
ETRI Journal, Volume 30, Number 1, February 2008 Pablo Ituero et al. 113

Turbo codes are extensively used in current
communications standards and have a promising outlook
for future generations. The advantages of software defined
radio, especially dynamic reconfiguration, make it very
attractive in this multi-standard scenario. However, the
complex and power consuming implementation of the
maximum a posteriori (MAP) algorithm, employed by
turbo decoders, sets hurdles to this goal. This work
introduces an ASIP architecture for the MAP algorithm,
based on a dual-clustered VLIW processor. It displays the
good performance of application specific designs along
with the versatility of processors, which makes it
compliant with leading edge standards. The machine deals
with multi-operand instructions in an innovative way, the
fetching and assertion of data is serialized and the
addressing is automatized and transparent for the
programmer. The performance-area trade-off of the
proposed architecture achieves a throughput of 8 cycles
per symbol with very low power dissipation.

Keywords: Application specific instruction-set processor
(ASIP), maximum a posteriori (MAP), soft-input soft-
output (SISO) decoder, software defined radio (SDR),
turbo code, very long instruction word (VLIW)
architectures.

Manuscript received Mar. 15, 2007; revised Nov. 11, 2007.
This work was funded by the CICYT project OPTIMA (TIC2006-00739) of the Spanish

Ministry of Science and Technology.
Pablo Ituero (phone: + 34 915495700 ext. 4235, email: pituero@die.upm.es) and Marisa

López Vallejo (email: marisa@die.upm.es) are with the Integrated Systems Laboratory,
Electronic Engineering Department, ETSI Telecomunicación, Universidad Politécnica de
Madrid, Madrid, Spain.

I. Introduction

Turbo codes, introduced in 1993 [1], achieve outstanding bit
error rate performance approaching the Shannon limit, the
theoretical maximum information transfer rate over a noisy
channel. The main drawback of turbo codes is the complex
decoder structure which entails a power and area consuming
VLSI implementation. Among all algorithms that can compute
turbo decoding, the maximum a posteriori (MAP) algorithm
[2] provides the best performance at low signal to noise levels.
This algorithm is carried out in a soft-input soft-output (SISO)
decoder, whose implementation causes the complexity of the
turbo decoder. Due to their excellent performance, most
wireless communication systems, characterized by a low signal
to noise ratio, make use of turbo codes. For instance, the most
important third generation wireless mobile standards such as
UMTS, W-CDMA (3GPP), and cdma2000 (3GPP2) have
adopted turbo codes in their specifications. Turbo codes are
employed by other present industrial standards, such as
Consultative Committee for Space Applications (CCSDS)
telemetry channel coding, DVB-RCS, IEEE 802.11n, and
IEEE 802.l6ab. Furthermore, turbo equalization and turbo
space-time decoders have opened new niches and surely will
lead the way for future techniques and paradigms.

In this context, software defined radio (SDR) seems an
appealing solution to deal with the proliferation of wireless
standards with different frequency and modulation techniques.
With this approach SDR-enabled user devices can be
dynamically programmed in software to reconfigure their
characteristics for better performance, richer feature sets,
advanced new services that provide choices to the end-user,
and new revenue streams for the service provider.

However, current processors are not cheap enough or

Further Specialization of Clustered VLIW Processors:
A MAP Decoder for Software Defined Radio

 Pablo Ituero and Marisa López-Vallejo

114 Pablo Ituero et al. ETRI Journal, Volume 30, Number 1, February 2008

energy-efficient enough to support realistic implementations of
portable software radios [3]. Thus, more sophisticated
architectures make sense, because radios, like other signal-
processing applications, exhibit task-level parallelism that can
easily be mapped onto a concurrent architecture, as in the case
of clustered VLIW processors. Moreover, when the
architecture matches the application, we talk about application-
specific instruction-set processors (ASIPs), which solve most
problems related to ASIC implementations [4]. A higher
volume of units is demanded because there are more
applications or different generations of the same application
that fit onto it. Additionally, for the application developer who
uses an ASIP instead of an ASIC, the time to market is reduced
because it is cheaper and there is lower risk. Furthermore, in
comparison to general purpose processors, the power overhead
related to programmability can be mitigated by ASIP
architectures, especially if they are very dedicated.

In this paper, we present a dual-clustered VLIW processor
that implements a SISO decoder. This work attempts to bridge
the gap between application specific designs and processors,
offering the customization degree of application specific
designs together with the strength of versatility of processors.
Moreover, using the proposed architecture, the embedded
applications have low area and power requirements, which
allows the use of multiple cores in a single chip. To carry out
these goals, the proposed architecture includes a customized
datapath, which allows very high efficiency while keeping low
level details transparent to the programmer. Also, an advanced
mechanism to feed data to multi-operand instructions has been
devised to improve the processor performance along with
automated addressing, which greatly simplifies the
programming. The resulting architecture displays robust
performance together with the flexibility to tackle different
codes, code lengths, procedures, and algorithms, which means
that the processor is able to meet the most demanding industrial
standards. All these characteristics make our design especially
attractive for SDR and embedded systems applications.

The remainder of this paper is structured as follows.
Section II describes the basis of the MAP algorithm. Sections III
to V put forward the ASIP architecture, from the datapath to the
controller. In section VI, two application examples are
described. In sections VII and VIII we present the most
important results of the design and compare them with relevant
previous works. Finally, section IX gives our conclusions.

II. The MAP Algorithm

In a communication system that employs turbo codes, on the
transmission side, a turbo encoder produces and sends three
kinds of outputs: a systematic word (the input information); a

Fig. 1. Parameters involved in the decoding process.

Computation of β Computation of α

)(),()(
),,,(

221111

21
ssss

yyssp

kkk

ps

βγα −−=

),()(
),()()(

3313

131131

sss
ssss

kk

kkk

−

−−

+
+=

γβ
γββ

),()(

),()()(

3313

131131

sss

ssss

kk

kkk

−

−−

+

=

γβ

γββ

),()(
),()(

)(

01111

00101

0

sss
sss

s

kk

kk

k

−−

−−
+

=

γα
γα

αS0

S1

S2

S3

S0

S1

S2

S3

t=k–1 t=k

parity word from a convolutional encoder fed with the input
information; and one or more parity words from one or more
convolutional encoders, whose inputs are randomized versions
of the input information. This randomization, performed by an
interleaver, is known by the decoder and makes the code very
robust against channel variability. The turbo decoder performs
a soft decoding with each pair of received systematic-parity
data by means of an SISO decoder. In each SISO decoding, the
system gains soft information, which is used for the subsequent
SISO decoding in an iterative process. The decoding ends
when the threshold reliability is reached.

The MAP algorithm [2] computes the soft decoding with a
very high reliability. Figure 1 shows a section of the trellis
produced by the encoder. In this figure the main parameters of
the algorithm are shown. The transmitted symbol is
represented by uk. The probability that a transition is produced
is given by p(s’, s, ys, yp) = αk(s’) γk(s’,s) βk+1(s), where s’ and s
are the origin and destination states, respectively; ys and yp are
the noisy received systematic and parity data respectively;
αk(s’) is the forward path metric; βk+1(s) is the backward path
metric; and γk(s’,s) is the branch metric. An SISO decoder
implements this algorithm. It receives the noisy data along with
the a priori soft information of the previous decoding Le

in
 and a

channel constant, Lc, related to the energy per channel bit and
the channel noise level. The SISO decoder yields the log-
likelihood ratio (LLR) and the extrinsic information for the
next decoder, Le

out—the soft information that this decoding has
gained.

