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Turbo codes are extensively used in current 
communications standards and have a promising outlook 
for future generations. The advantages of software defined 
radio, especially dynamic reconfiguration, make it very 
attractive in this multi-standard scenario. However, the 
complex and power consuming implementation of the 
maximum a posteriori (MAP) algorithm, employed by 
turbo decoders, sets hurdles to this goal. This work 
introduces an ASIP architecture for the MAP algorithm, 
based on a dual-clustered VLIW processor. It displays the 
good performance of application specific designs along 
with the versatility of processors, which makes it 
compliant with leading edge standards. The machine deals 
with multi-operand instructions in an innovative way, the 
fetching and assertion of data is serialized and the 
addressing is automatized and transparent for the 
programmer. The performance-area trade-off of the 
proposed architecture achieves a throughput of 8 cycles 
per symbol with very low power dissipation. 
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I. Introduction 

Turbo codes, introduced in 1993 [1], achieve outstanding bit 
error rate performance approaching the Shannon limit, the 
theoretical maximum information transfer rate over a noisy 
channel. The main drawback of turbo codes is the complex 
decoder structure which entails a power and area consuming 
VLSI implementation. Among all algorithms that can compute 
turbo decoding, the maximum a posteriori (MAP) algorithm 
[2] provides the best performance at low signal to noise levels. 
This algorithm is carried out in a soft-input soft-output (SISO) 
decoder, whose implementation causes the complexity of the 
turbo decoder. Due to their excellent performance, most 
wireless communication systems, characterized by a low signal 
to noise ratio, make use of turbo codes. For instance, the most 
important third generation wireless mobile standards such as 
UMTS, W-CDMA (3GPP), and cdma2000 (3GPP2) have 
adopted turbo codes in their specifications. Turbo codes are 
employed by other present industrial standards, such as 
Consultative Committee for Space Applications (CCSDS) 
telemetry channel coding, DVB-RCS, IEEE 802.11n, and 
IEEE 802.l6ab. Furthermore, turbo equalization and turbo 
space-time decoders have opened new niches and surely will 
lead the way for future techniques and paradigms.   

In this context, software defined radio (SDR) seems an 
appealing solution to deal with the proliferation of wireless 
standards with different frequency and modulation techniques. 
With this approach SDR-enabled user devices can be 
dynamically programmed in software to reconfigure their 
characteristics for better performance, richer feature sets, 
advanced new services that provide choices to the end-user, 
and new revenue streams for the service provider. 

However, current processors are not cheap enough or 
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energy-efficient enough to support realistic implementations of 
portable software radios [3]. Thus, more sophisticated 
architectures make sense, because radios, like other signal-
processing applications, exhibit task-level parallelism that can 
easily be mapped onto a concurrent architecture, as in the case 
of clustered VLIW processors. Moreover, when the 
architecture matches the application, we talk about application- 
specific instruction-set processors (ASIPs), which solve most 
problems related to ASIC implementations [4]. A higher 
volume of units is demanded because there are more 
applications or different generations of the same application 
that fit onto it. Additionally, for the application developer who 
uses an ASIP instead of an ASIC, the time to market is reduced 
because it is cheaper and there is lower risk. Furthermore, in 
comparison to general purpose processors, the power overhead 
related to programmability can be mitigated by ASIP 
architectures, especially if they are very dedicated. 

In this paper, we present a dual-clustered VLIW processor 
that implements a SISO decoder. This work attempts to bridge 
the gap between application specific designs and processors, 
offering the customization degree of application specific 
designs together with the strength of versatility of processors. 
Moreover, using the proposed architecture, the embedded 
applications have low area and power requirements, which 
allows the use of multiple cores in a single chip. To carry out 
these goals, the proposed architecture includes a customized 
datapath, which allows very high efficiency while keeping low 
level details transparent to the programmer. Also, an advanced 
mechanism to feed data to multi-operand instructions has been 
devised to improve the processor performance along with 
automated addressing, which greatly simplifies the 
programming. The resulting architecture displays robust 
performance together with the flexibility to tackle different 
codes, code lengths, procedures, and algorithms, which means 
that the processor is able to meet the most demanding industrial 
standards. All these characteristics make our design especially 
attractive for SDR and embedded systems applications. 

The remainder of this paper is structured as follows.  
Section II describes the basis of the MAP algorithm. Sections III 
to V put forward the ASIP architecture, from the datapath to the 
controller. In section VI, two application examples are 
described. In sections VII and VIII we present the most 
important results of the design and compare them with relevant 
previous works. Finally, section IX gives our conclusions. 

II. The MAP Algorithm 

In a communication system that employs turbo codes, on the 
transmission side, a turbo encoder produces and sends three 
kinds of outputs: a systematic word (the input information); a  

 

Fig. 1. Parameters involved in the decoding process. 
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parity word from a convolutional encoder fed with the input 
information; and one or more parity words from one or more 
convolutional encoders, whose inputs are randomized versions 
of the input information. This randomization, performed by an 
interleaver, is known by the decoder and makes the code very 
robust against channel variability. The turbo decoder performs 
a soft decoding with each pair of received systematic-parity 
data by means of an SISO decoder. In each SISO decoding, the 
system gains soft information, which is used for the subsequent 
SISO decoding in an iterative process. The decoding ends 
when the threshold reliability is reached.  

The MAP algorithm [2] computes the soft decoding with a 
very high reliability. Figure 1 shows a section of the trellis 
produced by the encoder. In this figure the main parameters of 
the algorithm are shown. The transmitted symbol is 
represented by uk. The probability that a transition is produced 
is given by p(s’, s, ys, yp) = αk(s’) γk(s’,s) βk+1(s), where s’ and s 
are the origin and destination states, respectively; ys and yp are 
the noisy received systematic and parity data respectively; 
αk(s’) is the forward path metric; βk+1(s) is the backward path 
metric; and γk(s’,s) is the branch metric. An SISO decoder 
implements this algorithm. It receives the noisy data along with 
the a priori soft information of the previous decoding Le

in
 and a 

channel constant, Lc, related to the energy per channel bit and 
the channel noise level. The SISO decoder yields the log-
likelihood ratio (LLR) and the extrinsic information for the 
next decoder, Le

out—the soft information that this decoding has 
gained.  

