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A true random number generator (TRNG) is widely 
used to generate secure random numbers for encryption, 
digital signatures, authentication, and so on in crypto-
systems. Since TRNG is vulnerable to environmental 
changes, a deterministic function is normally used to 
reduce bias and improve the statistical properties of the 
TRNG output. In this paper, we propose a linear corrector 
for secure TRNG. The performance of a linear corrector is 
bounded by the minimum distance of the corresponding 
linear error correcting code. However, we show that it is 
possible to construct a linear corrector overcoming the 
minimum distance limitation. The proposed linear 
corrector shows better performance in terms of removing 
bias in that it can enlarge the acceptable bias range of the 
raw TRNG output. Moreover, it is possible to efficiently 
implement this linear corrector using only XOR gates, 
which must have a suitable hardware size for embedded 
security systems. 
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I. Introduction 

The security of most crypto-systems is strongly dependent 
on the unpredictability and irreproducibility of the digital secret 
key used. Therefore, most standards require the use of a 
cryptographically secure random number generator (RNG), to 
produce the digital key stream [1]. RNGs can be classified into 
two classes: pseudo-random number generators (PRNGs) and 
true random number generators (TRNGs). While PRNGs use 
various mathematical algorithms to generate random numbers 
[2]-[4], TRNGs use various physical noise sources [5]-[9]; 
therefore, TRNG is also called a physical random number 
generator. Note that the output of various PRNGs can be 
predicted by using previous output, and can be reproduced by 
using the same initial value. On the other hand, it is not 
possible to algorithmically predict and reproduce the TRNG 
output. Therefore, many crypto-systems, such as smart cards 
[10], [11], select a TRNG as their random number generator or 
a random seed generator for a PRNG. 

However, since a TRNG is based on a physical random 
source, it can be influenced by environmental changes, such as 
the temperature, electromagnetic field, and so on. Moreover, 
the statistical quality of the random output can worsen as time 
advances due to aging. Thus, various biases are commonly 
expected in TRNG output, and these can be exploited to attack 
the system by statistical estimation of the next TRNG output 
bit. In that case, the TRNG output can fail a series of statistical 
tests [1], [12]-[14] which are required for secure operation of a 
crypto-system. 

Therefore, TRNG should be used in combination with 
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complementary systems such as an online test [1], [14], [15], to 
check the quality of the TRNG output in practice or post-
processing [6], [7], [16]-[21] to improve the statistical quality 
of the TRNG output. Because hardware and software resources 
are restricted in most applications, the cost of the 
complementary TRNG systems should be minimized. 

In [21], Dichtl showed that the bijective post-processing 
functions proposed by Markovski and others [20] are not 
sufficient for cryptographic applications. Instead, he proposed 
new post-processing methods which were improved by a 
heuristic approach. Recently, Lacharme [16] reinterpreted 
Dichtl’s post-processing methods by using a linear code [22]. 
By using the generator matrix of a linear code, it is possible to 
obtain various post-processing functions which have 
comparable performance to Dichtl’s methods. Lacharme 
expected that a post-processing function generated from a 
linear code would be limited by the minimum distance of the 
linear code. Therefore, he focused on non-linear functions to 
further improve the performance of post-processing. As a result, 
he discovered another non-linear post-processing method 
which has better performance and is similar to Dichtl’s 
heuristic corrector. Although Lacharme’s non-linear corrector is 
easier to implement than Dichtl’s heuristic one, it is still more 
complex to implement than the linear corrector. 

In this paper, we show that it is possible to construct linear 
correctors that overcome the minimum distance limitation. As an 
example, a binary (17, 9, 5) quadratic residue (QR) code [22] 
which is a cyclic code (also a linear code) is used to construct a 
linear corrector that achieves better performance than 
Lacharme’s non-linear corrector and Dichtl’s heuristic corrector. 
The compression rate of the proposed corrector from the (17, 9, 
5) QR code is 0.53 because the input size is 17 bits and the 
output size is 9 bits. We analyze and compare the performance of 
the proposed correctors with previous ones. Because the 
proposed correctors are based on a linear code, it is possible to 
implement them simply by using a series of XOR gates. The 
proposed corrector from the (17, 9, 5) QR code with 2 iterations 
can be implemented by using a hardware area smaller than 500 
NAND gates, which is a small enough hardware size to be 
suitable for many types of embedded crypto-systems. 

