
766   Jun Wu et al. © 2010          ETRI Journal, Volume 32, Number 5, October 2010 

Support vector machine (SVM) active learning plays a 
key role in the interactive content-based image retrieval 
(CBIR) community. However, the regular SVM active 
learning is challenged by what we call “the small example 
problem” and “the asymmetric distribution problem.” 
This paper attempts to integrate the merits of semi-
supervised learning, ensemble learning, and active 
learning into the interactive CBIR. Concretely, unlabeled 
images are exploited to facilitate boosting by helping 
augment the diversity among base SVM classifiers, and 
then the learned ensemble model is used to identify the 
most informative images for active learning. In particular, 
a bias-weighting mechanism is developed to guide the 
ensemble model to pay more attention on positive images 
than negative images. Experiments on 5000 Corel images 
show that the proposed method yields better retrieval 
performance by an amount of 0.16 in mean average 
precision compared to regular SVM active learning, which 
is more effective than some existing improved variants of 
SVM active learning. 
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I. Introduction 

To narrow the gap between low-level visual features and 
high-level semantic concepts, human interactive techniques 
have been introduced into content-based image retrieval 
(CBIR), which is drawing substantial research attention in 
recent years [1], [2]. Unlike early CBIR, which adopted 
automatic strategies, recent approaches focus on the interaction 
between the user and the search engine. Concretely, in a 
relevance feedback (RF) loop, the user has the option to label a 
few images returned as either positive or negative in terms of 
whether they are relevant to the query concept or not. Labeled 
images are then given to the system as complementary queries 
so that the search engine can be refined. 

Up to the present, various interactive schemes have been 
proposed which evolved from earlier heuristic methods to 
probability modeling approaches, and recent classification/ 
clustering-based techniques. Among the various approaches, 
support vector machine (SVM)-based RF schemes represent the 
state-of-the-art techniques for improving CBIR performance [3]-
[9]. In the RF loop, prompting the user to label images is an 
important step, but this is a very burdensome task for the user. 
Active learning plays a key role in alleviating the burden of 
labeling in the RF loop [10]. The main idea is to actively select 
the most informative unlabeled images for the user to label, with 
the aim of greatly improving the retrieval performance. Tong and 
others proposed the popular active learning-based RF technique 
called SVM active learning (SVM-AL) [5], which aims to 
search data points that can maximally reduce the size of version 
space. They proved that this goal can be approximately achieved 
by selecting points near the SVM boundary, and thus unlabeled 
images close to the boundary were regarded as the most 
informative data points.  
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However, SVM-AL has two main drawbacks. First, SVM 
may fail to learn an accurate classification model from a small 
number of labeled examples. Given a limited number of 
training data labeled by the user, directly applying SVM model 
may not significantly improve the retrieval accuracy, although 
it enjoys excellent generalization performance. Second, unlike 
the traditional pattern classification problem, the relevant and 
irrelevant classes in an image database are highly imbalanced 
(there are fewer positive examples than negative ones), thus the 
learned SVM boundary may be biased toward the negative 
side. We refer to these two problems as the small example 
problem and the asymmetric distribution problem, respectively. 

This paper aims to improve SVM-AL by following two 
strategies regarding these two problems. First, to tackle the 
small example problem, we focus on improving the SVM 
model. Using semi-supervised boosting technique and 
enhanced SVM boundary is more helpful to identify the 
informative unlabeled images for active learning. Second, to 
attack the asymmetric distribution problem, a bias-weighting 
mechanism is used in our solution so that positive images are 
paid more attention than negative images. Our empirical study 
shows encouraging results in comparison to some existing 
SVM-based active learning approaches. 

The rest of this paper is organized as follows. Section II 
presents the problem formulation and our solution. Section III 
shows experimental evaluations. Section IV discusses related 
works. Finally, section V concludes this paper. 

II. Proposed Algorithm 

1. Preliminaries 

Given a query image, it is natural that the image database can 
be divided into two classes: one is relevant (positive) in 
semantic content to the query, and the other is irrelevant 
(negative). Hence, the learning problem in RF is essentially 
reduced to a binary classification problem. 