The MAP algorithm can be simplified by working in the 
logarithmic domain. In this domain, multiplications become 
additions, and additions can be computed by the Jacobian 
logarithm (ln(ea + eb) = max{a,b} + f (|a-b|)). If the last term—
known as the correction term—is considered, the algorithm is 
referred to as the LM (Log-MAP) algorithm; in contrast, if the 
correction term is neglected, the algorithm is referred to as the 
max-LM (max-Log-MAP) algorithm [5]. In the logarithmic 
domain, the metrics are calculated by the following 
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expressions1): 
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The α and β computations are recursive and depend on the 
previous and subsequent values, respectively. That is, αk(s) 
needs two α values from t=k–1 to be computed. This is the 
reason why α and β are known as the forward and backward 
metrics, respectively; they both are also known as the state 
metrics. 

Equations (1) to (5) are the basis of the architecture described 
in this paper. There are several ways to execute the algorithm 
which entail a trade-off between area and latency. A 
straightforward procedure computes the α’s in the forward 
recursion and the β’s, the LLR, and the Le

out in the backward 
recursion. This procedure achieves a low total execution time; 
however, it requires a whole block of memory to store the α’s 
and leads to high latency. To overcome this problem, various 
mechanisms have been proposed, such as the sliding windows 
mechanism [6], which divides the computation into small 
blocks, significantly reducing the storage needs and the latency. 
Both approaches will be tackled in our software defined radio 
processor. 

Table 1 shows the computational needs of each equation, 
specifically the number of inputs, outputs, additions, 
multiplications, and add-compare-select (ACS) structures. 
Note that the elevated number of inputs and outputs will set 
hurdles for the design of the processor. 
 

Table 1. Computational needs of MAP algorithm. 

Operation Inputs Outputs Add. Mult. ACS 

γ 4 3 2 1 0 

α, β 10 8 0 0 16 

LLR-Le
out 19 2 10 0 32 

  
                                                               

1) To simplify the equations, ln x is denoted by x, and max* stands for the Jacobian 

expression max{a,b} + f (|a-b|). 

1. Gamma Operation Details  

As stated in [7], “good” RSC encoders for turbo codes 
generate a trellis which can be grouped into 2m–1 butterfly pairs, 
each of which is determined by a unique substrate—m denotes 
the memory in bits of the encoder. A butterfly pair is illustrated 
in Fig. 2, where xk

s and xk
p represent the systematic and the 

parity outputs of the encoder, respectively. In a trellis section, 
half of the pairs have codewords (-1,-1) and (1,1); the other half 
have codewords (-1,1) and (1,-1). If the γ computation of (1) is 
considered, it is clear that for time instant k, all the parameters 
remain constant except xk

s and xk
p ; therefore, we can write  
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Therefore, we have four possible values for γ depending on the 
codeword. However, we must take into account a property of 
the previously mentioned butterfly pairs. In a butterfly pair, 
there are only two values of γ and they are opposites:  

( 1) ( 1) {( 1) ( 1) }even a b a bγ γ γ γ γ= + + + = − − + − ,     (7) 

 ( 1) ( 1) {( 1) ( 1) }odd a b a bγ γ γ γ γ= + + − = − − + + .     (8) 

This leads to the conclusion that for a butterfly pair, only a 
single γ computation must be performed because the other one 
is computed as the opposite to the former. We could go even 
further and state that, for a whole trellis section, there is no need 
to calculate more than two γ’s, namely γeven and γodd .  

 
 

Fig. 2. Butterfly pair. 
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III. General Architecture  

Our SISO decoder is a microprogrammed VLIW ASIP 
based on a Harvard microprocessor architecture with separate 
data and program memories, and strongly wired addressing. 
More specifically, it consists of a set of heterogeneous 
functional units, which execute operations on various data 
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Fig. 3. General architecture of the SISO decoder. 
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elements. A microcoded centralized controller provides the 
functional units with the necessary control information. Each 
cycle, an instruction is executed. This instruction details all 
datapath and memory actions to be carried out in that cycle. 
The machine has only one thread of control, although several 
computations are performed in parallel. It is the duty of the 
programmer to set up and maintain the instruction pipeline [8]. 
The global architecture is shown in Fig. 3.  

The whole processor is meticulously optimized for the 
execution of the MAP algorithm operations. The main 
characteristic of these operations is the high number of input 
and output operands. We have targeted low area and low power 
consumption, always taking into account that the system has to 
be compliant with third generation standards regarding data 
throughput. Based on [8], three specialization dimensions have 
been considered in designing the VLIW machine:  

• The mapping of the decoding algorithm equations into 
independent functional units, in such a way that several 
operations can be carried out in parallel independently form 
each other. This implies the tailoring of the instruction set.  

• The customization of the register files to the needs of the 
algorithm and also the interconnections among the 
functional units. 

• The organization of the memory system. 
From a general perspective, as shown in Fig. 3, the datapath 

is composed of two clusters, that is, two functional units, which 
possess their own independent register files. All the design 
decisions referent to the datapath are explained in the next 
section. The master controller includes the instructions memory, 
the instruction decoder, and the address generator unit.  
Section V details the functioning of the controller.  

The data memory, accessed by a bus, stores the α values 
processed in the forward recursion, and it does not affect the 
timing of the system. Its minimum size is dependent on the 

algorithm and procedure because different block and window 
lengths lead to different data memory sizes. The I/O circuitry  
handles the external interface buffering input and output data. 
Specifically, all the external data required for computation—
Le

in, Lc, yk
s and yk

p—is received at the I/O block and forwarded 
to corresponding places in the register files. In the same way, 
the output data, Le

out, is forwarded to the I/O block, which 
handles the assertion of this data.  

IV. Datapath 

All the computations of the system are carried out in the 
datapath of the processor; therefore, the main design effort has 
been focused on it. This module is responsible for the 
frequency and latency of the whole decoder. Moreover, it takes 
up most of the area and power consumption of the system.  