The remainder of this paper is organized as follows. In 
section II, previous post-processing methods are briefly 
reviewed. In section III, a criterion to construct a good corrector 
is presented using an information theoretic analysis, and the 
new linear corrector is presented using a cyclic code, namely, 
QR code. The performance of the proposed corrector is 
compared with previous correctors in section IV. Then, the 
possible hardware architecture of the proposed method is 
discussed and estimated in section V. Finally, concluding 
remarks are given in section VI. 

II. Post-processing of TRNG 

1. Classification of Post-processing Method 

In this paper, we assume that the random numbers from a 
given random source are statistically independent. The bias of 
the random number is defined as 

1 (Pr( 0) Pr( 1)).
2 i ie x x= = − =  

We also assume that the random source is stationary. That is, 
the bias does not change as time advances. Because the 
random numbers are statistically independent, the bias of a 
linear combination of random numbers can be represented by 
using the bias e. In that case, the following definition [16] is 
useful for estimating the performance of a corrector. 

Definition 1. Let P be a polynomial of degree d, defined by 

0

( ) .
d

i
i

i

P x a x
=

= ∑  

The valuation of P is the minimal i > 0 such that 0.ia ≠  

Post-processing methods of TRNG can be classified into two 
groups according to the required input bits. The first one 
improves the TRNG output for a fixed length of input, and the 
other produces perfectly unbiased TRNG output for an infinite 
length of input. For the latter group, it is sometimes necessary 
to wait until the required amount of output is collected. The 
most famous method in this class is the von Neumann 
corrector [17]. However, because there is usually a time 
limitation in an actual system, a time-out violation occurs and 
the operation may be stopped if the response for a random 
number request is not generated within a limited time. For this 
reason, the latter group is not suitable for most systems. 

Conversely, methods in the former group generate a k-bit 
output using an n-bit input, where .n k≥  In that case, a 
corrector can be considered as a deterministic function. Since it 
is information theoretically impossible to increase the entropy 
per se of a given sequence by using deterministic processing, 
we focus on increasing the entropy per bit. Note that if the 
corresponding function is bijective, then it is impossible to 
increase the entropy per bit. Therefore, to obtain the desired 
unbiased output, the input size must be greater than the output 
size. 

2. Bounded Performance with Fixed Length of Input 

One of the widely used correctors with a fixed length input is 
the XOR corrector, given as 

yi = x2i + x2i+1 mod 2. 

Because this corrector produces one output bit by using two 
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input bits, the compression rate is 0.5. Dichtl [21] proposed 
new linear correctors, namely, the D1, D2, and D3

1) correctors.  
Let X1 and X2 be two input bytes. Let + be bit-wise XOR, 

and let RL(X, i) be i-bit cyclic rotation. Then, D1, D2, and D3 
correctors can be represented as in [16] as 

1 1 2 1 1 2

2 1 2 1 1 2 1

3 1 2 2 1 2 1

( , ) ( ,1) ,
( , ) ( , ) ( , 2),
( , ) ( , ) ( , 4).

D X X X RL X X
D X X H X X RL X
D X X H X X RL X

= + +
= +
= +

 

The valuations of the bias terms of D1, D2, and D3 are 3, 4, 
and 5, respectively. Lacharme analyzed these functions using a 
linear code. In the next section, we examine the details. 

