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ABSTRACTWe propose a novel feature processing 
technique which can provide a cepstral liftering effect in the 
log-spectral domain. Cepstral liftering aims at the equalization 
of variance of cepstral coefficients for the distance-based 
speech recognizer, and as a result, provides the robustness for 
additive noise and speaker variability. However, in the popular 
hidden Markov model based framework, cepstral liftering has 
no effect in recognition performance. We derive a filtering 
method in log-spectral domain corresponding to the cepstral 
liftering. The proposed method performs a high-pass filtering 
based on the decorrelation of filter-bank energies. We show 
that in noisy speech recognition, the proposed method reduces 
the error rate by 52.7% to conventional feature. 

 
KeywordsSpeech recognition, robust feature extraction. 

I. Introduction 

Most speech recognition systems use a pattern matching 
approach; therefore the acoustic features of such systems 
greatly affect system performance. These acoustic features 
must parametrically represent the temporal evolution of the 
speech spectral envelope and can be assessed by four criteria, 
discriminability, adaptability, robustness, and compactness. 
While a great number of approaches have been developed for 
speech feature extraction, mel frequency cepstral coefficients 
(MFCCs) have proved to be a successful front-end for speech 
recognizers [1], [2], satisfying good discriminability, 
adaptability, and compactness. Despite these merits, MFCCs 
have a weakness regarding the equality of their coefficients. 
They have a relatively high variance in their lower order 
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coefficients in comparison to their higher ones, resulting in 
some diminution of the discrimination capability in distance-
based speech recognizers. For equal contribution among the 
feature coefficients, a liftering method was applied [3], [4], 
which suppresses the lower cepstral coefficients. In addition, this 
method can satisfy somewhat the robustness criterion because 
lower cepstral coefficients are easily corrupted by noise. While this 
liftering method is valid for speech recognition systems based on 
dynamic time warping, it has no effect in popular recognition 
systems using continuous-density hidden Markov models 
(CDHMMs). To cope with this problem, C. Nadeu and others 
introduced a frequency filtering method [3]. This approach 
performs a filtering which corresponds to the liftering in a log-
spectral domain prior to the cepstral domain, and thus is represented 
as a high-pass filter to logarithmic filter-bank energies (LFBEs). 

In this letter, we propose an advanced method of frequency 
filtering. The proposed method estimates the general 
correlation among LFBEs and using this estimation, provides 
an insightful filter based on the decorrelation among LFBEs. 
The proposed method effectively suppresses the more 
correlated noise and speaker-specific components than the 
spectral components, and this yields a performance 
improvement of speaker-independent recognition systems in 
adverse conditions. The experimental results showed that the 
proposed method yields better performance than conventional 
MFCCs and other frequency filtering methods. 

II. Cepstral Liftering vs. Frequency Filtering 

1. Cepstral Liftering 

In a dynamic time warping-based framework, Euclidean 
distance is a measure for the dissimilarity between feature 
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vectors, but it depends on an equal variance among the feature 
coefficients. Cepstral liftering weighs the cepstral coefficients 
in order to obtain an equal variance, and is significant for the 
improvement of recognition performance. If Cq is the q-th 
cepstral coefficient, the liftered cepstral coefficient LCq is 
given by 

,,...,1, QqCwLC qqq ==             (1) 

where wq defines the lifter, q indicates the quefrency, which is 
the index of cepstral coefficients, and Q denotes the number of 
cepstral coefficients. The weight wq depends on the lifter type, 
and some of the important lifter types are linear, statistical, 
sinusoidal, and exponential lifters [4]. All four types give less 
weight to the lower cepstral coefficients, which corresponds to 
a suppression of slow-varying terms in the log-spectral domain. 

