
330 Mohsen Sharifi and Morteza Okhovvat © 2012 ETRI Journal, Volume 34, Number 3, June 2012

In many applications of wireless sensor actor networks
(WSANs) that often run in harsh environments, the
reduction of completion times of tasks is highly desired.
We present a new time-aware, energy-aware, and
starvation-free algorithm called Scate for assigning tasks
to actors while satisfying the scalability and distribution
requirements of WSANs with semi-automated
architecture. The proposed algorithm allows concurrent
executions of any mix of small and large tasks and yet
prevents probable starvation of tasks. To achieve this, it
estimates the completion times of tasks on each available
actor and then takes the remaining energies and the
current workloads of these actors into account during task
assignment to actors. The results of our experiments with
a prototyped implementation of Scate show longer
network lifetime, shorter makespan of resulting schedules,
and more balanced loads on actors compared to when one
of the three well-known task-scheduling algorithms,
namely, the max-min, min-min, and opportunistic load
balancing algorithms, is used.

Keywords: Wireless sensor actor networks, task
allocation algorithm, energy-awareness, scalability, max-
min, min-min.

Manuscript received June 13, 2011; revised Dec. 5, 2011; accepted Dec. 27, 2011.
Mohsen Sharifi (phone: +98 21 7391 3307, msharifi@iust.ac.ir) and Morteza Okhovvat

(okhovvat@comp.iust.ac.ir) are with the School of Computer Engineering, Distributed
Systems Laboratory, Iran University of Science and Technology, Tehran, Iran.

http://dx.doi.org/10.4218/etrij.12.0111.0366

I. Introduction

Advances in the technologies of micro-electro-mechanical
systems have been instrumental in the evolution of wireless
sensor actor networks (WSANs) [1], [2] that consist of a set of
densely deployed sensor nodes alongside a set of sparsely
deployed actor nodes connected via wireless links. Sensor
nodes collect environmental information and actors make
appropriate actions on the environment based on sensory
information they receive from sensors.

There are basically three architectures depending on the
strategies adopted by actors to send commands [2]-[6]: semi-
automated, automated, and cooperative.

In automated architecture, the network operates in a fully
distributed way with the actors that autonomously undertake
the appropriate actions upon receiving sensory information. In
semi-automated architecture, sensors collect and transmit
environmental information to a singleton network sink, and the
sink determines the proper actions that actors should execute in
response and allocates these actions (tasks) to appropriate
actors. In cooperative architecture [4], sensors transmit sensing
data to actuators in a single hop or multiple hops. Actuators
analyze data and may consult the sink(s) before taking any
action. That is, actuators may use their peer-to-peer network to
make decisions and take action, possibly informing the sink
about the action taken, or could inform the sink and wait for
further instructions from the sink.

In this paper, we only consider WSANs with semi-
automated architecture wherein data from sensors is routed to a
sink node that determines actions to be performed by actors.

Scate: A Scalable Time and Energy Aware
Actor Task Allocation Algorithm

in Wireless Sensor and Actor Networks

Mohsen Sharifi and Morteza Okhovvat

ETRI Journal, Volume 34, Number 3, June 2012 Mohsen Sharifi and Morteza Okhovvat 331

WSANs are well suited to quickly respond to environmental
events. Since these networks are usually used in critical
applications, actors must respond before specified deadlines;
otherwise, delays may lead to disaster. However, due to
existing constraints such as energy limitations and dynamic and
fault-prone attributes of environments, the meeting of deadlines
is very challenging. To make efficient use of capabilities of
WSANs, the employment of efficient task-scheduling
algorithms is inevitable. Hence, many task-scheduling
algorithms for distributed systems have been presented so far
with the aim of minimizing the total completion time (CT) of
tasks [7]-[10]. These algorithms allocate tasks to most suitable
actors to minimize the overall CT. However, the reduction of
the overall CT of actors alone does not necessarily lead to the
reduction of execution times of tasks.

Three famous examples of such algorithms are the
opportunistic load balancing algorithm (OLB), the min-min
algorithm, and the max-min algorithm [10]. Load balancing is
the main goal of OLB, achieved by keeping all actors as busy
as possible [10]. OLB schedules the tasks in arbitrary order
without considering the execution times or the CTs of tasks [7].
This simple approach can result in schedules with long
makespans [10], making OLB inappropriate for WSANs that
are critically constrained by time. In contrast, the min-min and
max-min algorithms consider the execution times of tasks
when assigning tasks to actors.

The min-min algorithm considers the approximate execution
times and CTs of all tasks on each actor and only then assigns
the task with the shortest CT to an actor with minimal
execution time [10], [11]. However, since it always gives
priority to smaller tasks and allocates small tasks to faster
actors, if the number of small tasks is bigger than the number
of large tasks, then larger time-consuming tasks determine the
makespan. To overcome this problem, the max-min algorithm
gives higher priority to larger tasks and assigns large tasks to
actors with minimum execution time. It seems that the max-
min algorithm outperforms the min-min algorithm, especially
when the number of tasks with longer task CTs is more than
the number with shorter ones, but it may result in longer
system response time in some cases. Both the min-min and
max-min algorithms may lead to task starvation because they
give absolute priorities to small and large tasks, respectively.

In this paper, we propose a starvation-free task-allocation
algorithm for WSANs, nicknamed Scate, in which actors
execute concurrently a mix of large and small tasks belonging
to one or more applications. Scate achieves a longer network
lifetime, a shorter makespan of resulting schedules, and more
balanced loads on actors compared with when the max-min
algorithm, the min-min algorithm, or OLB is used. Scate
achieves its superiority by considering both the CTs of tasks

and the remaining energies of actors in its selection of actors.
The rest of paper is organized as follows. Section II presents

notable related works. Section III presents the problem
statement. Section IV describes our assumptions. Section V
presents our proposed algorithm, Scate. Section VI presents the
experiment results, and section VII concludes the paper.