The MAP algorithm can be simplified by working in the
logarithmic domain. In this domain, multiplications become
additions, and additions can be computed by the Jacobian
logarithm (ln(ea + eb) = max{a,b} + f (|a-b|)). If the last term—
known as the correction term—is considered, the algorithm is
referred to as the LM (Log-MAP) algorithm; in contrast, if the
correction term is neglected, the algorithm is referred to as the
max-LM (max-Log-MAP) algorithm [5]. In the logarithmic
domain, the metrics are calculated by the following

ETRI Journal, Volume 30, Number 1, February 2008 Pablo Ituero et al. 115

expressions1):

1 1(,) (())
2 2

e s p p
k k in k c k c k ks s u L u L y L y xγ ′ = + + , (1)

1
1 1() max*{ () (,)}

k
k k ks S

s s s sα α γ
−

− −′∈
′ ′= + , (2)

1 1() max*{ () (,)}
k

k k ks S
s s s sβ β γ− −∈
′ ′= + , (3)

1

1

() max*{ () (,) ()}

max*{ () (,) ()},

k k k k
S

k k k
S

LLR u s s s s

s s s s

α γ β

α γ β

+

−

+

+

′= + +

′ ′− + +
 (4)

 () () ()e s e
out k k c k in kL u LLR u L y L u= − − . (5)

The α and β computations are recursive and depend on the
previous and subsequent values, respectively. That is, αk(s)
needs two α values from t=k–1 to be computed. This is the
reason why α and β are known as the forward and backward
metrics, respectively; they both are also known as the state
metrics.

Equations (1) to (5) are the basis of the architecture described
in this paper. There are several ways to execute the algorithm
which entail a trade-off between area and latency. A
straightforward procedure computes the α’s in the forward
recursion and the β’s, the LLR, and the Le

out in the backward
recursion. This procedure achieves a low total execution time;
however, it requires a whole block of memory to store the α’s
and leads to high latency. To overcome this problem, various
mechanisms have been proposed, such as the sliding windows
mechanism [6], which divides the computation into small
blocks, significantly reducing the storage needs and the latency.
Both approaches will be tackled in our software defined radio
processor.

Table 1 shows the computational needs of each equation,
specifically the number of inputs, outputs, additions,
multiplications, and add-compare-select (ACS) structures.
Note that the elevated number of inputs and outputs will set
hurdles for the design of the processor.

Table 1. Computational needs of MAP algorithm.

Operation Inputs Outputs Add. Mult. ACS

γ 4 3 2 1 0

α, β 10 8 0 0 16

LLR-Le
out 19 2 10 0 32

1) To simplify the equations, ln x is denoted by x, and max* stands for the Jacobian

expression max{a,b} + f (|a-b|).

1. Gamma Operation Details

As stated in [7], “good” RSC encoders for turbo codes
generate a trellis which can be grouped into 2m–1 butterfly pairs,
each of which is determined by a unique substrate—m denotes
the memory in bits of the encoder. A butterfly pair is illustrated
in Fig. 2, where xk

s and xk
p represent the systematic and the

parity outputs of the encoder, respectively. In a trellis section,
half of the pairs have codewords (-1,-1) and (1,1); the other half
have codewords (-1,1) and (1,-1). If the γ computation of (1) is
considered, it is clear that for time instant k, all the parameters
remain constant except xk

s and xk
p ; therefore, we can write

(,) ,

1/ 2 (()),

1/ 2 .

s a p b
k k k
a e s

k in k c k
b p

c k

s s x x

u L u L y

L y

γ γ γ

γ

γ

′ = +

= +

=

 (6)

Therefore, we have four possible values for γ depending on the
codeword. However, we must take into account a property of
the previously mentioned butterfly pairs. In a butterfly pair,
there are only two values of γ and they are opposites:

(1) (1) {(1) (1) }even a b a bγ γ γ γ γ= + + + = − − + − , (7)

 (1) (1) {(1) (1) }odd a b a bγ γ γ γ γ= + + − = − − + + . (8)

This leads to the conclusion that for a butterfly pair, only a
single γ computation must be performed because the other one
is computed as the opposite to the former. We could go even
further and state that, for a whole trellis section, there is no need
to calculate more than two γ’s, namely γeven and γodd .

Fig. 2. Butterfly pair.

1
kn

⎟
⎠
⎞⎜

⎝
⎛ p

k
s
k xx ,

⎟
⎠
⎞⎜

⎝
⎛ p

k
s
k xx ,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ p
k

s
k xx ,

2
kn

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ p
k

s
k xx ,

1
1+kn

2
1+kn

III. General Architecture

Our SISO decoder is a microprogrammed VLIW ASIP
based on a Harvard microprocessor architecture with separate
data and program memories, and strongly wired addressing.
More specifically, it consists of a set of heterogeneous
functional units, which execute operations on various data

116 Pablo Ituero et al. ETRI Journal, Volume 30, Number 1, February 2008

Fig. 3. General architecture of the SISO decoder.

Datapath

ALU1

Register file 1

ALU2

Register file 2

Cluster 1 Cluster 2

I/O I/O

Bus

I/O
Instruction
memory

Data
memory

Instruction
decoder

Address
generation

unit

Controller

elements. A microcoded centralized controller provides the
functional units with the necessary control information. Each
cycle, an instruction is executed. This instruction details all
datapath and memory actions to be carried out in that cycle.
The machine has only one thread of control, although several
computations are performed in parallel. It is the duty of the
programmer to set up and maintain the instruction pipeline [8].
The global architecture is shown in Fig. 3.

The whole processor is meticulously optimized for the
execution of the MAP algorithm operations. The main
characteristic of these operations is the high number of input
and output operands. We have targeted low area and low power
consumption, always taking into account that the system has to
be compliant with third generation standards regarding data
throughput. Based on [8], three specialization dimensions have
been considered in designing the VLIW machine:

• The mapping of the decoding algorithm equations into
independent functional units, in such a way that several
operations can be carried out in parallel independently form
each other. This implies the tailoring of the instruction set.

• The customization of the register files to the needs of the
algorithm and also the interconnections among the
functional units.

• The organization of the memory system.
From a general perspective, as shown in Fig. 3, the datapath

is composed of two clusters, that is, two functional units, which
possess their own independent register files. All the design
decisions referent to the datapath are explained in the next
section. The master controller includes the instructions memory,
the instruction decoder, and the address generator unit.
Section V details the functioning of the controller.

The data memory, accessed by a bus, stores the α values
processed in the forward recursion, and it does not affect the
timing of the system. Its minimum size is dependent on the

algorithm and procedure because different block and window
lengths lead to different data memory sizes. The I/O circuitry
handles the external interface buffering input and output data.
Specifically, all the external data required for computation—
Le

in, Lc, yk
s and yk

p—is received at the I/O block and forwarded
to corresponding places in the register files. In the same way,
the output data, Le

out, is forwarded to the I/O block, which
handles the assertion of this data.

IV. Datapath

All the computations of the system are carried out in the
datapath of the processor; therefore, the main design effort has
been focused on it. This module is responsible for the
frequency and latency of the whole decoder. Moreover, it takes
up most of the area and power consumption of the system.

The main tasks in the design process were deciding the
number of functional units to be used and mapping the
equations into these functional units. The major challenge
was to explore the great diversity of solutions and to evaluate
and select the most appropriate. The only restrictions that
biased our design were the requirements in terms of data
throughput of the third generation standards that our software
defined radio processor had to fulfill. Therefore, the variety of
solutions was very wide. The departure point was the set of
equations that make up the MAP algorithm. The high number
of inputs and outputs in each operation was clearly
incompatible with the goal of reducing connectivity and area
needs. This demonstrated the necessity of an unconventional
solution. A traditional architecture would gather all the data in
each operation in the same cycle, process it during a number
of cycles, and then assert all the results again in the same
cycle. This strategy would imply an elevated number of
connections, inputs, and outputs in each functional unit.
Furthermore, it would leave little possibility for future
upgrades. To solve this problem we came up with the idea of
a set of pipelined functional units, which gather and assert
data in a sequential manner from and to their register files.
This complicates the control of the operations; however, it
reduces connectivity and area requirements and provides the
architecture with improved flexibility. Performance is also
improved because some of the data is produced and can be
used by another functional unit before an operation is
completely finished.

Internal pipelining of each operation was carefully
considered to eventually get a well-balanced structure that
achieves a high throughput. Hardware resource utilization of
100% for every operation represents the ideal goal in an ASIP
datapath. In this work, we have almost reached that goal (see
section VIII).