The main tasks in the design process were deciding the 
number of functional units to be used and mapping the 
equations into these functional units. The major challenge 
was to explore the great diversity of solutions and to evaluate 
and select the most appropriate. The only restrictions that 
biased our design were the requirements in terms of data 
throughput of the third generation standards that our software 
defined radio processor had to fulfill. Therefore, the variety of 
solutions was very wide. The departure point was the set of 
equations that make up the MAP algorithm. The high number 
of inputs and outputs in each operation was clearly 
incompatible with the goal of reducing connectivity and area 
needs. This demonstrated the necessity of an unconventional 
solution. A traditional architecture would gather all the data in 
each operation in the same cycle, process it during a number 
of cycles, and then assert all the results again in the same 
cycle. This strategy would imply an elevated number of 
connections, inputs, and outputs in each functional unit. 
Furthermore, it would leave little possibility for future 
upgrades. To solve this problem we came up with the idea of 
a set of pipelined functional units, which gather and assert 
data in a sequential manner from and to their register files. 
This complicates the control of the operations; however, it 
reduces connectivity and area requirements and provides the 
architecture with improved flexibility. Performance is also 
improved because some of the data is produced and can be 
used by another functional unit before an operation is 
completely finished.  

Internal pipelining of each operation was carefully 
considered to eventually get a well-balanced structure that 
achieves a high throughput. Hardware resource utilization of 
100% for every operation represents the ideal goal in an ASIP 
datapath. In this work, we have almost reached that goal (see 
section VIII).  
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1. Clustering  

A set of relationships and dependencies can be established in 
the MAP algorithm operations. These dependencies are the key 
to the selection of the number of clusters. They also determine 
the interconnection needs between clusters. We have 
considered three sorts of dependencies:  

• operator reutilization,  
• time execution dependencies,   
• area and power considerations.  
Regarding operator reutilization, from the analysis of the 

algorithm equations, we infer that the multiplication operator is 
present only in the γ computations of (1). Moreover, the rest of 
the computations include the ACS* operator, which performs 
the max*. This is the first hint that the γ operation should be 
mapped to an independent functional unit, whereas the rest 
could share some hardware structures.  

Focusing now on time execution, as stated in section II, the 
algorithm is executed by two procedures. A straightforward 
procedure first computes all the γ’s and α’s, and then calculates 
the β’s, the LLR and the Le

out, using the previously calculated 
values. The sliding windows procedure divides the 
computation into small blocks; however, the progress inside 
each block is exactly the same as in the whole straightforward 
procedure. Three dependencies are deduced.  

• Since the results of the γk(s’,s) computation are used by the 
rest, it would be very convenient (in terms of throughput) to 
perform it in parallel with the rest.  

• In both procedures, the β values are calculated after the α 
values. This implies a serial computation.  

• LLR and Le
out

 computations need a complete set of α’s or β’s 
calculated; therefore, these operations are necessarily serial.  

Serial computation suggests resources reusability, whereas 
parallel computation implies new components to be 
instantiated. Hence, taking into account the previous 
dependencies, the idea of two functional units—one mapping 
the γ computation and the other mapping the rest—begins to 
take definite shape.  

To minimize the area, resource sharing must be exploited as 
much as possible by different computations. This is another 
good reason for mapping the α, β, LLR, and Le

out
 into a single 

functional unit.  
Finally, it has been demonstrated that one of the best 

strategies to reduce power consumption is to reduce the 
number of memory accesses [9]. With a functional unit 
performing the γ computation in parallel with the rest, we 
consume these values on the fly and avoid storing and 
afterward retrieving them from the memory. This also serves to 
justify the mapping of the γ computation into a functional unit 
of its own. Moreover, it reduces memory bottlenecking. 

2. Development of Functional Units   

In addition to traditional design considerations, the 
sequencing of data fetching and assertion was also analyzed. 
While the implementation of the γ computation into a 
functional unit (FU) is not complicated, the fusion of the rest 
into a single FU entails several design trade-offs that do not 
always appear to be straightforward. The FU that implements 
the α, β, LLR, and Le

out operations will be described initially 
because it fixes the data throughput of the whole system, 
including the other FUs. In particular, we will detail the 
implementation of each equation and then all the structures will 
be combined to form the FU.  

As shown in (2) and (3), the α and β computations perform 
the same basic operations; therefore, they will be dealt with as 
one. If we center on the α computation and assume an 8-state 
turbo code, a trellis section requires 8 inputs for the previous 
α’s, 2 inputs for the γ’s, and 8 outputs for the calculated α’s. 
Also, there are 8 equal maximization operations in this trellis 
section. Taking into account the butterfly property, two 
butterfly pairs can be computed making use of just five inputs 
as long as they share γk(s’,s). This means that the data of a 
single operation is fetched and asserted along several cycles, in 
contrast with general purpose processor (GPP) architectures in 
which all the data is fetched and then asserted simultaneously. 
In the first cycle, half of the α’s and one γ are fetched, and in the 
second cycle, the rest of the data is input. In the second cycle 
the first set of 4 α’s is also asserted. The second group of 4 α’s 
will be output in the third cycle. This computation attains a 
throughput of 2 cycles/symbol. Figure 4 displays the general α 
and β computation structure. Note that the normalization 
module norm will be described in section IV.4. 

 
 

Fig. 4. Implementation of the α and β computations. 
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Fig. 5. Pipelined implementation of the LLR and Le
out computations.
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The LLR and Le
out computations are described by (4) and (5). 

For an 8-states Turbo code, a trellis section with 4 butterflies 
requires 8 inputs for the α’s, 8 inputs for the β’s, three inputs 
from the γ unit and two outputs for LLR and Le

out
 . In order to 

minimize the connectivity, all the operations corresponding to 
just one butterfly are computed in parallel in one cycle, a 
throughput of 4 cycles/symbol is attained. The data is fetched 
sequentially so that in each cycle it is only necessary to fetch 
the data corresponding to a butterfly pair; since a butterfly uses 
two α’s, two β’s and one γ, only five inputs are required. 
Considering that equally signed transitions in a butterfly pair 
share the same value of γ, we can extract this term out of the 
maximization operand, so that it is added afterward. Figure 5 
shows our pipelined approach in which the first stage encloses 
two ACS* structures exactly equal to those of the α and β 
computations, the second stage is implemented with ACSA 
modules, which introduce an accumulator to allow several 
iterations, and finally, the third stage includes two adders.  