II. Related Work

Due to limitations of WSANs such as their energy
constraints, dynamicity, and fault-proneness, general
scheduling algorithms are often not applicable to WSANs.
There have thus been many efforts to propose optimal
scheduling algorithms particularly for wireless sensor networks
(WSNs) with the purpose of reducing response time and
energy consumption. However, there has been little research
done on optimal task scheduling in WSANs.

Tian and others [12] presented a multi-hop task-scheduling
approach for multi-hop clustered WSNs using the min-min
algorithm for task assignment. The approach considers both
communication and computation requirements but neither
enforces any order on tasks nor guarantees to meet execution
deadlines of applications.

Yu and Prasanna [13] proposed an energy-balanced task-
allocation algorithm for WSNs. Their algorithm calculates the
voltage settings of tasks, assigns communication actions to
channels, and schedules communication and calculation
activities. They believe that the deployment of their algorithm,
depending on the scale of the problem, can lead to a 3.5- to 5-
fold network lifetime improvement. However, they do not
consider application energy consumption requirements and
cannot guarantee to satisfy energy consumption constraints.

Okhovvat and others [14] presented a two-phase task-
allocation technique based on queuing theory for allocating
tasks to actors in WSANs considering time and energy. Firstly,
capabilities of actors in performing tasks are evaluated.
Secondly, tasks are allocated to actors according to their
capabilities to reduce the total CT of tasks. Their approach
improves the makespan of resulting task schedules by 45%
compared to OLB, providing a suitable tradeoff between a
balanced load on actors and the CTs of all tasks. However, they
ignored the limitation in the real world on the size of the queue
associated with each actor.

Shivle and others [15] presented new task assignment and
scheduling heuristics for mobile ad hoc networks containing an
individual communication channel for each node. Each node
can simultaneously transmit and receive data. The very
assumption of an individual channel for each node as well as
the capability of simultaneous data transmission and reception
by each node makes this approach inappropriate for WSANs

332 Mohsen Sharifi and Morteza Okhovvat ETRI Journal, Volume 34, Number 3, June 2012

because sensor nodes in WSANs often lack these capabilities.
Awadallah and Darwish [16] proposed a QoS-constraint

task-scheduling algorithm for multi-hop clustered WSNs. They
used a modified linear task-mapping algorithm augmented by a
task-migration algorithm to reduce the costs of inter-task
communication. Although their task-scheduling algorithm
guarantees that real-time deadlines are met, it is not suitable for
large-scale applications. However, since sensor nodes are
stationary and do not affect their environment, this approach is
not applicable to WSANs where actors are usually mobile. In
fact, the nature of the tasks in WSANs is different from the
actions that sensor nodes execute in WSNs, and this is one of
the reasons that scheduling approaches presented for WSNs
(for example, those presented in [16]) are not applicable to
WSANs.

Given this background on task allocation and scheduling in
sensor networks, we propose Scate, which is a new scalable,
time-aware, and energy-aware actor task-allocation algorithm
for WSANs with the objective of prolonging the lifetime of a
network, shortening the makespan of resulting task schedules,
and balancing the loads on all actors. Our algorithm is
significantly different from aforementioned algorithms in that it
considers scalability, load balancing, and time and energy
constraints as cumulative effective parameters in the
scheduling of tasks to proper actors.

III. Problem Statement

The task assignment problem in WSANs is often considered
the allocation of n tasks Ti (i=1, 2,…, n) to m actors
Aj (j=1, 2,…, m), wherein the schedule of each task amounts to
the allocation of one or more time slots to one or more actors
[17]. As in many other heterogeneous distributed systems, the
response time of WSANs is measured in terms of makespan
[10], [11], which denotes the overall CT of all tasks in the
network. To achieve a minimum makespan, an optimized
mapping of tasks to actors is required that is an NP-complete
problem to solve [8], [10], [17], [18].

In WSANs, the scheduling problem amounts to the mapping
of a set of tasks to a set of actors to minimize the CT of a
specific task or the makespan of resulting task schedules.
Schedulers can consider other parameters such as load
balancing, system throughput, service reliability, service cost,
and system utilization as well. Furthermore, schedulers can
work either in the instant mode, wherein each task arriving at
the scheduler is allocated by the scheduler to an actor, or in the
bunch mode, wherein tasks arriving at the scheduler are first
put into a set by the scheduler and then scheduled collectively.

There are also some atomic tasks that are not decomposable.
These independent tasks, known as meta-tasks [19], do not

communicate with each other. Some schedulers use
approximate execution time of meta-tasks to assign them to
actors that can perform the tasks fastest. Such algorithms are
known as minimum execution time algorithms [8], [10], [11].

There are other scheduling algorithms that are categorized as
minimum CT (MCT) algorithms. They assign tasks to actors
that are expected to complete those tasks the fastest [8], [10],
[11]. Although each task is assigned to an actor that is expected
to complete the task the fastest, the actor may not execute the
task in minimum time since MCT depends on the availability
of the actor and the current workload of the actor.

As mentioned before, OLB is a well-known scheduling
algorithm with the aim of balancing the loads on actors. It
assigns tasks to actors in an arbitrary order without considering
the CTs or the execution times of tasks. It tries to create a load-
balanced network by keeping all actors as busy as possible [7]-
[10]. Its ignorance of expected task execution time in its
assignment policy may lead to long makespans of resulting
schedules though [10]. Depending on the type of
implementation, the complexity of OLB is variable. For
example, the complexity of the implementation of OLB
reported by Maheswaran and others [11] that examines m
number of actors to find an assignment is O(m).