3. Perfect Performance with Infinite Length of Input 

The von Neumann corrector can generate unbiased output if 
the raw random numbers are generated from an independent 
identically distributed (i.i.d.) random source. In the von 
Neumann corrector, a pair of inputs, 01 or 10, produces the 
output 0 and 1. Otherwise, there is no output and the corrector 
tests the next pair of inputs. Since the probabilities of pairs 01  

and 10 are 1 1
2 2

e e⎛ ⎞⎛ ⎞− +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

, the von Neumann corrector  

generates an unbiased output for the case of an i.i.d. random 
source.  

Suppose that e is in the range [ 1/ 2,1/ 2].−  Denote e as 

1 .
2

ε−  Then,
2

2 21 1 1 .
4 4 2

e ε ε ε⎛ ⎞− = − − = −⎜ ⎟
⎝ ⎠

 If 0,ε →   

then the probability of 01 or 10 in the raw inputs approaches 
zero. To obtain a k-bit post-processed output, we need a / 2k ε   
bit raw input. That is, a large input size is needed to produce an 
unbiased output for a small .ε  At best, the probability of 
producing output is 1/4; thus, the maximum compression rate 
is 0.25. Moreover, if the assumption of statistical independence 
does not hold, the von Neumann corrector can no longer 
ensure an unbiased output. 

III. Linear Corrector from Linear Code 

1. Performance Estimation of Individual Output Bits 

Let C be a linear code. For , ,a b C∈  a+b is also a 
codeword in C. An [n, k] linear code is constructed from a set 
of k linearly independent codewords with length n. It can be 
represented by using a n×k generating matrix G as 

mG = c, 
                                                               

1) Actually, Dichtl proposed the H, H2, and H3 correctors [21]. However, we use the 
notation H to denote the Shannon entropy. In order to avoid confusion, the H, H2, and H3 
correctors are denoted using the D1, D2, and D3 correctors, respectively. 

where m is a k-bit message, and c is the corresponding 
codeword. 

In Lacharme’s analysis, Dichtl’s methods can be interpreted 
as a generator matrix of linear code. Let x be a raw random 
input from TRNG, and let y be a post-processed random output. 
Then, Dichtl’s D1 corrector can be represented by using the 
generator matrix as 

1

0000000100000011
0000001000000110

.

1000000010000001

DG

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

In a linear code, except for some special code such as 
simplex code with equidistance property, many codewords 
have a larger Hamming weight than the minimum distance of 
the code. Moreover, since a generator matrix can be generated 
using any k linearly independent codewords in the code, it is 
possible to construct a generator matrix using the codewords 
with a larger Hamming weight than the minimum distance. 

In [16], Lacharme derived the following result to obtain the 
representation of the bias for some Boolean functions. Define 
the linear combination of a Boolean function using non-zero  
k-tuple vector u as 

1
( ) ( ) ( ).

m

u i i
i

x u f x u f xϕ
=

= = ⋅∑  

Then, the bias Δu can be defined as 

1 (Pr( ( ) 1) Pr( ( ) 0)).
2u u ux xϕ ϕΔ = = − =  

For a non-zero linear combination ( ),u xϕ  the bias is 
dependent on the input bias e as in the theorem 1 [16]. 

Theorem 1. Let f be a mapping from n-tuple binary vector to 
k-tuple binary vector, and let v be a k-tuple binary vector 
obtained by f. Let e be the input bit bias. Then, the bias 

( )u eΔ of v is given as 

2

( ) 1 ( )
1

1 ˆ( ) (2 ) ( 1) ( ),
2 n

w v w v
u un

v F

e e vϕ+
+

∈

Δ = −∑  

where w(v) is the Hamming weight of vector v. 