The total numbers of adders and max* modules in both α 
and β computations and LLR and Le

out
 computations are the 

same. This was intended because they are to be mapped into a 
unique structure. The merging of FUs into a single FU is 
shown in Fig. 6. All pipeline registers separate add-max* 
structures, yielding a design that is both well-balanced and 
independent of the max* module implementation. 

Each received symbol has to go through the α, β and LLR 
and Le

out
 computations at 2, 2, and 4 cycles/symbol, 

 

Fig. 6. α-β-LLR-Le
out functional unit. 
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Fig. 7. Implementation of the γ computation. 
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respectively; therefore, the global execution of the processor 
entails a throughput of 8 cycles/symbol. This value will be 
compared with current implementations of the turbo decoder in 
section VII . 

The γ operation is described by (1). This operation possesses 
4 inputs: Le

in, Lc, yk
s, and yk

p, and has to assert 3 outputs: γeven , 
γodd, and γa. Since this computation is to be performed in 
parallel with the rest, it has to fulfill the timing of the most 
restrictive operation in terms of throughput, that is,          
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2 cycles/symbol for the α and β computations. Figure 7 
illustrates the implementation of this unit. A pipelined multiplier 
is introduced to reduce the combinational delay between 
registers.  

3. Global Datapath Microarchitecture  

Figure 8 shows the three stages of our datapath 
microarchitecture, each register file (RF) is divided into two 
register banks (RBs). Dashed lines represent pipeline registers. 
The operations executed inside the ALUs entail several 
pipeline stages. Arrows crossing the pipelines downward are 
registered, whereas the arrows crossing the pipelines upward 
are not registered.  

To understand the microarchitecture it is necessary to review 
some of the connectivity requirements of the MAP algorithm 
computations. The α and γ metrics are calculated during the 
forward recursion. The α metrics are used by the subsequent α 
computation and by future LLR computations; therefore, some of 
these results are bypassed. The rest are stored temporarily in the 
RF, and they all are sent to the data memory via a data bus. In 
contrast, γ metrics are consumed on the fly by the next α 
operation; therefore, some values are again bypassed, and the rest 
are registered and fed later. In the backward recursion, the γ 
operation is performed in parallel with the β and LLR operations. 
The β operation is the same as the α in the forward recursion 
except that they do not need to be stored because they are used 
immediately after they are computed. The LLR operation 
requires the data from all the other operations, specifically, the γ 
values stored in the RF; the β values that were just calculated, 
some of which are bypassed, while the rest are fetched from the 
register file; and the α values that were computed during the 
forward recursion, which are now also fetched from the RF.  
 

 

Fig. 8. Pipeline structure. 
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Table 2. Connectivity requirements. 

Computation Data Fetched from 

γ Input RB4 

γ Bypass and RB3 
α 

Previous α Bypass and RB1 

γ Bypass and RB3 
β 

Previous β RB1 

γ RB3 

β Bypass and RB1 LLR 

α RB2 

 

  Table 2 summarizes all these requirements and specifies the 
RB from which the data is fetched. State metric initialization is 
performed by loading the initialization values in RB1.  

Each cluster contains one RF, and each RF is divided into 
two RBs. The RFs are tailored to the needs of the algorithm, 
and only the necessary connections are hardwared. Moreover, 
since we are dealing with so many parallel signals, it would be 
very complicated for the programmer to specify all the registers 
in each operation; therefore, this task is left for a special unit, 
the address generation unit (AGU) so that the programmer 
does not need to reference any register at all. Cluster 1–which 
computes α, β, and LLR–has two banks: RB1, for the data 
produced in the α and β computations, and RB2, to 
momentarily store the α’s that were stored in the data memory 
and were fetched from the bus. Cluster 2–which computes γ–
also has two RBs: one for the results of the operations (RB3), 
and another to store and buffer the input data of the system. 
The register banks inside a cluster work independently; thus, 
RB2 loads data from the memory, and RB1 fetches data from 
ALU1 simultaneously.  

The bypass network selects the source of each ALU1 input. 
The control of this network is carefully designed so that it is 
transparent to the programmer.  

4. Normalization Implementation Details  

The state metrics get bigger and bigger as the decoding 
algorithm proceeds. To avoid this huge increase, some 
normalization scheme must be adopted. In [10], a new 
normalization scheme was proposed. At each time instant, all 
the α’s or β’s are compared with 2q–2, q being the number of  
bits of the state metrics. If any one of them is greater than 2q–2, 
all the α’s or β’s are subtracted from 2q–2; otherwise, they 
remain untouched. This method was chosen for this work 
because it significantly simplifies normalization in comparison 
with previous approaches [5] since just a one-bit flag must be  
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Fig. 9. Block division of the pipeline computation. 
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stored along with the state metrics of a time instant to express 
the normalization state. It is also very efficient since simple 
combinational logic can be used to implement it.  

However, since serialization is assumed, we have to slightly 
modify the previous normalization scheme. In our work, >2q–2 

is calculated throughout several cycles, so it is impossible to 
decide whether -2q–2 should be computed until we have 
finished with all the state metrics. Our modification consists of 
flagging whenever any state metric is greater than 2q–2. This 
flag is registered and used in the next block of state metrics to 
decide if normalization at the input must be applied. Hence, 
unnormalized values are stored, and they are not normalized 
until input for the calculations of the next set of state metrics.  

For LLR and Le
out

 computations, both α and β parameters 
might need normalizing because they both are stored without 
normalizing. Therefore, two flags must be input, one for α and 
one for β; therefore, two normalization modules are needed. 
Each module subtracts 2q–2 when its corresponding flag is 
activated.  