In contrast to OLB, tasks are assigned to actors based on
execution times of tasks in both the max-min and min-min
algorithms. The min-min algorithm estimates the execution
and CTs of all unscheduled tasks (U) on each actor first. It then
repeatedly selects a task with the shortest CT and assigns it to
an actor with the least execution time until all tasks in U are
assigned [11], [12].

In the pseudo code of the min-min algorithm in Fig. 1, aj
represents the expected time that actor Aj can perform a task
after finishing the execution of all its previously assigned tasks.
To determine Cij, that is the CT of task Ti on actor Aj, the
expected execution time Eij of Ti on Aj is added to the
availability time aj of Aj. The entire Cij is placed in the C matrix
that is used to find an appropriate actor for each task. The i-th
row of this matrix is scanned for each Ti, an appropriate actor
with the fastest expected CT (ECT) is chosen, and vector a and
matrix C are accordingly reorganized. This same process is
repeated for all other unassigned tasks.

Although the max-min and min-min algorithms have similar
structures, they differ in their selections of actors to assign them
tasks. In the max-min algorithm, once an actor that can provide
the earliest CT for a task is determined, the task Tk with the
maximum earliest CT is chosen and mapped to the
corresponding actor [11]. Therefore, at line 6 of Fig. 1,
“minimum” should be replaced by “maximum.” It seems that
the max-min algorithm yields a quicker response time than the
min-min algorithm, especially in cases where the number of

ETRI Journal, Volume 34, Number 3, June 2012 Mohsen Sharifi and Morteza Okhovvat 333

Fig. 1. Pseudo code for min-min algorithm.

1. For all tasks Ti in meta-task set Mv
2. For all actors Aj
3. Cij = Eij + aj
4. Do until all tasks in Mv are assigned
5. For each task in Mv find the earliest CT and the actor that

can perform the task
6. Find the task Tk with the minimum earliest CT
7. Assign the task Tk to actor Al that gives the earliest CT
8. Delete the task Tk from Mv
9. Update al
10. Update Cil for all i
11. End Do

small tasks is more than the number of large tasks. In other
words, the max-min algorithm has a better performance than
the min-min algorithm when the number of smaller tasks is
higher than the number of larger tasks.

Both the max-min and min-min algorithms have the same
time complexity equal to O(mn2), where n denotes the number
of unscheduled tasks and m denotes the total number of
available actors [18].

IV. Assumptions

We assume a semi-automated architecture WSAN
containing a singleton sink node. Sensors are only responsible
for gathering information from the environment and
transmitting it to the sink. The sink node determines the proper
tasks to be executed by actors and then dispatches tasks to
proper actors that are selected based on an allocation algorithm.

More precisely, we assume a WSAN with m actors Aj

(j=1,…, m) that should perform n tasks Tj (i=1,…, n). Tasks
are independent, non-preemptive, and not decomposable.
Actors can search the whole network without any restriction on
routing hops. Actors are idle at first. The total time taken by the
actor Aj with no load at the time of assignment to execute a task
Ti is called the execution time of task Ti on actor Aj, and it is
denoted by Eij. The time taken by actor Aj to finish the
execution of task Ti is called the CT, and it is denoted by Cij.
The CT of a task Ti on an actor Aj is greater or at best equal to
its execution time on the same actor, that is, Cij ≥ Eij. The
expected time that actor Aj can perform a task after finishing
the execution of all its previously assigned tasks is called the
availability time of actor Aj, and it is denoted by aj. In fact, Cij

denotes the sum of the availability time (aj) of actor Aj and the
execution time (Eij) of task Ti on Aj, that is, Cij = (Eij+ aj).

It is important to note that our choice of semi-automated
architecture for WSANs does not restrict the applicability of
Scate to real large-scale WSANs. As stated by Liu and others
[20], some large-scale sensor networks may be single hop in

terms of wireless communication needed for reporting. A sink,
or several sinks, can be mobile and move around the network.
This allows them to get close to sensors so that report
collecting can be done in a single hop. In other examples,
embedded sensors can move toward a fixed sink. For example,
sensors can be embedded into sea mammals to trace their
locations over time. When a sea mammal approaches a fixed
base station, reports can be downloaded.

Another example that has used semi-architected WSANs in
a real large-scale application is the real-time climate control
and monitoring of greenhouses [21]. Given the above evidence,
we also show through experiment the applicability of our
proposed algorithm to large-scale as well as to small-scale
networks in section VI. Given that the scope of our proposition
has been limited to semi-architecture WSANs, we have only
compared our proposed algorithm with related algorithms that
have considered this architecture, to ensure a fair comparison.

V. Proposed Scate Task Allocation Algorithm

According to the assignment policy of the min-min
algorithm that is based on allocating small tasks to fast actors,
suppose T1 is the first task that is assigned to actor Aj. It is
expected that Aj finishes T1 in the least possible time compared
to other actors. Other remaining tasks are also mapped to Aj if
the total execution time of tasks mapped to Aj is less than their
execution time on other actors. Because the min-min algorithm
assigns tasks to the fastest actors, it can shorten the makespan
of resulting task schedules in WSANs only if the difference
between the execution time of tasks is short. Otherwise, large
tasks may be mapped to slower actors significantly increasing
the makespan.

To resolve the above weakness and get a shorter makespan
in cases where the number of large tasks is less than the
number of small tasks, we propose to use the max-min
algorithm instead. The bigger the difference is between the
number of large tasks and the number of small tasks, the bigger
the difference is in the makespan of resulting schedules under
these two algorithms. In such cases, the expected makespan
can be approximated by the execution time of the largest task.

