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In this paper, we present a time domain combined field 
integral equation formulation (TD-CFIE) to analyze the 
transient electromagnetic response from dielectric objects. 
The solution method is based on the method of moments 
which involves separate spatial and temporal testing 
procedures. A set of the RWG functions is used for spatial 
expansion of the equivalent electric and magnetic current 
densities, and a combination of RWG and its orthogonal 
component is used for spatial testing. The time domain 
unknowns are approximated by a set of orthonormal basis 
functions derived from the Laguerre polynomials. These 
basis functions are also used for temporal testing. Use of 
this temporal expansion function characterizing the time 
variable makes it possible to handle the time derivative 
terms in the integral equation and decouples the space-
time continuum in an analytic fashion. Numerical results 
computed by the proposed formulation are compared 
with the solutions of the frequency domain combined field 
integral equation. 
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I. Introduction 

The marching-on in time (MOT) technique is extensively 
employed to analyze the transient scattering from conducting 
and dielectric objects using time domain integral equations [1]. 
A serious drawback of this algorithm is the occurrence of late-
time instabilities in the form of high frequency oscillation. 
Several MOT formulations have been presented for the 
solution of the electromagnetic scattering from arbitrarily 
shaped 3-D dielectric structures using triangular patch 
modeling techniques [2]-[4]. An explicit solution of the time 
domain formulation has been presented which differentiates 
the coupled integral equations using the MOT technique with 
second-order finite difference [2], but the results become 
unstable for late times. The late-time oscillations could be 
eliminated by approximating the average value of the current. 
In addition, a backward finite difference approximation for the 
magnetic vector potential term in the time domain electric field 
integral equation has been used for the implicit MOT technique 
to minimize these late-time oscillations [3], [4]. In spite of 
using an implicit technique to solve the time domain combined 
field integral equation (TD-CFIE) for the dielectric body, the 
solution obtained by using the MOT method still has late-time 
oscillation, which is dependent on the choice of the time step 
and the size of the structure to be considered. 

In this paper, we present a new TD-CFIE formulation to 
obtain stable transient electromagnetic responses from 
arbitrarily shaped 3-D dielectric objects based on our recent 
work [5], which employed the PMCHW integral equation. The 
solution method in this paper is based on the method of 
moments (MoM) which involves separate spatial and temporal 
testing procedures. A set of the RWG functions is used for 
spatial expansion of the equivalent electric and magnetic 
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current densities and a combination of RWG and n×RWG 
function with testing coefficients is used for spatial testing [6], 
[7]. Here, n is the unit normally pointing outward from the 
surface at r. We also investigate spatial testing procedures for 
the TD-CFIE to select the proper testing function set. The time 
domain unknowns are approximated by a set of orthogonal 
basis functions that are derived from the Laguerre polynomials 
[8]. The Laguerre series is defined only over the interval from 
zero to infinity, and hence, are considered to be more suited for 
the transient problem, as they naturally enforce causality. The 
temporal basis functions used in this work are completely 
convergent to zero as time increases to infinity. Therefore, the 
transient response spanned by these basis functions is also 
convergent to zero as time progresses. Using Galerkin’s 
method, we introduce a temporal testing procedure, which is 
similar to the spatial testing procedure of the MoM. By 
applying temporal testing to the time domain integral equations, 
we can eliminate the numerical instabilities. Instead of the 
MOT procedure, we employ a marching-on in degree 
procedure by increasing the degree of the temporal testing 
functions. Therefore, we can obtain the unknown coefficients 
of the expansion by solving a matrix equation recursively with 
a finite number of basis functions. In the next section, we 
describe the integral equations. In section III, we set up a 
matrix equation by applying the MoM with spatial and 
temporal testing procedures. Section IV presents and compares 
numerical results followed by section V, the conclusion. 

II. Integral Equations 

In this section, we discuss the TD-CFIE formulation for a 
dielectric scatterer, which is illuminated by an electromagnetic 
pulse. We consider a homogeneous dielectric body with 
permittivity ε2 and permeability μ2 placed in an infinite 
homogeneous medium with permittivity ε1 and permeability μ1 
as shown in Fig. 1.  

