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In this paper, we present a spatial perturbation method 
to control the optical patterns in semiconductor 
microresonators in the far-field configuration. We propose 
a fast all-optical switch which operates at a low light level.  
The switching beam controls the behavior of output 
beams with strong intensities. The method has been 
applied successfully to different optical patterns such as 
rolls, squares, and hexagons. 
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I. Introduction 

It would be highly beneficial to have a strong and nearly 
instantaneous interaction of light with light, preferably in a 
minimal volume for important applications, such as quantum 
information processing, integrated all-optical signal processing, 
and so on. In principle, this can be achieved by exploiting 
intrinsic material nonlinearities, that is, by all-optical switching. 
Optical switches are crucial components of communication 
networks, where light is redirected from channel to channel [1], 
and of general computational machines, where they can act as 
logic elements [2]. For all-optical switches, where light controls 
the flow of light, there has been a continual push to increase the 
sensitivity of switches so that it can be actuated with lower 
powers, thus decreasing the system complexity. With the 
advent of quantum information systems, it is important to 
increase the sensitivity to the point at which a single switching 
photon is effective [3]. 

Optical switching is strongly preferred because by replacing 
existing electronic network switches with optical ones, the need 
for optical-to-electronic-to-optical (OEO) conversion is 
removed as well as the need for the time and energy 
consuming conversion of light to electricity. There have been 
numerous proposals as to how to implement light switching 
between optical fibers, such as semiconductor amplifiers, liquid 
crystals, holographic crystals, and tiny mirrors [1]. 

Building an all-optical switch from transverse optical 
patterns combines several well-known features of nonlinear 
optics in a novel way. Using the different orientation of a 
transverse pattern as the distinct state of a switch allows 
maximization of the sensitivity of pattern forming instability.  

The promising experimental results of pattern switching in 
atomic vapor (gaseous) systems have raised the question as to 
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whether similar effects can be expected in solid state systems, 
in particular, semiconductors. One obvious advantage of 
semiconductors over atomic systems is that they can be more 
easily integrated in optoelectronic communication networks. 
Generally, semiconductor systems offer great flexibility in 
terms of epitaxial system growth (including active layers and 
mirrors), and, of course, they are mechanically robust. 

In this work, we describe an all-optical switch which 
combines the extreme sensitivity of instability-generated 
transverse optical patterns with tiny perturbations. The 
formation of dissipative structures far from equilibrium has 
been widely studied since the early 1970s. In the late 1980s, 
the main focus in this field shifted gradually from purely 
temporal effects to spatial and spatio-temporal phenomena, 
especially spontaneous spatial pattern formation in the 
structure of the electromagnetic field in the section of broad-
area radiation beams, when they interact with nonlinear 
media. 

Great attention has recently been paid to the control of 
spatiotemporal dynamics in spatially extended nonlinear 
systems. As with the previous studies of controlling, there are 
two main schemes for manipulating pattern formation: 
feedback and non-feedback methods. 

In this paper, we present a non-feedback technique which 
consists of applying external spatial perturbation to the 
system in order to break the symmetry and then to enhance 
the stability of the desired pattern in a semiconductor 
microresonator at the far-field configuration. This method 
allows us to rotate and select spatial patterns of related 
systems. Our method is based on applying a weak 
perturbation to the system in the spatial dimension. We 
control patterns with a beam the intensity of which is several 
hundred times smaller than the intensity of the pattern itself 
and is as fast as 0.5 to 100 ns for different values of 
perturbation coefficients. It is important that our non-
feedback technique can be easily realized in practical 
spatially extended systems. In an optical system, for instance, 
both the amplitude and the phase of the injected field can 
easily be spatially perturbed with an optical mask. Of course, 
it is also possible to rotate the different patterns by injecting 
just a tilted wave, which is characterized by a single spot in 
the Fourier space instead of the target pattern. This is 
experimentally much easier to realize and corresponds to 
using a plane wave with a tilt. 

In section II, the general model adapted to study 
semiconductor micro-resonators and the method used for 
pattern selection are described. In section III, we show the main 
numerical results on pattern switching obtained from 
integration of the dynamical equations. Finally, some 
conclusions and perspectives are reported in section IV. 