Because the min-min algorithm assigns small tasks prior to
assigning large ones, it leads to a longer makespan compared to
the result from using the max-min algorithm. In contrast,
assigning the largest task to the fastest actor, as with the max-
min algorithm, provides a better chance for simultaneous
execution of small tasks on other actors. Furthermore, the max-
min algorithm leads to a better balance of loads on actors [10],
which is critically desired in WSANs to prevent network
partitioning.

Generally, load balancing is a desirable property in

334 Mohsen Sharifi and Morteza Okhovvat ETRI Journal, Volume 34, Number 3, June 2012

Fig. 2. Pseudo code for Scate.

1. For all tasks Ti in the meta-task Mv
2. For all actors
3. (Cij, eij-remain)=[(Eij+aj), eij-remain=ej-now–(Cij×∂j)]
4. If (Z>1) Then Z=abs(Z); W=1; // Z as defined in (4)
5. Else W=abs(1/Z); Z=1
6. Do until all tasks in Mv are mapped
7. For Z down to 1
8. For each task in Mv find the earliest CT an actor can perform

the task
9. Find a task Th with maximum earliest CT
10. If no actor Al with maximum energy can be found

to complete the execution of the task Th earliest
11. Then Assign Th to the fittest actor Al with highest value of
12. β×(ehl-remain) / (CTh)
13. Else Assign Th to actor Al that yields the earliest CT and

has maximum energy
14. End if
15. Delete task Th from Mv; Update al
16. Update (Cij, eij-remain) for all i
17. For W down to 1
18. For each task in Mv find the earliest CT an actor can

perform the task
19. Find a task Tk with minimum earliest CT
20. If no actor Al with maximum energy can be found to

 complete the execution of the task Tk earliest
21. Then Assign Tk to the fittest actor Al with highest value of
22. β×(ekl-remain) /(CTk)
23. Else Assign Tk to actor Al that yields the earliest CT and

. and has maximum energy
24. End if
25. Delete task Tk from Mv; Update al
26. Update (Cij, eij-remain) for all i
27. End Do

distributed systems, especially in small-scale distributed
systems requiring a small makespan. However, load balancing
can lead to a large makespan in large-scale distributed systems.
This is not true in our proposed approach because the
scheduling algorithms in different situations are properly
chosen in line with the restrictions of WSANs and because
there is a focus on minimizing the total CTs of tasks.

Figure 2 represents the proposed algorithm. Scate builds a
matrix c’ of ordered pairs whose first element Cij denotes the
expected CT of task Ti by actor Aj and the second element
eij-remain denotes the expected remaining energy of actor Aj after
performing the task Ti. To start with, each actor has its
maximum energy and its workload is zero. Hence, in the first
round, the largest task in the set of tasks requiring the longest
execution time is allocated to an actor that can complete the
task earlier than others. In the next rounds, the next largest and
smallest tasks in the set of unallocated tasks (UTi) are assigned
to the proper actors that can complete the tasks in the minimum
amount of time and also save maximum energy compared to
other actors.

Although the minimization of the total CT of tasks is the

main goal of Scate, the mapping of tasks to the fastest (highest
throughput) actors without considering the remaining energies
of actors can be fatal because actors may run out of energy,
resulting in network partitioning [22]. This problem may not be
easily resolved since WSANs are mostly deployed in harsh
environments making recharging of sensors and actors very
difficult and sometimes impossible. It is necessary to consider
remaining energies of actors when scheduling tasks.

To allocate tasks to actors, Scate uses (1) to estimate the CT
of each UTi on every actor. It also uses (2) to estimate the
approximate remaining energy of each actor:

Cij = (Eij + aj), (1)

eij-remain = ej-now – (Cij × ∂j). (2)

In (1), aj indicates the expected time for actor Aj to perform a
new task after finishing the execution of all its previously
assigned tasks and Eij denotes the expected execution time of Ti
on Aj. To evaluate the remaining energy of each actor, which is
the next effective parameter in the allocation of tasks, the
definition of (2) includes Cij as a derivative of (1). In (2), ∂j
represents the average energy consumption of actor j per
second and ej- now represents the remaining energy of actor Aj at
allocation time.

Scate tries to allocate a new task to an actor that is expected
to have more energy after performing that task than other
actors and at the same time can perform the new task earlier
than other actors. However, there may be some cases where no
actor is found to fulfill these requirements. In such cases, an
actor with maximum energy or an actor that can complete the
task earliest may be chosen arbitrarily to perform the new task.
However, to avoid blind arbitration, Scate takes into account
the fact that different applications may have different
precedence on energy saving and shortening of the total CT of
tasks. Some applications may have higher priority for energy
saving, some applications may have higher priority for
shortening the CTs of tasks, and some applications may be
neutral, considering energy saving and CT to be of equal
importance. We denote this precedence by β. Taking this
application-dependent precedence parameter into account,
Scate selects an actor Aj out of all actors in the network to
execute a new task Ti if this actor has the highest fitness value
defined by

Fitness Metric = β×(eij-remain) ⁄ (CTi), (3)

wherein eij-remain represents the expected remaining energy of
actor Aj after performing the task Ti and CTi represents the
expected CT of the task Ti on actor Aj.

