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In many applications of wireless sensor actor networks 
(WSANs) that often run in harsh environments, the 
reduction of completion times of tasks is highly desired. 
We present a new time-aware, energy-aware, and 
starvation-free algorithm called Scate for assigning tasks 
to actors while satisfying the scalability and distribution 
requirements of WSANs with semi-automated 
architecture. The proposed algorithm allows concurrent 
executions of any mix of small and large tasks and yet 
prevents probable starvation of tasks. To achieve this, it 
estimates the completion times of tasks on each available 
actor and then takes the remaining energies and the 
current workloads of these actors into account during task 
assignment to actors. The results of our experiments with 
a prototyped implementation of Scate show longer 
network lifetime, shorter makespan of resulting schedules, 
and more balanced loads on actors compared to when one 
of the three well-known task-scheduling algorithms, 
namely, the max-min, min-min, and opportunistic load 
balancing algorithms, is used. 
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I. Introduction 

Advances in the technologies of micro-electro-mechanical 
systems have been instrumental in the evolution of wireless 
sensor actor networks (WSANs) [1], [2] that consist of a set of 
densely deployed sensor nodes alongside a set of sparsely 
deployed actor nodes connected via wireless links. Sensor 
nodes collect environmental information and actors make 
appropriate actions on the environment based on sensory 
information they receive from sensors.  

There are basically three architectures depending on the 
strategies adopted by actors to send commands [2]-[6]: semi-
automated, automated, and cooperative.  

In automated architecture, the network operates in a fully 
distributed way with the actors that autonomously undertake 
the appropriate actions upon receiving sensory information. In 
semi-automated architecture, sensors collect and transmit 
environmental information to a singleton network sink, and the 
sink determines the proper actions that actors should execute in 
response and allocates these actions (tasks) to appropriate 
actors. In cooperative architecture [4], sensors transmit sensing 
data to actuators in a single hop or multiple hops. Actuators 
analyze data and may consult the sink(s) before taking any 
action. That is, actuators may use their peer-to-peer network to 
make decisions and take action, possibly informing the sink 
about the action taken, or could inform the sink and wait for 
further instructions from the sink.  

In this paper, we only consider WSANs with semi-
automated architecture wherein data from sensors is routed to a 
sink node that determines actions to be performed by actors. 
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WSANs are well suited to quickly respond to environmental 
events. Since these networks are usually used in critical 
applications, actors must respond before specified deadlines; 
otherwise, delays may lead to disaster. However, due to 
existing constraints such as energy limitations and dynamic and 
fault-prone attributes of environments, the meeting of deadlines 
is very challenging. To make efficient use of capabilities of 
WSANs, the employment of efficient task-scheduling 
algorithms is inevitable. Hence, many task-scheduling 
algorithms for distributed systems have been presented so far 
with the aim of minimizing the total completion time (CT) of 
tasks [7]-[10]. These algorithms allocate tasks to most suitable 
actors to minimize the overall CT. However, the reduction of 
the overall CT of actors alone does not necessarily lead to the 
reduction of execution times of tasks. 

Three famous examples of such algorithms are the 
opportunistic load balancing algorithm (OLB), the min-min 
algorithm, and the max-min algorithm [10]. Load balancing is 
the main goal of OLB, achieved by keeping all actors as busy 
as possible [10]. OLB schedules the tasks in arbitrary order 
without considering the execution times or the CTs of tasks [7]. 
This simple approach can result in schedules with long 
makespans [10], making OLB inappropriate for WSANs that 
are critically constrained by time. In contrast, the min-min and 
max-min algorithms consider the execution times of tasks 
when assigning tasks to actors. 

The min-min algorithm considers the approximate execution 
times and CTs of all tasks on each actor and only then assigns 
the task with the shortest CT to an actor with minimal 
execution time [10], [11]. However, since it always gives 
priority to smaller tasks and allocates small tasks to faster 
actors, if the number of small tasks is bigger than the number 
of large tasks, then larger time-consuming tasks determine the 
makespan. To overcome this problem, the max-min algorithm 
gives higher priority to larger tasks and assigns large tasks to 
actors with minimum execution time. It seems that the max-
min algorithm outperforms the min-min algorithm, especially 
when the number of tasks with longer task CTs is more than 
the number with shorter ones, but it may result in longer 
system response time in some cases. Both the min-min and 
max-min algorithms may lead to task starvation because they 
give absolute priorities to small and large tasks, respectively. 