2. Frequency Filtering 

Frequency filtering performs a convolution between LFBEs 
and a given impulse response as follows: 

,,,1),(*)()( KkkhkSkY L==           (2) 

where Y denotes filtered LFBEs, h is an impulse response, and 
K is the number of LFBEs. If (2) is considered as the circular 
convolution, in the cepstral domain it can be expressed as 
Y(q)=H(q)S(q). This takes the form of (1), in which Y(q), H(q), 
and S(q) correspond to LCq, wq, and Cq; this illuminates the 
relation of cepstral liftering and frequency filtering. Frequency 
filtering still maintains the log-spectral domain, and this gives a 
reason why the liftering effect also works well in a CDHMM 
framework. Nadeu and others proposed the following two 
frequency filters of high-pass and band-pass types [5]: 
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H1(z) is a filter based on the equalization of cepstral variance, 
and H2(z) is a simple derivative-type filter corresponding to a 
sinusoidal lifter. Nadeu filters are currently the best method 
with respect to frequency filtering [4], and H2(z), in particular, 
work well for a broad range of conditions as a data-
independent filter. 

III. Decorrelation of Filter-Bank Energies 

1. Estimating the Correlation of LFBEs 

To introduce the decorrelation procedure, we estimate a 
power cepstrum of LFBEs. This average power cepstrum 

represents a correlation among LFBEs, and indicates a cepstral 
variance when the mean of LFBEs is subtracted. Thus, the 
inverse of the power cepstrum is equal to the inverse of the 
cepstral variance, which has something to do with the variance 
equalization. 

Let S(w) be the logarithmical Fourier transform of a short-
time speech signal. Suppose that the complex cepstrum is 
considered, its second moment is 
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where φ=w1–w2, and R(φ) indicates the correlation among 
S(w). For more realistic conditions, assume R(φ)=e-a|φ| derives 
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where a denotes the correlation rate and has a value between 0 
and 1 for most real conditions. This analysis shows that the 
variance of the cepstral coefficients is inversely proportional to 
the square of quefrency [6]. Therefore, the power cepstrum of 
LFBEs can be estimated as 

.0,1|)(| 2
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qS              (6) 

Figure 1 verifies (6) by presenting the power cepstrum 
obtained from all the frames of around 76,000 Korean words 
uttered by 80 male and female speakers. Nadeu and others also 
reported the same graph in terms of cepstral variance [3]. 
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Fig. 1. Normalized power cepstrum obtained from a given 
database.
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2. Decorrelation Filter Design 

Let’s assume that speech signal and noise are independent, and 
the power cepstrum of the LFBEs of a received signal is given as 

,|)(||)(||)(| 222 qNqSqO +=            (7) 

where |S(q)|2 and |N(q)|2 are the power cepstrum of speech and 
noise, respectively. This is a linear-approximated model for 
environments. Typically, the environment model is O(q)=Nc(q) 
+ C log(S(q)+Na(q)), where Nc(q) is the channel distortion, C 
the discrete cosine transform matrix, and Na(q) the additive 
noise, and is thus non-linear in the cepstrum domain. Using 
statistical linear approximation, this letter approximates a non-
linear term and assumes the noise components as the simple 
additive term. In (7), |N(q)|2 is the correlation of noise 
components and can be assumed to be a small value compared 
with |S(q)|2 due to the white characteristic in most noises. In this 
letter, |N(q)|2 is approximated as .ε  

Now, let’s assume that LFBEs O(k) is transformed into Y(k) 
using filter D. In conditions when the power cepstrum of Y(k) 
is a constant, filter D plays a role of decorrelation, and thus the 
decorrelation filter is derived as follows: 
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To apply to LFBEs, (8) is constructed as an infinite impulse 
response filter using the bilinear transform method. Let 
q= j[(1–z)/(1+z)] be satisfied in the cepstrum domain. Then, 
the stable and realizable filter is 
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and the final decorrelation filter in the log-spectral domain is 
written as 
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In (10), η determines the cut-off quefrency of a high-pass 
filter. Figure 2 shows the effect of noise corruption in the 
cepstrum domain, and thus η is chosen to attenuate quefrencies 
below q=5. In this letter, η is 0.5. 