So in cases where an actor with a high amount of remaining
energy and the ability to complete a new task earlier than other
actors cannot be found, Scate considers the reciprocal of the

ETRI Journal, Volume 34, Number 3, June 2012 Mohsen Sharifi and Morteza Okhovvat 335

CT over the remaining energy of each candidate actor and
weights this ratio by the precedence of the application that is
given and the constant during the run of the application, then
selects the actor with the highest fitness value. For example, if
an application considers the amount of an actor’s remaining
energy to be twice as relevant as task CT, then β is equal to 2
and any new task is assigned to the actor whose remaining
energy is highest after dividing its CT of the previous task by
its expected CT of the new task and multiplying by 2.

It may seem that when there is a single run of a given
application in a WSAN, a constant value of β for this
application in (3) is redundant and that the ratio of remaining
energy of an actor over the CT of a task can on its own
determine the fitness degree of the actor to run the task.
However, this is true only if we consider that there is always a
single run of an application in the network. In case there are
many concurrent runs of the same application or different
applications in the network, the precedence parameter β plays
its real role in deciding on the best actor to execute a task by
weighting the above ratio for different runs. It should be
pointed out that a single application may also be given different
precedence for different concurrent or single runs based on
pertaining changes, for example, in its mission or context. In
fact, the very strength of Scate in comparison with other related
algorithms lies in weighting the remaining energy over the CT
ratio with β allowing changes in precedence of applications
running concurrently in the network. It is this very feature that
makes Scate adaptable to different applications and to different
runs of the same application. This is why we claim Scate is
scalable. We illustrate this claim in section VI.

Returning to the pseudo code of Scate in Fig. 2, in each
iteration, Scate allocates the largest task and then the smallest
task to actors by making suitable tradeoffs between the CTs of
tasks and the remaining energies of actors. The total value of Cij
and eij-remain is placed in the matrix c’, which is used for finding
an appropriate actor for each task.

To find an appropriate actor for each task, the i-th row of
matrix c’ is scanned for each Ti, and an appropriate actor with
the shortest CT and maximum remaining energy is selected. If
the difference between the number of large tasks and the
number of small tasks is large, the use of the min-min
algorithm or the max-min algorithm alone can lead to a long
makespan as well as starvation of large or small tasks.

We divide tasks into large tasks and small tasks based on the
ECT of tasks. Hence, we define parameter Z as the ratio of the
number of large tasks (NTlarge) over the number of small tasks
(NTsmall) as

Z =(number of large tasks)/(number of small tasks). (4)

Specifically, a task that has a greater ECT than the average of

Table 1. CTs of tasks on two actors.

 CTi

Actor
CT1 CT2 CT3 CT4 CT5

A1 2 3 1 4 7

A2 17 19 20 12 18

Table 2. Required energy for execution of tasks on two actors.

 REi
Actor

RE1 RE2 RE3 RE4 RE5

A1 2 3 3 4 5

A2 5 6 7 8 9

ECTs is placed in the group of large tasks and other tasks are
placed in the group of small tasks. Finally, upon every
allocation, the task with the maximum ECT and then the task
with the minimum ECT are assigned to corresponding actors
that have the highest remaining amount of energy and can
perform within the least amount of time, and this process
continues for the remaining tasks.

As a simple example, let us consider there are two
heterogeneous actors in a WSAN with the same
communication bandwidth on their links but with different
throughputs and speeds of movement. Let us also consider that
there are five tasks, T1, T2, T3, T4, and T5, to be allocated to
actors by the sink for execution and that the CT of each task
(CTi) on each actor is given as in Table 1 and the required
energy for the execution of each task on each actor is given as
in Table 2. As mentioned before, CTs are determined by the
sink based on Eij and the distance between the actors and the
locations where tasks should be performed. Also, the expected
required energies for executions of tasks on A1 and A2 are
evaluated by the sink as given in Table 2. However, since the
main goal of this example is to show the operations of the three
mentioned algorithms compared to those of Scate, and to keep
the example simple, we have focused on the allocation results
of scheduling algorithms.

We assume that actors are idle at first. Since the main goal of
the min-min and max-min algorithms is to minimize the
makespan of resulting task schedules, and to describe the flow
of these two algorithms compared with the flow of Scate, we
assume that the same energy level is required by each actor A1
and A2 to perform each task. Hence, to have a fair comparison,
we consider β to be equal to one.

 Figure 3 includes four Gantt charts that show the total CTs
of five tasks tabulated in Tables 1 and 2 when the min-min
algorithm, the max-min algorithm, OLB, and Scate are
deployed. As Fig. 3 shows, OLB yields the maximum

336 Mohsen Sharifi and Morteza Okhovvat ETRI Journal, Volume 34, Number 3, June 2012

Fig. 3. CTs of five tasks by two actors with different schedules:
results of (a) min-min algorithm, (b) max-min algorithm,
(c) OLB, and (d) Scate.

6 10 17
CT

A1

A2

T3T1 T2 T4T5

7 11 14 16 17

A1

A2

CT

T2

T1 T3 T4 T5

7 3 2 14 19
CT

A1

A2

T4

T5 T3 T1 T2 A1

A2

7 8 10 12 13
CT

(a)

(b)

(c)

(d)

3 1

T1 T2 T3 T4 T5

makespan (19 s) and Scate yields the minimum makespan
(13 s). The max-min and min-min algorithms yield the same
makespan (17 s) but with a different order of scheduled tasks.
In this example, although OLB gives the worst makespan, it
provides better balance of load than the max-min and min-min
algorithms, resulting in a longer actor lifetime. From this
perspective, Scate performs best in yielding both the smallest
makespan and the best overall balance of loads on actors.

Scate performs best in the assumed simple example, but it
may not perform best in other scenarios. Therefore, we need to
present a more general and thorough evaluation, which is the
subject of the next section.