In this paper, we propose a starvation-free task-allocation 
algorithm for WSANs, nicknamed Scate, in which actors 
execute concurrently a mix of large and small tasks belonging 
to one or more applications. Scate achieves a longer network 
lifetime, a shorter makespan of resulting schedules, and more 
balanced loads on actors compared with when the max-min 
algorithm, the min-min algorithm, or OLB is used. Scate 
achieves its superiority by considering both the CTs of tasks 

and the remaining energies of actors in its selection of actors. 
The rest of paper is organized as follows. Section II presents 

notable related works. Section III presents the problem 
statement. Section IV describes our assumptions. Section V 
presents our proposed algorithm, Scate. Section VI presents the 
experiment results, and section VII concludes the paper.  

II. Related Work 

Due to limitations of WSANs such as their energy 
constraints, dynamicity, and fault-proneness, general 
scheduling algorithms are often not applicable to WSANs. 
There have thus been many efforts to propose optimal 
scheduling algorithms particularly for wireless sensor networks 
(WSNs) with the purpose of reducing response time and 
energy consumption. However, there has been little research 
done on optimal task scheduling in WSANs. 

Tian and others [12] presented a multi-hop task-scheduling 
approach for multi-hop clustered WSNs using the min-min 
algorithm for task assignment. The approach considers both 
communication and computation requirements but neither 
enforces any order on tasks nor guarantees to meet execution 
deadlines of applications. 

Yu and Prasanna [13] proposed an energy-balanced task-
allocation algorithm for WSNs. Their algorithm calculates the 
voltage settings of tasks, assigns communication actions to 
channels, and schedules communication and calculation 
activities. They believe that the deployment of their algorithm, 
depending on the scale of the problem, can lead to a 3.5- to 5-
fold network lifetime improvement. However, they do not 
consider application energy consumption requirements and 
cannot guarantee to satisfy energy consumption constraints. 

Okhovvat and others [14] presented a two-phase task-
allocation technique based on queuing theory for allocating 
tasks to actors in WSANs considering time and energy. Firstly, 
capabilities of actors in performing tasks are evaluated. 
Secondly, tasks are allocated to actors according to their 
capabilities to reduce the total CT of tasks. Their approach 
improves the makespan of resulting task schedules by 45% 
compared to OLB, providing a suitable tradeoff between a 
balanced load on actors and the CTs of all tasks. However, they 
ignored the limitation in the real world on the size of the queue 
associated with each actor. 

Shivle and others [15] presented new task assignment and 
scheduling heuristics for mobile ad hoc networks containing an 
individual communication channel for each node. Each node 
can simultaneously transmit and receive data. The very 
assumption of an individual channel for each node as well as 
the capability of simultaneous data transmission and reception 
by each node makes this approach inappropriate for WSANs 



332   Mohsen Sharifi and Morteza Okhovvat ETRI Journal, Volume 34, Number 3, June 2012 

because sensor nodes in WSANs often lack these capabilities. 
Awadallah and Darwish [16] proposed a QoS-constraint 

task-scheduling algorithm for multi-hop clustered WSNs. They 
used a modified linear task-mapping algorithm augmented by a 
task-migration algorithm to reduce the costs of inter-task 
communication. Although their task-scheduling algorithm 
guarantees that real-time deadlines are met, it is not suitable for 
large-scale applications. However, since sensor nodes are 
stationary and do not affect their environment, this approach is 
not applicable to WSANs where actors are usually mobile. In 
fact, the nature of the tasks in WSANs is different from the 
actions that sensor nodes execute in WSNs, and this is one of 
the reasons that scheduling approaches presented for WSNs 
(for example, those presented in [16]) are not applicable to 
WSANs. 

Given this background on task allocation and scheduling in 
sensor networks, we propose Scate, which is a new scalable, 
time-aware, and energy-aware actor task-allocation algorithm 
for WSANs with the objective of prolonging the lifetime of a 
network, shortening the makespan of resulting task schedules, 
and balancing the loads on all actors. Our algorithm is 
significantly different from aforementioned algorithms in that it 
considers scalability, load balancing, and time and energy 
constraints as cumulative effective parameters in the 
scheduling of tasks to proper actors. 

III. Problem Statement  

The task assignment problem in WSANs is often considered 
the allocation of n tasks Ti (i=1, 2,…, n) to m actors        
Aj (j=1, 2,…, m), wherein the schedule of each task amounts to 
the allocation of one or more time slots to one or more actors 
[17]. As in many other heterogeneous distributed systems, the 
response time of WSANs is measured in terms of makespan 
[10], [11], which denotes the overall CT of all tasks in the 
network. To achieve a minimum makespan, an optimized 
mapping of tasks to actors is required that is an NP-complete 
problem to solve [8], [10], [17], [18]. 

