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This paper focuses on the problem of key-frames coding 
and proposes a new promising approach based on the use 
of fractals. The summary, made of a set of key-frames 
selected from a full-length video sequence, is coded by 
using a 3D fractal scheme. This allows the video 
presentation tool to expand the video sequence in a 
“natural” way by using the property of the fractals to 
reproduce the signal at several resolutions. This feature 
represents an important novelty of this work with respect 
to the alternative approaches, which mainly focus on the 
compression ratio without taking into account the 
presentation aspect of the video summary. In devising the 
coding scheme, we have taken care of the computational 
complexity inherent in fractal coding. Accordingly, the 
key-frames are first wavelet transformed, and the fractal 
coding is then applied to each subband to reduce the 
search range. Experimental results show the effectiveness 
of the proposed approach. 
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I. Introduction 

The surprising diffusion of multimedia applications (from 
scientific to commercial, and from informative to recreational) 
over heterogeneous networks has caused a great deal of interest 
in the scientific community toward signal processing and data 
transmission fields. In most of these applications, digital video 
archives are browsed on distributed networks that are subject to 
buffer congestions and bandwidth constraints. To enable these 
services, it is important to develop tools to analyze and describe 
the video content, handle queries from the end-users, and 
provide results. These operations require the extraction of the 
essence of the visual content in a compact form so as to permit 
a fast browsing of huge multimedia archives. Accordingly, a 
procedure for automatic video data analysis and indexing has 
become a requirement for efficient database content searching 
and management. It is mainly made up of the following tasks 
[1]: feature extraction, structure analysis, abstraction, and 
indexing. The first task is aimed at providing the major 
characteristics of the video (such as color, texture, shape, 
structure, layout, and motion) that can be converted into 
semantic concepts. Video structure parsing is the next step in 
overall video-content analysis and is the process of extracting 
temporal structural information of video sequences or programs. 
Video abstraction is the process of creating a presentation of 
visual information about a landscape or the structure of video, 
which should be much shorter than the original video. Based on 
the output of the previous tasks, video indices are built so as to 
enable a fast browsing of the visual content. 

Researchers have extensively investigated this topic in the 
recent past. One commonly adopted approach is a storyboard 
presentation in which thumbnail images are tiled together, 
usually arranged in a time order to give an overview of the 
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visual content in the video sequences. In [2], the authors 
propose a novel approach for video summarization based on 
graph optimization. Their approach emphasizes both a 
comprehensive visual-temporal content coverage and visual 
coherence of the video summary. In [3], a novel pictorial video 
summary, called a video snapshot, which is a bird’s eye view of 
video enabling viewers to grasp the main contents of video at a 
glance, is presented. Moreover, a comprehensive scoring 
scheme for content filtering called PRID (pleasurable, 
representative, informative, and distinctive), and an optimized 
video visualization algorithm are also proposed. The authors in 
[4] present a two-stage framework to generate MPEG-7-
compliant hierarchical key-frame summaries of video 
sequences. At the first stage, which is carried out off-line at the 
time of content production, fuzzy clustering and data pruning 
methods are applied to given video segments to obtain a non-
redundant set of key frames that comprise the finest level of the 
hierarchical summary. The number of key-frames allocated to 
each shot or segment is determined dynamically and without 
user supervision through the use of cluster validation 
techniques. A coarser summary is generated on-demand in the 
second stage by reducing the number of key-frames to match 
the low-level browsing preferences of a user. It is worth noting 
that the state-of-the-art works about video summarization 
mainly focus on the extraction of the key-frames. 

This paper focuses on the coding of frames generated during 
the video abstraction task for fast data browsing. We propose a 
new promising approach that is based on the use of fractals. 
The summary, made of a set of key-frames, is represented 
using 3D fractal coding so as to allow the video presentation 
tool to expand the video sequence in a “natural” way by using 
the property of the fractals to reproduce the signal at several 
resolutions. While the primary issue addressed by the proposed 
technique is data coding in video abstraction, we also take heed 
of the video presentation issue. 