Let { }1 2, , , n=DB x x x"  denote the entire image database, 

including both labeled image example set and unlabeled image 
example set. Suppose the first nl examples are labeled, given 
by 1 2 ,, , ,l l l

l nl= y y y⎡ ⎤⎣ ⎦y " where each class label { }1, 1l
iy .∈ + −    

Similarly, class labels of unlabeled examples can be denoted as  

1 2 ,, , ,u u u
u nu= y y y⎡ ⎤⎣ ⎦y "  where nu=n nl.−  Therefore, labels 

for the entire image dataset can be denoted as ul= ⎡ ⎤⎣ ⎦;y y y . 

The goal of our solution is to iteratively update the class labels 
of unlabeled examples and then construct a new classifier using 
both labeled and pseudo-labeled examples in order to enhance 
the generalization ability of the learning system. The enhanced 

classification model is used to identify the most informative 
examples which can improve the retrieval accuracy most 
efficiently. 

Since SVM-based RF schemes have shown many promising 
results [3]-[9], our study focuses on applying SVM as the base 
classifier of proposed learning system. Here, we briefly review 
SVM. The key idea of SVM is to learn an optimal hyperplane 
that separates the training examples with the maximal margin 
by solving the following optimization problem [11]: 
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where iλ is Lagrange multiplier, ( )K ⋅ is a kernel function which 
can project examples from the original data space to a Hilbert 
inner product space. For a given kernel function, the decision 
function of an SVM classifier is given by 

( ) ( )1

nl
i i ii=

f y K , bλ= +∑x x x .            (2) 

Let Abs( )a  denote the function used to produce the 
absolute value ofa . In general, when Abs( ( ))f x  for a given 
pattern is high, the corresponding prediction confidence will be 
high. Meanwhile, a low Abs( ( ))f x  of a given pattern means 
that the pattern is close to the decision boundary and its 
corresponding prediction confidence will be low. As a result, 
the decision function f(x) has been used to measure the 
dissimilarity between a given pattern and the query image in 
many SVM-based RF schemes. 

2. Asymmetric Semi-Supervised Boosting for SVM Active 
Learning 

To generate strong learning systems, ensemble learning [12] 
tries to mine the complementary information of multiple 
classifiers, while semi-supervised learning [13] aims to benefit 
from the unlabeled data. As indicated by Zhou [14], however, 
ensemble learning and semi-supervised learning are actually 
mutually beneficial. A key element is that exploiting unlabeled 
data in an ensemble is helpful to augment the diversity among 
individual classifiers. Therefore, combing the advantages of 
ensemble learning and semi-supervised learning has been an 
appealing research theme. Some successful studies have been 
reported [15]-[20], most of which are semi-supervised boosting 
(SemiBoost) techniques [15], [16], [19], [20]. Specifically, the 
empirical study in [15] showed that a SemiBoost technique can 
effectively improve SVM performance. Based on the 
discussion above, we introduce a SemiBoost technique into our 
solution and modify it for the purpose of CBIR, that is, 
ensemble learning with asymmetry under the semi-supervised 
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setting. 
Similar to boosting, the main idea of SemiBoost is to train an 

ensemble classifier iteratively [15]. At each round of iterations, 
the pseudo-labels of the unlabeled examples are predicted 
using existing ensemble and the pairwise similarity between 
examples, and then a few confidently pseudo-labeled examples 
in conjunction with all labeled ones are used to train a new 
classifier. Finally, all of the learned classifiers will be combined 
to form the final ensemble. 