ETRI Journal, Volume 30, Number 1, February 2008 Pablo Ituero et al. 117

1. Clustering

A set of relationships and dependencies can be established in
the MAP algorithm operations. These dependencies are the key
to the selection of the number of clusters. They also determine
the interconnection needs between clusters. We have
considered three sorts of dependencies:

• operator reutilization,
• time execution dependencies,
• area and power considerations.
Regarding operator reutilization, from the analysis of the

algorithm equations, we infer that the multiplication operator is
present only in the γ computations of (1). Moreover, the rest of
the computations include the ACS* operator, which performs
the max*. This is the first hint that the γ operation should be
mapped to an independent functional unit, whereas the rest
could share some hardware structures.

Focusing now on time execution, as stated in section II, the
algorithm is executed by two procedures. A straightforward
procedure first computes all the γ’s and α’s, and then calculates
the β’s, the LLR and the Le

out, using the previously calculated
values. The sliding windows procedure divides the
computation into small blocks; however, the progress inside
each block is exactly the same as in the whole straightforward
procedure. Three dependencies are deduced.

• Since the results of the γk(s’,s) computation are used by the
rest, it would be very convenient (in terms of throughput) to
perform it in parallel with the rest.

• In both procedures, the β values are calculated after the α
values. This implies a serial computation.

• LLR and Le
out

 computations need a complete set of α’s or β’s
calculated; therefore, these operations are necessarily serial.

Serial computation suggests resources reusability, whereas
parallel computation implies new components to be
instantiated. Hence, taking into account the previous
dependencies, the idea of two functional units—one mapping
the γ computation and the other mapping the rest—begins to
take definite shape.

To minimize the area, resource sharing must be exploited as
much as possible by different computations. This is another
good reason for mapping the α, β, LLR, and Le

out
 into a single

functional unit.
Finally, it has been demonstrated that one of the best

strategies to reduce power consumption is to reduce the
number of memory accesses [9]. With a functional unit
performing the γ computation in parallel with the rest, we
consume these values on the fly and avoid storing and
afterward retrieving them from the memory. This also serves to
justify the mapping of the γ computation into a functional unit
of its own. Moreover, it reduces memory bottlenecking.

2. Development of Functional Units

In addition to traditional design considerations, the
sequencing of data fetching and assertion was also analyzed.
While the implementation of the γ computation into a
functional unit (FU) is not complicated, the fusion of the rest
into a single FU entails several design trade-offs that do not
always appear to be straightforward. The FU that implements
the α, β, LLR, and Le

out operations will be described initially
because it fixes the data throughput of the whole system,
including the other FUs. In particular, we will detail the
implementation of each equation and then all the structures will
be combined to form the FU.

As shown in (2) and (3), the α and β computations perform
the same basic operations; therefore, they will be dealt with as
one. If we center on the α computation and assume an 8-state
turbo code, a trellis section requires 8 inputs for the previous
α’s, 2 inputs for the γ’s, and 8 outputs for the calculated α’s.
Also, there are 8 equal maximization operations in this trellis
section. Taking into account the butterfly property, two
butterfly pairs can be computed making use of just five inputs
as long as they share γk(s’,s). This means that the data of a
single operation is fetched and asserted along several cycles, in
contrast with general purpose processor (GPP) architectures in
which all the data is fetched and then asserted simultaneously.
In the first cycle, half of the α’s and one γ are fetched, and in the
second cycle, the rest of the data is input. In the second cycle
the first set of 4 α’s is also asserted. The second group of 4 α’s
will be output in the third cycle. This computation attains a
throughput of 2 cycles/symbol. Figure 4 displays the general α
and β computation structure. Note that the normalization
module norm will be described in section IV.4.

Fig. 4. Implementation of the α and β computations.

 ACS*

Norm

ACS*
ACS*

Norm

ACS*
ACS*

Norm

ACS*

Norm

Max*

α1 α2 α2 α1 α3 α4 α4 α3γ γ γ γ

1
1+kα 2

1+kα 3
1+kα 4

1+kα

1
1+kα 2

1+kα 3
1+kα 4

1+kα

1
kα 2

kα 3
kα 4

kα γ

+ -

118 Pablo Ituero et al. ETRI Journal, Volume 30, Number 1, February 2008

Fig. 5. Pipelined implementation of the LLR and Le
out computations.

 ACS*

Norm

Pipe

ACSA

Pipe

ACS*

Norm

Pipe

ACSA

Pipe

Pipe

LLR

LLR

+ +

Max*

ACC2
ACC

Max*

+

LLR+
LLR-

1
kα 2

kα2
1+kβ 1

1+kβ γ aγ2

1
kα 2

kα2
1+kβ 1

1+kβ 1
kα 2

kα 2
1+kβ 1

1+kβ

γ

aγ2

e
outL

- -

e
outL

The LLR and Le
out computations are described by (4) and (5).

For an 8-states Turbo code, a trellis section with 4 butterflies
requires 8 inputs for the α’s, 8 inputs for the β’s, three inputs
from the γ unit and two outputs for LLR and Le

out
 . In order to

minimize the connectivity, all the operations corresponding to
just one butterfly are computed in parallel in one cycle, a
throughput of 4 cycles/symbol is attained. The data is fetched
sequentially so that in each cycle it is only necessary to fetch
the data corresponding to a butterfly pair; since a butterfly uses
two α’s, two β’s and one γ, only five inputs are required.
Considering that equally signed transitions in a butterfly pair
share the same value of γ, we can extract this term out of the
maximization operand, so that it is added afterward. Figure 5
shows our pipelined approach in which the first stage encloses
two ACS* structures exactly equal to those of the α and β
computations, the second stage is implemented with ACSA
modules, which introduce an accumulator to allow several
iterations, and finally, the third stage includes two adders.

The total numbers of adders and max* modules in both α
and β computations and LLR and Le

out
 computations are the

same. This was intended because they are to be mapped into a
unique structure. The merging of FUs into a single FU is
shown in Fig. 6. All pipeline registers separate add-max*
structures, yielding a design that is both well-balanced and
independent of the max* module implementation.

Each received symbol has to go through the α, β and LLR
and Le

out
 computations at 2, 2, and 4 cycles/symbol,

Fig. 6. α-β-LLR-Le
out functional unit.

n1

LLR

n2 n3 n4 γ aγ2

e
outLm1 m2 m3 m4

 ACS*

Norm

Pipe

Norm

Pipe

ACSA

Mux

Mux

ACS*

Norm

Pipe

Norm

ACSA

Mux

Mux

Max*

Max*

ACC
LLR LLR+ LLR-

Input signals

m2 m3

e
outL

m1 m2

+

+ +

+ +

Fig. 7. Implementation of the γ computation.

sy py CL e
inL

evenγ oddγ aγ

2:1

X1

Pipe

Pipe

X2

Pipe

e
inL

bγ aγ

oddγ evenγ

CLps yy /

- +

respectively; therefore, the global execution of the processor
entails a throughput of 8 cycles/symbol. This value will be
compared with current implementations of the turbo decoder in
section VII .

The γ operation is described by (1). This operation possesses
4 inputs: Le

in, Lc, yk
s, and yk

p, and has to assert 3 outputs: γeven ,
γodd, and γa. Since this computation is to be performed in
parallel with the rest, it has to fulfill the timing of the most
restrictive operation in terms of throughput, that is,

ETRI Journal, Volume 30, Number 1, February 2008 Pablo Ituero et al. 119

2 cycles/symbol for the α and β computations. Figure 7
illustrates the implementation of this unit. A pipelined multiplier
is introduced to reduce the combinational delay between
registers.

3. Global Datapath Microarchitecture

Figure 8 shows the three stages of our datapath
microarchitecture, each register file (RF) is divided into two
register banks (RBs). Dashed lines represent pipeline registers.
The operations executed inside the ALUs entail several
pipeline stages. Arrows crossing the pipelines downward are
registered, whereas the arrows crossing the pipelines upward
are not registered.