In WSANs, the scheduling problem amounts to the mapping 
of a set of tasks to a set of actors to minimize the CT of a 
specific task or the makespan of resulting task schedules. 
Schedulers can consider other parameters such as load 
balancing, system throughput, service reliability, service cost, 
and system utilization as well. Furthermore, schedulers can 
work either in the instant mode, wherein each task arriving at 
the scheduler is allocated by the scheduler to an actor, or in the 
bunch mode, wherein tasks arriving at the scheduler are first 
put into a set by the scheduler and then scheduled collectively. 

There are also some atomic tasks that are not decomposable. 
These independent tasks, known as meta-tasks [19], do not 

communicate with each other. Some schedulers use 
approximate execution time of meta-tasks to assign them to 
actors that can perform the tasks fastest. Such algorithms are 
known as minimum execution time algorithms [8], [10], [11]. 

There are other scheduling algorithms that are categorized as 
minimum CT (MCT) algorithms. They assign tasks to actors 
that are expected to complete those tasks the fastest [8], [10], 
[11]. Although each task is assigned to an actor that is expected 
to complete the task the fastest, the actor may not execute the 
task in minimum time since MCT depends on the availability 
of the actor and the current workload of the actor. 

As mentioned before, OLB is a well-known scheduling 
algorithm with the aim of balancing the loads on actors. It 
assigns tasks to actors in an arbitrary order without considering 
the CTs or the execution times of tasks. It tries to create a load-
balanced network by keeping all actors as busy as possible [7]-
[10]. Its ignorance of expected task execution time in its 
assignment policy may lead to long makespans of resulting 
schedules though [10]. Depending on the type of 
implementation, the complexity of OLB is variable. For 
example, the complexity of the implementation of OLB 
reported by Maheswaran and others [11] that examines m 
number of actors to find an assignment is O(m). 

In contrast to OLB, tasks are assigned to actors based on 
execution times of tasks in both the max-min and min-min 
algorithms. The min-min algorithm estimates the execution 
and CTs of all unscheduled tasks (U) on each actor first. It then 
repeatedly selects a task with the shortest CT and assigns it to 
an actor with the least execution time until all tasks in U are 
assigned [11], [12]. 

In the pseudo code of the min-min algorithm in Fig. 1, aj 
represents the expected time that actor Aj can perform a task 
after finishing the execution of all its previously assigned tasks. 
To determine Cij, that is the CT of task Ti on actor Aj, the 
expected execution time Eij of Ti on Aj is added to the 
availability time aj of Aj. The entire Cij is placed in the C matrix 
that is used to find an appropriate actor for each task. The i-th 
row of this matrix is scanned for each Ti, an appropriate actor 
with the fastest expected CT (ECT) is chosen, and vector a and 
matrix C are accordingly reorganized. This same process is 
repeated for all other unassigned tasks. 

Although the max-min and min-min algorithms have similar 
structures, they differ in their selections of actors to assign them 
tasks. In the max-min algorithm, once an actor that can provide 
the earliest CT for a task is determined, the task Tk with the 
maximum earliest CT is chosen and mapped to the 
corresponding actor [11]. Therefore, at line 6 of Fig. 1, 
“minimum” should be replaced by “maximum.” It seems that 
the max-min algorithm yields a quicker response time than the 
min-min algorithm, especially in cases where the number of  
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Fig. 1. Pseudo code for min-min algorithm. 

1. For all tasks Ti in meta-task set Mv 
2.   For all actors Aj 
3.       Cij = Eij + aj 
4. Do until all tasks in Mv are assigned  
5. For each task in Mv find the earliest CT and the actor that

can perform the task  
6.   Find the task Tk with the minimum earliest CT 
7.   Assign the task Tk to actor Al that gives the earliest CT  
8.   Delete the task Tk from Mv 
9.   Update al  
10.   Update Cil for all i 
11. End Do 

 
 
small tasks is more than the number of large tasks. In other 
words, the max-min algorithm has a better performance than 
the min-min algorithm when the number of smaller tasks is 
higher than the number of larger tasks. 

Both the max-min and min-min algorithms have the same 
time complexity equal to O(mn2), where n denotes the number 
of unscheduled tasks and m denotes the total number of 
available actors [18]. 

IV. Assumptions 

We assume a semi-automated architecture WSAN 
containing a singleton sink node. Sensors are only responsible 
for gathering information from the environment and 
transmitting it to the sink. The sink node determines the proper 
tasks to be executed by actors and then dispatches tasks to 
proper actors that are selected based on an allocation algorithm. 