Indeed, in literature several algorithms have been developed 
for image and video coding and have been adopted by some 
standardization committees, such as JPEG and MPEG, to give 
birth to image and video standards (JPEG 2000, MPEG-x). 
Such standard codecs mainly focus on compression aspects of 
the dataset. With respect to these, fractal coding of an image 
and video adds the feature of expansion of the dataset during 
decoding; this characteristic is not usually provided in standard 
codecs and has to be considered as an external separate issue if 
standard codecs are used for key-frames coding. In the past, 
fractals have been proposed for image data compression by 
exploiting pseudo-self-similarity inside natural images [5],[6]. 
The resulting algorithms have the advantage of allowing the 
expansion of the signal along its dimensions during decoding. 
However, the fractal representation of a signal has a major 

weakness, which is the high computational complexity of the 
encoding process. The computational load, and thus the 
processing time, increases as the signal dimension increases. 
This is due to the fact that there are more data to be processed 
at higher signal dimensions. We address this problem by using 
a wavelet subband coding scheme [7]. In particular, we 
perform the fractal coding of each wavelet subband in isolation 
so as to reduce the search range and the related processing time. 
To further reduce the high computational load, an active scene 
detection is used to perform three-dimensional fractal coding 
only in high-information areas (moving areas), whereas static 
zones are coded using a two-dimensional coder. 

We have also taken care of the coding efficiency by using an 
adaptive wavelet coefficient quantization procedure. It is based 
on a histogram analysis of the wavelet coefficients distribution. 
At the receiving end, the fractal code can be decoded at the 
desired resolution in the time and spatial dimensions. It is 
worth noting that, if the computation overhead is an issue 
during the generation of the code, it is not a matter during the 
decoding and can be performed in almost real-time. 

The paper is organized as follows. In section II, a 
presentation of fractal coding is given. Section III describes the 
proposed method in detail. In section IV, we discuss the results 
relevant to the conducted experiments. Conclusions are drawn 
in the last section. 

II. Fractal Coding 

A fractals theory applied to the image processing field is 
based on the iterated function system (IFS) and has been used 
mainly for data compression. The basic idea of the fractal 
coding based on IFS is to exploit the redundancy given by the 
self-similarities always contained in natural images. The fractal 
image can be seen as a collage composed by copies of parts of 
an original image that have been transformed through 
opportune geometric and massive transformations (that is, 
luminance or contrast shift). The mathematical foundation of 
this technique is the general theory of contractive iterated 
transformations, based on the works of Barnsley [5] and Jaquin 
[6]. Basically, fractal coding of an image consists in building a 
code τ  (a particular transformation) such that, if origµ  is the 
original image, then )( origorig µτµ ≈ . This means that origµ  
is approximately self-transforming under τ . If τ  is a 
contractive transformation, origµ  is approximately the 
attractor of τ , that is )(lim 0µτµ k

korig ∞→≈  for any initial 
image 0µ . The code τ  is built on a partition of the original 
image. Each block Ri of this partition is called a range block 
and is coded independently from the others by a matching 
(local code iτ ) with another block Di in the image, called a  
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Fig. 1. Scheme of the proposed technique for video summarization. 
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domain block. If R and D are the range and domain block sizes 
(in the case of square blocks), respectively, then D = pR, where p 
is the scaling factor used for the local self-similarity search (p>1). 

Classical iτ  transforms are both isometries, such as 
rotations and flips, and massive transforms, such as contrast 
scaling and grey shifting. If L is the number of range blocks, 
the fractal code of the initial image is then i

L
iorig τµτ 1)( == ∪ , 

where iii RD →:τ  and piiii rIM ,DD=τ . Equation 
iiii bxaxM +⋅=)(  is an affine operator with scale ai and shift 

bi on the luminance pixel; Ii is a transformation selected from 
eight discrete isometries; and ri,p is a p-factor reduction operator 
based on averaging. In other words, the task of the fractal 
encoder is to find for each range block a larger domain block 
such that, after an opportune transformation, it constitutes a 
good approximation of the present range block. The fractal 
code for the original image is a collection of such extracted 
local codes. This approach proposed by Jacquin in [6], gives a 
representation of the image as composed by copies of parts of 
the image itself. 

The classical fractal decoding stage consists in an iterated 
process starting from an arbitrary initial image, 0µ . In fact, if 
τ  is a contractive transformation, the τ 's attractor )( 0µτ ∞  
gives an approximation of the original image origµ  
independently from the initial image. 

Indeed, the fractal code τ  is a collection of linear affine 
transforms, iτ , and has no intrinsic size. Hence, we can 
assume that self-similarities, represented by hatchings between 
different areas in the original image, are scale independent. 
Accordingly, the decoding process is resolution independent, 
that is, at the decoding stage the fractal code enables expansion 
(zooming in). Practically, this operation consists in increasing, 
during the decoding stage, the range block’s size R, and 
therefore the domain block’s size D (being D = pR). For a 
zoom-in factor z, the new range and domain block sizes are 
R’=zR and D’=zD, but all the local codes ,iτ  and 
consequently the fractal code ,τ  remain unchanged. 