Let =[ ]
,

×S
i j

n nS  denote the symmetric similarity matrix,  
where 0

i,j
≥S  represents the similarity between example xi 

and xj. Let ( ) { }( ) 0 1h ,→x : t X  denote the individual 
classifier learned at the t-th iteration (SVM is considered in this  
paper). Let ( ) :H →x X R  denote the ensemble model 
learned after T iterations. It is computed as a linear combination 
of T individual classifiers, that is, ( ) ( )

1
( )T t

tt
H hα

=
= ∑x x ,  

where tα  is the combination weight. At the (T+1)st iteration, 
SemiBoost aims to find a new component classifier h(x) and 
the combination weight α by solving the following 
optimization problem: 
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where ( )i iH H≡ x , ( )i ih h ,≡ x  and the constant C=nl/nu is 
introduced to weigh the importance between the labeled and 
the unlabeled data. The objective function of SemiBoost F is a 
combination of two terms: Fl measures the inconsistency 
between labeled and unlabeled examples, and Fu measures the 
inconsistency among unlabeled examples. 

To simplify the computation, the above optimization 
problem can be transformed into a simple format. More details 
can be found in [15]. 
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where ( ) 1x,yδ =  when x = y and 0 otherwise. The quantities 
pi and qi can be interpreted as the confidence in classifying the 

unlabeled example xi into the positive class and the negative 
class, respectively. Since F1 is difficult to optimize, its upper 
bound F2 is then constructed.  
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Obviously, F2 is minimized when ( )signi i ih = −p q  for 
maximum value of Abs( )i i−p q . Therefore, to minimize F2, 
the optimal pseudo-label, zi, for the example xi is 
z sign( ),i i i= −p q and its corresponding prediction confidence 
is Abs( )i i−p q . Also, by differentiating F2 with regard to α and 
setting it to 0, the optimal α that minimizes the objective 
function is 
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For any given query, only a small number of images in the 
database are positive while most images are negative, that is, 
the relevant and irrelevant classes are highly imbalanced. 
However, the SemiBoost fails to take this class-imbalance 
problem into account. Learning algorithms that do not consider 
class-imbalance tend to be overwhelmed by the majority class 
and ignore the minority class [21]. A few methods have been 
proposed to tackle the class-imbalance learning, such as 
asymmetric boosting [22] and easy-ensemble [23]. The former 
raises the minority class examples’ weights in the boosting 
process, while the latter splits the majority class into several 
subsets in order to train each weak classifier on a balanced 
number of positive and negative examples within a ensemble 
framework. However, in these approaches, since the minority 
examples are overemphasized by every individual classifier, 
combining these classifiers will have a high probability of 
suffering from overfitting when the number of minority class 
examples is limited. Also, most of current class-imbalance 
learning methods are ensemble strategies, and thus embedding 
them into SemiBoost, that is, ‘nested ensemble’ structure, will 
require much training time. 

In the CBIR context, the user is more interested in positive 
images rather than negative images. Hence, individual 
classifiers with a high true positive rate should be emphasized. 
Considering this, we modify the weighting strategy for the 
purpose of CBIR, and the new weighting strategy is termed the 
bias-weighting mechanism: 
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Algorithm 1. Proposed ASB-SVM-AL algorithm. 
 
Input: = ∪DB L U : image database (L and U are the labeled

and unlabeled example sets, respectively); 
T: number of iteration in boosting;  
σ : sampling scale in iterations. 

1. for ,i j ∈ DBx x  do ( ),

2exp ;i j i j← − −S x x   

% compute similarities between any two images in DB 
 

In each round of relevance feedback: 
2. new← ∪L L L ; new← −U U L ; 
3. Repeat t = 1 to T   

3.1. for ∈x U  compute p and q using (5) and (6), and 
its pseudo label ( )signz= −p q ; 

3.2. ( )( )Sampling , Abs ,* σ← −L U p q  , ( )fix* σ=L U ;
% L*stores a few pseudo-labeled examples sampled 
% from U with weight ( )Abs −p q    

3.3. ( )( ) SVM_Traint *h ← ∪L L ;     

3.4. Compute tα  using (9); 
3.5. (t)tH H hα← + ; % update the ensemble classifier 

4. End Repeat 
5. ( )NormalizeH H← ; % normalize H to (–1,1) 

6. for ∈x U  do ( )( )( )AscSort Abs H←Pool x ;  