V. Control  

The control of the system relies on a pipelined architecture 
able to deal with multicycle operations. The design of pipelined 
general purpose processors is widely explained in the literature, 
as for example, in [11]; therefore, we will focus on the special 
characteristics of our architecture. For the sake of clarity, the 

datapath is divided into six independent blocks as shown in  
Fig. 9. Each of them constitutes an independent logic element 
inside the clusters that the operations will employ throughout 
the pipeline execution.  

As explained in section IV, the novel contribution of our design 
is the sequencing of the data fetching and assertion inside the 
same operation. Figure 10 details the blocks that each operation 
uses in each pipeline stage. It also shows when the inputs are 
collected and when the outputs are asserted for each computation. 
In the figure, DF and DA denote data fetch and data assert. As 
expected, the γ operation is performed in parallel with the rest 
using blocks inside the second cluster. Table 3 details the latency 
and throughput or initialization interval of each operation. 

In contrast with a GPP that deals with instructions as a block 
of pipeline stages, our controller is microprogrammed to direct 
each stage of the pipeline independently. This provides it with a 
higher flexibility and optimizes the resources utilization ratio, 
although this complicates the work of the programmer in 
charge of maintaining the pipeline [8]. Depending on the 
particular turbo code (different standards and code sizes) and 
procedure (straightforward procedure, sliding windows) each 
operation executes differently regarding data and 
interconnections. The pipeline, shown in Fig. 10, may also vary. 
The order of the stages may change, or new stages may be 
added; therefore, it is more convenient to control each part of 
the operation separately. With this scheme, the controller 
conducts the order of the stages in each operation and is able to  
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Fig. 10. Pipeline structure. 
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Table 3. Latencies and throughputs for operations. 

Operation Latency Throughput 

γ 4 2 

α, β 2 2 

LLR-Le
out 6 4 

 

 
 

Fig. 11. Forward recursion. 
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stall it or to execute it in a different sequence. 

Figures 11 and 12 illustrate the execution of the forward and 
backward recursions, respectively. In the upper part, the 
assembly code that controls the first cluster is shown.   
Clusters 1 and 2 are used simultaneously since the γ 

computation is executed in parallel with the rest. This 
parallelism is vertical. In the backward recursion, the β and 
LLR operations are totally coordinated so as not to leave the 
first cluster unused in any cycle. The LLR operation must be 
stalled during two cycles in order to fulfill the data 
dependency requirements; however, during these two cycles, 
cluster 1 is used by the β operation.  

1. Address Generation Unit (AGU) 

At the core of the controller, the AGU manages all the 
addresses involved in the system, namely, the addresses of the 
data memory, the program memory, the input interface, the 
output interface, and the register file. The programmer only 
has to provide certain parameters, such as the block and 
window size, and this unit calculates the appropriate 
addresses transparently. In a GPP, the programmer does not 
need to specify the program memory address of each 
instruction. Only in the case of branches and jumps, the 
programmer provides an address or the difference between 
the current and the potential address. The controller of the 
GPP is in charge of auto-incrementing and calculating the 
increments or decrements in the address. In our ASIP, since 
the data is always accessed in a well-known pattern, all these 
properties are extended to the rest of the memories of the 
system, including the RFs. During the forward recursion, the 
data memory and the input interface need auto-incrementing 
addresses, whereas in the backward recursion, the data 
memory and the input and output interfaces need auto-
decrementing addresses. In the case of the sliding windows 
mechanism, the data memory of the system is reduced to the 
size of the window. Thus the AGU needs different addresses 
for this memory and the external interfaces. Specific 
instructions provide the controller with the size of the data 
block and the window length. Referring the registers of multi-
operand instructions makes the duty of the programmer very 
cumbersome. In the case of the LLR operation, there are as 
many as 17 inputs; therefore, it is also necessary for this 
register referral to be transparent. The AGU automatically 
performs the register addressing for each operation by means 
of a lookup table.  

2. Assembler  

An assembly language for the controller was developed. To 
ease its use, an assembler translates it into machine code, which 
fills up the instruction memory. The format of the instruction 
word, shown in Table 4, consists of four fields. The first and 
second fields contain instructions for clusters one and two, 
respectively; the third field handles the control flow of the 
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Fig. 12. Backward recursion. 
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system and some addressing which is not hardwared in the 
register file; the fourth field, stores numeric values that are 
passed as parameters to the computation. The codes for the first 
field are already known: a_op1 and a_op2 for α and β 
computations and b_op1, b_op2, LLR_1, LLR_2, LLR_3, and 
LLR_4 for the alternating β and LLR computations. Just two 
codes are needed to control the second cluster, g_op1 and 
g_op2. In the uppermost part of Figs. 11 and 12, the usage of 
these different codes is illustrated. 
 

Table 4. Instruction word format. 

Instruction FU1 Instruction FU2 Control Data 
 

VI. Examples  

To exhibit the adaptability of the architecture, two different 
scenarios are discussed: a performance-driven design and an 
area-driven design. The processor can be programmed to 
execute different procedures, including direction procedure and 
the sliding windows mechanism and different standards, 
including UMTS, CMDA 2000, and any other 8-state turbo 
code, depending on the external requirements of our software 
defined radio processor. Furthermore, the architecture can vary 
depending on the hardware constraints. The size of the data 
memory can be reduced to the length of a window, and the 

max* module can map either the max-LM operation or the LM 
operation. 

1. Scenario A: Performance-Driven Design  

In a performance-driven scenario, we propose a parallel 
sliding windows schema with n processors working 
concurrently. Each core independently decodes a set of data so 
that the throughput is incremented n times. Depending on the 
power and performance needs of the system, the number of 
activated cores changes. For example, under low power 
availability circumstances, only one or few processors work 
and the rest remain in a drowsy state. If a faulty processor is 
detected, it is deactivated and the rest assume its responsibilities. 

Figure 13 displays the assembly code of each of the 
processors in this scenario. The execution starts with a loop that 
computes α’s previous to the beginning of the window until it 
gets reliable values; then, the second loop computes and stores 
the reliable α’s until the end of the window; afterward, the third 
loop computes β’s subsequent to the window until reliable 
values are achieved; finally, the fourth loop takes the previously 
stored α’s and performs the β and LLR computations. 