In fractal video coding [8], range and domain blocks become 

cubes; as a consequence, the number of isometries and massive 
transforms to be analyzed when generating the fractal code is 
greater with respect to the image coding framework. This fact 
raises dramatically the computational load of the matching 
algorithm. Moreover, at the decoding stage, the entire sequence 
should be decoded at once, and even the decoding procedure, 
which is usually the fast part of a fractal process, becomes 
extremely slow. Therefore, applying fractal coding to video 
turns out to be possible only when appropriate procedures for 
data reduction and problem simplification are used. Applying 
the fractal decoding to a blank sequence with the desired 
zoom-in factor leads to an expanded version of the sequence in 
both time and spatial dimensions. 

III. Proposed Method 

The proposed method relies on the joint use of fractal coding 
and wavelet subband analysis for video processing. The basic 
idea is to take advantage of the fractal coding feature to 
pleasantly reproduce missing motion information from a set of 
key-frames. It is worth noting that such a feature introduces 
pleasant results as far as a certain degree of correlation exists 
between consecutive key-frames. A subband wavelet transform 
is used to greatly reduce fractal coding time by processing each 
subband separately. In fact, this allows restricting the fractal-
searching domain with respect to fractal spatial coding. 

Figure 1 draws the functional blocks of the proposed 
methodology. The first step consists in the selection of the key-
frames from the original video sequence. Several methods 
have been tested to this purpose, analyzing both efficiency and 
computational complexity. The obtained key-frames are then 
spatially sub-sampled and constitute the input to the active 
scenario selection phase. The aim of identifying the active 
scenario is to increase the compression ratio by performing a 
differentiate coding. In particular, the background (static 
scenario) is coded only once in a group of key-frames (GOK), 
while for the active scenario all the key-frames are taken into 
account. In the following sections, these operations are 
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described in detail. 

1. Key-Frame Extraction 

 Temporal video segmentation is the first step towards 
automatic annotation of digital video for browsing and retrieval. 
Its goal is to divide the video stream into a set of meaningful 
and manageable segments that are used as basic elements for 
indexing. Selected key-frames then represent each shot. There 
are different techniques to this aim [9], and the majority of 
proposed algorithms process uncompressed video, as we do. 
As to the selection of the appropriate algorithm to be used 
within our framework, we had to consider both speed and 
efficiency. In particular, we tested three methods at increasing 
efficiency and decreasing speed, that is, using a fixed grid, pixel 
comparison, and histogram comparison. 

Fixed grid: The key-frames are chosen according to a fixed 
grid. Let N and M represent the number of frames in the 
original sequence and the step of the fixed grid, respectively.  
The number of the selected frames is 



=

M
NR . Such an 

approach is very fast at the expense of an important drawback: 
frames with crucial temporal semantic content, such as initial 
frames in a new scene, could be discarded, and frames without 
semantic content information, such as frames in a static scene, 
can be selected as a key-frame without any coding benefit. 

Pixel comparison: To overcome the drawback arising from 
the use of a fixed grid, the frames are chosen according to their 
difference from the previously selected frames [10]. Let Pk(x, y) 
be the luminance at pixel x-y (x=1,…,X, y=1,…,Y) and frame k 
(k =1,…). For each couple of consecutive frames k and k+1, 
the algorithm computes the number D(k, k+1) of pixels that 
change in value more than threshold Tdiff: 
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Every frame k with D(k, k+1) greater than threshold TPC is 
selected as the key-frame. 

The main weakness of this method is that it is not able to 
differentiate cases of significant changes in small areas from 
cases of non-significant changes in large areas. It follows that 
scene changes are not detected when a small part of the frame 
undergoes a major, rapid change. Therefore, it is sensitive to 
object and camera movements. 

Histogram comparison: Comparing the histograms of 

adjacent frames instead of the grey level can be more robust 
against camera and object movements [10]. A key-frame is 
selected when the sum of histogram differences between two 
successive frames is greater than a given threshold Thist: 

If hist

Z

i
kk TiHiH

Z
kkD >−=+ ∑

=
+

1
1 )()(1)1,(  

then frame k is a key-frame,  

where Hk(i) is the histogram value for grey level i in frame k, 
and Z is the number of grey levels. 

If a key-frame selection procedure is required to be fast, the 
fixed grid solution is usually used at the expenses of a coding 
efficiency reduction. The other two solutions provide better 
results and are used in case of no time constraints during the 
coding stage. The histogram comparison method is usually 
selected in this case. 