More precisely, we assume a WSAN with m actors Aj 

(j=1,…, m) that should perform n tasks Tj (i=1,…, n). Tasks 
are independent, non-preemptive, and not decomposable. 
Actors can search the whole network without any restriction on 
routing hops. Actors are idle at first. The total time taken by the 
actor Aj with no load at the time of assignment to execute a task 
Ti is called the execution time of task Ti on actor Aj, and it is 
denoted by Eij. The time taken by actor Aj to finish the 
execution of task Ti is called the CT, and it is denoted by Cij. 
The CT of a task Ti on an actor Aj is greater or at best equal to 
its execution time on the same actor, that is, Cij ≥ Eij. The 
expected time that actor Aj can perform a task after finishing 
the execution of all its previously assigned tasks is called the 
availability time of actor Aj, and it is denoted by aj. In fact, Cij 

denotes the sum of the availability time (aj) of actor Aj and the 
execution time (Eij) of task Ti on Aj, that is, Cij = (Eij+ aj).  

It is important to note that our choice of semi-automated 
architecture for WSANs does not restrict the applicability of 
Scate to real large-scale WSANs. As stated by Liu and others 
[20], some large-scale sensor networks may be single hop in 

terms of wireless communication needed for reporting. A sink, 
or several sinks, can be mobile and move around the network. 
This allows them to get close to sensors so that report 
collecting can be done in a single hop. In other examples, 
embedded sensors can move toward a fixed sink. For example, 
sensors can be embedded into sea mammals to trace their 
locations over time. When a sea mammal approaches a fixed 
base station, reports can be downloaded.  

Another example that has used semi-architected WSANs in 
a real large-scale application is the real-time climate control 
and monitoring of greenhouses [21]. Given the above evidence, 
we also show through experiment the applicability of our 
proposed algorithm to large-scale as well as to small-scale 
networks in section VI. Given that the scope of our proposition 
has been limited to semi-architecture WSANs, we have only 
compared our proposed algorithm with related algorithms that 
have considered this architecture, to ensure a fair comparison. 

V. Proposed Scate Task Allocation Algorithm 

According to the assignment policy of the min-min 
algorithm that is based on allocating small tasks to fast actors, 
suppose T1 is the first task that is assigned to actor Aj. It is 
expected that Aj finishes T1 in the least possible time compared 
to other actors. Other remaining tasks are also mapped to Aj if 
the total execution time of tasks mapped to Aj is less than their 
execution time on other actors. Because the min-min algorithm 
assigns tasks to the fastest actors, it can shorten the makespan 
of resulting task schedules in WSANs only if the difference 
between the execution time of tasks is short. Otherwise, large 
tasks may be mapped to slower actors significantly increasing 
the makespan. 

To resolve the above weakness and get a shorter makespan 
in cases where the number of large tasks is less than the 
number of small tasks, we propose to use the max-min 
algorithm instead. The bigger the difference is between the 
number of large tasks and the number of small tasks, the bigger 
the difference is in the makespan of resulting schedules under 
these two algorithms. In such cases, the expected makespan 
can be approximated by the execution time of the largest task.  

Because the min-min algorithm assigns small tasks prior to 
assigning large ones, it leads to a longer makespan compared to 
the result from using the max-min algorithm. In contrast, 
assigning the largest task to the fastest actor, as with the max-
min algorithm, provides a better chance for simultaneous 
execution of small tasks on other actors. Furthermore, the max-
min algorithm leads to a better balance of loads on actors [10], 
which is critically desired in WSANs to prevent network 
partitioning. 

Generally, load balancing is a desirable property in  
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Fig. 2. Pseudo code for Scate. 

1. For all tasks Ti in the meta-task Mv 
2.   For all actors    
3.     (Cij, eij-remain)=[(Eij+aj), eij-remain=ej-now–(Cij×∂j )] 
4.     If (Z>1) Then Z=abs(Z); W=1; // Z as defined in (4) 
5.     Else W=abs(1/Z); Z=1 
6. Do until all tasks in Mv are mapped  
7.   For Z down to 1   
8.     For each task in Mv find the earliest CT an actor can perform 

the task  
9.     Find a task Th with maximum earliest CT   
10.     If no actor Al with maximum energy can be found        

to complete the execution of the task Th earliest  
11.     Then Assign Th to the fittest actor Al with highest value of
12.           β×(ehl-remain) / (CTh) 
13.     Else Assign Th to actor Al that yields the earliest CT and 

has maximum energy 
14.     End if 
15.     Delete task Th from Mv; Update al 
16.     Update (Cij, eij-remain) for all i 
17.   For W down to 1  
18.     For each task in Mv find the earliest CT an actor can 

perform the task 
19.     Find a task Tk with minimum earliest CT  
20.     If no actor Al with maximum energy can be found to  

 complete the execution of the task Tk earliest 
21.     Then Assign Tk to the fittest actor Al with highest value of
22.           β×(ekl-remain) /(CTk)                           
23.     Else Assign Tk to actor Al that yields the earliest CT and 