2. Scenario B: Area-Driven Design  

In a different scenario, in which the area is the most critical 
parameter, a single core approach is proposed. The processor  
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Fig. 13. Assembly code for scenario A. 

Begin 
a_op1   g_op1   fwd jmp_alpha X007F   %Compute previous alphas in 
a_op2   g_op2   IN_RB1  X0000   %forward recursion until 
a_op1   g_op1   cl_cmp1  X0000   %the beginning of the window 
a_op2   g_op2   LOOP1  X0000   %LOOP1: Alpha Computation 
a_op1   g_op1   X0000   %LOOP1.a 
a_op2   g_op2   BR1_ne  X0000   %LOOP1.b; branch if not equal 
a_op1   g_op1   st_alpha  X0000   %Compute & store reliable alphas
a_op2   g_op2   ld_cmp1  X00FF   %throughout the window size 
a_op2   g_op2   LOOP1  X0000   %LOOP1: Alpha Computation 
a_op1   g_op1   X0000   %LOOP1.a 
a_op2   g_op2   BR1_ne  X0000   %LOOP1.b; branch if not equal 
a_op1   g_op1   bwd jmp_beta X007F   %Compute future betas in 
a_op2   g_op2   X0000   %backward recursion until 
a_op1   g_op1   ld_cmp1  X0100   %the end of the window 
a_op2   g_op2   LOOP1  X0000   %LOOP1:Beta Computation 
a_op1   g_op1   X0000   %LOOP1.a 
a_op2   g_op2   BR1_ne  X0000   %LOOP1.b; branch if not equal 
a_op1   g_op1   X0000   %Compute alternating beta-LLR 
b_op1   g_op2   X0000   %in backward recursion, fetching 
b_op2   g_op2   IN_RB12  X0000   %previously stored alphas until 
LLR_1   g_op1   cl_cmp1  X0000   %the beginning of the window 
LLR_2   g_op2   LOOP1  X0000   %LOOP1:Alternating Beta-LLR 
LLR_3   g_op1  X0000   %LOOP1.a 
LLR_4   g_op2  X0000   %LOOP1.b 
b_op1   g_op1   X0000   %LOOP1.c 
b_op2   g_op2   X0000   %LOOP1.d 
LLR_1   g_op1  X0000   %LOOP1.e 
LLR_2   g_op2   BR1_ne  wt_en X0000   %LOOP1.f; branch if not equal 
LLR_3   g_op1  X0000   % 
LLR_4   g_op2  X0000   % 
LLR_1   g_op1  X0000   % 
LLR_2   g_op2   wt_en  X0000   %Assert last data 
End 

 
 
executes a serial sliding windows mechanism with a minimum 
window length to reduce the data memory. The computation 
covers the data in several windows, dealing with each one in 
the same manner as the n processors were dealt with in the 
previous scenario. The assembly code that executes this 
computation is shown in Fig. 14. An external loop controls the 
number of windows to be processed; and three internal loops 
perform the α, β, and the alternating β and LLR computations.  

VII. Previous Work and Comparison 

ASIPs have undergone a great development in the area of 
signal processing, finding their place in electronics design [4]. 
The challenges and future trends, like retargetable compilers 
and synthesis tools, were discussed in [8], and the first steps in 
finding standard methodologies and CAD tools have also been 
proposed [12], [13], to help designers in several tasks, 
including hardware/software partition and early design 
exploration. However a complete automated methodology is 
still far off. In recent years, novel ASIP architectures have been 
proposed to implement a variety of signal processing 
problems[14], [15]. Concerning data forwarding in clustered  

 

Fig. 14. Assembly code for scenario B. 

Begin 
a_op1   g_op1   ld_cmp2  X000F   %Define number of windows 
a_op2   g_op2   LOOP2 fwd IN_RB1 X0000   %LOOP2:window computation 
a_op1   g_op1   ld_cmp1 st_alpha X00FF   %Forward alpha 
a_op2   g_op2   LOOP1  X0000   %LOOP1:Alpha Computation 
a_op1   g_op1   X0000   %LOOP1.a 
a_op2   g_op2   BR1_ne  X0000   %LOOP1.b; branch if not equal 
a_op1   g_op1   bwd jmp_beta X007F   %Compute future betas in 
a_op2   g_op2   X0000   %backward recursion until 
a_op1   g_op1   ld_cmp1  X0100   %the end of the window 
a_op2   g_op2   LOOP1  X0000   %LOOP1:Beta Computation 
a_op1   g_op1   X0000   %LOOP1.a 
a_op2   g_op2   BR1_ne  X0000   %LOOP1.b; branch if not equal 
a_op1   g_op1   X0000   %Compute alternating beta-LLR 
b_op1   g_op2   X0000   %in backward recursion, fetching 
b_op2   g_op1   IN_RB12  X0000   %previously stored alphas until 
LLR_1   g_op2   cl_cmp1  X0000   %the beginning of the window 
LLR_2   g_op1   LOOP1  X0000   %LOOP1:Alternating Beta-LLR 
LLR_3   g_op2  X0000   %LOOP1.a 
LLR_4   g_op1  X0000   %LOOP1.b 
b_op1   g_op2   X0000   %LOOP1.c 
b_op2   g_op1   X0000   %LOOP1.d 
LLR_1   g_op2  X0000   %LOOP1.e 
LLR_2   g_op1   BR1_ne wt_en X0000   %LOOP1.f; branch if not equal 
LLR_3   g_op2   X0000   % 
LLR_4   g_op1  X0000   % 
LLR_1   g_op2  X0000   % 
LLR_2   g_op1   BR2_ne wt_en X0000   %LOOP2 branch if not equal 
End 

 
 
VLIW processors, [16] proposed a low power solution that 
bypasses all short-lived variables and achieves an improvement 
of 7.8% in power consumption. More recently, [17] 
demonstrated that it is the bypass network which limits the 
clock speed and not the register file.  