Corollary 1. Let e be the bias of X. The bias of linear 
Boolean function f(x)=a·x is given as 

( )
1

1( ) ( 2 ) .
2

w ae eΔ = − −  

Proof. For u=1, since 1( ) ,x a xϕ = ⋅ the Walsh transform 
1̂( )vϕ of 1( )xϕ can be derived as  

2

( )
1

2 , for ,ˆ ( ) ( 1)
0, for .n

n
a v x

x F

a v
v

a v
ϕ + ⋅

∈

⎧ = −⎪= − = ⎨
≠ −⎪⎩

∑  



96   Young-Sik Kim et al. ETRI Journal, Volume 32, Number 1, February 2010 

Thus, from theorem 1, the bias Δ1(e) of the linear Boolean 
function is given as 

( ) 1 ( )
1 1

( ) 1 ( ) 1 ( )

2( ) (2 ) ( 1)
2
2 ( 1) .

n
w a w a

n

w a w a w a

e e

e

+
+

− +

Δ = −

= −
            □ 

Because each post-processed output bit is generated by a 
linear combination of raw TRNG output, the probabilities of 0 
and 1 can be directly determined by using the Hamming 
weight w(a) of the linear combination function. Therefore, 
magnitudes of bias of Dichtl’s correctors, D1, D2, and D3 are 
given as 22e3, 23e4, and 24 e5.  

The next theorem shows that the entropy of i.i.d. random 
variable X is always less than or equal to that of Y, which is a 
linear combination of X’s. 

Theorem 2. Let X be an i.i.d. random variable, and let Y be a 
linear combination of X’s. Then, we have H(Y) ≥ H(X). 

Proof. By the definition of Shannon entropy H(X) of X, we 
have 

2 2

2

2 2 2

4
2

3 3

2 4 6

1 1 1 1( ) log log
2 2 2 2

1 1 4log [log (1 2 ) log (1 2 )]
2 4

1 161 4
2ln 2 2

8 82 2
ln 2 3 3

2 4 321 .
ln 2 3ln 2 15ln 2

H X e e e e

e e e e

ee

e e ee e

e e e

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞−
= − − + − −⎜ ⎟

⎝ ⎠
⎛ ⎞

= + + +⎜ ⎟
⎝ ⎠

⎛ ⎞
+ − − + − − −⎜ ⎟

⎝ ⎠

= − − − −

 

In the third equality, the Taylor series of ln(1 )x− − =  
2 3

2 3
x xx + + +  is used. 

From corollary 1, the bias of Y, a linear combination of X, is 

given as ( )
1

1( ) ( 2 ) .
2

w ae eΔ = − −  Therefore, H(Y) is given as  

2 4
2 ( ) 2 2 ( )1 12 ( ) 4 ( ) 2( ) 1 1 2 .

ln 2 3ln 2 ln 2
w a w ae e

H Y e−Δ Δ ⎡ ⎤= − − = − +⎣ ⎦  

Because0 1/ 2,e≤ ≤ H(Y)>H(X) always holds. The equality 
holds for the case of a=1, that is, Y=X.                  □ 

From theorem 2, we can straightforwardly obtain the 
following corollary, which indicates that a higher Hamming 
weight codeword has a higher entropy than a lower Hamming 
weight codeword. 

 

Fig. 1. Broadcasting model for two linear combinations of raw 
random input. 

Xc

Z1 

Z2 

Y1=Xc+Z1

Y2=Xc+Z2

 
Corollary 2. Let Yn be a linear combination of n X’s. Then, we 
have H(Yn) ≥ H(Yn–1). 

2. Mutual Information between Adjacent Output Bits 

Multi-bit entropy is as interesting as single bit entropy. To 
estimate the multi-bit entropy of the post-processed output, we 
derive the upper bound of mutual information between two 
output bits. 

First, we will briefly introduce some basic definitions of 
information theory (For more information, see [23]). The 
entropy H(X) of a discrete random variable X is defined as 

2( ) Pr( ) log Pr( ).
x X

H X x x
∈

= −∑  

If (X, Y)~Pr(x, y), the conditional entropy H(Y|X) is defined 
as 

2( ) Pr( , ) log Pr( ).
x X y Y

H Y X x y y x
∈ ∈

= −∑ ∑  

The mutual information between two random variables X 
and Y is defined as 

2
Pr( , )( ; ) Pr( , ) log

Pr( ) Pr( )

( ) ( ) ( ) ( ).
x X y Y

x yI X Y x y
x y

H X H X Y H Y H Y X
∈ ∈

= −

= − = −

∑ ∑
 

Let Y1 and Y2 be two distinct linear combinations of w i.i.d. 
random variable X’s. Among them, c X’s are common and  
w–c X’s are distinct. To determine the mutual information 
between Y1 and Y2, we adopt the broadcast channel model 
shown in Fig. 1. In this model, two random variables, Y1 and Y2, 
can be represented as two received signals: 

Y1 = Xc + Z1, 
Y2 = Xc + Z2. 