.     and has maximum energy 
24.     End if 
25.     Delete task Tk from Mv; Update al 
26.     Update (Cij, eij-remain) for all i 
27. End Do 

 
 
distributed systems, especially in small-scale distributed 
systems requiring a small makespan. However, load balancing 
can lead to a large makespan in large-scale distributed systems. 
This is not true in our proposed approach because the 
scheduling algorithms in different situations are properly 
chosen in line with the restrictions of WSANs and because 
there is a focus on minimizing the total CTs of tasks. 

Figure 2 represents the proposed algorithm. Scate builds a 
matrix c’ of ordered pairs whose first element Cij denotes the 
expected CT of task Ti by actor Aj and the second element   
eij-remain denotes the expected remaining energy of actor Aj after 
performing the task Ti. To start with, each actor has its 
maximum energy and its workload is zero. Hence, in the first 
round, the largest task in the set of tasks requiring the longest 
execution time is allocated to an actor that can complete the 
task earlier than others. In the next rounds, the next largest and 
smallest tasks in the set of unallocated tasks (UTi) are assigned 
to the proper actors that can complete the tasks in the minimum 
amount of time and also save maximum energy compared to 
other actors.  

Although the minimization of the total CT of tasks is the 

main goal of Scate, the mapping of tasks to the fastest (highest 
throughput) actors without considering the remaining energies 
of actors can be fatal because actors may run out of energy, 
resulting in network partitioning [22]. This problem may not be 
easily resolved since WSANs are mostly deployed in harsh 
environments making recharging of sensors and actors very 
difficult and sometimes impossible. It is necessary to consider 
remaining energies of actors when scheduling tasks. 

To allocate tasks to actors, Scate uses (1) to estimate the CT 
of each UTi on every actor. It also uses (2) to estimate the 
approximate remaining energy of each actor: 

Cij = (Eij + aj),                (1) 

eij-remain = ej-now – (Cij × ∂j ).        (2) 

In (1), aj indicates the expected time for actor Aj to perform a 
new task after finishing the execution of all its previously 
assigned tasks and Eij denotes the expected execution time of Ti 
on Aj. To evaluate the remaining energy of each actor, which is 
the next effective parameter in the allocation of tasks, the 
definition of (2) includes Cij as a derivative of (1). In (2), ∂j 
represents the average energy consumption of actor j per 
second and ej- now represents the remaining energy of actor Aj at 
allocation time. 

Scate tries to allocate a new task to an actor that is expected 
to have more energy after performing that task than other 
actors and at the same time can perform the new task earlier 
than other actors. However, there may be some cases where no 
actor is found to fulfill these requirements. In such cases, an 
actor with maximum energy or an actor that can complete the 
task earliest may be chosen arbitrarily to perform the new task. 
However, to avoid blind arbitration, Scate takes into account 
the fact that different applications may have different 
precedence on energy saving and shortening of the total CT of 
tasks. Some applications may have higher priority for energy 
saving, some applications may have higher priority for 
shortening the CTs of tasks, and some applications may be 
neutral, considering energy saving and CT to be of equal 
importance. We denote this precedence by β. Taking this 
application-dependent precedence parameter into account, 
Scate selects an actor Aj out of all actors in the network to 
execute a new task Ti if this actor has the highest fitness value 
defined by   

Fitness Metric = β×(eij-remain) ⁄ (CTi),         (3) 

wherein eij-remain represents the expected remaining energy of 
actor Aj after performing the task Ti and CTi represents the 
expected CT of the task Ti on actor Aj. 

So in cases where an actor with a high amount of remaining 
energy and the ability to complete a new task earlier than other 
actors cannot be found, Scate considers the reciprocal of the 
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CT over the remaining energy of each candidate actor and 
weights this ratio by the precedence of the application that is 
given and the constant during the run of the application, then 
selects the actor with the highest fitness value. For example, if 
an application considers the amount of an actor’s remaining 
energy to be twice as relevant as task CT, then β is equal to 2 
and any new task is assigned to the actor whose remaining 
energy is highest after dividing its CT of the previous task by 
its expected CT of the new task and multiplying by 2.  