To understand the microarchitecture it is necessary to review
some of the connectivity requirements of the MAP algorithm
computations. The α and γ metrics are calculated during the
forward recursion. The α metrics are used by the subsequent α
computation and by future LLR computations; therefore, some of
these results are bypassed. The rest are stored temporarily in the
RF, and they all are sent to the data memory via a data bus. In
contrast, γ metrics are consumed on the fly by the next α
operation; therefore, some values are again bypassed, and the rest
are registered and fed later. In the backward recursion, the γ
operation is performed in parallel with the β and LLR operations.
The β operation is the same as the α in the forward recursion
except that they do not need to be stored because they are used
immediately after they are computed. The LLR operation
requires the data from all the other operations, specifically, the γ
values stored in the RF; the β values that were just calculated,
some of which are bypassed, while the rest are fetched from the
register file; and the α values that were computed during the
forward recursion, which are now also fetched from the RF.

Fig. 8. Pipeline structure.

ALU1
α, β, and LLR

RB1 RB2

ALU2
γ

RB3 RB4

Output / bus Input

ALU

RF

Bypass

RF1 RF2
Cluster 1

In 5-6

Cluster 2

In 1-4

MUX MUX MUX

Table 2. Connectivity requirements.

Computation Data Fetched from

γ Input RB4

γ Bypass and RB3
α

Previous α Bypass and RB1

γ Bypass and RB3
β

Previous β RB1

γ RB3

β Bypass and RB1 LLR

α RB2

 Table 2 summarizes all these requirements and specifies the
RB from which the data is fetched. State metric initialization is
performed by loading the initialization values in RB1.

Each cluster contains one RF, and each RF is divided into
two RBs. The RFs are tailored to the needs of the algorithm,
and only the necessary connections are hardwared. Moreover,
since we are dealing with so many parallel signals, it would be
very complicated for the programmer to specify all the registers
in each operation; therefore, this task is left for a special unit,
the address generation unit (AGU) so that the programmer
does not need to reference any register at all. Cluster 1–which
computes α, β, and LLR–has two banks: RB1, for the data
produced in the α and β computations, and RB2, to
momentarily store the α’s that were stored in the data memory
and were fetched from the bus. Cluster 2–which computes γ–
also has two RBs: one for the results of the operations (RB3),
and another to store and buffer the input data of the system.
The register banks inside a cluster work independently; thus,
RB2 loads data from the memory, and RB1 fetches data from
ALU1 simultaneously.

The bypass network selects the source of each ALU1 input.
The control of this network is carefully designed so that it is
transparent to the programmer.

4. Normalization Implementation Details

The state metrics get bigger and bigger as the decoding
algorithm proceeds. To avoid this huge increase, some
normalization scheme must be adopted. In [10], a new
normalization scheme was proposed. At each time instant, all
the α’s or β’s are compared with 2q–2, q being the number of
bits of the state metrics. If any one of them is greater than 2q–2,
all the α’s or β’s are subtracted from 2q–2; otherwise, they
remain untouched. This method was chosen for this work
because it significantly simplifies normalization in comparison
with previous approaches [5] since just a one-bit flag must be

120 Pablo Ituero et al. ETRI Journal, Volume 30, Number 1, February 2008

Fig. 9. Block division of the pipeline computation.

ACS*

Norm

Pipe

Norm

Pipe

ACSA

Mux

Mux

ACS*

Norm

Pipe

Norm

ACSA

Mux

Mux

LLR

LLR+ LLR-

Input signals

X1

Pipe

Pipe

X2

Pipe

aL3

aL2

aL1

g1 g2 g3

ys/yp Lc

Le
in

2:1

bγ aγ
bγ

oddγ evenγ
bγ

m3m2

Le
out

m4
m1

+ +

+ -

stored along with the state metrics of a time instant to express
the normalization state. It is also very efficient since simple
combinational logic can be used to implement it.

However, since serialization is assumed, we have to slightly
modify the previous normalization scheme. In our work, >2q–2

is calculated throughout several cycles, so it is impossible to
decide whether -2q–2 should be computed until we have
finished with all the state metrics. Our modification consists of
flagging whenever any state metric is greater than 2q–2. This
flag is registered and used in the next block of state metrics to
decide if normalization at the input must be applied. Hence,
unnormalized values are stored, and they are not normalized
until input for the calculations of the next set of state metrics.

For LLR and Le
out

 computations, both α and β parameters
might need normalizing because they both are stored without
normalizing. Therefore, two flags must be input, one for α and
one for β; therefore, two normalization modules are needed.
Each module subtracts 2q–2 when its corresponding flag is
activated.

V. Control

The control of the system relies on a pipelined architecture
able to deal with multicycle operations. The design of pipelined
general purpose processors is widely explained in the literature,
as for example, in [11]; therefore, we will focus on the special
characteristics of our architecture. For the sake of clarity, the

datapath is divided into six independent blocks as shown in
Fig. 9. Each of them constitutes an independent logic element
inside the clusters that the operations will employ throughout
the pipeline execution.

As explained in section IV, the novel contribution of our design
is the sequencing of the data fetching and assertion inside the
same operation. Figure 10 details the blocks that each operation
uses in each pipeline stage. It also shows when the inputs are
collected and when the outputs are asserted for each computation.
In the figure, DF and DA denote data fetch and data assert. As
expected, the γ operation is performed in parallel with the rest
using blocks inside the second cluster. Table 3 details the latency
and throughput or initialization interval of each operation.

In contrast with a GPP that deals with instructions as a block
of pipeline stages, our controller is microprogrammed to direct
each stage of the pipeline independently. This provides it with a
higher flexibility and optimizes the resources utilization ratio,
although this complicates the work of the programmer in
charge of maintaining the pipeline [8]. Depending on the
particular turbo code (different standards and code sizes) and
procedure (straightforward procedure, sliding windows) each
operation executes differently regarding data and
interconnections. The pipeline, shown in Fig. 10, may also vary.
The order of the stages may change, or new stages may be
added; therefore, it is more convenient to control each part of
the operation separately. With this scheme, the controller
conducts the order of the stages in each operation and is able to

ETRI Journal, Volume 30, Number 1, February 2008 Pablo Ituero et al. 121

Fig. 10. Pipeline structure.

DF

g1 g1
g2

g2
g3

g3

aL1
aL2
aL3

aL1
aL2
aL3

aL1 aL1
aL3

 aL1
aL3

b5aL1
aL3

 aL3 aL2

DA

γ operation

α and β operations

LLR and Le
out operations

DF

DA

DF

DA

DF DF DF

Table 3. Latencies and throughputs for operations.

Operation Latency Throughput

γ 4 2

α, β 2 2

LLR-Le
out 6 4

Fig. 11. Forward recursion.

g1
g1
g2

 g2
g3 g3

aL1
aL2
aL3

aL1
aL2
aL3

γ
computation

 a_op1 a_op2 a_op1 a_op2 a_op1 a_op2 a_op1 a_op2 a_op1 a_op2

DF DA

DF DA

DF

DA

DF

DA

g1
g1
g2

 g2
g3 g3 DF DA

DF

DA

aL1
aL2
aL3

aL1
aL2
aL3

DF DA

DF

DA

α
computation

γ
 computation

α
computation

stall it or to execute it in a different sequence.

Figures 11 and 12 illustrate the execution of the forward and
backward recursions, respectively. In the upper part, the
assembly code that controls the first cluster is shown.
Clusters 1 and 2 are used simultaneously since the γ

computation is executed in parallel with the rest. This
parallelism is vertical. In the backward recursion, the β and
LLR operations are totally coordinated so as not to leave the
first cluster unused in any cycle. The LLR operation must be
stalled during two cycles in order to fulfill the data
dependency requirements; however, during these two cycles,
cluster 1 is used by the β operation.