In this representation, a linear combination of common X’s, 
Xc, can be considered a transmitted message in the channel, and 
linear combinations of distinct X’s, Z1 and Z2, are additive 
noises for each receiver. Then, we can derive the relationship 
between mutual information of random variables Xc, Y1, and Y2 



ETRI Journal, Volume 32, Number 1, February 2010 Young-Sik Kim et al.   97 

as in the following lemma.  

Lemma 1. The mutual information for the broadcasting 
model in Fig. 1 satisfies the following inequality: 

1 2 1 2( ; ) ( ; ) ( ; ).c cI X Y I X Y I Y Y+ ≥  

Proof. By the definition of the mutual information, we have 
the following equalities: 

1 2 1 1 2

1 2 1 2 1 2

1 1 1

2 2 2

( ; ) ( ) ( ),

( ; ) ( ) ( ) ( , ),

( ; ) ( ) ( ),

( ; ) ( ) ( ).

c c c c

c c

c c

I Y Y H Y H Y Y

I Y Y X H Y X H Y X H Y Y X

I X Y H Y H Y X

I X Y H Y H Y X

= −

= + −

= −

= −

 

By adding the last two equations, we have 

1 2

1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2

( ; ) 1( ; )
( ) ( ) ( ) ( )

( ) ( ) ( , ) ( ; )

( ) ( ) ( , ) ( ; )

( ; ) ( ; ).

c c

c c

c c

c

c

I X Y X Y
H Y H Y H Y X H Y X

H Y H Y H Y Y X I Y Y X

H Y H Y H Y Y I Y Y X

I Y Y I Y Y X

+

= + − −

= + − −

≥ + − −

= −

 

We also have 

1 2 1 2 1 2( ; ) ( ; ) ( ; ).c c c c cI Y Y X I X Z X Z X I Z Z X= + + =  

Because Z1, Z2, and Xc are pair-wisely independent, we have 

1 2 1 2( ; ) ( ; ) 0.cI Z Z X I Z Z= =  

Thus, we can conclude that 

1 2 1 2( ; ) ( ; ) ( ; ).c cI X Y I X Y I Y Y+ ≥          □ 

Now, it is possible to calculate the mutual information 
I(Xc ;Y1) as in the following lemma. 

Lemma 2. The mutual information I(Xc ; Yi) in Fig. 1 can be 
determined as 

1 1 1 1( ; ) ( 2 ) ( 2 ) ,
2 2 2 2

w w c
c iI X Y h e h e −⎛ ⎞ ⎛ ⎞= − − − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

where 2 2( ) log (1 ) log (1 )h x x x x x= − − − −  and i = 0 or 1. 
Proof. By the properties of mutual information, we have 

( ; ) ( ) ( )

( ) ( ) ( ) ( ).
c i i i c

i c i c i i c

I X Y H Y H Y X

H Y H X Z X H Y H Z X

= −

= − + = −
 

Because Zi and Xc are statistically independent, we have 

( : ) ( ) ( ).c i i iI X Y H Y H Z= −  

From corollary 1, 
1 1Pr( 1) ( 2 )
2 2

w
iy e= = − − and 1 1Pr( 1) ( 2 ) .

2 2
w c

iz e −= = − −  

Therefore, we have  

( ) (Pr( 1))i iH Y h y= =  and ( ) (Pr( 1)).i iH Z h z= =   
Then, the statement is proven.                        □ 

From lemmas 1 and 2, we can easily obtain the theorem 3. 