2. Active Scenario Selection 

To increase the compression ratio, background in the video 
sequence key-frames is extracted and encoded once in a group 
of key-frames. Then, the active part of the sequence can be 
coded with more precision. To correctly perform the 
subsequent fractal coding, the remaining active scenario needs 
to have a shape such that an integer number of cube blocks can 
be contained. To this purpose, each key-frame k is divided into 
blocks k

jiB ,  (i=1,…, X/R; j=1,...,Y/R) with a size equal 
to the starting range block size R. By grouping the sequence of 
blocks k

jiB ,  in more key frames at the same spatial position 
(that is, i and j are fixed), we construct a set of 
parallelepipeds k

jiji BP ,, ∪= . Figure 2 shows an example of 
blocks k

jiB ,  and relevant parallelepipeds Pi,j for a GOK of 
three key-frames. 

A binary mask identifying the background is then built  
 

 

Fig. 2. Blocks Bi,j in a sequence of key-frames and relevant 
parallelepiped Pi,j used for the identification of the 
background scenario. 
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computing the distance measure between consecutive blocks. 
The following classification rule is applied: parallelepiped Pi,j is 
classified as belonging to the active scenario if the distance 
measure for at least two consecutive blocks exceeds a given 
threshold TAB; the other Pi,j belong to the background area. 

The separate coding of the background may introduce an 
annoying artifact: In a long sequence the background region 
luminance can significantly differ from that in the remaining 
part of the frame, that is, the active scenario. In order to restrict 
the artifact visibility, the background is refreshed for every 
GOK that is usually taken lower than 10 key-frames. 

Since the encoding of a background with a small area would 
not increase the compression ratio, this process is done only if the 
area of the mask extracted exceeds a given percentage Tback of the 
whole area. Otherwise, the mask is not used and the frame is 
entirely encoded. Note that the extension of the background area 
depends on which procedure is used to select the frames to be 
coded. In the case of the fixed grid algorithm, consecutive key-
frames are often characterized by a quite similar background. In 
case the other two algorithms are used, the presence of a 
common background area depends on the type of scene changes 
encountered in the video sequence. Some scene changes are due 
to the disappearance of a big foreground object; in that case, a 
similar background may still be found in different key-frames. 
Most of the other scene changes cause the background to be 
dissimilar in a GOK. Accordingly, the separation of the active 
scenario from the background in the proposed algorithm is 
sometimes inapplicable. 

3. Application of the 2D Wavelet Transform  

A 2D wavelet transform is used to code both active and 
moving scenario blocks. As to the static scenario, the wavelet 
coefficients are computed for only the first frame in each GOK; 
these are also used for the reconstruction of the background in 
the remaining frames in the group of key-frames. 

Wavelet coefficient statistical distribution at a given resolution 
and orientation is symmetric with a nearly zero mean and small 
variance. Generalized Gaussian distribution does approximate 
quite well such distribution [11]. This generic property of 
wavelet coefficients suggests the separation, in each subband, of 
a zone characterized by most of the frame informative content 
(that is, a spatially active zone). In order to guarantee for a higher 
image quality, this zone has to be more accurately coded with 
respect to the rest of the frame. In this work, we deployed 
Daubechies wavelets and we make use of the heuristic algorithm 
for identifying the spatially active zones proposed in [14]. This is 
applied to all the subbands but the LL, which is treated as made 
of only active zones due to its intrinsic importance. 

Let Sm be the m-th subband in one-level wavelet 

decomposition; we denote by m
yxw ,  (x=1,…,X/2, y=1,…,Y/2) 

the wavelet coefficients of Sm, and by ( )υmp  the histogram 
of m

yxw , , where υ  ranges between the minimum and the 
maximum wavelet coefficients values. In ( )υmp , we identify 
two thresholds m

1υ  and m
2υ  starting from the wavelet 

coefficient value with the highest frequency ( m
maxυ ) and 

moving to the tails of the distribution, as shown in Fig. 3. These 
thresholds are identified on the basis of the following  
condition: ( )∫ =

m

m Kdpm2

1

υ

υ
υυ , where K is a parameter selected 

in the range ( ]1,0 . These thresholds identify the wavelet 
coefficients constituting the active zone in Sm, that is, 

[ ]{ }mmm
yx

m
az wyxS 21, ,:),( υυ∉= . Accordingly, an active zone is 

identified by those coefficients with values located on the 
distribution's tails. 

