e5.

The next theorem shows that the entropy of i.i.d. random
variable X is always less than or equal to that of Y, which is a
linear combination of X’s.

Theorem 2. Let X be an i.i.d. random variable, and let Y be a
linear combination of X’s. Then, we have H(Y) ≥ H(X).

Proof. By the definition of Shannon entropy H(X) of X, we
have

2 2

2

2 2 2

4
2

3 3

2 4 6

1 1 1 1() log log
2 2 2 2

1 1 4log [log (1 2) log (1 2)]
2 4

1 161 4
2ln 2 2

8 82 2
ln 2 3 3

2 4 321 .
ln 2 3ln 2 15ln 2

H X e e e e

e e e e

ee

e e ee e

e e e

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞−
= − − + − −⎜ ⎟

⎝ ⎠
⎛ ⎞

= + + +⎜ ⎟
⎝ ⎠

⎛ ⎞
+ − − + − − −⎜ ⎟

⎝ ⎠

= − − − −

In the third equality, the Taylor series of ln(1)x− − =
2 3

2 3
x xx + + + is used.

From corollary 1, the bias of Y, a linear combination of X, is

given as ()
1

1() (2) .
2

w ae eΔ = − − Therefore, H(Y) is given as

2 4
2 () 2 2 ()1 12 () 4 () 2() 1 1 2 .

ln 2 3ln 2 ln 2
w a w ae e

H Y e−Δ Δ ⎡ ⎤= − − = − +⎣ ⎦

Because0 1/ 2,e≤ ≤ H(Y)>H(X) always holds. The equality
holds for the case of a=1, that is, Y=X. □

From theorem 2, we can straightforwardly obtain the
following corollary, which indicates that a higher Hamming
weight codeword has a higher entropy than a lower Hamming
weight codeword.

Fig. 1. Broadcasting model for two linear combinations of raw
random input.

Xc

Z1

Z2

Y1=Xc+Z1

Y2=Xc+Z2

Corollary 2. Let Yn be a linear combination of n X’s. Then, we
have H(Yn) ≥ H(Yn–1).

2. Mutual Information between Adjacent Output Bits

Multi-bit entropy is as interesting as single bit entropy. To
estimate the multi-bit entropy of the post-processed output, we
derive the upper bound of mutual information between two
output bits.

First, we will briefly introduce some basic definitions of
information theory (For more information, see [23]). The
entropy H(X) of a discrete random variable X is defined as

2() Pr() log Pr().
x X

H X x x
∈

= −∑

If (X, Y)~Pr(x, y), the conditional entropy H(Y|X) is defined
as

2() Pr(,) log Pr().
x X y Y

H Y X x y y x
∈ ∈

= −∑ ∑

The mutual information between two random variables X
and Y is defined as

2
Pr(,)(;) Pr(,) log

Pr() Pr()

() () () ().
x X y Y

x yI X Y x y
x y

H X H X Y H Y H Y X
∈ ∈

= −

= − = −

∑ ∑

Let Y1 and Y2 be two distinct linear combinations of w i.i.d.
random variable X’s. Among them, c X’s are common and
w–c X’s are distinct. To determine the mutual information
between Y1 and Y2, we adopt the broadcast channel model
shown in Fig. 1. In this model, two random variables, Y1 and Y2,
can be represented as two received signals:

Y1 = Xc + Z1,
Y2 = Xc + Z2.

In this representation, a linear combination of common X’s,
Xc, can be considered a transmitted message in the channel, and
linear combinations of distinct X’s, Z1 and Z2, are additive
noises for each receiver. Then, we can derive the relationship
between mutual information of random variables Xc, Y1, and Y2

ETRI Journal, Volume 32, Number 1, February 2010 Young-Sik Kim et al. 97

as in the following lemma.