It may seem that when there is a single run of a given 
application in a WSAN, a constant value of β for this 
application in (3) is redundant and that the ratio of remaining 
energy of an actor over the CT of a task can on its own 
determine the fitness degree of the actor to run the task. 
However, this is true only if we consider that there is always a 
single run of an application in the network. In case there are 
many concurrent runs of the same application or different 
applications in the network, the precedence parameter β plays 
its real role in deciding on the best actor to execute a task by 
weighting the above ratio for different runs. It should be 
pointed out that a single application may also be given different 
precedence for different concurrent or single runs based on 
pertaining changes, for example, in its mission or context. In 
fact, the very strength of Scate in comparison with other related 
algorithms lies in weighting the remaining energy over the CT 
ratio with β allowing changes in precedence of applications 
running concurrently in the network. It is this very feature that 
makes Scate adaptable to different applications and to different 
runs of the same application. This is why we claim Scate is 
scalable. We illustrate this claim in section VI.   

Returning to the pseudo code of Scate in Fig. 2, in each 
iteration, Scate allocates the largest task and then the smallest 
task to actors by making suitable tradeoffs between the CTs of 
tasks and the remaining energies of actors. The total value of Cij 
and eij-remain is placed in the matrix c’, which is used for finding 
an appropriate actor for each task. 

To find an appropriate actor for each task, the i-th row of 
matrix c’ is scanned for each Ti, and an appropriate actor with 
the shortest CT and maximum remaining energy is selected. If 
the difference between the number of large tasks and the 
number of small tasks is large, the use of the min-min 
algorithm or the max-min algorithm alone can lead to a long 
makespan as well as starvation of large or small tasks.  

We divide tasks into large tasks and small tasks based on the 
ECT of tasks. Hence, we define parameter Z as the ratio of the 
number of large tasks (NTlarge) over the number of small tasks 
(NTsmall) as  

Z =(number of large tasks)/( number of small tasks).   (4) 

Specifically, a task that has a greater ECT than the average of  

Table 1. CTs of tasks on two actors. 

    CTi

Actor 
CT1 CT2 CT3 CT4 CT5 

A1 2 3 1 4 7 

A2 17 19 20 12 18 

Table 2. Required energy for execution of tasks on two actors. 

      REi  
Actor 

RE1 RE2 RE3 RE4 RE5 

A1 2 3 3 4 5 

A2 5 6 7 8 9 

 

ECTs is placed in the group of large tasks and other tasks are 
placed in the group of small tasks. Finally, upon every 
allocation, the task with the maximum ECT and then the task 
with the minimum ECT are assigned to corresponding actors 
that have the highest remaining amount of energy and can 
perform within the least amount of time, and this process 
continues for the remaining tasks. 

As a simple example, let us consider there are two 
heterogeneous actors in a WSAN with the same 
communication bandwidth on their links but with different 
throughputs and speeds of movement. Let us also consider that 
there are five tasks, T1, T2, T3, T4, and T5, to be allocated to 
actors by the sink for execution and that the CT of each task 
(CTi) on each actor is given as in Table 1 and the required 
energy for the execution of each task on each actor is given as 
in Table 2. As mentioned before, CTs are determined by the 
sink based on Eij and the distance between the actors and the 
locations where tasks should be performed. Also, the expected 
required energies for executions of tasks on A1 and A2 are 
evaluated by the sink as given in Table 2. However, since the 
main goal of this example is to show the operations of the three 
mentioned algorithms compared to those of Scate, and to keep 
the example simple, we have focused on the allocation results 
of scheduling algorithms.  

We assume that actors are idle at first. Since the main goal of 
the min-min and max-min algorithms is to minimize the 
makespan of resulting task schedules, and to describe the flow 
of these two algorithms compared with the flow of Scate, we 
assume that the same energy level is required by each actor A1 
and A2 to perform each task. Hence, to have a fair comparison, 
we consider β to be equal to one. 

 Figure 3 includes four Gantt charts that show the total CTs 
of five tasks tabulated in Tables 1 and 2 when the min-min 
algorithm, the max-min algorithm, OLB, and Scate are 
deployed. As Fig. 3 shows, OLB yields the maximum  
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Fig. 3. CTs of five tasks by two actors with different schedules:
results of (a) min-min algorithm, (b) max-min algorithm,
(c) OLB, and (d) Scate. 
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makespan (19 s) and Scate yields the minimum makespan  
(13 s). The max-min and min-min algorithms yield the same 
makespan (17 s) but with a different order of scheduled tasks. 
In this example, although OLB gives the worst makespan, it 
provides better balance of load than the max-min and min-min 
algorithms, resulting in a longer actor lifetime. From this 
perspective, Scate performs best in yielding both the smallest 
makespan and the best overall balance of loads on actors.  