VI. Experiment Results

To show the efficiency of our approach, in a typical scenario,
Scate is compared with OLB, the min-min algorithm, and the

Fig. 4. Experiment results in small scale: (a) Z<1, (b) Z=1, and (c)
Z>1. Vertical axis shows total CTs of tasks and horizontal
axis shows workloads.

67
65
63
61
59
57
55
53
51
49
47
45

Light Heavy
(a)

130

125

120

115

110

105

100
95

Light Heavy
(b)

620
610
600
590
580
570
560
550
540
530 Light Heavy

(c)

Scate Max-min algorithm Min-min algorithm OLB Scate

Scate Max-min algorithm Min-min algorithm OLB Scate

Scate Max-min algorithm Min-min algorithm OLB Scate

max-min algorithm in terms of total CT of tasks and total
remaining energies of actors. In addition, to study the effect of
scale on the efficiency of Scate, we perform simulations in both
large and small scales in two different settings. In the small
scale (Setting I), we assume a two-dimensional square field,
10 m×10 m, containing 100 sensor nodes with a 1 m
transmission range and 10 actor nodes. We assume that the
tasks to be executed by actors are independent and that actors
can browse the whole network with no restrictions on routing
hops. The primary energy of each actor is assumed to be the
same as others and equal to 50 J. In the large scale (Setting II),
we assume a two-dimensional square field, 100 m×100 m,
containing 1,000 sensors with a 10 m transmission range and
10 actor nodes. We assume that the tasks to be executed by

ETRI Journal, Volume 34, Number 3, June 2012 Mohsen Sharifi and Morteza Okhovvat 337

actors are independent and that actors can search the whole
network with no constraints on routing hops. The primary
energy of each actor is assumed equal to 50 J.

In our simulations, we assume that each actor runs only a
single task at any time and that tasks are selected from three
different classes with slow, medium, and fast service rates. We
also assume that tasks are independent and are submitted to
actors by the sink. To evaluate the effect of the workload on the
network, light and heavy loads are considered, wherein
workload is defined as the number of tasks to be executed by
the actors. To achieve a better evaluation, we consider all
possible values of parameter Z in our simulations and assume
that the priority of time is the same as the priority of energy
such that β=1. Figures 4 and 5 depict the CTs of tasks under
four scheduling algorithms in both Setting I and Setting II,
respectively.

As Fig. 4(a) shows, in the small scale setting, where the
number of small tasks is bigger than the number of large tasks,
the max-min algorithm results in a smaller makespan.
However, as shown in Fig. 4(b), when the number of small
tasks and large tasks are nearly the same, the min-min
algorithm leads to a smaller makespan compared to OLB and
the min-min algorithm, while Scate results in the smallest
makespan.

Figure 4(c) depicts the results in the case of Z being bigger
than 1, wherein Scate has the smallest makespan in both heavy
and light workloads and the min-min algorithm results in a
smaller makespan than OLB and the max-min algorithm.
However, experiment results in Setting I shown in Fig. 4,
wherein the required time to pass the distance between a
selected actor Aj and the location of the task Ti allocated to actor
Aj is not much compared with Eij, demonstrate that, in small
scales, OLB results in the worst makespan while Scate results
in the best makespan.

Figure 5 shows the makespan of the four algorithms in
Setting II. As Fig. 5(a) shows, when the number of small tasks
is larger than the number of large tasks, Scate results in the
shortest makespan compared with other approaches in both
heavy and light loads; thereafter, the min-min algorithm results
in a shorter makespan than OLB and the max-min algorithm.
When the number of large tasks is increased (Z=1), the min-
min algorithm and Scate result in nearly the same makespan,
which is shorter than the makespan resulting from other
algorithms in both light and heavy workloads (Fig. 5(b)).
Figure 5(c) shows the case where Z is bigger than 1 and the
workload is light. Although the makespan resulting from the
min-min algorithm is much better than the makespan resulting
from OLB and the max-min algorithm, it is a little bigger than
the makespan resulting from Scate. The results are similar in
both light and heavy workloads, but the difference between the

Fig. 5. Experiment results in large scale: (a) Z<1, (b) Z=1, and (c)
Z>1. Vertical axis shows total CTs of tasks and horizontal
axis shows workloads.

Light Heavy
(a)

93
90
87
84
81
78
75
72
69
66
63

283
276
269
262
255
248
241
234
227
220 Light Heavy

(b)

1,240
1,225
1,210
1,195
1,180
1,165
1,150
1,135
1,120
1,105
1,090
1,075
1,060
1,045
1,030
1,015
1,000

Light Heavy
(c)

Scate Max-min algorithm Min-min algorithm OLB Scate

Scate Max-min algorithm Min-min algorithm OLB Scate

Scate Max-min algorithm Min-min algorithm OLB Scate

makespan of the min-min algorithm and Scate is a little bit less.

For the sake of clarity, the total CT of tasks in each of the
four algorithms in small and large scales are averaged and
shown in Figs. 6 and 7, respectively. As these figures show,
Scate is more efficient in terms of makespan than OLB, the
max-min algorithm, and the min-min algorithm since the total
CT of tasks by Scate is less than other algorithms in the two
chosen settings. To evaluate Scate in terms of total remaining
energies of actors, we compare it with the other three
mentioned algorithms (Fig. 8). The averages of total remaining
energies of actors in both small and large scales are higher in
Scate than in other algorithms demonstrating the preeminence

338 Mohsen Sharifi and Morteza Okhovvat ETRI Journal, Volume 34, Number 3, June 2012

Fig. 6. Average CTs in small scale case.

