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We propose a very-low-complexity lattice-reduction (LR) 
algorithm for multi-input multi-output detection in time-varying 
channels. The proposed scheme reduces the complexity by 
performing LR in a block-wise manner. The proposed scheme 
takes advantage of the temporal correlation of the channel 
matrices in a block and its impact on the lattice transformation 
matrices during the LR process. From this, the proposed 
scheme can skip a number of redundant LR processes for 
consecutive channel matrices and performs a single LR in a 
block. As the Doppler frequency decreases, the complexity 
reduction efficiency becomes more significant. 
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I. Introduction 

For multi-input multi-output (MIMO) systems, the lattice- 
reduction (LR)-aided detection (LRAD) scheme is considered 
as a good design choice since it can achieve full diversity with 
a favorable complexity [1]-[3]. However, the overall 
computational load for LR could be still one of the important 
issues in the receiver design, especially in the time-varying 
channels where we should frequently perform LR for 
consecutive channel matrices. 

In a time-varying channel, the lattice transformation matrices 
of LR frequently remain the same or different only at small 
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portion of the elements for adjacent channel matrices due to the 
temporal correlation. Adaptive LR techniques were proposed 
by using this property in [4], [5], where high complexity 
reduction could be achieved. Our investigation results reveal 
that substantial redundant calculations still exist, especially in 
slow-fading channels. We develop a block-mode LR algorithm 
that needs a single LR process in a block consisting of several 
consecutive channel matrices and eliminates a large number of 
redundant calculations.  

II. Basic Concept and Conventional Complexity-
Reduced LRAD Schemes 

Consider an N×L MIMO system with N transmit antennas 
and L receiving antennas. Let H denote the channel matrix 
whose dimension is L×N, and its elements are i.i.d zero-mean 
complex Gaussian random variables. A lattice-reduced channel 
matrix by LR, H', can be represented by [1] 

H'=ΗP,                   (1)            
where P is an N×N lattice transformation matrix which is 
integer unimodular. With LRAD, the received signal vector y is 
expressed by 

y = Ηs + n=(ΗP)(P)–1s + n=H'z + n,       (2) 
 

Table 1. Comparison of conventional LR schemes in time-varying
        channel. 

Brute-force LR Adaptive LR [4] Adaptive LR [5] 
Get Hi 

 
Perform LR with 
Pi = I 
i = i + 1 

Get Hi 

 
Perform LR with 
Pi = Pi –1 
i = i + 1 

Get Hi 

Estimate (3) (4), check (5)
Perform LR with Pi = Pi –1  

only if not satisfying (5)  
i = i + 1 
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Table 2. LR results for sequence of time-varying channel matrices. 

i 1 2 3 4 5 6 7 8 …

Hi
 0.07 1.20

0.06 0.47
− −⎡ ⎤

⎢ ⎥−⎣ ⎦
 

0.08 1.20
0.06 0.47

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

0.09 1.19
0.06 0.47

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

 
0.10 1.19
0.07 0.48

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

0.11 1.19
0.07 0.48

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

0.12 1.18
0.08 0.48

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

0.15 1.17
0.08 0.48

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

 
0.16 1.17
0.08 0.49

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

…

H'i 
0.07 0.78
0.06 0.83

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

 
0.08 0.70
0.06 0.86

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

0.09 0.63
0.06 0.88

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

 
0.10 0.56
0.07 0.91

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

0.11 0.60
0.07 0.86

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

0.12 0.54
0.08 0.88

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

0.15 0.41
0.08 0.91

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

 
0.16 0.51
0.08 0.84

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

…

Pi
 1 6

0 1
−⎡ ⎤

⎢ ⎥
⎣ ⎦

 
1 6
0 1

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 
1 6
0 1

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 
1 6
0 1

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 
1 5
0 1

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 
1 5
0 1

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 
1 5
0 1

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 
1 4
0 1

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 …

 

 
where s and n are the transmitted symbol and complex 
Gaussian noise vectors, respectively. The transmitted symbol 
vector s is transformed to z = P−1s. In the receiver, we multiply 

1')−(H by y and quantize the result to get ẑ . Then, the estimate 
of the transmitted symbol, ˆ,s can be found by multiplying P, 
that is ˆ ˆ.s = Pz  A detailed process to get (H', P) pair from H 
can be found in [1], [6].  

Table 1 shows the comparison of the basic operational 
principles of various LR schemes in a time-varying channel. 
Let Hi denote the i-th channel matrix in a time domain that is 
supposed to go through an LR operation. There is a temporal 
correlation between two consecutive channel matrices, that is, 
Hi−1 and Hi. Based on this, the adaptive LR schemes in [4], [5] 
first estimate the near lattice-reduced channel matrix ˆ 'iH  by 
using the LR results of the previous channel matrix as 

  1
ˆ ' ,−=H H Pi i i                 (3) 

where Pi−1 is the unimodular matrix obtained by performing 
LR for the (i−1)th channel Hi−1. Then, the LR process is 
performed on ˆ ' .H i  This way, many complexities in the LR 
process can be reduced. 