7. for ∈x DB  do ( )( )DscSort H←Result x ; 
Output: Pool, Result 

 
where tpr denotes the true positive rate of classifier h(x) learned 
from a mixture of nl labeled examples and m pseudo-labeled 
examples. exp(tpr) is used to augment the relative contribution 
of tpr. In (9), the first item reflects the general learning 
performance from both labeled and unlabeled data of an 
individual classifier, while the second item reflects the ability of 
an individual classifier on detecting positive images. Given 
several individual classifiers with the same general 
performance, bias-weighting will emphasize the individuals 
with the strong ability of detecting positive images. In other 
words, under the influence of bias-weighting, the ensemble 
classification model pays more attention to positive images 
than negative ones. ( ]0, 1η ∈  is used to control the relative 
contribution of each component. When 1η = , it means that 
the bias item is ignored: the smaller η  is, the more the bias 
item contributes. 

Furthermore, since the classifier learned from RF is not 
strong, especially in the early rounds, the pseudo-labels they 
assign to the unlabeled examples may be incorrect. Hence, the 
pseudo-labeled examples are only temporarily used as training 
examples, and in the next round of RF, they will be treated as 
unlabeled data again. In this way, the influence of the possible  

 

Fig. 1. User interface of prototype system. 

Pool Result 

 
 
mistakes made by the classifiers can be limited. 

In summary, inspired by SVM-AL, the proposed solution 
asymmetric SemiBoost-based SVM active learning (ASB-
SVM-AL) is presented in algorithm 1, where • denotes the 
size of a set, and ( )fix •  denotes the mantissa rounding 
operator. Similar to other active RF schemes, ASB-SVM-AL 
can actively put the most informative unlabeled images into a 
“pool” for the user to label, while the retrieval “result” is 
separated from the pool for feedbacks. The user interface of a 
prototype system is shown in Fig. 1. Note that the pairwise 
similarity between any two images in the database can be 
computed off-line. Thus, ASB-SVM-AL can be quite efficient 
in processing online queries.  

III. Experiments 

1. Comparison Methods 

To evaluate the performance of the proposed ASB-SVM-AL 
algorithm, we compare it with three other previous well-known 
active learning approaches:  

• SVM active learning (SVM-AL) [5]: the baseline method  
that directly learns an SVM model from the labeled        
examples and then selects the unlabeled examples closest to 
the decision boundary for labeling,  

• Boost SVM active learning (BSVM-AL) [6]: a modification 
of SVM-AL that enhances SVM performance using the 
AdaBoost technique,  

• Transductive SVM active learning (TSVM-AL) [7]: another 
modification of SVM-AL that improves SVM   
performance exploiting unlabeled data within the 
transductive learing framework. 

In the interactive CBIR community, ensemble learning and 
semi-supervised learning are two popular methods used to 
improve active learning performance. Therefore, BSVM-AL 
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and TSVM-AL are selected in the comparison. The library for 
SVM (LIBSVM) software [24] was used for all methods to 
solve the SVM optimization problem, and the radial basis 
function (RBF) kernel is used in SVM. 

Furthermore, in order to study whether the bias-weighting 
mechanism is useful to address the asymmetric distribution 
problem, a degenerated variant of ASB-SVM-AL, that is, 
SemiBoost-based SVM active learning (SB-SVM-AL) is 
evaluated for comparative purposes. Roughly speaking, the 
SB-SVM-AL is almost the same as ASB-SVM-AL except that 
the former does not consider the asymmetry distribution 
problem. Specifically, the parameter η  is set differently in the 
two approaches: ASB-SVM-AL aims at emphasizing the 
importance of positive examples by setting 0.3,η =  while 
SB-SVM-AL regards the positive and negative examples 
equally, that is, 1.η =  The reason for setting 0.3η =  is 
illustrated in Fig. 2. We set { }0 1 0 2 1 0. , . , , . .η ∈ … . After tuning 
all the values in this pool, we found ASB-SVM-AL performs 
best when 0.3η = .   