260
256
252
248
244
240
236
232 Max-min algorithm

Min-min algorithm
OLB

C
T

Scate

505
500
495
490
485
480
475
470
465
460
455
450

C
T

Max-min algorithm

Min-min algorithm
OLB

Scate

Fig. 7. Average CTs in large scale case.

Fig. 8. Residual energies of actors (a) in small scale case and (b)
in large scale case. Vertical axis shows total residual
energies of actors and horizontal axis shows workloads on
actors.

411
401
391
381
371
361
351
341
331
321
311

Light Heavy
(a)

R
es

id
ua

l e
ne

rg
y

320
310
300
290
280
270
260
250
240
230
220

R
es

id
ua

l e
ne

rg
y

Light Heavy
(b)

Scate Max-min algorithm Min-min algorithm OLB Scate

Scate Max-min algorithm Min-min algorithm OLB Scate

Fig. 9. Average remaining energies of actors.

Light-small

Large-small Heavy-large

Heavy-small

Max-min algorithm
Min-min algorithm
OLB
Scate

of Scate in preserving energy and increasing the lifetime of
actors.

In the small scale case, when the workload is light, the max-
min algorithm and Scate consume the same level of energy but
quite less than the other two algorithms. Under heavy
workloads, the max-min algorithm has the worst energy
consumption while the min-min algorithm and Scate have
lower or nearly the same consumption. In the large scale case,
Scate results in the maximum residual energy of actors, with
the min-min algorithm being the next in row. OLB and the
max-min algorithm have the worst consumption rate and the
least energy preservation.

The total remaining energies of actors when using different
algorithms are rescaled for the sake of clarity. As shown in
Fig. 9, the maximum residual energy resulting from Scate is
280, and the residual energies of the other three algorithms are
rescaled with respect to this amount.

As Fig. 9 shows, the four different cases studied are
considered vertices of a regular foursquare. The vertices of this
figure are related to light-small, heavy-small, light-large, and
heavy-large, in which light and heavy represent light and heavy
workloads, respectively, and small and large represent small
and large scales of network, respectively.

The deployment of OLB in small scale networks and the use
of the min-min algorithm for large scale networks are not
appropriate for applications with high priority for energy
(Figs. 6 and 7). Scate is a better choice because of its flexibility
in allowing the adjustment of the β parameter to save the
energy of the actors.

As mentioned before, some applications may have a higher
priority for energy saving while others may have a higher
priority for shortening the CTs of tasks, but neither OLB nor
the max-min and min-min algorithms consider any priority
between energy saving and shortening the CTs of tasks. Hence,
to have a fair comparison between these algorithms and Scate,

ETRI Journal, Volume 34, Number 3, June 2012 Mohsen Sharifi and Morteza Okhovvat 339

Fig. 10. Average CTs running Scate with different values of β.
Vertical axis shows averages of CTs and horizontal axis
shows scale.

480
450
420
390
360
330
300
270
240
210
180
150

Small Large

β =1/2
β =1
β =2

Fig. 11. Residual energies of actors running Scate with different
values of β. Vertical axis shows average total residual
energies of actors and horizontal axis shows scale.

400
380
360
340
320
300
280
260
240
220
200

Small Large

β =1/2
β =1
β =2

we assume equal priorities for time and energy, such that β=1.
It is obvious that Scate operates better than these three
mentioned algorithms in applications that have different
priorities regarding makespan and energy saving. Nevertheless,
to show the effects of time and energy priorities on the
performance of Scate through experiment, we repeat the above
simulations with the same conditions but with different values
of β. To do this, we firstly assume that the priority of energy
saving is twice that of shortening the CTs of tasks (β=2), and
then we repeat the simulations with β=1/2 for the cases where
the priority of energy saving is half of the priority of shortening
the CTs of tasks. Figures 10 and 11 show the results of running
Scate with three values of β. Figures 10 and 11 show that when
the priority of energy saving is higher than the priority of
shortening the CTs of tasks, Scate rightly saves more energy
compared to the other two cases, resulting in improved
network lifetime. Similarly, Scate yields a shorter makespan in
cases where the priority of time is higher than energy. It is thus
shown that Scate can be adapted to different applications that
require the same or different priorities between shortening the
CTs of tasks and energy savings of actors. However, as the
results of simulations in both large and small scales with

different conditions show, Scate is a more favorable choice
than OLB, the min-min algorithm, and the max-min algorithm
because of its flexibility in allowing the adjustment of the β
parameter to save the energy of actors and to minimize the
network makespan.

VII. Conclusion and Future Works

We proposed a scalable, time-aware, and energy-aware
algorithm for allocating tasks to actors in WSANs. Reducing
the total CT of tasks and increasing the residual energies of
actors simultaneously was the dual objective of the proposed
algorithm called Scate. Results of our experiments in both large
and small scale networks under different conditions showed
that Scate yields the shortest makespan and the highest total
remaining energy of actors in almost all different conditions
compared to three well-known traditional scheduling
algorithms, namely, the max-min algorithm, the min-min
algorithm, and OLB. The results also showed longer network
lifetime and more balanced workload on each actor when using
Scate compared to when these three algorithms were used.

Consideration of task deadlines in support of real-time
applications, fault-tolerance of actors and communications
links, and other QoS parameters are the open issues of Scate.

References

[1] F. Xia et al., “Wireless Sensor Actuator Network Design for
Mobile Control Applications,” Sensors, vol. 7, 2007, pp. 2157-
2173.

[2] I.F. Akyildiz and I.H. Kasimoglu, “Wireless Sensor and Actor
Networks: Research Challenges,” Ad-Hoc Netw., vol. 2, 2004, pp.
351-367.