II. The Model 

The dynamical equations, suitable to describe a broad area 
semiconductor heterostructure in a passive (without population 
inversion) configuration, where the semiconductor 
microresonator is of the Fabry-Perot type, with a multi-
quantum-well (MQW) structure, can be cast in the same form 
as in [4] to [8] as  

2
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where E and N are the normalized electric field and the carrier 
density normalized to the transparency value, respectively; κ is 
the cavity damping constant; and γ|| is the carrier nonradiative  
recombination rate. Here, 1 iζ η θ= + +  with 2 /i L Tη α= is  
proportional to the linear absorption coefficient per unit length 
due to the material in the region between the QWs and the 
reflectors, and  θ = (ωc - ω0) / κ, which is the cavity detuning 
parameter, with ω0 being the frequency of the holding field, 
and ωc is the longitudinal cavity frequency closest to ω0. The  
transverse Laplacian, defined as usual as 2 2 2 2 2/ / ,x y⊥∇ = ∂ ∂ +∂ ∂  
represents diffraction in (1), and carrier diffusion in (2) through 
the diffusion parameter d, 0 ||BNβ γ=  where B is the 
coefficient of radiative recombination involving two carriers, 
and N0 is the carrier density at transparency. The transverse 
coordinates x and y are scaled to the diffraction length. The 
parameter EI is the normalized injected field (taken real and 
positive), ( )22 [(1 ) /(1 )] 1C i NΘ = − Δ + Δ −  with C being the 
bistability parameter, and e 0 e( )ω ω γΔ = − where eω is the 
central frequency of the excitonic absorption line, 
approximated by a Lorenzation curve, and eγ is its half–width. 
To ensure that our analysis would be as realistic as possible in 
comparing our proposed switch with the devices currently 
available, the choice of numerical values of the physical 
quantities characterizing our model was inspired by 
experimental works on optical bistability in GaAs MQW 
structures [7]-[11] (see [8] for a more detailed discussion of the 
model equations and of the calculations of the homogeneous 
stationary solutions and their stability analysis). 

Typical values of physical parameters common to both 
configurations are  

3
0

0

2 850 nm, 3.5, 4 10 , 2 μm.c n T Lπλ
ω

−= = = = × =  

With this choice of physical quantities, we are led to a cavity 
decay rate of 10 18.57 10 sκ −= × and a diffraction coefficient of 

219.3μm .a =  These values imply that the time unit is 
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1 11.7 ps,κ − = and the space unit is 4.39μm.a = In a broad-
area device with a cross section 25000μmS ≈ (for example, a 
square of about 270 70μm× ) which we used in our simulations, 
the active volume VA is about 3250μm . 

In our controlling method, the direction of the bright output 
beams is controlled by applying a weak switching laser beam.  
Orientation of the output beams is extremely sensitive to 
perturbations, and their azimuth angle can easily be rotated to 
the direction of the switching beam. 

To illustrate pattern switching mathematically, we consider 
the control parameter EI of the system to which, in our 
algorithm, the spatial perturbation is exerted as  

[ ]I I0 1 ( ) ,E E f rα= +                (3)                                                                

where EI0 is the unperturbed control parameter, α is the 
amplitude of the perturbation, and f(r) with r = (x, y) is the 
spatial perturbation function. Here, α should be smaller than 1. 
The function f(r) should be designed to reflect the signature of 
the target pattern; therefore, the most natural form of this 
function is chosen as that of the basic harmonics of the target 
pattern. 

The results presented in this paper were obtained by 
numerically integrating (1) and (2) with the spatially perturbed 
pump defined in (3). Using a split-step method with periodic 
boundary conditions, we performed the numerical integration 
of the dynamical equations. 

The perturbation control function f(r), generally (for all roll, 
square, and hexagonal patterns), is defined as   

( ) exp ( ( )) . .,

=1, 2, 3, ,8,

jx jy j
j
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φ= + + +∑
      

(4)    
 

where cos( ),jx jK x K x γ= and sin( )jy jK y K y γ=  with 
,j CK K=  which is the critical wave vector; γ is the wave 

vector-tilting angle in respect to the x-axis; and 1φ  is an 
arbitrary phase. For different types of patterns, j is different, 
where rolls are formed by wave vectors 1,5 ,K  squares by 

1,3,5,7K , and hexagons by 1,2,4,5,6,8K  [5]. 

III. Numerical Results 

The numerical integration of dynamical equations with the 
spatially perturbed pump defined in (3) was performed by using 
a split-step method with periodic boundary conditions. This 
method implies the separation of the algebraic and Laplacian 
terms in the right-hand side of dynamical equations. The first part 
is integrated via a Runge-Kutta algorithm, while the linear 
operator (Laplacian) is integrated via an FFT algorithm. 