Scate performs best in the assumed simple example, but it 
may not perform best in other scenarios. Therefore, we need to 
present a more general and thorough evaluation, which is the 
subject of the next section. 

VI. Experiment Results 

To show the efficiency of our approach, in a typical scenario, 
Scate is compared with OLB, the min-min algorithm, and the  

 

Fig. 4. Experiment results in small scale: (a) Z<1, (b) Z=1, and (c)
Z>1. Vertical axis shows total CTs of tasks and horizontal
axis shows workloads. 
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max-min algorithm in terms of total CT of tasks and total 
remaining energies of actors. In addition, to study the effect of 
scale on the efficiency of Scate, we perform simulations in both 
large and small scales in two different settings. In the small 
scale (Setting I), we assume a two-dimensional square field,  
10 m×10 m, containing 100 sensor nodes with a 1 m 
transmission range and 10 actor nodes. We assume that the 
tasks to be executed by actors are independent and that actors 
can browse the whole network with no restrictions on routing 
hops. The primary energy of each actor is assumed to be the 
same as others and equal to 50 J. In the large scale (Setting II), 
we assume a two-dimensional square field, 100 m×100 m, 
containing 1,000 sensors with a 10 m transmission range and 
10 actor nodes. We assume that the tasks to be executed by 
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actors are independent and that actors can search the whole 
network with no constraints on routing hops. The primary 
energy of each actor is assumed equal to 50 J. 

In our simulations, we assume that each actor runs only a 
single task at any time and that tasks are selected from three 
different classes with slow, medium, and fast service rates. We 
also assume that tasks are independent and are submitted to 
actors by the sink. To evaluate the effect of the workload on the 
network, light and heavy loads are considered, wherein 
workload is defined as the number of tasks to be executed by 
the actors. To achieve a better evaluation, we consider all 
possible values of parameter Z in our simulations and assume 
that the priority of time is the same as the priority of energy 
such that β=1. Figures 4 and 5 depict the CTs of tasks under 
four scheduling algorithms in both Setting I and Setting II, 
respectively. 

As Fig. 4(a) shows, in the small scale setting, where the 
number of small tasks is bigger than the number of large tasks, 
the max-min algorithm results in a smaller makespan. 
However, as shown in Fig. 4(b), when the number of small 
tasks and large tasks are nearly the same, the min-min 
algorithm leads to a smaller makespan compared to OLB and 
the min-min algorithm, while Scate results in the smallest 
makespan.  

Figure 4(c) depicts the results in the case of Z being bigger 
than 1, wherein Scate has the smallest makespan in both heavy 
and light workloads and the min-min algorithm results in a 
smaller makespan than OLB and the max-min algorithm. 
However, experiment results in Setting I shown in Fig. 4, 
wherein the required time to pass the distance between a 
selected actor Aj and the location of the task Ti allocated to actor 
Aj is not much compared with Eij, demonstrate that, in small 
scales, OLB results in the worst makespan while Scate results 
in the best makespan. 

Figure 5 shows the makespan of the four algorithms in 
Setting II. As Fig. 5(a) shows, when the number of small tasks 
is larger than the number of large tasks, Scate results in the 
shortest makespan compared with other approaches in both 
heavy and light loads; thereafter, the min-min algorithm results 
in a shorter makespan than OLB and the max-min algorithm. 
When the number of large tasks is increased (Z=1), the min-
min algorithm and Scate result in nearly the same makespan, 
which is shorter than the makespan resulting from other 
algorithms in both light and heavy workloads (Fig. 5(b)). 
Figure 5(c) shows the case where Z is bigger than 1 and the 
workload is light. Although the makespan resulting from the 
min-min algorithm is much better than the makespan resulting 
from OLB and the max-min algorithm, it is a little bigger than 
the makespan resulting from Scate. The results are similar in 
both light and heavy workloads, but the difference between the 

 

Fig. 5. Experiment results in large scale: (a) Z<1, (b) Z=1, and (c)
Z>1. Vertical axis shows total CTs of tasks and horizontal
axis shows workloads. 
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makespan of the min-min algorithm and Scate is a little bit less. 