By invoking the equivalence principle, the integral equation 
is formulated in terms of the equivalent electric and magnetic 
current densities J and M on surface S of the dielectric body. 
By enforcing the continuity of the tangential electric and 
 

 

Fig. 1. Homogeneous dielectric body illuminated by an
electromagnetic pulse. 
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magnetic fields at S, the following integral equations are 
obtained: 
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where Ei and Hi are the incident electric and magnetic fields, 
respectively. The subscript ‘tan’ denotes the tangential 
component. The scattered electric and magnetic fields are 
given by 
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In (3) and (4), Av and Fv are the magnetic and electric vector 
potentials, and Φv and Ψv are the electric and magnetic scalar 
potentials given by 
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where rr ′−=R represents the distance between the 
arbitrarily located observation point r and the source point r′ , 

vv cRt /−=τ  is the retarded time, and vvvc με/1=  is the 
velocity of propagation of the electromagnetic wave in the 
space with medium parameters (εv, μv). The electric and 
magnetic surface charge densities qe and qm are related to the 
electric and magnetic current density by the equations of 
continuity such that 
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For the CFIE formulation, a set of two integral equations are 
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formed from the set (1) and (2) by using the following form [7]: 
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where κ is the usual combination parameter which can have 
any value between 0 and 1, and ηv is the wave impedance of 
region v. 

III. Numerical Implementation 

The surface of the dielectric structure to be analyzed is 
approximated by planar triangular patches. As in [9], we use 
the RWG function associated with the n-th common edge as 
the spatial basis function defined as  
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where ln and ±
nA  are the length of the edge and the area of 

triangle ±
nT . The position vector defined with respect to the 

free vertex of ±
nT is denoted by ±

nρ . In general, the electric 
current density J and the magnetic current density M on the 
dielectric structure may be approximated in terms of this spatial 
basis function as  
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where Jn and Mn are constants yet to be determined, and N is 
the number of edges on the surface for the triangulated model 
approximating the surface of the dielectric body.  

When (7) and (8) are used in (3) and (4), we encounter time-
integral terms which are due to (9) and (10). For convenience, 
and to avoid the computation of the time derivatives 
numerically, we evaluate the time derivative of the vector 
potential in (3) and (4) analytically. We use the following two 
source vectors e and h introduced in [5]: 
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where the relation between these source vectors and the charge 

densities are given through 
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By using (12), we may expand the two source vectors as  
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where en and hn are the time domain unknown coefficients to 
be determined. 

The next step in the numerical implementation scheme is to 
develop a testing procedure to transform the operator equation 
(11) into a matrix equation using the MoM. In the CFIE 
formulation, we may use a combination of RWG and n×RWG 
as the testing function to convert the CFIE into a matrix 
equation. The n×RWG function is associated with the n-th 
common edge, which is defined through 
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The functions fn and gn are point-wise orthogonal in the triangle 
pair. A general expression for the testing of CFIE in the 
frequency domain using the four parameters in conjunction 
with the testing functions has been presented in [7]. By 
applying this testing procedure, we may write (11) as 
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where m=1, 2,∙∙∙, N and the testing coefficients fE, gE, fH, and 
gH may be +1 or –1. This equation is termed as the TENE-
THNH formulation in [6]. TE is an abbreviation which means 
testing the electric field using fm as the testing function (short 
for t·E where t denotes a unit vector tangential to S). Similarly, 
TH stands for testing the magnetic field using fm (short 
for ⋅t H ). The abbreviations NE and NH are obtained by 
taking the cross product of n with electric and magnetic fields 
and then testing by using fm, respectively [6]. 
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To convert (22) into a matrix equation, we separate the CFIE 
into two categories: the electric field and the magnetic field 
parts. First, we test (1) in relation to the electric field only with 
fEfm+gEgm as the testing function, yielding   
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This equation is termed as the TENE formulation in [6]. The 
elements in (23) are given in the appendix. In deriving (23), we 
assumed that the functions dependent on the following variable 
do not change appreciably within a given triangular patch so 
that 
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where p and q are + or –. The position vector of the center in 
triangle ±