1. Address Generation Unit (AGU)

At the core of the controller, the AGU manages all the
addresses involved in the system, namely, the addresses of the
data memory, the program memory, the input interface, the
output interface, and the register file. The programmer only
has to provide certain parameters, such as the block and
window size, and this unit calculates the appropriate
addresses transparently. In a GPP, the programmer does not
need to specify the program memory address of each
instruction. Only in the case of branches and jumps, the
programmer provides an address or the difference between
the current and the potential address. The controller of the
GPP is in charge of auto-incrementing and calculating the
increments or decrements in the address. In our ASIP, since
the data is always accessed in a well-known pattern, all these
properties are extended to the rest of the memories of the
system, including the RFs. During the forward recursion, the
data memory and the input interface need auto-incrementing
addresses, whereas in the backward recursion, the data
memory and the input and output interfaces need auto-
decrementing addresses. In the case of the sliding windows
mechanism, the data memory of the system is reduced to the
size of the window. Thus the AGU needs different addresses
for this memory and the external interfaces. Specific
instructions provide the controller with the size of the data
block and the window length. Referring the registers of multi-
operand instructions makes the duty of the programmer very
cumbersome. In the case of the LLR operation, there are as
many as 17 inputs; therefore, it is also necessary for this
register referral to be transparent. The AGU automatically
performs the register addressing for each operation by means
of a lookup table.

2. Assembler

An assembly language for the controller was developed. To
ease its use, an assembler translates it into machine code, which
fills up the instruction memory. The format of the instruction
word, shown in Table 4, consists of four fields. The first and
second fields contain instructions for clusters one and two,
respectively; the third field handles the control flow of the

122 Pablo Ituero et al. ETRI Journal, Volume 30, Number 1, February 2008

Fig. 12. Backward recursion.

g1
g1
g2

 g2
g3 g3

aL1
aL2
aL3

aL1
aL2
aL3

aL1
aL1
aL3

aL1
aL3

aL1
aL3 aL3 aL2

Stall

DA

DF DA

DF

DA
DF

DF DA

DF DF

DF DA

DF

g1
g1
g2

 g2
g3 g3

aL1
aL2
aL3

aL1
aL2
aL3

aL1
aL1
aL3

aL1
aL3

aL1
aL3 aL3

aL2

Stall

DA

DF DA

DF

DA
DF

DF DA

DF DF

DF

DA

DF

γ
computation

β
 computation

LLR
 computation

 LLR_2 LLR_3 LLR_4 b_op1 b_op2 LLR_1 LLR_2 LLR_3 LLR_4 b_op1 b_op2 LLR_1 LLR_2 LLR_3 LLR_4 b_op1 b_op2 LLR_1 LLR_2 LLR_3

γ
computation

β
 computation

LLR
 computation

system and some addressing which is not hardwared in the
register file; the fourth field, stores numeric values that are
passed as parameters to the computation. The codes for the first
field are already known: a_op1 and a_op2 for α and β
computations and b_op1, b_op2, LLR_1, LLR_2, LLR_3, and
LLR_4 for the alternating β and LLR computations. Just two
codes are needed to control the second cluster, g_op1 and
g_op2. In the uppermost part of Figs. 11 and 12, the usage of
these different codes is illustrated.

Table 4. Instruction word format.

Instruction FU1 Instruction FU2 Control Data

VI. Examples

To exhibit the adaptability of the architecture, two different
scenarios are discussed: a performance-driven design and an
area-driven design. The processor can be programmed to
execute different procedures, including direction procedure and
the sliding windows mechanism and different standards,
including UMTS, CMDA 2000, and any other 8-state turbo
code, depending on the external requirements of our software
defined radio processor. Furthermore, the architecture can vary
depending on the hardware constraints. The size of the data
memory can be reduced to the length of a window, and the

max* module can map either the max-LM operation or the LM
operation.

1. Scenario A: Performance-Driven Design

In a performance-driven scenario, we propose a parallel
sliding windows schema with n processors working
concurrently. Each core independently decodes a set of data so
that the throughput is incremented n times. Depending on the
power and performance needs of the system, the number of
activated cores changes. For example, under low power
availability circumstances, only one or few processors work
and the rest remain in a drowsy state. If a faulty processor is
detected, it is deactivated and the rest assume its responsibilities.

Figure 13 displays the assembly code of each of the
processors in this scenario. The execution starts with a loop that
computes α’s previous to the beginning of the window until it
gets reliable values; then, the second loop computes and stores
the reliable α’s until the end of the window; afterward, the third
loop computes β’s subsequent to the window until reliable
values are achieved; finally, the fourth loop takes the previously
stored α’s and performs the β and LLR computations.

2. Scenario B: Area-Driven Design

In a different scenario, in which the area is the most critical
parameter, a single core approach is proposed. The processor

ETRI Journal, Volume 30, Number 1, February 2008 Pablo Ituero et al. 123

Fig. 13. Assembly code for scenario A.

Begin
a_op1 g_op1 fwd jmp_alpha X007F %Compute previous alphas in
a_op2 g_op2 IN_RB1 X0000 %forward recursion until
a_op1 g_op1 cl_cmp1 X0000 %the beginning of the window
a_op2 g_op2 LOOP1 X0000 %LOOP1: Alpha Computation
a_op1 g_op1 X0000 %LOOP1.a
a_op2 g_op2 BR1_ne X0000 %LOOP1.b; branch if not equal
a_op1 g_op1 st_alpha X0000 %Compute & store reliable alphas
a_op2 g_op2 ld_cmp1 X00FF %throughout the window size
a_op2 g_op2 LOOP1 X0000 %LOOP1: Alpha Computation
a_op1 g_op1 X0000 %LOOP1.a
a_op2 g_op2 BR1_ne X0000 %LOOP1.b; branch if not equal
a_op1 g_op1 bwd jmp_beta X007F %Compute future betas in
a_op2 g_op2 X0000 %backward recursion until
a_op1 g_op1 ld_cmp1 X0100 %the end of the window
a_op2 g_op2 LOOP1 X0000 %LOOP1:Beta Computation
a_op1 g_op1 X0000 %LOOP1.a
a_op2 g_op2 BR1_ne X0000 %LOOP1.b; branch if not equal
a_op1 g_op1 X0000 %Compute alternating beta-LLR
b_op1 g_op2 X0000 %in backward recursion, fetching
b_op2 g_op2 IN_RB12 X0000 %previously stored alphas until
LLR_1 g_op1 cl_cmp1 X0000 %the beginning of the window
LLR_2 g_op2 LOOP1 X0000 %LOOP1:Alternating Beta-LLR
LLR_3 g_op1 X0000 %LOOP1.a
LLR_4 g_op2 X0000 %LOOP1.b
b_op1 g_op1 X0000 %LOOP1.c
b_op2 g_op2 X0000 %LOOP1.d
LLR_1 g_op1 X0000 %LOOP1.e
LLR_2 g_op2 BR1_ne wt_en X0000 %LOOP1.f; branch if not equal
LLR_3 g_op1 X0000 %
LLR_4 g_op2 X0000 %
LLR_1 g_op1 X0000 %
LLR_2 g_op2 wt_en X0000 %Assert last data
End

executes a serial sliding windows mechanism with a minimum
window length to reduce the data memory. The computation
covers the data in several windows, dealing with each one in
the same manner as the n processors were dealt with in the
previous scenario. The assembly code that executes this
computation is shown in Fig. 14. An external loop controls the
number of windows to be processed; and three internal loops
perform the α, β, and the alternating β and LLR computations.

VII. Previous Work and Comparison

ASIPs have undergone a great development in the area of
signal processing, finding their place in electronics design [4].
The challenges and future trends, like retargetable compilers
and synthesis tools, were discussed in [8], and the first steps in
finding standard methodologies and CAD tools have also been
proposed [12], [13], to help designers in several tasks,
including hardware/software partition and early design
exploration. However a complete automated methodology is
still far off. In recent years, novel ASIP architectures have been
proposed to implement a variety of signal processing
problems[14], [15]. Concerning data forwarding in clustered

Fig. 14. Assembly code for scenario B.