[3] A. Nayak and I. Stojmenovic, Wireless Sensor and Actuator
Networks: Algorithms and Protocols for Scalable Coordination
and Data Communication, Hoboken, New Jersey: Wiley Press,
2010.

[4] I. Stojmenovic, Energy Conservation in Sensor and Sensor-
Actuator Networks, Wireless Ad-Hoc Networking: Personal-Area,
Local-Area, and Sensory-Area Networks, S.-L. Wu and Y.-C.
Tseng, Eds., Auerbach Publications, 2007, Ch. 4, pp. 107-133.

[5] X. Cao et al., “Building Environment Control with Wireless
Sensor and Actuator Networks: Centralized vs. Distributed,”
IEEE Trans. Ind. Electron., vol. 57, no. 11, 2010, pp. 3596-3605.

[6] J. Chen et al., “Distributed Collaborative Control for Industrial
Automation with Wireless Sensor and Actuator Networks, IEEE
Trans. Ind. Electron., vol. 57, no. 12, 2010, pp. 4219-4230.

[7] R. Armstrong, D. Hensgen, and T. Kidd, “The Relative
Performance of Various Mapping Algorithms is Independent of
Sizable Variances in Run-Time Predictions,” Proc. IEEE Int.

340 Mohsen Sharifi and Morteza Okhovvat ETRI Journal, Volume 34, Number 3, June 2012

Workshop Heterogeneous Comput., 1998, pp. 79-87.
[8] R.F. Freund et al., “Scheduling Actors in Multi-User,

Heterogeneous, Computing Environments with SmartNet,” Proc.
IEEE Int. Workshop Heterogeneous Comput., 1998, pp. 184-199.

[9] R.F. Freund and H.J. Siegel, “Heterogeneous Processing,” IEEE
Comput., vol. 26, 1993, pp. 13-17.

[10] T.D. Braun et al., “A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems,” Parallel Distrib. Comput., vol.
61, 2001, pp. 810-837.

[11] M. Maheswaran et al., “Dynamic Mapping of a Class of
Independent Tasks onto Heterogeneous Computing Systems,”
Parallel Distrib. Comput., vol. 59, 1999, pp. 107-121.

[12] Y. Tian, E. Ekici, and F. Ozguner, “Energy-Constrained Task
Mapping and Scheduling in Wireless Sensor Networks,” Proc.
IEEE Int. Conf. Mobile ad-hoc Sensor Syst., 2005, pp. 8-16.

[13] Y. Yu and V.K. Prasanna, “Energy-Balanced Task Allocation for
Collaborative Processing in Wireless Sensor Networks,” Mobile
Netw. Appl., vol. 10, 2005, pp. 115-131.

[14] M. Okhovvat, M. Sharifi, and H. Momeni, “Task Allocation to
Actors in Wireless Sensor Actor Networks: An Energy and Time
Aware Technique,” Procedia Computer Science, vol. 3, 2011, pp.
484-490.

[15] S. Shivle et al., “Static Mapping of Subtasks in a Heterogeneous
Ad-Hoc Grid Environment,” Symp. Parallel Distrib. Process.,
2004.

[16] M.H.A. Awadalla and R.R. Darwish, “Quality of Service
Constrained Task Mapping and Scheduling Algorithm for
Wireless Sensor Networks,” Computer Eng. Research, vol. 2,
2011, pp. 8-18.

[17] P. Brucker, Scheduling Algorithms, 5th ed., Springer Press, 2007.
[18] O.H. Ibarra and C.E. Kim, “Heuristic Algorithms for Scheduling

Independent Tasks on Non-Identical Processors,” J. ACM, vol. 24,
1977, pp. 280-289.

[19] K.S. Golconda and F.O. Zguner, “A Comparison of Static QoS-
based Scheduling Heuristics for a Meta-Task with Multiple QoS
Dimensions in Heterogeneous Computing,” Symp. Parallel
Distrib. Process., 2004.

[20] H. Liu, Y.W. Leung, and X. Chu, Eds., Ad-hoc and Sensor
Wireless Networks: Architectures, Algorithms and Protocols,
Bentham Science Publishers, 2009, Ch. 1.

[21] A. Cenedese, L. Schenato, and S. Vitturi, “Wireless Sensor/Actor
Networks for Real-Time Climate Control and Monitoring of
Greenhouses,” ING-INF/04 Automatica, 2008. Available at
paduaresearch.cab.unipd.it/1045/01

[22] B.H. Calhoun et al., “Design Considerations for Ultra-Low
Energy Wireless Microsensor Nodes,” IEEE Trans. Comput., vol.
54, no. 6, 2005, pp. 727-740.

Mohsen Sharifi is an associate professor of
software engineering in the School of Computer
Engineering of Iran University of Science and
Technology. He directs a distributed systems
research group and laboratory. He is mainly
interested in the engineering of distributed
systems, solutions, and applications, particularly

for use in various fields of science. The development of a true
distributed operating system is on top of his wish list. He received his
BSc, MSc, and PhD in computer science from Victoria University,
Manchester, UK, in 1982, 1986, and 1990, respectively. His website is
http://webpages.iust.ac.ir/msharifi/.

Morteza Okhovvat received his BSc and MSc
in computer engineering from Mazandaran
University in 2008 and Iran University of
Science and Technology in 2011, respectively.
He is a member of the Iranian Elite Foundation.
His research interests include distributed
systems, wireless sensor actor networks, task

scheduling algorithms, modeling, and performance analysis in the
context of wireless sensor actor networks.

	I. Introduction
	II. Related Work
	III. Problem Statement
	IV. Assumptions
	V. Proposed Scate Task Allocation Algorithm
	VI. Experiment Results
	VII. Conclusion and Future Works
	References