2. Configurations 

To form the testing image dataset, 50 semantic categories 
picked from the COREL database are used. Each category 
contains 100 images, and there are 5,000 images in total. We 

 

 

Fig. 2. Performance (P@Top50) of proposed algorithm with
various η at the first, third, and fifth feedback. 
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use three types of features to describe the images:  

• Color: the color features are derived using a 4×4×4 bin 
histogram in HSV space.  

• Texture: the texture features are derived using a 3-level 
pyramidal wavelet transform from the Y component in 
YCbCr space. Then, the mean and variance calculating in 
each of 9 high-frequent sub-bands is used to form an 18-
dimension vector.  

• Shape: the edge direction histogram (EDH) is employed to 
capture the spatial distribution of edges as a shape figure. 
EDH is calculated upon the Y component in YCbCr space 
using a Sobel detector and quantized into five bins; namely, 
horizontal, 45 diagonal, vertical, 135 diagonal, and 
isotropic. 

To evaluate the average performance, 250 queries were 
randomly selected from the image set. At the beginning of 
retrieval, images in the database were ranked according to their 
Euclidean distances to the query, and the top 10 images were 
labeled as the set of initially labeled images for the learning 
system. Then, various methods were applied to rerank the 
images in the database. For each compared method, after 
obtaining initial labeled images, five rounds of feedback were 
performed. 

In many interactive CBIR systems, the user is required to 
label 20 to 40 images in each round of feedback, which is not 
practical because few users are patient to label so many images. 
In our system, 10 images, judged to be the most informative 
ones, are put into the pool at each round of feedback (see   
Fig. 1). In particular, only the positive images are required to be 
marked by the user, and all the other images are automatically 
marked as negative by the system. In general, less than 50% of 
the images in the pool are positive. Thus, only about five 
images in each round of RF are required to be labeled by the 
user, which is more practical than many previous interactive 
CBIR systems. 

We adopted an experimental design technique to select 
optimal values of parameters T and σ. The feasible values of 
them are set to {5, 10, 15, 20} and {5%, 10%, 15%, 20%}, 
respectively. In the experiment, we found that, with T and σ 
growing, the performance of ASB-SVM-AL improved slowly, 
while the computational time increased quickly. Considering 
the tradeoff between effectiveness and complexity, T and σ 
were set to 5 and 5%, respectively. 

As a measure of retrieval accuracy, we used the precision at 
top N retrieval results (P@TopN) [25]. The precision-and-recall 
graph (PR-graph) is a well-known measure for information 
retrieval systems, but it fails to reflect the changes of the 
performance caused by feedback directly. P@TopN describes 
the relationship between precision and feedback iteration at the  
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Fig. 3. Precision at top 20, 40, 60, and 80 retrieval results of proposed algorithm compared with some existing methods. 
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top N retrieval results. Hence, P@TopN is a more reasonable 
choice than a PR-graph to evaluate the retrieval performance of 
interactive CBIR systems. 

3. Results 

Here we compare the performance of ASB-SVM-AL, 
SVM-AL, BSVM-AL, and TSVM-AL. Figure 3 shows the 
precision curves of the different methods at the top 20, top 40, 
top 60, and top 80 retrieval images. The detailed final testing 
result, that is, the mean average precision (MAP), is also shown 
in Table 1. Several observations can be drawn from the 
experimental results. First, by examining the results of all 
methods, we found that the BSVM-AL is only marginally 
better than the baseline method SVM-AL. The main reason is 
that AdaBoost can hardly boost the performance of strong 
classifiers such as SVM since the base SVM classifiers learned 
from the limited number of labeled examples are similar to 
each other. Consequently, the boosting method degenerates to a 
single strong classifier. Second, two semi-supervised learning 
solutions, ASB-SVM-AL and TSVM-AL, outperform the 
other two supervised learning methods. Finally, comparing the 
two semi-supervised learning algorithms, we found that the  

Table 1. Average precisions of different algorithms at top N retrieval 
results after five rounds of feedback. 