Begin
a_op1 g_op1 ld_cmp2 X000F %Define number of windows
a_op2 g_op2 LOOP2 fwd IN_RB1 X0000 %LOOP2:window computation
a_op1 g_op1 ld_cmp1 st_alpha X00FF %Forward alpha
a_op2 g_op2 LOOP1 X0000 %LOOP1:Alpha Computation
a_op1 g_op1 X0000 %LOOP1.a
a_op2 g_op2 BR1_ne X0000 %LOOP1.b; branch if not equal
a_op1 g_op1 bwd jmp_beta X007F %Compute future betas in
a_op2 g_op2 X0000 %backward recursion until
a_op1 g_op1 ld_cmp1 X0100 %the end of the window
a_op2 g_op2 LOOP1 X0000 %LOOP1:Beta Computation
a_op1 g_op1 X0000 %LOOP1.a
a_op2 g_op2 BR1_ne X0000 %LOOP1.b; branch if not equal
a_op1 g_op1 X0000 %Compute alternating beta-LLR
b_op1 g_op2 X0000 %in backward recursion, fetching
b_op2 g_op1 IN_RB12 X0000 %previously stored alphas until
LLR_1 g_op2 cl_cmp1 X0000 %the beginning of the window
LLR_2 g_op1 LOOP1 X0000 %LOOP1:Alternating Beta-LLR
LLR_3 g_op2 X0000 %LOOP1.a
LLR_4 g_op1 X0000 %LOOP1.b
b_op1 g_op2 X0000 %LOOP1.c
b_op2 g_op1 X0000 %LOOP1.d
LLR_1 g_op2 X0000 %LOOP1.e
LLR_2 g_op1 BR1_ne wt_en X0000 %LOOP1.f; branch if not equal
LLR_3 g_op2 X0000 %
LLR_4 g_op1 X0000 %
LLR_1 g_op2 X0000 %
LLR_2 g_op1 BR2_ne wt_en X0000 %LOOP2 branch if not equal
End

VLIW processors, [16] proposed a low power solution that
bypasses all short-lived variables and achieves an improvement
of 7.8% in power consumption. More recently, [17]
demonstrated that it is the bypass network which limits the
clock speed and not the register file.

In less than 15 years since turbo codes were introduced,
almost every aspect of turbo decoder hardware design has been
covered in a wide variety of studies, from ASIC to GPP
implementations. Table 5 summarizes this development
comprising the whole electronic spectrum with significant
works from the literature along with commercial intellectual
properties (IPs). Since different generations and technologies
are used, we have taken the number of clock cycles per SISO
decoded symbol as the comparison metric because it depends
on the architecture itself. To be more precise we are comparing
the number of cycles that each architecture takes to SISO
decode one symbol or the number of cycles dedicated to one
symbol.

In each half Turbo decoding, this can be obtained by
cycles/symbol=freq./(2×iter.×th.) where freq. is the frequency
of the system, iter. is the number of iterations and th. is the
throughput of the system.

The table is opened by a GPP that implements both the LM
and the max-LM. It is remarkable that, for such a processor, the
effort to apply the correction term of the LM accounts for over
85% of the whole computation [18]. Then, a fixed-point DSP

124 Pablo Ituero et al. ETRI Journal, Volume 30, Number 1, February 2008

Table 5. Comparison with previous works.

Work Processor/tecnology Architecture Algorithm Th. (kbps) Freq. (MHz) It. Cycles/symbol

[18] Intel Pentium III GPP LM 51 933 1 9,147

[18] Intel Pentium III GPP max-LM 366 933 1 1,275

[19] TI TMS320C6201 Fixed-point DSP max-LM 282 200 1 355

[20] Xirisc RISC with pGA Linear-LM 270 100 1 185

[21] Motorola 56603 Low-power DSP max-LM 48.6 80 5 165

[22] ST-M. ST120 VLIW DSP, 2 ALU LM 200 200 5 100

[22] ST-M. ST140 VLIW DSP, 4 ALU LM 600 300 5 50

[22] ST-M. ST120 VLIW DSP, 2 ALU max-LM 540 200 5 37

[21] ARC-Tensilica Configurable RISCs LM 303 100 5 33

[22] ADI TigerSharc VLIW DSP, 2 ALU LM 666 180 5 27

[22] ST-M. ST140 VLIW DSP, 4 ALU max-LM 1,875 300 5 16

Ours Xilinx xc2v4000-4 VLIW ASIP selectable 10,000 80 0,5 8

[23] 90 nm Std-Cell ASIP max-LM 7,400 335 3 7.5

[24] Altera APEX 20K IP max-LM 2,000 50 5 3

[25] 65nm Std-Cell ASIP LM-Viterbi 20,000 400 5 2

[26] 0.25 μm CMOS 5 m ASIC selectable 5,480 135 6 2

[27] 0.18 μm CMOS 6 m ASIC LM 2,146 93 10 2

[28] 0.18 μm CMOS 6 m ASIC LM 27,600 285 5 1

[29] Xilinx xc4vsx25-12 IP max-LM 20,200 293 5 1

achieves a reduction in the number of cycles per symbol by a
factor of four, employing some optimization techniques, such
as flattening multidimensional arrays into one-dimension to
enhance compilation [19]. In [20], a reconfigurable DLX-
based RISC processor, developed by the University of Bologna,
is used along with an FPGA, called PiCoGa (pGA), which
implements special hardware kernels. Linear-LM displays a
very close performance to the LM, so the results are good in
comparison with the GPP. In [21] and [22], carried out by the
University of Kaiserslautern, metric cycles per symbol were
first introduced. These studies analyze a variety of VLIW DSPs,
including a low-power, low-cost DSP and a configurable RISC
considering both max-LM and LM. The number of cycles is
reduced by one order of magnitude down to 16 under the best
scenario with 4 ALUs and max-LM. A recent work by the
same university, [25], uses the idea of the ASIP for turbo
decoding, aiming for a system with a very high throughput
using a pipeline of 11 stages and extended configurability. It
supports convolutional codes, turbo codes, and duobinary turbo
codes. This architecture achieves 2 cycles/symbol by
replicating several times the units that process the butterfly
pairs. In our opinion, this is an outstanding work suitable for
systems that have strict constraints of throughput and require a
high degree of reconfigurability. However, power and area

issues, very important in the embedded systems field, are
weakly tackled and left as secondary concerns. Another ASIP
was recently proposed, [23], that extensively replicates
processing nodes to achieve high data throughput. In this case,
7.5 cycles/symbol are achieved, and again, power and area
issues are barely treated. An SIMD processor that implements
the whole turbo decoder was proposed in [26]. In this case, the
processor control interleaving hardware block interfaces with
an external host and stopping criterion. It uses a configurable
ASIC SISO decoder that is claimed to produce one decoded
output every two cycles. Although it could seem similar to our
present work, it has a different aim. In fact, our design could be
embedded in the previous design as a co-processor that
performs the SISO decoding. As examples of ASIC designs,
we have included a unified turbo Viterbi decoder [27] and a
very fast SISO decoder [28], which pipelines the add-compare-
select kernels. Finally, two commercial IPs are presented in
[24] and [29]. A very impressive frequency is attained by
Xilinx in its Virtex-4. Figure 15 displays all of this data
making use of a logarithm scale. From left to right, it shows
maximum versatility to maximum particularity, from short to
long design time, and from inexpensive to expensive. As shown,
our work stands in the boundary between processors and
application specific designs, providing the programmability

ETRI Journal, Volume 30, Number 1, February 2008 Pablo Ituero et al. 125

Fig. 15. Comparison of the number of cycles per instruction for different implementations of the turbo decoder.

GPP

9,147

1,275

355
185 165

100
50 37 33 27

16
8 7.5

2.5 2 2 2 1.5
1

1

10

100

1,000

10,000

C
yc

le
s/

sy
m

bo
l

GPP Fixed-
point
DSP

RISC
with
pGA

VLIW
DSP,
2 ALU

VLIW
DSP,
4 ALU

Configu-
rable

RISCs

VLIW
DSP,
2 ALU

VLIW
DSP,

 4 ALU

VLIW
ASIP

Low-
power
DSP

VLIW
DSP,

 2 ALU

ASIP IP ASIP SIMD
processor

ASIP IP ASIP

of the former along with the tailoring and good performance of
the latter. Furthermore, all this comes with a very low cost in area
and power, as will be shown in section VIII.