In addition, the adaptive LR in [5] even ignores the LR 
process on ˆ 'H i itself if there are sufficient temporal correlations. 
It measures the orthogonality of ˆ 'H i using the orthogonality 
defect factor defined as 

2

1
ˆ '

ˆ( ' ) ˆ ˆdet[( ' ) ' ]
=Θ =

∏ h
H

H H

N
mm

i H
i i

,              (4) 

where ˆ 'h m  is the m-th column vector of ˆ ' .H i  Then, the LR 
operation is performed on ˆ 'H i only if the following condition 
is not satisfied: 

1
ˆ1/ ( ' ) / ( ' ) ,−< Θ Θ <H Hi iα α           (5) 

where α is a predetermined constant by the Doppler frequency 
(fading rate). 

As summarized in Table 1, the conventional adaptive LR in 
[4] performs LR at every channel matrices, although the 

complexity is reduced. The other conventional adaptive LRAD 
scheme in [5] eliminates some of the unnecessary LR 
processes, but Θ  should be calculated and checked at every 
channel matrix, that is, the computations of (4) and (5). 

Our investigation results reveal that some redundant 
calculations still remain. Table 2 illustrates an example of LR 
results for a sequence of time-varying channel matrices. For 
ease of illustration, we consider the case of a 2×2 real-valued 
MIMO channel. It is shown that the first four Pis (P1, P2, P3, 
P4) are identical to each other as are the next three Pis (P5, P6, 
P7). Although we note that H'i continuously changes as Hi 
changes, the calculation of H'i in a block is straightforward as 
long as we can confirm that Pi is constant within the block. By 
the relation in (1), we can get H'i by simply multiplying Hi to Pi. 

III. Proposed Scheme  

Motivated by the above investigation, we propose a 
modified complexity reduction scheme. In the proposed 
scheme, to determine if Pi does not change for a certain block 
of consecutive channel matrices, we perform LR only once in a 
block with K consecutive channel matrices. More specifically, 
we first perform an LR process for the first channel matrix in a 
block consisting of K consecutive channel matrices. For 
example, if LR is performed for Hi, then all the other channel 
matrices of Hi+1 to Hi+K are buffered with their corresponding 
received symbol vectors without any LR processes. Next, we 
perform LR for Hi+K and compare Pi+K with Pi. Depending on 
whether they are the same or not, one of two modes are 
activated, that is, the block and sequential modes. 

First, the block mode is enabled if Pi+K and Pi are the same. 
In this case, it is highly probable that Pi to Pi+Ks are all equal. 
For this reason, LR operations for a block of K−1 channel 
matrices are eliminated by just setting Pi+j = Pi, for 1≤ j ≤ K−1. 
Then, the corresponding lattice-reduced channel matrices,  

H'i+js, are simply obtained by performing the matrix 
multiplication given in (1). Therefore, this block mode reduces  
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Fig. 1. Procedure of proposed complexity-reduced LR. 

Set i=1. 
Perform LR for Hi 
Buffer Hi+j s for 1 ≤ j ≤ K and the received signal vectors.
Perform LR for Hi+K with initial setting of Pi+K=Pi. 
IF Pi+K=Pi: block mode 

FOR j=1,..., K–1 DO 
Set Pi+j=Pi 

Compute H'i+j=Hi+j Pi+j.                 (6)
END FOR 

ELSE: sequential mode 
FOR j=1,..., K–1 DO 

Perform LR for Hi+j with initial setting of Pi+j=Pi+j–1. (7)
END FOR 

END IF 
Set i=i+K and go to Step 3. 

Step 1.  
Step 2.  
Step 3.  
Step 4.  
 
Step 5.  
 
 
 
 
Step 6.  
 
 
 
Step 7.  

 
the total amount of calculation required for a whole LR 
operation for each channel matrix into just a single matrix 
multiplication. 

Second, in the sequential mode which is enabled if Pi+K and 
Pi are not the same, we perform separate LR operations for 
each of K−1 channel matrices, one by one, but we reduce the 
computations for an LR operation by using Pi as an initial state 
in LR iterations. This is equivalent to performing LR on 
ˆ 'H i given in (3). Consequently, the overall procedure is 

described as shown in Fig. 1.  
Let us define pB as the occurrence rate of the block modes, 

that indicates the probability of Pi = Pi+K. Then, if we properly 
set the value of K, we can roughly estimate the average 
computation complexity per channel matrix as  

Cproposed ≈ pB × Cone matrix mult + (1–pB) × Csequential     (8)  

                ≈ (1–pB) × Csequential                (9) 
where Cone matrix mult denotes the computation complexity 
required for one matrix multiplication in (6) and Csequential 
denotes the average computation complexity of one LR 
operation in the sequential mode in (7). As Csequential is typically 
much larger than Cone matrix mult, Cproposed can be further 
approximated as (9). This estimate implies that we can 
effectively reduce the computational complexity to the fraction 
(1−pB) of the computation complexity of one LR operation in 
sequential mode. In the next section, the simulation results 
reveal that if we properly set K in the practical Doppler 
frequency range, pB is significant, and thus the complexity 
reduction by the proposed scheme is significant. 