On the basis of this classification process, a binary-value mask 
is generated, indicating the position of active zone coefficients 
within the subband. The coefficients not belonging to an active 
zone are discarded, while the m

azS  coefficients are fractal 
encoded. The K parameter is the same for all the subbands and 
controls the speed up and the accuracy of the fractal coding 
process. Indeed, the higher the values of K, the higher the speed-
up factors and the lower the final visual quality achieved. 
 

 

Fig. 3. Classification of the wavelet subband coefficient based on 
histogram pm(υ): the coefficients not belonging to the 
range between υ1

m and υ2
m belong to the active zone. 
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4. Application of 3D and 2D Fractal Coding 

3D fractal coding is applied to the active scenario within a 
group of pictures, and a different code is separately computed 
for each subband. To generate the range cubes, an adaptive 
partition, named octree, has been used, and is shown in Fig. 4. 
This allows us encoding a GOK (more precisely, the active 
scenario in a GOK) by using larger range cubes in 
homogeneous regions and smaller ones in regions 
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characterized by spatial/temporal details. Accordingly, the 
active scenario is initially divided in R × R × R cubes (R 
represents the highest and starting dimension for a range cube), 
and to these the fractal coding is applied. Then, a coding 
distortion is separately computed for each of the eight R/2 × 
R/2 × R/2 sub-cubes within each R × R × R one. If the distortion 
measure for at least one sub-cube is higher than a prefixed 
threshold (TRC), the basic cube is divided into these eight sub-
cubes. This process is then applied to each of these sub-cubes; 
it is recursively carried out until the distortion measure is lower 
than the defined threshold for each sub-cube or a maximum 
number of octree partitioning levels has been reached. 

The use of 3D fractals in video sequence coding allows us to 
obtain good results in terms of compression ratio and video 
quality. This justifies its use, notwithstanding the computational 
complexity of the encoding phase (in non-real-time applications). 
But the most important advantage of using this technique is the 
possibility to obtain an approximation of the original image at a 
resolution different from the one used for code generation, thus 
 

 

Fig. 4. A two-level octree GOK partition.  
 

 

Fig. 5. Overlapped range blocks: four different partitions of each
frame in range blocks are used when coding the LL
subband. 
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obtaining an expansion of the original data. This is performed by 
increasing the range and domain cube sizes during decoding 
while leaving the fractal code τ  unchanged. 

On the other hand, due to the implicit independent coding of 
adjacent blocks/cubes in the image/video, fractal coding 
introduces a disturbing blockness effect in the decoded 
image/video sequence. This is particularly visible in edged areas 
and increases as the applied decoding zoom-in factor increases. 

In [13], a variant at the classical fractal coding is proposed to 
reduce blockness distortion in 2D fractal coding: Overlapped 
range blocks (ORB) are used instead of a normal image 
partition. This consists in taking four partitions of the image 
according to the sketches in Fig. 5: The first is obtained with 
the normal partitioning of the frame in the range blocks; the 
others are constructed to have blocks overlapping those 
resulting from the first partition. The fractal code τ(j) for each 
partition j (j=1,…,4) is separately generated and coded. 

As a result, in the image there are three different regions, as 
shown in Fig. 6. Each region Ci (i=I, II, III) is characterized by 
having a different number of fractal codes: one, two, or four. 
During decoding, the image grey level is obtained by 
combining the results of the different fractal decoding. In 
particular, the average of the values obtained with the different 
partitions of the original image is applied. In CI, the averaging 
is computed from all the four fractal codes, and in CII the 
averaging is computed only on two values, while in CIII the 
averaging is not applied since only the results of the first 
partition are available. 

The main problem with this technique is that the averaging 
produces a heavily smoothing effect on the image. To face this 
problem, a fractal decoding with adaptive averaging is 
proposed in [6]. It is based on the following consideration: In 
the case of perfect fractal coding, the four independent codes 
(in CI) provide quite similar results. It is reasonable to suppose 
that the fractal coding has a rather stable behavior and then to 
assume that better results can be obtained by obtaining the 
average from only the two closest results among the four. 
These should reduce the smoothing effect in the central part of 
 

 

Fig. 6. By using the four-partitioning in Fig. 5, we generate three 
different regions in each frame: four different fractal 
codes are available for CI, only two for CII, and only one 
for CIII. 
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the frame. Differently, for the other regions, the normal 
averaging is performed. 

We extended this methodology to the 3D fractal coding by 
dividing the active scenario in the GOK into four different 
partitions. This constitutes the starting partition from which we 
derive the octree according to the previously defined procedure. 
To reduce the computation overhead and to limit the increase 
of the number of bits necessary to code the video, the ORB is 
applied only to the LL subband. 