Lemma 1. The mutual information for the broadcasting
model in Fig. 1 satisfies the following inequality:

1 2 1 2(;) (;) (;).c cI X Y I X Y I Y Y+ ≥

Proof. By the definition of the mutual information, we have
the following equalities:

1 2 1 1 2

1 2 1 2 1 2

1 1 1

2 2 2

(;) () (),

(;) () () (,),

(;) () (),

(;) () ().

c c c c

c c

c c

I Y Y H Y H Y Y

I Y Y X H Y X H Y X H Y Y X

I X Y H Y H Y X

I X Y H Y H Y X

= −

= + −

= −

= −

By adding the last two equations, we have

1 2

1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2

(;) 1(;)
() () () ()

() () (,) (;)

() () (,) (;)

(;) (;).

c c

c c

c c

c

c

I X Y X Y
H Y H Y H Y X H Y X

H Y H Y H Y Y X I Y Y X

H Y H Y H Y Y I Y Y X

I Y Y I Y Y X

+

= + − −

= + − −

≥ + − −

= −

We also have

1 2 1 2 1 2(;) (;) (;).c c c c cI Y Y X I X Z X Z X I Z Z X= + + =

Because Z1, Z2, and Xc are pair-wisely independent, we have

1 2 1 2(;) (;) 0.cI Z Z X I Z Z= =

Thus, we can conclude that

1 2 1 2(;) (;) (;).c cI X Y I X Y I Y Y+ ≥ □

Now, it is possible to calculate the mutual information
I(Xc ;Y1) as in the following lemma.

Lemma 2. The mutual information I(Xc ; Yi) in Fig. 1 can be
determined as

1 1 1 1(;) (2) (2) ,
2 2 2 2

w w c
c iI X Y h e h e −⎛ ⎞ ⎛ ⎞= − − − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

where 2 2() log (1) log (1)h x x x x x= − − − − and i = 0 or 1.
Proof. By the properties of mutual information, we have

(;) () ()

() () () ().
c i i i c

i c i c i i c

I X Y H Y H Y X

H Y H X Z X H Y H Z X

= −

= − + = −

Because Zi and Xc are statistically independent, we have

(:) () ().c i i iI X Y H Y H Z= −

From corollary 1,
1 1Pr(1) (2)
2 2

w
iy e= = − − and 1 1Pr(1) (2) .

2 2
w c

iz e −= = − −

Therefore, we have

() (Pr(1))i iH Y h y= = and () (Pr(1)).i iH Z h z= =
Then, the statement is proven. □

From lemmas 1 and 2, we can easily obtain the theorem 3.

Theorem 3. The mutual information I(Y1;Y2) in Fig. 1 is
bounded by

1 2
1 1 1 1(;) 2 (2) 2 (2) .
2 2 2 2

w w cI Y Y h e h e −⎛ ⎞ ⎛ ⎞≤ − − − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

As seen in theorem 3, the larger c is compared with w, the
larger the mutual information I(Y1;Y2). The large mutual
information means that the common information between Y1
and Y2 is large, and the output bits have some dependency on
each other. Therefore, we can conclude that it is not desirable to
have many common components in two linear combinations.
On the other hand, to reduce the bias of a single bit, it is better
to choose codewords with the largest possible Hamming
weights. However, if we increase the Hamming weight of each
row in matrix G, then it is likely to share too many common
components between rows of the matrix. Therefore, there is a
tradeoff between Hamming weight and common components
in the linear combinations of output bits.

A linear code can provide a solution for that tradeoff since
the minimum distance of the linear code makes it possible to
separate each codeword by at least some specific distance.
Therefore, if we choose codewords in the linear code with
large Hamming weights, it is able to satisfy both contradictory
conditions. In the following subsection, we describe the
proposed method in detail.

3. Linear Corrector from Quadratic Residue Code

Since the QR code is a cyclic code [22], [24], the (17, 9, 5)
binary QR code can be generated using the following
generating polynomial:

g(x) = x8+x5+x4+x3+1.

The Hamming weight distribution of the (17, 9, 5) binary QR
code generated by g(x) is given in Table 1.

As seen in Table 1, even though the minimum distance of
(17, 9, 5) QR code is 5, there are many codewords which have

Table 1. Hamming weight distribution of (17, 9, 5) QR code.

Hamming weight 0 5 6 7 8

of codewords 1 34 68 68 85

Hamming weight 9 10 11 12 17

of codewords 85 68 68 34 1

98 Young-Sik Kim et al. ETRI Journal, Volume 32, Number 1, February 2010

larger Hamming weights than the minimum distance. In this
paper, we suggest a method to construct a post-processing
function using codewords in the code with large Hamming
weights, such as 9 and 12, for (17, 9, 5) QR code.