IV. Simulation Results  

All the LRAD schemes investigated in this letter utilize LLL 
algorithm as a baseline [6], [7]. We use a 3×3, that is, N=L=3, 
MIMO system with 16-QAM. As a time-varying channel  

 

Fig. 2. Occurrence rate and failure rate in the block mode. 
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model, all the elements in the channel matrix are i.i.d, and we 
use the 2-ray Jakes fading model with various values of the 
maximum Doppler shift, fD [8]. Let us define the normalized 
Doppler frequency as fnD = fDTD, where TD is the time interval 
of two consecutive channel matrices. In the following 
simulations, we consider fnD range of 10−5 to 3×10−3 Hz.1)  

In Fig. 2, we plot the occurrence rate of the block mode, pB. 
In addition, we plot the failure rate in the block mode, pF , that 
indicates 

pF = Pr [Pi ≠ Pi+j ,∃j for 1 ≤ j ≤ K | block mode]     (10) 
for block length K and fnD. In accordance with our intuition, pB 
decreases and pF increases as K increases. However, we note 
that the proposed scheme effectively activates the block modes 
even with a considerably large K. For example, with K=10 and 
fnD=50 mHz, almost 60% of the channel matrices are processed 
by the block mode while maintaining pF below 3×10−5. Note 
that even with failure occurring in the block modes, the LR 
result obtained by the block mode is very similar to the exact 
LR result, and thus, the detection performance is almost the 
same. 

Figure 3 compares the computational complexities of 
various LRAD schemes in terms of average number of the 
required complex multiplications nm and divisions nd  at each 
channel matrix, respectively. The number of iterations in an LR 
process varies depending on the channel conditions, resulting 
in difficulties in deriving a compact closed-form for the 
complexity of the algorithm. Therefore, we count the number 
of computations whenever we meet the multiplication or 
division operations during the simulation and estimate the 
average. As to setting of K, we consider two kinds of cases. In 
the first case, we apply the optimal Ks which are separately 
optimized at each fnD via simulation and thus are different at  
                                                               

1) This range covers various combinations of fDs and TDs. For example, if TD=1 µs, the 
above range corresponds to fD of 10 Hz to 3,000 Hz, and if TD= 20 µs, fD of 0.5 Hz to 150 Hz. 
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Fig. 3. Computational complexities of various LR schemes. 
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Fig. 4. SER performance of various LRAD schemes. 
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each fnD. It may be difficult to use the optimum K values 
adaptively in a real system. For this reason, we include the 
second case when we apply a constant global suboptimum 
value of K irrespective of fnD.  

In Fig. 3, we note that the proposed LR scheme using 
optimum K requires much less complexity compared to the 
conventional LR schemes. For example, with fnD=0.5 mHz, the 
proposed LR scheme requires 20.4% (=90/440) multiplications 
and 14.9 % (=6.4/43) divisions of the brute-force LR, 50% 
(=90/180) multiplications, and 68.1% (=6.4/9.4) divisions of 
the adaptive LR scheme [5]. As we intuitively expect, it is 
shown that the complexity reduction becomes more significant 
in a low Doppler frequency region. We also plot the result for 
the case when the proposed scheme employs a constant value 
of K=10 irrespective of fnD. Even though there are slight 
increases of the computations, there still exists a significant gap 
between the proposed scheme with a constant K and the 
adaptive LR scheme. Considering the basic detection 
processing delay and the overall hardware dimension of the 
recent broadband communication systems, the detection 

latency and required memory size by the block length of 10 
would be sufficiently feasible. 

The symbol error rate (SER) performances of various 
LRAD schemes are compared in Fig. 4. For the adaptive LR 
scheme in [5], we properly set α in (5) so that it results in the 
maximum complexity reduction while achieving the same 
performance to the brute-force LR scheme. As shown in Fig. 4, 
the LRAD using the proposed scheme shows the same SER 
performance without any performance degradation. It is also 
shown that performance does not change even if we do not use 
the optimum K values but use a constant global suboptimum 
value (K=10) for the proposed scheme. 

V. Conclusion 

We presented a computationally efficient LR scheme for 
time-varying channels. Computational redundancy is 
significantly eliminated by using the block-mode LR that 
requires only a single matrix multiplication per channel matrix. 
The idea of the proposed block-mode concept can also be 
extended to frequency-selective fading channels, where we 
usually use multi-carrier transmissions such as MIMO OFDM. 
In this case, the block-mode LR can be applied to multiple 
subcarriers experiencing correlated fading. 
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