nT  is denoted by .±c
nr  

Now, we consider the choice of the temporal basis functions 
and the temporal testing procedure. An orthogonal basis 
function set can be derived from the Laguerre polynomials 
through the representation [8] 
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where Lj is the Laguerre polynomial of degree j [10]. The 
coefficients en(t) and hn(t) introduced in (19) and (20), are 
assumed to be causal electromagnetic response functions 
for 0t ≥ , and can be expanded using (24) as  

),()(
0

, stete j
j

jnn φ∑
∞

=

=                (25) 

),()(
0

, sthth j
j

jnn φ∑
∞

=

=                (26) 

where en,j and hn,j are unknown coefficients, and s is a scaling 
factor. Using the orthogonality property of the temporal basis 
functions, the expressions for the first and second derivatives of 
(25) and (26) can be written explicitly using the time domain 
coefficient which is derived in [8]. 

We substitute the expressions for the basis functions (25) and 
(26) which represent the unknown together with their 
derivatives into (23). Performing temporal testing (multiplying 
by φi(st)) and integrating from zero to infinity, we get the 
matrix equation  

(1) (1) (1)
,,

(2) (2) (2)
, ,

,
E E E
mn mn m in i

E E E
n imn mn m i

e

h

α β γ

α β γ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥=⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦    

   (27) 

where 
2

( )

,
exp ,

4 2 2

pq pq pq pq
E mn mn mn mn
mn

p q

s A F sG sR
c c

ν ν

ν ν ν ν

μ
α

ε ε
⎛ ⎞ ⎛ ⎞

= + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑  (28) 

2
,( )

,
exp ,

2 4 2 2

pq pq pq
mnE mn mn mn

mn
p q

sC s D sE sR
c c

νν

ν ν

β
⎛ ⎞ ⎛ ⎞

= + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑  (29) 

( ) ( ) ( ) ( )
, , , , ,E E E E

m i m i m i m iV P Qν ν ν νγ = + +           (30) 

),()()( )(

0

)(
, stdtVstV vE

mi
vE

im ∫
∞

= φ           (31) 

,

)(

24

0

1

0
,

,
0

1

0

2

1

0
,

1 ,

2
)(

,

⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−=

∑∑

∑∑

∑∑∑

=

−

=

=

−

=

−

==

v

pq
mn

ij

i

j

j

k
kn

vv

pq
mn

v

pq
mn

ijkn

i

j

j

k

pq
mnv

v

pq
mn

ij

i

j
jn

N

n qp vv

pq
mn

v

pq
mn

pq
mnvvE

im

c
sR

Ie
c
sG

c
sR

IekjAs

c
sR

Ie
c

sGFAs
P

ε

μ

εε
μ

(32) 

,

)(

24

0

1

0
,

0

1

0
,

2

1

0
,

1 ,

21

0
,,

)(
,

⎥
⎥
⎦

⎤

⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎢
⎢
⎣

⎡

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−=

∑∑

∑∑

∑∑ ∑∑

=

−

=

=

−

=

−

==

−

=

v

pq
mn

ij

i

j

j

k
kn

pq
mn

v

pq
mn

ij

i

j

j

k
kn

v

pq
mn

v

pq
mn

ij

i

j
jn

N

n qp

pq
mn

v

pq
mn

i

k
knvmn

vE
im

c
sRIhsE

c
sRIhkj

c
Ds

c
sRIhsE

c
DshsCQ

(33) 

.,1 ij
c

sR
c

sR
c

sR
I

v

pq
mn

ji
v

pq
mn

ji
v

pq
mn

ij ≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−− φφ    (34)  

A similar procedure to obtain (27) can be found in detail in [8].  
Next, we may write a matrix equation from (2) related to the 

magnetic field only, with fHfm+gHgm as the testing function. 
This equation is termed as the THNH formulation in [6]. Using 
a similar procedure to derive (27) from (1), or applying a 
duality theorem, we obtain   
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In the above equations, the spatial integral elements are 
obtained from (A1)-(A7) in the appendix by changing fH and 
gH instead of fE and gE, respectively. The term )(vH

mV  in (39) is 
given as (A20) in the appendix. 