Theorem 3. The mutual information I(Y1;Y2) in Fig. 1 is 
bounded by 

1 2
1 1 1 1( ; ) 2 ( 2 ) 2 ( 2 ) .
2 2 2 2

w w cI Y Y h e h e −⎛ ⎞ ⎛ ⎞≤ − − − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

As seen in theorem 3, the larger c is compared with w, the 
larger the mutual information I(Y1;Y2). The large mutual 
information means that the common information between Y1 
and Y2 is large, and the output bits have some dependency on 
each other. Therefore, we can conclude that it is not desirable to 
have many common components in two linear combinations. 
On the other hand, to reduce the bias of a single bit, it is better 
to choose codewords with the largest possible Hamming 
weights. However, if we increase the Hamming weight of each 
row in matrix G, then it is likely to share too many common 
components between rows of the matrix. Therefore, there is a 
tradeoff between Hamming weight and common components 
in the linear combinations of output bits.  

A linear code can provide a solution for that tradeoff since 
the minimum distance of the linear code makes it possible to 
separate each codeword by at least some specific distance. 
Therefore, if we choose codewords in the linear code with 
large Hamming weights, it is able to satisfy both contradictory 
conditions. In the following subsection, we describe the 
proposed method in detail. 

3. Linear Corrector from Quadratic Residue Code 

Since the QR code is a cyclic code [22], [24], the (17, 9, 5) 
binary QR code can be generated using the following 
generating polynomial: 

g(x) = x8+x5+x4+x3+1. 

The Hamming weight distribution of the (17, 9, 5) binary QR 
code generated by g(x) is given in Table 1. 

As seen in Table 1, even though the minimum distance of 
(17, 9, 5) QR code is 5, there are many codewords which have  

Table 1. Hamming weight distribution of (17, 9, 5) QR code. 

Hamming weight 0 5 6 7 8 

# of codewords 1 34 68 68 85 

Hamming weight 9 10 11 12 17 

# of codewords 85 68 68 34 1 
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larger Hamming weights than the minimum distance. In this 
paper, we suggest a method to construct a post-processing 
function using codewords in the code with large Hamming 
weights, such as 9 and 12, for (17, 9, 5) QR code.   

Because the quadratic residue code is a cyclic code, a 
cyclically shifted version of a codeword is also a codeword. 
Since the length of a codeword is 17, there are 17 codewords 
which can be generated by cyclic shift of a codeword except 
for all zero and all one codewords as in Table 1. 

In Table 1, there are two types of codewords with Hamming 
weight 12, and each type has 17 codewords which can be 
generated by cyclic shifts. Then, we choose one of them and 
construct a generating matrix using 9 codewords of a selected 
type. For example, 

12

11011000110111111
11101100011011111

.

01111111101100011

G

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

For comparison, we additionally construct the following two 
correctors by using codewords with Hamming weights 5 and 9: 

5

00000000100111001
10000000010011100

00111001000000001

G

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

and 

9

11010100100010111
11101010010001011

.

00101111101010010

G

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

In the next section, we show that the proposed corrector with 
Hamming weight 12 outperforms the other correctors. For 
TRNG raw output x, post-processed output y is generated by  
y = Gx. 

IV. Simulation and Further Improvement 

1. Performance Comparison with Previous Correctors 

Various correctors, including the proposed method with 
Hamming weight 12, were applied to correct biased random 
sequences with the length of 140,000 bytes. In simulations, we 
used the linear congruential generator with parameter (a, m) = 
(16807, 2147483647) to produce random numbers with 
defined bias. 