To increase the post-processing performances, we applied 
this procedure on a 3 × 3 mask centered in the pixel to be 
decoded. Then, in CI we estimate the filtered value based on 36 
values (9 for each partition). In particular, we get the median 
value of these, ordered square overlapping (OSO). This turns 
out to be a better estimation than that proposed in [6] due to the 
exploitation of the correlation between adjacent pixels. A new 
problem may arise when using ORB/OSO and the separate 
coding of the static and active scenarios. A situation could 
happen where the two scenarios do not match, introducing an 
undesired visual effect around the active scenario. To overcome 
this problem, the background mask is enlarged to get an 
overlapping between the two scenarios. This is obtained by 
applying the dilation operator to the background mask. 

Fractal coding is also applied to the background scenario but 
only along two directions since we code the background 
information for only the first GOK frame. To identify the active 
blocks, a special short code is used to represent these. This 
expedient is also used when introducing the background 
information into the decoded active scenario. 

IV. Experiments 

Extensive experiments have been carried out on several 
sequences characterized by different spatial and temporal 
activity and different formats. In this section, we present the 
results relevant to the application of the proposed method to the 
combination of test sequences, ‘Mother and daughter + 
Carphone’ and ‘Claire + Miss America,’ each made of 256 
frames in CIF format. The test parameters used are shown in 
Table 1. These have been chosen to achieve a target quality 
level (PSNR) of about 25 dB. A twofold test procedure has 
been set up. A first set of experiments has been carried out to 
show how an opportune policy of problem simplification based 
 

Table 1. Experiment settings. 
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Fig. 7. Enlarged areas captured from the video test sequence 3D 
decoded: a) and c) without ORB/OSO; b) and d) with 
ORB/OSO. 
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on video processing techniques allows one to address the issue 
of video summarization and presentation of a multimedia 
content by means of fractals. A further testing phase has been 
performed with the aim of comparing the efficiency of the 
proposed scheme to alternative techniques in terms of the 
overall visual quality. 

As to the first experiment set, the aim was to analyze the 
impact of each processing block deployed in the devised 
system with reference to the sketch shown in Fig. 1. In the 
following, we report the results obtained in terms of 
compression ratio, final visual quality, and total processing time 
at both coding and decoding sides. In particular, Fig. 7 
highlights the visual benefits achieved using ORB/OSO 
procedures by showing two representative enlarged areas; 
blockness artifacts are heavily reduced in both test sequences. On 
the other hand, such a procedure introduces an increase in the 
coding/decoding times, which, however, can be limited with the 
help of a subband wavelet coding as shown in Tables 2 and 3. In 
Table 2, the last three columns refer to the encoding times when 
applying the proposed method without the ORB module, with it, 
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Table 2. Key-frames coding time comparison: without ORB, with
ORB, and with ORB and wavelet. 

Coding 

Time (s) 
Sequence Number of 

key-frames Format No 
ORB ORB ORB and 

wavelet
Mother&Daughter 

+ Carphone 
58 QCIF 44 173 54 

Claire + Miss 
America 

56 QCIF 18 164 64 

Table 3. Decoding time comparison: without OSO, with OSO, and
with OSO and wavelet. 

Decoding 

Time (s) 
Sequence Number of 

frames Format No 
OSO OSO OSO and 

wavelet 
Mother&Daughter 

+ Carphone 256 CIF 20 342 118 

Claire + Miss 
America 256 CIF 19 337 120 

Table 4. Benefits of introducing the background separation in terms
of compression ratio and decoding time. 

No background 
separation 

Background 
separation  H.264/AVC

Sequence Format 
CR 

Time 
(s) CR 

Time 
(s) CR

Time 
(s)

Mother& 
Daughter + 
Carphone 

CIF 110 118 125 87 670 4.8

Claire + Miss 
America CIF 132 120 171 44 710 4.3

 

and with it while using the wavelet transform. The last three 
columns in Table III refer to the opposite procedure at the 
decoder. Note that the coder has found 58 and 56 key frames in 
the two test sequences, and these frames have been coded in 
QCIF format. The reduction in the processing time when using 
the wavelet is quite evident. This is due to the fact that, in this 
case, the median filtering is applied to a smaller number of 
coefficients, which are those relevant to the LL subband only. 