We may rewrite the matrix equations (27) and (35), 
respectively, as 

, , ,E E
mn n i m icα γ⎡ ⎤ ⎡ ⎤⎡ ⎤ =⎣ ⎦⎣ ⎦ ⎣ ⎦              (42) 

, , ,H H
mn n i m icα γ⎡ ⎤ ⎡ ⎤⎡ ⎤ =⎣ ⎦⎣ ⎦ ⎣ ⎦              (43) 

where cn,i=em,i  for n=1, 2,…, N and cn,i=hn,i for n = N + 1, 
N + 2,…, 2N. Finally, by combining TENE and THNH given 
in (42) and (43), respectively, we have a matrix equation for the 
CFIE associated with (22) as  

,,,2,1,0],[]][[ ,, ∞== ic iminmn γα       (44) 

where 

(1 ) E H
m n m n m nνα κ α κη α= − + , 

.)1( ,,,
H

im
E

imim γκηγκγ ν+−=  

By solving (44) in a marching-on in degree manner with M 
temporal basis functions, the electric and magnetic transient 
current coefficients are expressed using the relations (13)-(16), 
(19) and (20) with (25) and (26) [8]. To minimize the number 
of iterations, we first choose the scaling factor s according to 
the bandwidth of the input pulse. When we obtain en,i and hn,i, 
we can transfer them to Jn,i and Mn,i, which are the coefficients 
of the currents J and M. Since J and M have finite energy, Jn,i 
and Mn,i will approach zero when i is large enough. We can 
adaptively choose the number of iterations M when the 
magnitudes of Jn,i and Mn,i are negligible. Once the equivalent 
currents on the dielectric scatterer have been determined, we 
can compute the far scattered fields. These fields may be 
thought of as the superposition of the fields due to the electric 
and magnetic currents. When we consider a signal with time 
duration Tf in the time domain, we note that the upper limit of 
the integral in (31) and (39) can be replaced by the time 
duration sTf instead of infinity. 

IV. Numerical Examples 

We present the numerical results for 3-D dielectric scatterers 
with a relative permittivity εr = 2 placed in the free space. In 
this section, c and η mean the speed of the wave propagation 
and the wave impedance of the free space, respectively. The 
scatterers are illuminated by a Gaussian plane wave, in which 
the electromagnetic fields are given by 

),,(ˆ1),(,4),( ii
0

i 2
tte

T
t r rEkrHErE ×== −

ηπ
 (45) 

where kkr ˆ),ˆ)(/4( 0 ⋅−−= ctctTγ  is the unit vector in 
the direction of the wave propagation, T is the pulse width of 
the Gaussian pulse in light meters (lm), and t0 is a time delay 
which represents the time at which the pulse peaks at the 
origin. One light meter is the length of time taken by the 
electromagnetic wave to travel one meter in free space. In this 
work, the field is incident from 0φ =  and 0θ =  with 
ˆ ˆ= −k z , and .ˆ0 xE =  In the numerical computation, we use 

a Gaussian pulse of T=4 lm and ct0=6 lm. We set s=0.9×109 
and M=40. All the solutions computed by our presented 
method are compared with the inverse discrete Fourier 
transform (IDFT) of the solutions by the frequency domain 
combined integral equation (FD-CFIE) formulation described 
in [7] in the range of 0 to 500 MHz intervals with 128 
samples. The shaded patches included in the figures 
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indicate the location of the current to be observed associated 
with the common edge. The far field solutions are θ- (or x-) 
components of the electric field taken along the backward 
direction (+z axis) from the scatterers. We may use two kinds 
of the spatial testing functions for which the testing coefficients 
may be chosen as in [7]: 

, EFIE , MFIEm m m m+ + − +f g f g , 

, EFIE , MFIEm m m m− + +f g f g . 