In less than 15 years since turbo codes were introduced, 
almost every aspect of turbo decoder hardware design has been 
covered in a wide variety of studies, from ASIC to GPP 
implementations. Table 5 summarizes this development 
comprising the whole electronic spectrum with significant 
works from the literature along with commercial intellectual 
properties (IPs). Since different generations and technologies 
are used, we have taken the number of clock cycles per SISO 
decoded symbol as the comparison metric because it depends 
on the architecture itself. To be more precise we are comparing 
the number of cycles that each architecture takes to SISO 
decode one symbol or the number of cycles dedicated to one 
symbol.  

In each half Turbo decoding, this can be obtained by 
cycles/symbol=freq./(2×iter.×th.) where freq. is the frequency 
of the system, iter. is the number of iterations and th. is the 
throughput of the system. 

The table is opened by a GPP that implements both the LM 
and the max-LM. It is remarkable that, for such a processor, the 
effort to apply the correction term of the LM accounts for over 
85% of the whole computation [18]. Then, a fixed-point DSP 
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Table 5. Comparison with previous works. 

Work  Processor/tecnology  Architecture  Algorithm Th. (kbps) Freq. (MHz)  It.  Cycles/symbol

[18]  Intel Pentium III  GPP  LM  51  933  1  9,147 

[18]  Intel Pentium III  GPP  max-LM 366  933  1  1,275 

[19]  TI TMS320C6201  Fixed-point DSP  max-LM 282  200  1  355 

[20]  Xirisc  RISC with pGA  Linear-LM 270  100  1  185 

[21]  Motorola 56603  Low-power DSP  max-LM 48.6  80  5  165 

[22]  ST-M. ST120  VLIW DSP, 2 ALU  LM  200  200  5  100 

[22]  ST-M. ST140  VLIW DSP, 4 ALU  LM  600  300  5  50 

[22]  ST-M. ST120  VLIW DSP, 2 ALU  max-LM 540  200  5  37 

[21]  ARC-Tensilica  Configurable RISCs  LM  303  100  5  33 

[22]  ADI TigerSharc  VLIW DSP, 2 ALU  LM  666  180  5  27 

[22]  ST-M. ST140  VLIW DSP, 4 ALU  max-LM 1,875  300  5  16 

Ours  Xilinx xc2v4000-4  VLIW ASIP  selectable 10,000  80  0,5  8 

[23]  90 nm Std-Cell  ASIP  max-LM 7,400  335  3  7.5 

[24]  Altera APEX 20K  IP  max-LM 2,000  50  5  3 

[25]  65nm Std-Cell  ASIP  LM-Viterbi 20,000  400  5  2 

[26]  0.25 μm CMOS 5 m  ASIC  selectable 5,480  135  6  2 

[27]  0.18 μm CMOS 6 m  ASIC  LM  2,146  93  10  2 

[28]  0.18 μm CMOS 6 m  ASIC  LM  27,600  285  5  1 

[29]  Xilinx xc4vsx25-12  IP  max-LM 20,200  293  5  1 

 

achieves a reduction in the number of cycles per symbol by a 
factor of four, employing some optimization techniques, such 
as flattening multidimensional arrays into one-dimension to 
enhance compilation [19]. In [20], a reconfigurable DLX-
based RISC processor, developed by the University of Bologna, 
is used along with an FPGA, called PiCoGa (pGA), which 
implements special hardware kernels. Linear-LM displays a 
very close performance to the LM, so the results are good in 
comparison with the GPP. In [21] and [22], carried out by the 
University of Kaiserslautern, metric cycles per symbol were 
first introduced. These studies analyze a variety of VLIW DSPs, 
including a low-power, low-cost DSP and a configurable RISC 
considering both max-LM and LM. The number of cycles is 
reduced by one order of magnitude down to 16 under the best 
scenario with 4 ALUs and max-LM. A recent work by the 
same university, [25], uses the idea of the ASIP for turbo 
decoding, aiming for a system with a very high throughput 
using a pipeline of 11 stages and extended configurability. It 
supports convolutional codes, turbo codes, and duobinary turbo 
codes. This architecture achieves 2 cycles/symbol by 
replicating several times the units that process the butterfly 
pairs. In our opinion, this is an outstanding work suitable for 
systems that have strict constraints of throughput and require a 
high degree of reconfigurability. However, power and area 

issues, very important in the embedded systems field, are 
weakly tackled and left as secondary concerns. Another ASIP 
was recently proposed, [23], that extensively replicates 
processing nodes to achieve high data throughput. In this case, 
7.5 cycles/symbol are achieved, and again, power and area 
issues are barely treated. An SIMD processor that implements 
the whole turbo decoder was proposed in [26]. In this case, the 
processor control interleaving hardware block interfaces with 
an external host and stopping criterion. It uses a configurable 
ASIC SISO decoder that is claimed to produce one decoded 
output every two cycles. Although it could seem similar to our 
present work, it has a different aim. In fact, our design could be 
embedded in the previous design as a co-processor that 
performs the SISO decoding. As examples of ASIC designs, 
we have included a unified turbo Viterbi decoder [27] and a 
very fast SISO decoder [28], which pipelines the add-compare-
select kernels. Finally, two commercial IPs are presented in 
[24] and [29]. A very impressive frequency is attained by 
Xilinx in its Virtex-4.  Figure 15 displays all of this data 
making use of a logarithm scale. From left to right, it shows 
maximum versatility to maximum particularity, from short to 
long design time, and from inexpensive to expensive. As shown, 
our work stands in the boundary between processors and 
application specific designs, providing the programmability
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Fig. 15. Comparison of the number of cycles per instruction for different implementations of the turbo decoder. 
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of the former along with the tailoring and good performance of 
the latter. Furthermore, all this comes with a very low cost in area 
and power, as will be shown in section VIII. 