Because the quadratic residue code is a cyclic code, a
cyclically shifted version of a codeword is also a codeword.
Since the length of a codeword is 17, there are 17 codewords
which can be generated by cyclic shift of a codeword except
for all zero and all one codewords as in Table 1.

In Table 1, there are two types of codewords with Hamming
weight 12, and each type has 17 codewords which can be
generated by cyclic shifts. Then, we choose one of them and
construct a generating matrix using 9 codewords of a selected
type. For example,

12

11011000110111111
11101100011011111

.

01111111101100011

G

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

For comparison, we additionally construct the following two
correctors by using codewords with Hamming weights 5 and 9:

5

00000000100111001
10000000010011100

00111001000000001

G

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

and

9

11010100100010111
11101010010001011

.

00101111101010010

G

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

In the next section, we show that the proposed corrector with
Hamming weight 12 outperforms the other correctors. For
TRNG raw output x, post-processed output y is generated by
y = Gx.

IV. Simulation and Further Improvement

1. Performance Comparison with Previous Correctors

Various correctors, including the proposed method with
Hamming weight 12, were applied to correct biased random
sequences with the length of 140,000 bytes. In simulations, we
used the linear congruential generator with parameter (a, m) =
(16807, 2147483647) to produce random numbers with
defined bias.

As the first result, the 1-bit Shannon entropy of post-processed
random sequences is plotted in Fig. 2. In the simulation carried
out to obtain the results shown in Fig. 2, 999 random sequences

Fig. 2. Performance comparison with previous correctors.

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Probability of one

Sh
an

no
n

en
tro

py
 fo

r l
 b

it

Raw
XOR
D1
D2
D3
Proposed (Hamming weight = 9)
Proposed (Hamming weight = 12)

with the length of 140,000 bytes were generated. Each random
sequence has biases from 0.001 to 0.999 in terms of probability
of one, Pr(1). In the AIS.31 standard [1], the tolerable 1-bit bias
in TRNG output is given as a maximum of 0.0173, which can
be represented in terms of 1-bit Shannon entropy 0.9991. In
Fig. 2, the proposed corrector can be applied to the range
(0.122, 0.878), while the applicable range of the D3 corrector is
(0.242, 0.758).

In summary, the proposed linear corrector shows better
performance than any previous correctors. That is, the
proposed corrector can be applied to a wider range of biased
random sequences than others.

To obtain maximum performance, Dichtl proposed a
heuristic construction with valuation 6 of biases. However,
since implementation of Dichtl’s corrector is quite complex, the
lookup-table approach is the easiest way to implement it [21].
Although Lacharme used a non-linear corrector from
(16, 256, 6) Nordstrom-Robinson nonlinear code [22] with
valuation 6 of biases to decrease the difficulty of
implementation, it is still more complex than the linear
corrector. Also, he did not present an example to demonstrate a
nonlinear corrector. Note that, for (17, 9, 5) QR code, it is
possible to construct a linear corrector with valuation up to 12.
It achieves better performance than others, such as the XOR
corrector, D1, D2, and D3 by Dichtl. Therefore, the proposed
construction method for a linear corrector shows the best
performance for fixing random output from a TRNG, and it can
be implemented using simple architecture.

2. Entropy Test of AIS.31 Standard

To check multi-bit dependency, we apply an entropy test in
AIS.31 [1] for each corrector. The entropy test proposed by
Coron [25] is introduced as a method to estimate multi-bit

ETRI Journal, Volume 32, Number 1, February 2010 Young-Sik Kim et al. 99

Fig. 3. Results of entropy test (Coron test) in AIS.31 standard.

0

1

2

3

4

5

6

7

8

0.0 0.1 0.2 0.3 0.4 0.5

Probability of one

R
es

ul
ts

 o
f C

or
on

 te
st

Raw
XOR
D3(r=1)
Proposed (r=1)
8-bit entropy

entropy in AIS.31. Although the entropy test is applied to the
raw output of TRNG in AIS.31, it is applied to the post-
processed output to check the dependency between adjacent
output bits in this study. The 8-bit-based test is used as in
AIS.31, and the acceptable threshold is 7.976 in that case.
Since the threshold is changed according to the tolerable
probability of false alarm which is dependent on security levels
and applications, the specific value is not critical for the current
purpose of checking the dependency between post-processed
output bits.