Recently, several works have addressed many other aspects
of the VLSI implementation of turbo decoders. An excellent
analysis of low-power issues was presented in [30],
considering previous and original techniques for both AWGN
and fading channels, obtaining up to 80% energy savings.
Memory optimizations which impact delay and energy are
explored thoroughly in [31] and [32]. The sliding windows
approach was analyzed in [33], [34], and more recently in [35].
In [33], new schemes are proposed for parallel sliding windows,
targeting high-speed applications. In [34], a meticulous analysis
is presented of the dataflow optimizations for several versions
of the algorithm, achieving savings in area and power of up to a
53%. Other approaches have dealt with the issue of
configurability, most of which are based on the replication of
functional units to decode in parallel [36], [37]. Modifications
to established algorithms have also been proposed in [38] and
[39]. In [38], an algorithm which is less complex than previous
algorithms and with a performance equivalent to the max-log-
MAP was presented. The method proposed in [39] reduces the
memory access rate by 90% by performing a reverse
calculation of the backward metric, leading to a 30% power
reduction.

VIII. Results

The design and manufacture if ASIC is becoming harder and
more expensive, while improvements in programmability and
flexibility incur performance and power overhead costs [4].
This work is an attempt to bridge that gap by offering a
customized application specific design with the advantage of
versatility. We have introduced three initiatives towards the

customization of the architecture:
• The datapath has been carefully tailored, achieving a

throughput of 8 cycles/symbol and a ratio of resource
utilization of approximately 90% for every computation, as
shown in Table 6.

• The serialization of data retrieval and assertion entails the
reduction of the connectivity needs and the number of registers
that are used internally by the datapath, as shown in Table 7.
Since multi-operand instructions are executed in the same FU,
in this particular design, there is no impact on the performance.
However, in a multi-cluster architecture an important
improvement could be achieved by passing data to other FUs
before the full instructions are finished.

• All the addresses of the RFs, memories, and external
interfaces are automatically assigned by the AGU, which
greatly helps programmers avoid the reference of tens of
operands in the same instruction.

These characteristics push our design further from a GPP,
boosting performance and reducing area and power
consumption, although the loss of programmability is evident
since a conventional C program could not be run on it. In
relation to ASIC designs, our goal was to take advantage of the
processor characteristics, such as resource reutilization and, of
course, programmability to widen the gap in terms of area,

Table 6. Resource utilization results.

Computation Resources utilization

α and β computations 89.0%

Alternating β and LLR computations 92.5%

Direct procedure 91.6%

Sliding windows mechanism 91.1%

126 Pablo Ituero et al. ETRI Journal, Volume 30, Number 1, February 2008

Table 7. Register reduction caused by fetching and assertion
serialization.

Pipeline stage Standard approach Serialized approach

ALU1 input 19 5

ALU1 output 8 6

ALU2 input 4 2

ALU2 output 3 2

Table 8. Prototype area comparison.

Work Platform Design Algorithm Area

[36] Xilinx Virtex-II SISO Max-LM 2134 slices/8 BR

[36] Xilinx Virtex-II SISO LM 2500 slices/8 BR

[29] Xilinx Virtex-4 Turbo Max-LM 3481 slices/17 BR

[24] Altera APEX 20K Turbo Max-LM 5500 LE/135 ESB

Ours Xilinx Virtex-II SISO Max-LM 517 slices/3 BR

Ours Xilinx Virtex-II SISO LM 555 slices/3 BR

Table 9. Power measures results.

 LM @ 60 MHz Max-LM @ 80 MHz

Dynamic power (mW) 90.1 102.43

Quiescent power (mW) 336.6 336.6

Total power (mW) 426.7 439.03

power dissipation, and versatility.

An important aspect of deploying any new architecture is
verification, which usually requires lengthy software
simulation of a design model [40]. Our design is clearly
oriented toward a standard-cell implementation; however, as a
first approach, it was prototyped in a Xilinx Virtex-II 4000
FPGA for test and comparison purposes. FPGA devices make
hardware emulation practical and cost effective for new
processor designs. Table 8 shows the area results contrasted
with other works implemented in FPGAs that provide area
information. Even taking into account that two of the works
implement the whole turbo decoder, the reduction in area is
evidently over a factor of 4; however, the comparison is not
completely fair since the designs and algorithms adopted in
these works are different from ours. The frequency attained for
the max-LM was 80.57 MHz and 60.39 MHz for the LM. It
was significantly biased by the architecture of the FPGA;
nevertheless, our critical path coincides with that of fast ASIC
implementations, namely, mux-ACS-normalize; therefore,
similar working frequencies are expected.

The power estimates were obtained with the Xilinx power
measurement tool, XPower. The values are presented in

Table 9. The constant quiescent power is caused not only by
the area that the system takes up, a very small portion of the
FPGA, but also by the rest of the array, which also needs to be
powered. Dynamic power consumption is around two orders
of magnitude above 0.25 µm standard-cell designs, which
employ low-power policies [39]. This difference is due to the
architecture of the FPGA, which supposes an elevated
hardware overhead. To our knowledge, no other work
prototyping in an FPGA has provided power measurements;
therefore, no comparison is possible. From a more abstract
point of view, comparing our proposed architecture with more
general processors, the almost optimum resource utilization,
the smaller area, and the lower working frequency entail a
reduction in both dynamic and static power consumption. In
relation to ASIC designs, the significant area reduction leads to
a reduction in static power consumption as well.

IX. Conclusion

We presented a clustered VLIW ASIP architecture, which
implements a MAP decoder, employing either the max-LM or
the LM algorithm. The datapath of the system was carefully
optimized by extensive use of butterfly pair properties. The
high concurrence of the processor attains a throughput of
8 cycles per symbol. Two original customizations were
introduced. The fetching and assertion of data in multi-operand
instructions was demonstrated to reduce connectivity and area
requirements, leading to a potential performance improvement
in multi-clustered architectures. The automation of addressing
greatly simplifies the programming of the machine. Compared
with previous ASIC designs, a reduction of area by over a
factor of 4 is achieved. The design exhibits great flexibility and
is compliant with most recent industrial standards.

References

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon
Limit Error-Correcting Coding and Decoding: Turbo-Codes,”
IEEE Trans. on Comm., vol. 44, no. 2, May 1993.

[2] L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding
of Linear Codes for Minimizing Symbol Error Rate,” IEEE Trans.
on Information Theory, Mar. 1974, pp. 284-287.

[3] W. Wolf, “Building the Software Radio,” IEEE Computer, 2005,
pp. 87-89.

[4] K. Keutzer, S. Malik, and A.R. Newton, “From ASIC to ASIP:
The Next Design Discontinuity,” IEEE Int’l Conf. Computer
Design: VLSI in Computers and Processors, 2002, pp. 84-90.

[5] P. Robertson and P. Hoeher, “Optimal and Sub-Optimal
Maximum a Posteriori Algorithms Suitable for Turbo Decoding,”

ETRI Journal, Volume 30, Number 1, February 2008 Pablo Ituero et al. 127

European Trans. Telecommunication, no. 8, Mar./Apr. 1997, pp.
119-125.

[6] A.J. Viterbi, “An Intuitive Justification and a Simplified
Implementation of the Map Decoder for Convolutional Codes,”
IEEE J. Selected Areas in Comms, no. 2, 1998, pp. 260-264.

[7] Y. Wu, W.J. Ebel, and B.D. Woerner, “Forward Computation of
Backward Path Metrics for MAP Decoder,” IEEE VTC, 2000.

[8] M.F. Jacome and G. de Veciana, “Design Challenges for New
Application-Specific Processors,” Design&Test of Computers,
vol. 17, no. 2, Apr./June 2000, pp. 40-50.

[9] C. Schurgers, F. Catthoor, and M. Engels, “Energy Efficient Data
Transfer and Storage Organization for a Map Turbo Decoder
Module,” ISLPED, IEEE, 1999, pp. 76-81.