Figure 3 compares the proposed filter with other frequency 
filters. In filter H1(z), the coefficient ρ was 0.5. The filter D(z) 
has a zero at z=1, and this means the elimination of the 
cepstral coefficient in a zero quefrency. Since the sequence of 
noise LFBEs is often quite flat [7], this property is considerably 
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Fig. 2. The effect of noise corruption in the power cepstrum. 
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Fig. 3. Comparison of the proposed filter with Nadeu filters. 
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effective for noise reduction. While H2(z) also has the same 
property, H1(z) may additionally require the removal of the 
average value of LFBEs to cancel the zero quefrency 
component. The output of H2(z) indicates a clear spectral 
slope by its derivative characteristic, and a phonetic distance 
based on the spectral slope near the peaks may relate to a 
perceptual ability [5]. Note that the proposed filter has not 
only the spectral slope but also relatively broad spectral peaks 
using the recursive term, while Nadeu filters depend on the 
difference between particular LFBEs. The key point is not a 
complete decorrelation but a balanced discriminability with 
decorrelation [5]. 
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IV. Recognition Experiments 

We used a Korean phonetically optimized word database 
distributed by Electronics and Telecommunications Research 
Institute (ETRI), Korea. The vocabulary consisted of 3848 
Korean words which are mutually confusable. The total 3848 
word set was divided into eight sub-word sets, and each speaker 
uttered one of the sub sets, i.e., 481 words. The database was 
produced by 40 male and 40 female speakers, and consisted of a 
total of 10 sets, five sets from the male speakers and five sets 
from the female speakers. Eight sets, composed of four male sets 
and four female sets, were used for the training data, and the 
other two sets were used to form the evaluation data. The 
training was conducted using clean speech, and the evaluation 
was performed for noisy speech, which was generated by adding 
noise sources taken from the NOISEX-92 database to the clean 
speech. The noise sources were a Lynx helicopter and car [8]. 

The feature was extracted as follows: we performed a short-
time analysis on a Hamming-windowed speech segment of 20 ms 
and computed 23 mel-scaled FBEs for every 10 ms. Each FBE 
was scaled logarithmically, and the proposed filter was applied 
to the LFBEs. The final feature was a 26-dimensional vector 
consisting of 13 MFCCs after frequency filtering and 13 delta 
MFCCs, and a cepstral mean subtraction (CMS) routine was 
applied [9]. The basic unit of recognition was 562 tied triphone 
models which are modeled by a simple left-to-right CDHMM 
without skipping. Each triphone consisted of three states, and 
eight Gaussian mixtures with a diagonal covariance matrix were 
used for each state. 

The experimental results are shown in Tables 1 and 2. Table 
1 shows the results for the Lynx helicopter noise. The Nadeu 
filter H1(z) considerably improved the recognition performance 
for clean speech but was less effective for noisy speech. In the 
case using filter H2(z), the improvement for noisy speech was 
more remarkable than that for clean speech. The proposed filter 
yielded an outstanding performance for both clean and noisy 
speech and outperformed the other filters. The error reduction 
rate for the car noise is provided in Table 2. As in Table 1, H1(z) 
may require the additional processing for noise-corrupted 

Table 1. Experiment results for Lynx helicopter noise. 

Error reduction rate (%)
SNR (dB) 

Baseline 
recognition rate (%) H1(z) H2(z) D(z) 

Clean 88.1 26.9 8.4 37.0 

20 64.6 7.9 33.1 50.3 

15 39.8 2.3 41.7 52.7 

10 15.5 1.3 31.2 39.3 
 

 

Table 2. Experiment results for car noise. 

Error reduction rate (%)
SNR (dB) Baseline 

recognition rate (%) H1(z) H2(z) D(z) 

20 77.5 3.1 22.2 44.0 

15 60.6 5.6 41.9 49.7 

10 37.9 2.9 40.7 48.0 
 

speech. The proposed method was more effective than H2(z) 
and indicated that the broad trajectory by recursive term is 
more important than the local difference between LFBEs. 

V. Conclusions 

In this letter, we presented a method for robust feature 
extraction utilizing decorrelation filtering for LFBEs, and 
demonstrated that the proposed method works successfully in 
noisy speech recognition. The proposed filter yielded an 
outstanding improvement for both clean and noisy speech due to 
the reduction of speaker-to-speaker variability and the noise 
component, and it outperformed the other methods. In addition, 
the results are worth noting in that the corrupted noise was not 
white noise but real noise which has a transition step in the 
spectrum. 
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