Note that Coron test results are clearly different with 1-bit
Shannon entropy multiplied by 8 because the dependency is
not considered in 1-bit Shannon entropy. The test results are
shown in Fig. 3.

In Fig. 3, 1-bit Shannon entropy multiplied by 8 is also
presented for a reference. The apparent result for 1-bit Shannon
entropy seems like the best one. However, that result should
not be trusted as real entropy because the dependency is not
considered in 1-bit Shannon entropy.

In AIS.31, the tolerable range for the Coron test is almost
(0.086, 0.914) for the proposed corrector from a weight 12
codeword. For the D3 corrector, the corresponding range is
almost (0.286, 0.714). As a conclusion of the test, the proposed
corrector can be applied to a larger range of biases than the
other correctors.

3. Iterative Post-processing Scheme

To obtain further improvement of the random output, it is
possible to apply the post-processed random output to the
corrector iteratively [18]. For r iterations, the bias is reduced at
the cost of decreasing the compression rate (1/2)r. Although the
iterating method can be applied to every corrector, the adopted
corrector should be the best one to minimize the number of

Fig. 4. Performance improvement of iterative post-processing.
The proposed corrector is constructed from obtained with
Hamming weight 12.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2

Probability of one

Sh
an

no
n

en
tro

py
 fo

r 1
 b

it

D3_lteration 1
D3_lteration 2
D3_lteration 3
P_Iteration 1
P_Iteration 2
P_Iteration 3

iterations because of the exponentially decreasing compression
rate.

Figure 4 shows improved performance for both the D3
corrector and the proposed corrector with Hamming weight 12.
In the figure, D3_iteration i and P_iteration i mean that D3 and
the proposed corrector with Hamming weight 12 are iteratively
applied i times. Note that the performance of the proposed
corrector (r=1) is almost the same as the performance of D3
corrector (r=2). Even though the performance of the two
correctors is similar, the compression rate of the proposed
corrector is 0.53, while that of the D3 corrector with r=2 is 0.25.
This means that the proposed corrector has a throughput almost
twice that of the D3 corrector at the same level of performance.

V. Hardware Architecture for Proposed Correctors

The proposed corrector produces an improved 9-bit output
from a 17-bit raw TRNG output. If TRNG generates 1 byte of
output at a time, it is not difficult to adapt the input-output size
by introducing input-output buffers.

Figure 5 shows a component of the hardware architecture for
the proposed linear corrector using weight-12 codewords.
The single XOR array can generate a 1-bit output from a 17-bit
input, and this requires nine similar XOR arrays with distinct
input connections. Because there are many overlapped
components between rows of the generating matrix, it is
possible to share the 2-input XORs or 3-input XORs for
distinct output bits. This property enables us to optimize the
hardware architecture for the linear corrector. However, for a
conservative estimation, we assume that the 9-bit output is
produced by using the XOR arrays shown in Fig. 5.

In Fig. 5, there are four 3-input XORs and three 2-input

100 Young-Sik Kim et al. ETRI Journal, Volume 32, Number 1, February 2010

Fig. 5. Component of the proposed linear corrector (w=12).

1
2
3

4
5
6

7
8
9

10
11
12

XORs. To produce a 9-bit output, 36 3-input XORs and 27
2-input XORs are required. Normally, the XOR gate is larger
than other gates, such as NAND or NOR. Even though the
actual size is dependent on the hardware library and actual
silicon implementation, we use the heuristic that the sizes of the
2-input XOR and 3-input XOR gates are 2.5 and 4.5 times
bigger than those of the NAND gate, respectively.

Based on this assumption, the size of the proposed linear
corrector using codewords with Hamming weight 12 is
equivalent to that of 255 NAND gates. Therefore, the
conservative conclusion is that the actual size is always less
than 300 NAND gates.