When the input field EI is a plane-wave (that is, it does not 
depend on the transverse variables x and y) the dynamical 

 

Fig. 1. Steady-state curve of the homogeneous solution and 
results of numerical simulations. The dotted line 
indicates the unstable part of the curve. Different 
patterns are indicated by different symbols. The ordinate 
of the symbol corresponds to the maximum intensity in 
the pattern. The parameters are η=0.25, β =1.6, d=0.2, 
θ=–3, Δ=–1, and C=40. 
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Fig. 2. (a) Horizontal roll and (b) hexagon H+ patterns in the far-
field case. The parameters are η = 0.25, β = 1.6, d = 0.2, 
θ = –3, Δ = –1, C = 40, and EI = 31 and 39 in the two 
frames, from left to right. 
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equations admit homogeneous (that is, x- and y-independent) 
stationary solutions. In all cases considered in this paper, the 
steady-state curve of |ES|, where ES is the stationary value of 
the field E as a function of EI, is S-shaped (see Fig. 1) and its 
lower branch is stable. On the contrary, the negative-slope 
branch and part of the upper branch are unstable against the 
growth of spatially modulated perturbations.  

First, the roll, square, and hexagons H+ and H– (honeycomb) 
patterns are produced with different values of |ES|2 in a far-field 
configuration. Figure 2 shows roll and hexagonal patterns 
which were created spontaneously in a far-field case of passive 
configuration. The far field of a roll pattern should be two 
points, placed on an ideal line oriented orthogonally to the rolls. 
We also have the central component (the bright spot at the 
center), which corresponds to the homogeneous PW 
component. 

By adding a perturbation term, we controlled the direction of 
spontaneously created roll patterns using tilting wave vector K. 
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Fig. 3. Roll patterns in the far-field case (a) before switching and
(b) after switching. The strength of perturbation α which 
we have used is equal to 0.05 and / 2γ π= . 
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Fig. 4. (a) Spontaneously created hexagon pattern and (b) rotated. 
The strength of perturbation α which we have used is
equal to 0.05, and / 2.γ π=  

(a) (b) 

 
In this case the perturbation function f(r) with arbitrary γ  has 
been added to EI0. Figure 3 shows the roll pattern before and 
after switching. In this case, we used a general perturbation 
function where j=1, 5 with γ = π/2 and 1 1.72CK K= = . 

In order to switch the hexagon H+ pattern, we used the 
perturbation function f(r) in (3) as follows: 

6 61 1 4 4 ( . )( . ) ( . )1( ) . . ,
2

i K ri K r i K rf r e e e C Cφφ φ ++ +⎡ ⎤= + + +⎣ ⎦    (5) 

where, cos( ),jx jK x K x γ=  and sin( )jy jK y K y γ=  with 
,j CK K=  and K1, K4, and K6 make an angle of 2 / 3π with 

each other.  
As seen in Fig. 4, honeycomb patterns can also rotate at an 

arbitrary angleγ . This figure shows a hexagonal pattern before 
and after switching with / 2γ π= in a counterclockwise 
direction. 

Far-field studies of optical patterns shows a trade-off relation 
between switching time and perturbation strength α. Figure 5 
shows switching time as a function of the perturbation 
coefficient α. The figure shows successful switching even for a 
perturbation amplitude as small as α = 0.05. This means that 
our switching technique is able to control the behavior of 
output beams at higher intensities. 

IV. Conclusion 

We have conducted a far-field study of optical pattern 

 

Fig. 5. Switching time variation with perturbation coefficient α.
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selection in a semiconductor microresonator based on small 
spatial perturbations which is important from a practical 
viewpoint. Using the proposed spatial perturbation method, a 
pattern is generated either spontaneously or by using an optical 
mask, and a weak driving signal (switching beam) generated 
by a target mask causes the initial pattern to rotate to the new 
orientation. The method has been successfully applied to 
various optical patterns.   

Our investigation was inspired by [1], and demonstrates that, 
by using a semiconductor instead of an atomic medium, the 
rotation is much faster, occurring on the scale of nanoseconds 
instead of microseconds. Using the proposed all-optical switch, 
patterns can be controlled using a beam, the intensity of which 
is 400 times lower than the intensity of the pattern itself, and 
the switching time varies as an inverse function of perturbation 
coefficients in the range of 0.5 to 100 ns. Therefore, in area of 
high-speed switching, the proposed switch is a practical 
alternative to electrical switches. 
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