These testing techniques yield the same solutions in our work. 
It has also been suggested to drop one of the testing terms, 
resulting in 

MFIE,MFIE,EFIE,EFIE, mHmHmEmE gfgf gfgf +++  

as given in [6]. These formulations are named TENE-TH 
(gH=0), TENE-NH (fH=0), TE-THNH (gE=0), and NE-THNH 
(fE=0), depending on which term is omitted. Applying this 
scheme to our TD-CFIE formulation, we have sixteen possible 
cases of CFIE with different testing coefficients as in FD-CFIE 
[7]. But none of the sixteen formulations give valid solutions in 
the time domain. (When we apply the MOT technique to solve 
the TD-CFIE, all of the sixteen cases fail in our experience.) 
Numerical results are presented using the testing coefficients as 
fE=1, gE=1, fH = -1, and gH = 1 with the combination parameter 
of κ=0.5.  

As a first example, we consider a dielectric sphere with a 
radius of 0.5 m centered at the origin. This has a total of 528 
patches and 792 edges. Figure 2 shows the transient response 
for the θ-directed electric current density at the shaded patch of 
the sphere (θ = 90° and φ = 7.5°) computed by the presented 
method and compares it with the IDFT of a frequency domain 
solution. Figure 3 shows the transient response for the θ-directed  
 

 

Fig. 2. Transient electric current density on the dielectric sphere.
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Fig. 3. Transient magnetic current density on the dielectric sphere.
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Fig. 4. Backward scattered field from the dielectric sphere along the 
+z direction. 
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magnetic current density at the shaded patch of the sphere 
(θ = 90° and φ = 97.5°) computed by the present method and 
compares it with the IDFT solution. In Figs. 2 and 3, we can 
see that the solutions of the presented method are stable and the 
agreement with the IDFT solutions is good. Figure 4 presents 
the transient response for the backward scattered far field 
obtained by the technique just presented along with the Mie 
series solution and the IDFT solution. All three solutions agree 
well as is evident from the figure.  

The next example is the dielectric structure of a hemisphere 
terminated by a cone. The radius of the hemisphere is 0.5 m 
and the height of the cone along the z-direction is 0.5 m. This 
structure is divided into 480 triangular patches with a total 
number of 720 edges. Figure 5 shows the transient response for 
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the θ -directed electric current density at the shaded patch on 
the hemisphere (θ = 75° and φ = 7.5°) computed by the 
presented method and compares it with the IDFT solution. 
Figure 6 shows the transient response for the θ-directed 
magnetic current density at the shaded patch on the hemisphere 
(θ = 75° and φ = 97.5°) computed by the present method and 
compares it with the IDFT solution. In Figs. 5 and 6, we can 
see that the solutions of the present method are stable and the 
agreement with the IDFT solutions is good. Figure 7 presents 
the transient response for the backward scattered far field from 
the dielectric hemisphere-cone obtained by the TD-CFIE along 
with the IDFT of the FD-CFIE solution. The two solutions 
agree well as is evident from the figure.  

Finally, the structure of a dielectric double cones is considered,  
 

 

Fig. 5. Transient electric current density on the dielectric hemisphere-
cone. 
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Fig. 6. Transient magnetic current density on the dielectric
hemisphere-cone. 
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Fig. 7. Backward scattered field from the dielectric hemisphere-
cone along the +z direction. 
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Fig. 8. Backward scattered field from the dielectric double cones
along the +z direction. 
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which is shown in Fig. 8. The height of the cones along the z-
direction is 1 m and the radius at z = 0 is 0.5 m. This structure is 
divided into 432 triangular patches with a total number of 648 
edges. In this figure, the backward scattered field computed by 
our proposed method is compared with the IDFT result. The 
agreement of the solution computed by the TD-CFIE and the 
IDFT of the FD-CFIE solution is excellent. 