For the sake of clarity, the total CT of tasks in each of the 
four algorithms in small and large scales are averaged and 
shown in Figs. 6 and 7, respectively. As these figures show, 
Scate is more efficient in terms of makespan than OLB, the 
max-min algorithm, and the min-min algorithm since the total 
CT of tasks by Scate is less than other algorithms in the two 
chosen settings. To evaluate Scate in terms of total remaining 
energies of actors, we compare it with the other three 
mentioned algorithms (Fig. 8). The averages of total remaining 
energies of actors in both small and large scales are higher in 
Scate than in other algorithms demonstrating the preeminence 
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Fig. 6. Average CTs in small scale case. 
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Fig. 8. Residual energies of actors (a) in small scale case and (b)
in large scale case. Vertical axis shows total residual
energies of actors and horizontal axis shows workloads on
actors.  
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Fig. 9. Average remaining energies of actors. 
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of Scate in preserving energy and increasing the lifetime of 
actors.  

In the small scale case, when the workload is light, the max-
min algorithm and Scate consume the same level of energy but 
quite less than the other two algorithms. Under heavy  
workloads, the max-min algorithm has the worst energy 
consumption while the min-min algorithm and Scate have 
lower or nearly the same consumption. In the large scale case, 
Scate results in the maximum residual energy of actors, with 
the min-min algorithm being the next in row. OLB and the 
max-min algorithm have the worst consumption rate and the 
least energy preservation. 

The total remaining energies of actors when using different 
algorithms are rescaled for the sake of clarity. As shown in  
Fig. 9, the maximum residual energy resulting from Scate is 
280, and the residual energies of the other three algorithms are 
rescaled with respect to this amount. 

As Fig. 9 shows, the four different cases studied are 
considered vertices of a regular foursquare. The vertices of this 
figure are related to light-small, heavy-small, light-large, and 
heavy-large, in which light and heavy represent light and heavy 
workloads, respectively, and small and large represent small 
and large scales of network, respectively. 

The deployment of OLB in small scale networks and the use 
of the min-min algorithm for large scale networks are not 
appropriate for applications with high priority for energy  
(Figs. 6 and 7). Scate is a better choice because of its flexibility 
in allowing the adjustment of the β parameter to save the 
energy of the actors.  

As mentioned before, some applications may have a higher 
priority for energy saving while others may have a higher 
priority for shortening the CTs of tasks, but neither OLB nor 
the max-min and min-min algorithms consider any priority 
between energy saving and shortening the CTs of tasks. Hence, 
to have a fair comparison between these algorithms and Scate, 
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Fig. 10. Average CTs running Scate with different values of β.
Vertical axis shows averages of CTs and horizontal axis
shows scale. 
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Fig. 11. Residual energies of actors running Scate with different
values of β. Vertical axis shows average total residual
energies of actors and horizontal axis shows scale. 
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we assume equal priorities for time and energy, such that β=1. 
It is obvious that Scate operates better than these three 
mentioned algorithms in applications that have different 
priorities regarding makespan and energy saving. Nevertheless, 
to show the effects of time and energy priorities on the 
performance of Scate through experiment, we repeat the above 
simulations with the same conditions but with different values 
of β. To do this, we firstly assume that the priority of energy 
saving is twice that of shortening the CTs of tasks (β=2), and 
then we repeat the simulations with β=1/2 for the cases where 
the priority of energy saving is half of the priority of shortening 
the CTs of tasks. Figures 10 and 11 show the results of running 
Scate with three values of β. Figures 10 and 11 show that when 
the priority of energy saving is higher than the priority of 
shortening the CTs of tasks, Scate rightly saves more energy 
compared to the other two cases, resulting in improved 
network lifetime. Similarly, Scate yields a shorter makespan in 
cases where the priority of time is higher than energy. It is thus 
shown that Scate can be adapted to different applications that 
require the same or different priorities between shortening the 
CTs of tasks and energy savings of actors. However, as the 
results of simulations in both large and small scales with 

different conditions show, Scate is a more favorable choice 
than OLB, the min-min algorithm, and the max-min algorithm 
because of its flexibility in allowing the adjustment of the β 
parameter to save the energy of actors and to minimize the 
network makespan. 

VII. Conclusion and Future Works 

We proposed a scalable, time-aware, and energy-aware 
algorithm for allocating tasks to actors in WSANs. Reducing 
the total CT of tasks and increasing the residual energies of 
actors simultaneously was the dual objective of the proposed 
algorithm called Scate. Results of our experiments in both large 
and small scale networks under different conditions showed 
that Scate yields the shortest makespan and the highest total 
remaining energy of actors in almost all different conditions 
compared to three well-known traditional scheduling 
algorithms, namely, the max-min algorithm, the min-min 
algorithm, and OLB. The results also showed longer network 
lifetime and more balanced workload on each actor when using 
Scate compared to when these three algorithms were used. 

Consideration of task deadlines in support of real-time 
applications, fault-tolerance of actors and communications 
links, and other QoS parameters are the open issues of Scate. 
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