Recently, several works have addressed many other aspects 
of the VLSI implementation of turbo decoders. An excellent 
analysis of low-power issues was presented in [30], 
considering previous and original techniques for both AWGN 
and fading channels, obtaining up to 80% energy savings. 
Memory optimizations which impact delay and energy are 
explored thoroughly in [31] and [32]. The sliding windows 
approach was analyzed in [33], [34], and more recently in [35]. 
In [33], new schemes are proposed for parallel sliding windows, 
targeting high-speed applications. In [34], a meticulous analysis 
is presented of the dataflow optimizations for several versions 
of the algorithm, achieving savings in area and power of up to a 
53%. Other approaches have dealt with the issue of 
configurability, most of which are based on the replication of 
functional units to decode in parallel [36], [37]. Modifications 
to established algorithms have also been proposed in [38] and 
[39]. In [38], an algorithm which is less complex than previous 
algorithms and with a performance equivalent to the max-log-
MAP was presented. The method proposed in [39] reduces the 
memory access rate by 90% by performing a reverse 
calculation of the backward metric, leading to a 30% power 
reduction. 

VIII. Results 

The design and manufacture if ASIC is becoming harder and 
more expensive, while improvements in programmability and 
flexibility incur performance and power overhead costs [4]. 
This work is an attempt to bridge that gap by offering a 
customized application specific design with the advantage of 
versatility. We have introduced three initiatives towards the 

customization of the architecture: 
• The datapath has been carefully tailored, achieving a 

throughput of 8 cycles/symbol and a ratio of resource 
utilization of approximately 90% for every computation, as 
shown in Table 6. 

• The serialization of data retrieval and assertion entails the 
reduction of the connectivity needs and the number of registers 
that are used internally by the datapath, as shown in Table 7. 
Since multi-operand instructions are executed in the same FU, 
in this particular design, there is no impact on the performance. 
However, in a multi-cluster architecture an important 
improvement could be achieved by passing data to other FUs 
before the full instructions are finished. 

• All the addresses of the RFs, memories, and external 
interfaces are automatically assigned by the AGU, which 
greatly helps programmers avoid the reference of tens of 
operands in the same instruction.  

These characteristics push our design further from a GPP, 
boosting performance and reducing area and power 
consumption, although the loss of programmability is evident 
since a conventional C program could not be run on it. In 
relation to ASIC designs, our goal was to take advantage of the 
processor characteristics, such as resource reutilization and, of 
course, programmability to widen the gap in terms of area,  
 

Table 6. Resource utilization results. 

Computation  Resources utilization 

α and β computations 89.0% 

Alternating β and LLR computations 92.5% 

Direct procedure 91.6% 

Sliding windows mechanism 91.1% 
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Table 7. Register reduction caused by fetching and assertion
serialization. 

Pipeline stage Standard approach Serialized approach

ALU1 input 19 5 

ALU1 output 8 6 

ALU2 input 4 2 

ALU2 output 3 2 

Table 8. Prototype area comparison. 

Work Platform Design Algorithm  Area 

[36] Xilinx Virtex-II SISO Max-LM 2134 slices/8 BR

[36] Xilinx Virtex-II SISO LM 2500 slices/8 BR

[29] Xilinx Virtex-4 Turbo Max-LM 3481 slices/17 BR

[24] Altera APEX 20K Turbo Max-LM 5500 LE/135 ESB

Ours Xilinx Virtex-II SISO Max-LM 517 slices/3 BR 

Ours Xilinx Virtex-II SISO LM 555 slices/3 BR 

Table 9. Power measures results. 

 LM @ 60 MHz Max-LM @ 80 MHz

Dynamic power (mW) 90.1 102.43 

Quiescent power (mW) 336.6 336.6 

Total power (mW) 426.7 439.03 

 

 
power dissipation, and versatility. 

An important aspect of deploying any new architecture is 
verification, which usually requires lengthy software 
simulation of a design model [40]. Our design is clearly 
oriented toward a standard-cell implementation; however, as a 
first approach, it was prototyped in a Xilinx Virtex-II 4000 
FPGA for test and comparison purposes. FPGA devices make 
hardware emulation practical and cost effective for new 
processor designs. Table 8 shows the area results contrasted 
with other works implemented in FPGAs that provide area 
information. Even taking into account that two of the works 
implement the whole turbo decoder, the reduction in area is 
evidently over a factor of 4; however, the comparison is not 
completely fair since the designs and algorithms adopted in 
these works are different from ours. The frequency attained for 
the max-LM was 80.57 MHz and 60.39 MHz for the LM. It 
was significantly biased by the architecture of the FPGA; 
nevertheless, our critical path coincides with that of fast ASIC 
implementations, namely, mux-ACS-normalize; therefore, 
similar working frequencies are expected.  

The power estimates were obtained with the Xilinx power 
measurement tool, XPower. The values are presented in  

Table 9. The constant quiescent power is caused not only by 
the area that the system takes up, a very small portion of the 
FPGA, but also by the rest of the array, which also needs to be 
powered. Dynamic power consumption is around two orders 
of magnitude above 0.25 µm standard-cell designs, which 
employ low-power policies [39]. This difference is due to the 
architecture of the FPGA, which supposes an elevated 
hardware overhead. To our knowledge, no other work 
prototyping in an FPGA has provided power measurements; 
therefore, no comparison is possible. From a more abstract 
point of view, comparing our proposed architecture with more 
general processors, the almost optimum resource utilization, 
the smaller area, and the lower working frequency entail a 
reduction in both dynamic and static power consumption. In 
relation to ASIC designs, the significant area reduction leads to 
a reduction in static power consumption as well.  

IX. Conclusion  

We presented a clustered VLIW ASIP architecture, which 
implements a MAP decoder, employing either the max-LM or 
the LM algorithm. The datapath of the system was carefully 
optimized by extensive use of butterfly pair properties. The 
high concurrence of the processor attains a throughput of     
8 cycles per symbol. Two original customizations were 
introduced. The fetching and assertion of data in multi-operand 
instructions was demonstrated to reduce connectivity and area 
requirements, leading to a potential performance improvement 
in multi-clustered architectures. The automation of addressing 
greatly simplifies the programming of the machine. Compared 
with previous ASIC designs, a reduction of area by over a 
factor of 4 is achieved. The design exhibits great flexibility and 
is compliant with most recent industrial standards.  
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