As the first result, the 1-bit Shannon entropy of post-processed 
random sequences is plotted in Fig. 2. In the simulation carried 
out to obtain the results shown in Fig. 2, 999 random sequences 

 

Fig. 2. Performance comparison with previous correctors. 
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with the length of 140,000 bytes were generated. Each random 
sequence has biases from 0.001 to 0.999 in terms of probability 
of one, Pr(1). In the AIS.31 standard [1], the tolerable 1-bit bias 
in TRNG output is given as a maximum of 0.0173, which can 
be represented in terms of  1-bit Shannon entropy 0.9991. In 
Fig. 2, the proposed corrector can be applied to the range 
(0.122, 0.878), while the applicable range of the D3 corrector is 
(0.242, 0.758).  

In summary, the proposed linear corrector shows better 
performance than any previous correctors. That is, the 
proposed corrector can be applied to a wider range of biased 
random sequences than others. 

To obtain maximum performance, Dichtl proposed a 
heuristic construction with valuation 6 of biases. However, 
since implementation of Dichtl’s corrector is quite complex, the 
lookup-table approach is the easiest way to implement it [21]. 
Although Lacharme used a non-linear corrector from      
(16, 256, 6) Nordstrom-Robinson nonlinear code [22] with 
valuation 6 of biases to decrease the difficulty of 
implementation, it is still more complex than the linear 
corrector. Also, he did not present an example to demonstrate a 
nonlinear corrector. Note that, for (17, 9, 5) QR code, it is 
possible to construct a linear corrector with valuation up to 12. 
It achieves better performance than others, such as the XOR 
corrector, D1, D2, and D3 by Dichtl. Therefore, the proposed 
construction method for a linear corrector shows the best 
performance for fixing random output from a TRNG, and it can 
be implemented using simple architecture. 

2. Entropy Test of AIS.31 Standard 

To check multi-bit dependency, we apply an entropy test in 
AIS.31 [1] for each corrector. The entropy test proposed by 
Coron [25] is introduced as a method to estimate multi-bit  
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Fig. 3. Results of entropy test (Coron test) in AIS.31 standard.
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entropy in AIS.31. Although the entropy test is applied to the 
raw output of TRNG in AIS.31, it is applied to the post-
processed output to check the dependency between adjacent 
output bits in this study. The 8-bit-based test is used as in 
AIS.31, and the acceptable threshold is 7.976 in that case. 
Since the threshold is changed according to the tolerable 
probability of false alarm which is dependent on security levels 
and applications, the specific value is not critical for the current 
purpose of checking the dependency between post-processed 
output bits.  

Note that Coron test results are clearly different with 1-bit 
Shannon entropy multiplied by 8 because the dependency is 
not considered in 1-bit Shannon entropy. The test results are 
shown in Fig. 3.  

In Fig. 3, 1-bit Shannon entropy multiplied by 8 is also 
presented for a reference. The apparent result for 1-bit Shannon 
entropy seems like the best one. However, that result should 
not be trusted as real entropy because the dependency is not 
considered in 1-bit Shannon entropy.  

In AIS.31, the tolerable range for the Coron test is almost 
(0.086, 0.914) for the proposed corrector from a weight 12 
codeword. For the D3 corrector, the corresponding range is 
almost (0.286, 0.714). As a conclusion of the test, the proposed 
corrector can be applied to a larger range of biases than the 
other correctors. 

3. Iterative Post-processing Scheme 

To obtain further improvement of the random output, it is 
possible to apply the post-processed random output to the 
corrector iteratively [18]. For r iterations, the bias is reduced at 
the cost of decreasing the compression rate (1/2)r. Although the 
iterating method can be applied to every corrector, the adopted 
corrector should be the best one to minimize the number of  

 

Fig. 4. Performance improvement of iterative post-processing. 
The proposed corrector is constructed from obtained with 
Hamming weight 12. 
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iterations because of the exponentially decreasing compression 
rate. 

Figure 4 shows improved performance for both the D3 
corrector and the proposed corrector with Hamming weight 12. 
In the figure, D3_iteration i and P_iteration i mean that D3 and 
the proposed corrector with Hamming weight 12 are iteratively 
applied i times. Note that the performance of the proposed 
corrector (r=1) is almost the same as the performance of D3 
corrector (r=2). Even though the performance of the two 
correctors is similar, the compression rate of the proposed 
corrector is 0.53, while that of the D3 corrector with r=2 is 0.25. 
This means that the proposed corrector has a throughput almost 
twice that of the D3 corrector at the same level of performance. 