V. Conclusion 

We have presented a novel method to solve the TD-CFIE for 
scattering from three-dimensional arbitrarily shaped dielectric 
structures. To apply an MoM procedure, we used the RWG 
vector function as the spatial basis function and a combination 
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of RWG and n×RWG function for spatial testing. We 
introduced a temporal basis function set derived from the 
Laguerre polynomials and exponential functions. With the 
representation of the derivative of the transient coefficient in an 
analytic form, the temporal derivative in the integral equation 
can be treated analytically. Transient equivalent currents and far 
field obtained by the method presented in this paper are 
accurate and stable. We found that two kinds of testing 
techniques work. However, any of the formulations, which 
omit one of the testing terms, do not yield a valid solution for 
the TD-CFIE. The agreement between the solutions obtained 
using the proposed method and the IDFT of the frequency 
domain solution is excellent. 

Appendix 

Elements in (23) for the TENE formulation are given as 

, ,
pq pq pq

mn E mn f E mn gA f a g a= + ,               (A1) 

, ,
pq pq pq

mn E mn f E mn gF f b g g= + ,               (A2) 

,
pq pq

mn E mn gG g f= ,                       (A3) 

⎩
⎨
⎧

=−
=+

=
,2,
,1,

, vC
vC

C
mn

mn
vmn                  (A4) 

( ), ,
,

pq pq
mn E mn f E mn g

p q
C f c g c= +∑ ,           (A5) 

, ,
pq pq pq

mn E mn f E mn gD f d g d= + ,                (A6) 

, ,
pq pq pq

mn E mn f E mn gE f e g e= + .                (A7) 

For the THNH formulation, the elements are obtained by 
changing fH and gH instead of fE and gE, respectively, in the 
above. In (A1)-(A7), the integrals are given by 

,
( )1 ( )

4

q
pq p n
mn f mS S

a dS dS
Rπ

′
′= ⋅∫ ∫

f r
f r ,         (A8) 

,
( )1 ( )

4

q
pq p n
mn g mS S

a dS dS
Rπ

′
′= ⋅∫ ∫

f r
g r ,         (A9) 

,
( )1 ( )

4

q
pq p n

mn f mS S
b dS dS

Rπ
′ ′∇ ⋅ ′= ∇ ⋅∫ ∫

f r
f r ,

    
(A10) 

,

ˆ1 ( ) ( )
4

pq p q
mn g m nS S

f dS dS
Rπ

′ ′ ′= ⋅ ∇ ⋅∫ ∫
Rg r f r ,    (A11) 

, 2

ˆ1 ( ) ( )
4

pq p q
mn g m nS S

g dS dS
Rπ

′ ′ ′= ⋅ ∇ ⋅∫ ∫
Rg r f r ,   (A12) 

,
1 ( ) ( )
2

pq p q
mn f m nS

c dS= ⋅ ×∫ f r n f r ,            (A13) 

,
1 ( ) ( )
2

pq p q
mn g m nS

c dS= ⋅ ×∫ g r n f r ,            (A14) 

,

ˆ1 ( ) ( )
4

pq p q
mn f m nS S

d dS dS
Rπ

′ ′= ⋅ ×∫ ∫
Rf r f r ,     (A15) 

,

ˆ1 ( ) ( )
4

pq p q
mn g m nS S

d dS dS
Rπ

′ ′= ⋅ ×∫ ∫
Rg r f r ,     (A16) 

, 2

ˆ1 ( ) ( )
4

pq p q
mn f m nS S

e dS dS
Rπ

′ ′= ⋅ ×∫ ∫
Rf r f r ,     (A17) 

, 2

ˆ1 ( ) ( )
4

pq p q
mn g m nS S

e dS dS
Rπ

′ ′= ⋅ ×∫ ∫
Rg r f r ,    (A18) 

where R̂  is a unit vector along the direction ′−r r . The 
evaluation of (A8)-(A18) has been presented in [11]-[18]. The 
integrals associated with the incident field are expressed as 

[ ]
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