[10] Z. Wang, H. Suzuki, and K. Parhi, “VLSI Implementation Issues
Of Turbo Decoder Design For Wireless Applications,” IEEE
Workshop on Signal Processing Systems, Oct. 1999, pp. 503-512.

[11] J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, 2002.

[12] V.S. Lapinskii, M.F. Jacome, and G.A. de Venecia, “Application-
Specific Clustered VLIW Datapaths: Early Exploration on a
Parameterized Design Space,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, vol. 21, no. 8, Aug.
2002.

[13] A. HoffMann, H. Meyr, et al., “A Novel Methodology for the
Design of Application Specific Integrated Precessors (ASIP)
Using a Machine Description Language,” IEEE Trans. Computer
Aided Design, vol. 20, no. 11, 2001.

[14] Z. Liu, K. Dickson, and J.V. McCanny, “Application-Specific
Instruction Set Processor for SoC Implementation of Modern
Signal Processing Algorithms,” IEEE Trans. Circuits and
Systems—I: Regular Papers, vol. 52, no. 4, Apr. 2005.

[15] H. Peters, R. Sethuraman, et al., “Application Specific Instruction-
Set Processor Template for Motion Estimation in Video
Applications,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 15, no. 4, Apr. 2005.

[16] M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, and R. Zafalon,
“Low-Power Data Forwarding for VLIW Embedded
Architectures,” IEEE Trans. Very Large Scale Integration
Systems, vol. 10, no. 5, 2002.

[17] A. Terechko, M. Garg, and H. Corporaal, “Evaluation of Speed
and Area of Clustered VLIW Processors,” 18th Int’l Conf. VLSI
Design, 2005, pp. 557-563.

[18] M. Valenti and J. Sun, “The UMTS Turbo Code and an Efficient
Decoder Implementation Suitable for Software-Defined Radios,”
Int’l Journal of Wireless Information Networks, vol. 8, no. 4,
2001.

[19] W. Ebel, “Turbo-Code Implementation on c6x,” Tech. Rep.,
Alexandria Research Inst.,Virginia Polytechnic Inst. State Univ.,
1999.

[20] A. La Rosa, L. Lavagno, and C. Passerone, “Implementation of a

UMTS Turbo Decoder on a Dynamically Reconfigurable
Platform,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 24, no. 1, 2005.

[21] H. Michel, A. Worm, M. Munch, and N. Wehn,
“Hardware/Software Trade-Offs for Advanced 3G Channel
Coding,” Design, Automation and Test in Europe Conf. and
Exhibition, 2002, pp. 396-401.

[22] F. Kienle, H. Michel, F. Gilbert, and N. Wehn, “Efficient MAP-
Algorithm Implementation on Programmable Architectures,”
Advances in Radio Science, no. 1, pp. 259-263, 2003.

[23] O. Muller, A. Baghdadi, and M. Jzquel, “Asip-Based
Multiprocessor SOC Design for Simple and Double Binary
Turbo Decoding,” Proc. the Conf. Design, Automation and Test
in Europe (DATE), Munich, Germany, ACM, Ed., 2006.

[24] A. Corporation, MegaCore Function User Guide Turbo
Encoder/Decoder, 2003.

[25] T. Vogt and N. Wehn, “A Reconfigurable Application Specific
Instruction Set Processor for Viterbi and Log-Map Decoding,”
IEEE Workshop on Signal Processing (SIPS), Oct. 2006.

[26] M.C. Shin and I.C. Park, “A Programmable Turbo Decoder for
Multiple 3G Wireless Standards,” IEEE Int’l Solid-State Circuits
Conf., vol. 1, 2003, pp. 154-484.

[27] M. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B.Widdup, G.
Zhou, C. Nicol, and R.-H.Yan, “A Unified Turbo/Viterbi
Channel Decoder for 3GPP Mobile Wireless in 0.18/spl mu/m
CMOS,” IEEE Journal of Solid-State Circuits, vol. 37, no. 11,
2002.

[28] S.-J. Lee, N. Shanbhag, and A. Singer, “A 285-MHz Pipelined
MAP Decoder in 0.18-/spl mu/m CMOS,” IEEE Journal of
Solid-StateCircuits, vol. 40, no. 8, 2005.

[29] I. Xilinx, 3GPPTurbo Decoder v2.0, 2006.
[30] J. Kaza and C. Chakrabarti, “Design and Implementation Of Low-

EnergyTurbo Decoders,” IEEE Trans. VLSI Systems, vol. 12, no.
9, Sept. 2004, pp. 968-977.

[31] C. Schurgers, F. Catthoor, and M. Engels, “Memory Optimization
of MAP Turbo Decoder Algorithms,” IEEE Trans. Very Large
Scale Integration (VLSI) Systems, vol. 9, no. 2, 2001.

[32] S. Kim, S.Y. Hwang, and M.J. Kang, “A Memory-Efficient
Blockwise Map Decoder Architecture,” ETRI Journal, vol. 26,
no. 6, Dec. 2004, pp. 615-621.

[33] Z. Wang, Z. Chi, and K. Parhi, “Area-Efficient High-Speed
Decoding Schemes for Turbo Decoders,” IEEE Trans. Very
Large Scale Integration (VLSI) Systems, vol. 10, no. 6, 2002.

[34] M. Mansour and N. Shanbhag, “VLSI Architectures for SISO-
APP Decoders,” IEEE Trans. Very Large Scale Integration
(VLSI) Systems, vol. 11, no. 4, 2003.

[35] C.Wu, M. Shieh, C.Wu, Y. Hwang, and J. Chen, “VLSI
Architectural Design Tradeoffs for Sliding-Window Log-MAP
Decoders,” IEEE Trans. VLSI Systems, vol. 13, no. 4, Apr. 2005,
pp. 439-447.

128 Pablo Ituero et al. ETRI Journal, Volume 30, Number 1, February 2008

[36] M. Thul and N. Wehn, “FPGA Implementation Of Parallel
Turbo-Decoders,” IEEE 17th Symp. Integrated Circuits and
Systems Design, Sept. 2004, pp. 198-203.

[37] G.. Prescher, T. Gemmeke, and T. Noll, “A Parametrizable Low-
Power High-Throughput Turbo-Decoder,” IEEE ICASSP, Mar.
2005, pp. 25-28.

[38] J. Tan and G. Stuber, “New SISO Decoding Algorithms,” IEEE
Trans. Comm., vol. 51, no. 6, 2003.

[39] D.-S. Lee and I.-C. Park, “Low-Power Log-MAP Turbo
Decoding Based on Reduced Metric Memory Access,” IEEE
Int’l Symp. Circuits and Systems, vol. 4, 2005, pp. 3167-3170.

[40] M. Gschwind, V. Salapura, and D. Maurer, “FPGA Prototyping
of a RISC Processor Core for Embedded Applications,” IEEE
Trans. Very Large Scale Integration (VLSI) Systems, vol. 9, no. 2,
2001.

Pablo Ituero is a PhD candidate in the
Department of Electronic Engineering at the
Universidad Politécnica de Madrid, Spain. He
received his MS degree in telecommunications
with a major in electronics from the same
university in 2005 and his MS in electrical
Engineering, specialized in System-on-a-Chip-

design from the Royal Institute of Technology, Sweden, also in 2005.
His research interests include high-performance processor architectures
and low-power, thermal-aware electronic design.

Marisa López-Vallejo is an associate professor
in the Department of Electronic Engineering at
the Universidad Politécnica de Madrid, Spain.
She received the MS and PhD degree from the
same university in 1993 and 1999, respectively.
She was with Lucent Technologies at Bell
Laboratories as a member of the technical staff.

Her research activity is currently focused on low-power design, CAD
for hardware/software codesign of embedded systems, and application-
specific high-performance programmable architectures.

	I. Introduction
	II. The MAP Algorithm
	III. General Architecture
	IV. Datapath
	V. Control
	VI. Examples
	VII. Previous Work and Comparison
	VIII. Results
	IX. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