V. Hardware Architecture for Proposed Correctors 

The proposed corrector produces an improved 9-bit output 
from a 17-bit raw TRNG output. If TRNG generates 1 byte of 
output at a time, it is not difficult to adapt the input-output size 
by introducing input-output buffers. 

Figure 5 shows a component of the hardware architecture for 
the proposed linear corrector using weight-12 codewords.  
The single XOR array can generate a 1-bit output from a 17-bit 
input, and this requires nine similar XOR arrays with distinct 
input connections. Because there are many overlapped 
components between rows of the generating matrix, it is 
possible to share the 2-input XORs or 3-input XORs for 
distinct output bits. This property enables us to optimize the 
hardware architecture for the linear corrector. However, for a 
conservative estimation, we assume that the 9-bit output is 
produced by using the XOR arrays shown in Fig. 5.  

In Fig. 5, there are four 3-input XORs and three 2-input  
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Fig. 5. Component of the proposed linear corrector (w=12). 
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XORs. To produce a 9-bit output, 36 3-input XORs and 27   
2-input XORs are required. Normally, the XOR gate is larger 
than other gates, such as NAND or NOR. Even though the 
actual size is dependent on the hardware library and actual 
silicon implementation, we use the heuristic that the sizes of the 
2-input XOR and 3-input XOR gates are 2.5 and 4.5 times 
bigger than those of the NAND gate, respectively. 

Based on this assumption, the size of the proposed linear 
corrector using codewords with Hamming weight 12 is 
equivalent to that of 255 NAND gates. Therefore, the 
conservative conclusion is that the actual size is always less 
than 300 NAND gates. 

Furthermore, it is possible to implement an iterative scheme 
in hardware. For an iterative scheme, we need a 17 (2:1) 
multiplexer to choose inputs between raw random data from 
TRNG and post-processed data in the previous cycles. Because 
the compression rate is equal to 0.53 in the 17-bit input and 9-
bit output architecture, the 34-bit raw random data must be 
post-processed before iteration. Then, we finally obtain a 9-bit 
output from a 34-bit random input, which means that the 
compression rate is equal to 0.265. To store the 9-bit 
intermediate data, 9-bit registers are required. Because the (2:1) 
multiplexer and the 1-bit register require a silicon area 
equivalent to 2.5 to 4 NAND gates and 6.5 to 7.5 NAND gates, 
respectively, we need a maximum of 200 NAND gates for 
implementation of the iterative scheme. Overall, a hardware 
area equivalent to 500 NAND gates is enough to implement a 
2-iteration linear corrector. This is an acceptable size for most 
systems with strong hardware restrictions such as smart cards. 

VI. Concluding Remarks 

In this paper, we proposed a method of constructing a linear 
corrector for TRNG output from a linear code. In our method, 
we select the codeword in a cyclic code with the largest 
Hamming weight, except for all-one codewords, and make a 
generator matrix via the cyclic shift of the chosen codeword. 
As a result, it is possible to construct a linear corrector which 
overcomes the minimum distance bound, which is discussed in 

previous research [16]. We showed that the performance of the 
proposed corrector is better than that of previous ones, in that a 
wider range of bias can be corrected by the proposed scheme.  

In simulations of the 1-bit Shannon entropy and the 8-bit 
entropy test (Coron test) as in the AIS.31 standards, the 
proposed corrector outperformed other correctors. Moreover, 
the iterative scheme can improve post-processing at the cost of 
the compression rate. The proposed method is advantageous 
depending on the compression rate or the number of iterations.  

Finally, we discussed the possible hardware architecture of 
the proposed scheme. Even in a conservative estimation, an 
implementation of the proposed corrector would require a 
small hardware size, which is suitable for embedded systems 
with strong hardware size restrictions. 
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