The results in Table 4 show the compression performance 
improvement obtained by the introduction of the background 
separation procedure. As to this, the improvement for the 
sequence ‘Claire + Miss America’ is higher than that for the 
sequence ‘Mother and Daughter + Carphone.’ As a matter of 
fact, the former sequence is composed by frames with a strong 
inter-frame temporal correlation (low velocity in the 

movements of the objects) and a large background area in the 
entire sequence (small area occupied by the moving objects). 
This characteristic also influences the outcome of the next 
experimentation that was set up to study the impact of the 
background separate coding in terms of decoding times. A 
decrease in the decoding time was expected with separate 
encoding of the background, since the corresponding area is 
decoded once for the entire GOK. This was confirmed by the 
experiments: Decreases in the decoding time equal to 26% and 
63% have been computed for the two sequences when the 
selection of the background is applied. This reflects the fact that 
the advantage in the selection of the background regarding the 
decrease of the decoding times is strictly related to the 
characteristics of the sequence to be encoded. In Table 4, we 
are also comparing the performance of the proposed algorithm 
with respect to those obtained with a video compression 
standard. In particular, we have compressed the key-frames at 
the same spatial resolution (QCIF), and final visual quality with 
the last coding standard H.264/AVC, which is known to 
provide quite high compression ratios. This comparison allows 
us to evaluate the cost in terms of compression ratio and 
decoding time that we have to pay in order to have the 
zooming functionalities provided by the proposed scheme. 

In the second experiment phase, we analyzed the 
performance and effectiveness of the proposed method by 
comparing the achieved results to those obtained, under the 
same constraints (that is, spatial and temporal expansion), by 
applying the frame replication and classical interpolation 
techniques. In fact, the originality of our work within the 
framework of video summarization is in the use of the 
properties of implicit interpolation of fractals during the 
decoding stage of the process to obtain an enhanced version of 
the sequence. This motivates the use of the state-of-the-art 
techniques, such as frame replication and interpolation, as 
benchmark systems.  

A measure of the overall visual quality achieved was 
obtained by comparing the expanded sequence to the original 
video. To measure the quality achieved in the reproduction of 
the considered test sequences, we refer to the video quality 
assessment formalized in [14] and [15]. As to this, the jerkiness 
is defined as the perception, by human vision faculties, of 
originally continuous motion as a sequence of distinct 
‘snapshots.’ Usually, jerkiness is present when the position of a 
moving object within the video scene is not updated rapidly 
enough. More in general, the total error generated by an 
incorrect coding of a moving object on a video sequence is 
representative of spatial distortion and incorrect positioning of 
the object. Three features can be extracted to measure the 
above impairments. One of these features is extremely related to 
jerkiness, while the other two represent a measure of the average 
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and total distortion of the expanded video due to both jerkiness 
and spatial artifacts such as blurring/smearing, blocking, edge 
busyness, and others. The features are computed by comparing 
the original and expanded sequences. For that reason, the 
extracted features belong to the class of reference metrics [14]. 

The features extraction is accomplished according to the 
process as follows. A single-frame temporal alignment of the 
expanded and original video is performed. For each aligned 
video image pair, a difference image is created by subtracting 
the image of the expanded sequence from the image of the 
original. The standard deviation of such difference images 
(SDDI) is calculated. From the temporal history of the SDDI, 
the following three features are then computed: 

- The temporal mean of SDDI (TM-SDDI) mainly related to 
the average distortion caused by spatial distortion and 
jerkiness 

- The temporal standard deviation of SDDI (TSD-SDDI) 
primarily associated to jerkiness 

- The temporal root mean square of SDDI (TRMS-SDDI) 
representative of the total spatial distortion and jerkiness 

Details on the exact computation of the above metrics are 
given in appendix A. 

Tables 5 and 6 report the normalized values of the three 
features previously described for the two test sequences. In 
both cases, the results show that the proposed method 
overcomes the two benchmark techniques in terms of both 
spatial distortion and jerkiness. As to jerkiness, this is due to the 
capacity of the fractal interpolation to approximate with high 
accuracy three-dimensional block motion. The use of a 3D 
fractal code supported by ORB/OSO processing allows 
smoothing the total motion of the sequence, thus enhancing the 
quality of the final presentation of the sequences without the 
introduction of time discontinuity and avoiding artificial jerky 
motion. The jerkiness benefits of the proposed method with 
respect to the benchmark systems are more perceptible in the 
‘Mother and Daughter + Carphone’ sequence. In fact, this 
sequence presents a higher temporal variation compared to the 
other. Indeed, for both sequences the proposed technique 
provided the same jerkiness level (that is, TSD-SDDI equal to 
0.04), whereas the classic frame replication and interpolation 
techniques did better with the ‘Claire + Miss America.’ The 
reason for this outcome has still to be found on the low 
temporal activity within the sequence. The different nature of 
the two test sequences also influences the performance of the 
compared systems in relation to the total and average spatial 
distortion represented by the TM-SDDI and TRMS-SDDI 
features, respectively. For ‘Mother and Daughter + Carphone’ 
the experimentation provided higher values than for ‘Claire + 
Miss America.’ In both cases, the performance of the compared 

Table 5. Normalized values of the quality metrics for ‘Mother & 
Daughter’ and ‘Carphone.’ 