Furthermore, it is possible to implement an iterative scheme
in hardware. For an iterative scheme, we need a 17 (2:1)
multiplexer to choose inputs between raw random data from
TRNG and post-processed data in the previous cycles. Because
the compression rate is equal to 0.53 in the 17-bit input and 9-
bit output architecture, the 34-bit raw random data must be
post-processed before iteration. Then, we finally obtain a 9-bit
output from a 34-bit random input, which means that the
compression rate is equal to 0.265. To store the 9-bit
intermediate data, 9-bit registers are required. Because the (2:1)
multiplexer and the 1-bit register require a silicon area
equivalent to 2.5 to 4 NAND gates and 6.5 to 7.5 NAND gates,
respectively, we need a maximum of 200 NAND gates for
implementation of the iterative scheme. Overall, a hardware
area equivalent to 500 NAND gates is enough to implement a
2-iteration linear corrector. This is an acceptable size for most
systems with strong hardware restrictions such as smart cards.

VI. Concluding Remarks

In this paper, we proposed a method of constructing a linear
corrector for TRNG output from a linear code. In our method,
we select the codeword in a cyclic code with the largest
Hamming weight, except for all-one codewords, and make a
generator matrix via the cyclic shift of the chosen codeword.
As a result, it is possible to construct a linear corrector which
overcomes the minimum distance bound, which is discussed in

previous research [16]. We showed that the performance of the
proposed corrector is better than that of previous ones, in that a
wider range of bias can be corrected by the proposed scheme.

In simulations of the 1-bit Shannon entropy and the 8-bit
entropy test (Coron test) as in the AIS.31 standards, the
proposed corrector outperformed other correctors. Moreover,
the iterative scheme can improve post-processing at the cost of
the compression rate. The proposed method is advantageous
depending on the compression rate or the number of iterations.

Finally, we discussed the possible hardware architecture of
the proposed scheme. Even in a conservative estimation, an
implementation of the proposed corrector would require a
small hardware size, which is suitable for embedded systems
with strong hardware size restrictions.

References

[1] W. Killmann and W. Schindler, “A Proposal for Functionality
Classes and Evaluation Methodology for True (Physical)
Random Number Generators,” AIS.31 Standard, 2001, URL:
http://www. bsi.bund.de/ zertifiz/zert/interpr/trngk31e.pdf

[2] J.-S. No and P.V. Kumar, “A New Family of Binary
Pseudorandom Sequences Having Optimal Periodic Correlation
Properties and Large Linear Span,” IEEE Trans. Inf. Theory, vol.
IT-35, no. 2, Mar. 1989, pp. 371-379.

[3] O. Farooq and S. Datta, “Signal-Dependent Chaotic-State-
Modulated Digital Secure Communication,” ETRI J., vol. 28, no.
2, Apr. 2006, pp. 250-252.

[4] Y.S. Kim et al., “New Constructions of p-ary Bent Sequences,”
IEICE Trans. Fundamentals, vol. E87-A no. 2, Feb. 2004, pp.
489-494.

[5] M. Bucci and R. Luzzi, “Design of Testable Random Bit
Generators,” CHES 2005, LNCS, vol. 3659, 2005, pp. 147-156.

[6] J.D. Golic, “New Methods for Digital Generation and
Postprocessing of Random Data,” IEEE Trans. Computers, vol.
55, no. 10, 2006, pp. 1217-1229.

[7] B. Sunar, W. Martin, and D. Stinson, “A Provably Secure True
Random Number Generator with Built-In Tolerance to Active
Attacks,” IEEE Trans. Computers, vol. 56, no. 1, 2007, pp. 109-
119.

[8] M. Dichtl and J. Golic, “High-Speed True Random Number
Generation with Logic Gates Only,” CHES 2007, LNCS, vol.
4727, 2007, pp. 45-62.

[9] I. Vasyltsov et al., “Fast Digital TRNG Based on Metastable Ring
Oscillator,” CHES 2008, LNCS, vol. 5154, 2008, pp. 164-180.

[10] E. Trichina et al., “Supplemental Cryptographic Hardware for
Smart Cards,” IEEE Micro., vol. 21, no. 6, 2001, pp. 26-35.

[11] W. Kim et al., “A Platform-Based SoC Design of a 32-Bit Smart
Card,” ETRI J., vol. 25, no. 6, Dec. 2003, pp. 510-516.