 Top 20 Top 40 Top 60 Top 80 MAP 

ASB-SVM-AL 0.79 0.66 0.58 0.52 0.64+11.7%

TSVM-AL 0.70 0.59 0.51 0.43 0.56+11.5%

BSVM-AL 0.64 0.56 0.44 0.37 0.50+12.1%

SVM-AL 0.62 0.55 0.41 0.34 0.48+12.8%

 

` 

Fig. 4. Performance (P@Top50) comparison between ASB-
SVM-AL and SB-SVM-AL. 
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proposed ASB-SVM-AL achieves significantly better 
performance than TSVM-AL. This result demonstrates that the 
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semi-supervised ensemble paradigm is more efficient than the 
conventional semi-supervised learning method. 

Furthermore, in order to study the effectiveness of the bias- 
weighting mechanism employed by our solution, ASB-SVM-
AL is compared with SB-SVM-AL. Figure 4 shows the 
comparison results of the two algorithms. As can been seen, 
with growing rounds of feedback, ASB-SVM-AL increasingly 
outperforms SB-SVM-AL. It is conjectured that the labeled 
positive and negative examples are nearly equal in the early 
rounds of RF. By gradually adding the user’s feedback, the 
labeled positive and negative examples become unequal.  
Thus, the bias-weighting mechanism is increasingly helpful to 
ASB-SVM-AL. 

IV. Related Works 

To improve the learning efficiency of RF, active learning 
paradigms have been studied in recent years. SVM-AL [5] is a 
well-known and pioneering work that plays an important role 
in the CBIR community. Its limitations have been addressed by 
research efforts. For the small example problem, Jiang and 
others [6] tried to improve the performance of SVM-AL by 
using the AdaBoost technique. However, as mentioned before, 
directly using AdaBoost hardly improves SVM performance. 
This was also pointed out by Tao and others [9], so they 
focused on improving SVM by using the bagging technique 
and feature selection strategy. Wang and others [7] proposed 
TSVM-AL that validates the SVM boundary by using 
unlabeled data within the transductive learning framework. 
Similarly, Hoi and others [8] proposed a better solution in 
which a kernel is first learned for SVM from a mixture of 
labeled and unlabeled data. The kernel is then used to identify 
the informative examples for active learning. However, the 
solutions only using ensemble learning or semi-supervised 
learning may not improve the RF performance significantly. 
There is a key difference between our proposed solution and 
the previous methods. This paper deals with an SVM ensemble 
under the semi-supervised setting. Since unlabeled data is 
exploited in the boosting framework, the diversity among the 
SVM classifiers is augmented. As a result, the performance of 
the SVM model is efficiently boosted. 

Furthermore, the proposed algorithm is closely related to the 
asymmetric bagging-based SVM (AB-SVM) approach 
proposed by Tao and others [9]. For tackling the asymmetric 
distribution problem, AB-SVM under-samples the negative 
example set in order to train each SVM classifier on a balanced 
number of positive and negative examples, and then combines 
them using the bagging technique. AB-SVM belongs to the 
family of traditional supervised ensemble learning, and thus it 
cannot work well with very limited training data. According to 

[9], AB-SVM requires the user to label 40 images in each round 
of RF. Generally, the user can hardly accept this heavy labeling 
burden. In contrast, the proposed solution uses a very simple 
mechanism, termed “bias-weighting,” to attack the asymmetry 
between the positive and negative examples. This can work well 
with only 10 images labeled by the user in each round of 
feedback. 

V. Conclusion 

In this paper, we proposed a novel RF scheme that integrates 
the merits of semi-supervised learning, ensemble learning, and 
active learning to address the small example problem. In 
particular, a bias-weighting strategy is used in our framework 
to address the asymmetric distribution problem. The empirical 
results showed the advantages of the proposed solution 
compared to some existing methods.  

In future work, we will study more efficient solutions to 
reduce the redundancy among the informative examples by 
using the clustering technique. 
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