Metric Fractal Frame replication Interpolation 

TM-SDDI 0.43 0.52 0.46 

TSD-SDDI 0.04 0.07 0.06 

TRMS-SDDI 0.44 0.54 0.46 

Table 6. Normalized values of the quality metrics for ‘Claire’ and 
‘Miss America.’ 

Metric Fractal Frame replication Interpolation 

TM-SDDI 0.17 0.21 0.18 

TSD-SDDI 0.04 0.06 0.05 

TRMS-SDDI 0.14 0.22 0.16 

 

methods is similarly affected by the nature of the sequences. 
The results presented in this section refer to a situation of 

dense key-frames selected from the original video sequence. 
This is an advantage for the video presentation operation, 
which can exploit the high degree of similarity between 
consecutive frames. Differently, in the case of sparse frames, 
the performance would be worse, and in some circumstances 
the reconstruction of missing data may fail. This problem has 
been investigated with the last experimentation test. By 
referring to the histogram comparison procedure for key-
frames selection, we set the threshold Thist to higher values to 
achieve a more sparse key-frames distribution. Figure 8 shows 
the behaviour of the quality metrics for ‘Mother & Daughter’ 
and ‘Carphone.’ As expected, the results show that when 
increasing the distance between consecutive key-frames the 
performance of the three compared methods decreases. The 
frame replica suffers more than the others from the missing 
correlation between distant frames. The simple replication of 
the spatial and temporal information produces a fast 
degradation of the performance for all the quality parameters 
for Thist higher than 20, which approximately corresponds to 
selecting one frame for every 25. The proposed method and the 
interpolation show a similar behaviour with a predominance of 
the proposed system. This is a confirmation that the fractal 
interpolator outperforms classical interpolators on zooming 
applications [6]. Similar results have been obtained with the 
sequences ‘Claire’ and ‘Miss America.’ 

Finally, for the sake of fairness it is worth noting that all tests 
have been performed on an MS-Windows environment 
running on an INTEL Pentium IV - 1.4 GHz machine with a 
RAM memory of 256 MB. Due to the inherent structure of the 
proposed codec scheme, which allows a rather naturally 
parallelization of the whole process, we can say that a drastic 
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Fig. 8. Behaviour of the quality features vs. the histogram threshold for ‘Mother & Daughter’ and ‘Carphone.’ 
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reduction of the processing delay can reasonably be obtained in 
the case of parallel processor systems. This is a realistic 
scenario in the context of a database centralized system in 
charge of the video abstraction. Indeed, within the proposed 
scheme the coding stage is the time consuming part of the 
whole process. On the other hand, the decoding, and thus the 
content extraction procedure performed at the user side, does 
not require any particular powerful system. 

V. Conclusions 

A novel and promising approach to the coding of video key-
frames based on the joint use of fractals and wavelets has been 
proposed. This aims at exploiting the advantages of fractals to 
expand a video sequence in both temporal and spatial 
dimensions in a ‘natural’ way. This feature represents an 
important novelty of this work with respect to the alternative 
approaches, which mainly focus on the compression ratio 
without taking into account the presentation aspect of the video 
summary. From these experiments, we have observed that the 
use of the wavelets and the separate coding of the background 
and foreground components allow one to both increase the 
compression ratio and reduce the decoding time.  

In this work, we have used some key-frame extraction 
procedures that identify the key-frames at scene changes. 
However, for summarization purposes, it is sometimes better to 
select representative frames from the middle of the scenes, 
being more informative than those at the end of the scenes. 
Indeed, this observation requires the introduction of some 
changes in some steps of the proposed technique, such as 
background coding and key-frame grouping. This issue will be 
addressed in future work.  

Appendix 

Let A, B be two sequences composed by n frames of N×M 
size, single-frame temporal aligned; let each pair of video 

frames be represented by the index p={1, 2, 3,..., n} and call 
dp(i, j) the difference image created from each pair p by 
subtracting the image of sequence A from the image of 
sequence B. Then, 
the standard deviation of dp(i, j), SDDIp is 
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