[12] FIPS PUB 140-1: Security Requirements for Cryptographic

ETRI Journal, Volume 32, Number 1, February 2010 Young-Sik Kim et al. 101

Modules, 1994.
[13] FIPS PUB 140-2: Security Requirements for Cryptographic

Modules, 2001.
[14] W. Schindler and W. Killmann, “Evaluation Criteria for True

(Physical) Random Number Generators Used in Cryptographic
Applications,” CHES 2002, LNCS, vol. 2523, 2003, pp. 431-449.

[15] Y.-S. Kim and I. Vasyltsov, “New Methods for Efficient Online
Test of TRNG,” Samsung Journal of Innovative Technology,
Communication & Network Technology, vol. 4, no. 1, Feb. 2008,
pp. 117-131.

[16] P. Lacharme, “Post-processing Functions for a Biased Physical
Random Number Generator,” FSE 2008, LNCS 5086, 2008, pp.
334-342.

[17] J. von Neumann, “Various Techniques for Use in Connection
with Random Digits,” Von Neumann’s Collected Works,
London: Pergamon, 1963, pp. 768-770.

[18] Y. Peres, “Iterating von Neumann’s Procedure for Extracting
Random Bits,” Annals of Statistics, vol. 20, no. 1, 1992, pp. 590-
597.

[19] A. Juels et al., “How to Turn Loaded Dice into Fair Coins,” IEEE
Trans. Inf. Theory, vol. 46, no. 3, 2000, pp. 911-921.

[20] S. Markovski, D. Gligoroski, and L. Kocarev, “Unbiased
Random Sequences from Quasigroup String Transformations,”
FSE 2005, LNCS, vol. 3557, 2005, pp. 163-180.

[21] M. Dichtl, “Bad and Good Ways of Post-processing Biased
Physical Random Numbers,” FSE 2007, LNCS 4593, 2007, pp.
137-152.

[22] F.J. Mac Williams and N.J.A Sloane, The Theory of Error
Correcting Codes, Amsterdam: North-Holland Pub., 1977.

[23] T.M. Cover and J.A. Thomas, Elements of Information Theory,
2nd ed., Hoboken, New Jersey: John Wiley and Sons, 2006.

[24] T.K. Truong, Y. Chang, and C.D. Lee, “The Weight Distributions
of Some Binary Quadratic Residue Codes,” IEEE Trans. Inf.
Theory, vol. 51, no. 5, May 2005, pp. 1776-1782.

[25] J.-S. Coron, “On the Security of Random Source,” PKC’99,
LNCS, vol. 1560, 1999, pp. 29-42.

Young-Sik Kim received the BS, MS, and
PhD degrees in electrical engineering and
computer science from Seoul National
University, Seoul, Korea, in 2001, 2003, and
2007, respectively. Since March 2007, he has
been a senior engineer with Samsung
Electronics, Co., Ltd., Korea. His research

interests include secure implementation of crypto systems, pseudo/true
random number generation, online tests/post-processing of TRNG,
security of wireless communications, combinatorics, sequences, and
information theory.

Ji-Woong Jang received the BS, MS, and PhD
degrees in electronic engineering and computer
science from Seoul National University, Seoul,
Korea, in 2000, 2002, and 2006, respectively.
He has been a senior engineer with Samsung
Electronics since 2006. His research interests
include pseudo-noise sequences, difference sets,

cryptography, error correcting codes, and wireless communication
systems.

Dae-Woon Lim received the BS and MS
degrees in electrical engineering from KAIST in
1994 and 1997, respectively. In 2006, he
received the PhD degree in electrical
engineering and computer science from Seoul
National University. From 1997 to 2002, he was
with LG Industrial Systems as a senior research

engineer, where he developed a recognition algorithm, a real-time
tracking algorithm, and an electric toll collection system. He is
currently a professor with the Department of Information and
Communication Engineering of Dongguk University, Seoul, Korea.
His research interests are in the areas of signal processing, wireless
communications, and channel coding.

	I. Introduction
	II. Post-processing of TRNG
	III. Linear Corrector from Linear Code
	IV. Simulation and Further Improvement
	V. Hardware Architecture for Proposed Correctors
	VI. Concluding Remarks
	References

