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In ICISC 2007, Comuta and others showed that among the 
methods for constructing pairing-friendly curves, those using 
cyclotomic polynomials, that is, the Brezing-Weng method and 
the Freeman-Scott-Teske method, are affected by Cheon’s 
algorithm. This paper proposes a method for searching 
parameters of pairing-friendly elliptic curves that induces 
minimal security loss by Cheon’s algorithm. We also provide a 
sample set of parameters of BN-curves, FST-curves, and KSS-
curves for pairing-based cryptography. 

Keywords: Cheon’s algorithm, cyclotomic polynomial, 
pairing-friendly elliptic curve. 

I. Introduction 

The security of many public key cryptosystems relies on the 
computational hardness of the discrete logarithm problem and 
the Diffie-Hellman problem. Cheon [1] proposed a new 
efficient algorithm for computing the discrete logarithm of the 
l-strong Diffie-Hellman problem. Let g be a generator of a 
group G of the prime order p and let α∈Zp

*. If g, gα, and gαd
 

are given for a divisor d of p−1, then the secret key α can be 
computed in O( p / d + d) exponentiations by Cheon’s 
algorithm. Cheon also proposed a method for computing α 
from gαi

 (i=0,1,...,2d) for a divisor d of p + 1 in O( p / d + d) 
exponentiations. Therefore, if p−1 or p + 1 has a divisor d less 
than 2L and gαi

 are given for i=0,1,...,2d, Cheon’s algorithm 
results in an additional L/2-bit security loss in comparison with 
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other methods in solving the discrete logarithm problems such 
as the square root attack. Refer to [1] for details of Cheon’s 
algorithm.  

When p±1 = (positive integer ≤ 2c±)∙∏(prime > l) (plus-
minus sign in same order), we define a security loss L in G 
with respect to the l-strong Diffie-Hellman problem by 
Cheon’s algorithm as  

L = ڿmax{c– , c+}/2ۀ. 
In [2], Sun investigated Miyaji-Nakabayashi-Takano (MNT) 

[3] and generalized MNT curves [4] and identified some 
parameters with small security loss by Cheon’s algorithm. In 
ICISC 2007, Comuta and others showed that among the 
methods for constructing pairing-friendly elliptic curves, those 
using cyclotomic polynomials, such as the Brezing-Weng 
method [5], cause heavy security loss because r(x)±1 is 
reducible where r(x) is an irreducible polynomial defining the 
prime order of the subgroup [6]. For example, Φk(x)-1 always 
has a factor of x, where Φk(x) is the k-th cyclotomic polynomial 
and φ is the Euler phi function. Hence, Φk(xi)±1 has a factor 
less than 2160/φ(k), at least for the 160-bit prime Φk(xi). In the case 
of a Freeman curve [7], r(x) is given by 25x4+25x3+15x2+5x+1 
and r(x)±1 are factorized as 

r(x) -1 = 5x(5x3+5x2+3x+1), 
r(x) +1 = (5x2 + 1)(5x2+5x+2). 

Therefore, even if we choose any integer xi for the 160-bit 
prime r(xi), then r(xi) -1 and r(xi) +1 have factors less than 240 
and 280, respectively. This implies that a subgroup of a Freeman 
curve with prime order r(xi) has at least 20-bit security loss with 
respect to 240-strong Diffie-Hellman problem by Cheon’s 
algorithm. 

In this regard, we propose a method for searching parameters 
of pairing-friendly elliptic curves that induces little security loss 
by Cheon’s algorithm. We also provide parameters to induce 

Pairing-Friendly Curves with Minimal Security  
Loss by Cheon’s Algorithm 

Cheol-Min Park and Hyang-Sook Lee  



ETRI Journal, Volume 33, Number 4, August 2011 Cheol-Min Park and Hyang-Sook Lee   657 

security loss in some elliptic curves E with a small embedding 
degree k which is minimal in the following sense. Let Gi be a 
prime order subgroup of E defined over a finite field Fpi and ri 
be a prime order of Gi. Let Lij be a security loss in Gi with 
respect to the j-strong Diffie-Hellman problem by Cheon’s 
algorithm. Then, the minimal security loss is defined by a 
minimum of {Lij | ri > 22w, j = 2w}, where w is a security level 
such as w=80,128,192. Note that if G has minimal security loss 
L, then security loss L in G remains unchanged for any l-strong 
Diffie-Hellman problem with 22L≤l≤2w. If G also has a prime 
order r which is close to 22w, r has the following form:  

r±1 = (positive integer ≤ 22L)∙(prime ≥ 22w). 
Therefore, we will find parameters of elliptic curves having 

prime order of this form. 

II. Main Algorithm 

We call an elliptic curve with a small embedding degree and 
a large prime-order subgroup a pairing-friendly curve. We 
consider families of pairing-friendly curves for which the curve 
parameters r and q are given as polynomials r(x) and q(x), 
where r is a large prime divisor of the order of elliptic curve 
group and q is a size of finite field. In most algorithms for 
constructing pairing-friendly curves, such as the Brezing-Weng 
method, r(x) and q(x) are taken as irreducible polynomial, and 
the prime numbers r(xi) and q(xi) are selected for some integer 
xi. However, the observation of Comuta and others indicates 
that the choice of r(x) can result in heavy security loss by 
Cheon’s algorithm. Our proposed method overcomes this 
problem by using a large prime factor of r(xi) for some integer 
xi. Because the irreducibility of r(x) does not imply that r(xi) is a 
prime number for any integer xi, we can find xi so that r(xi) is a 
composite number and the largest prime factor of r(xi) results in 
minimal security loss. Furthermore, we have the following 
theorem. 

Theorem 1. Consider a family of pairing-friendly curves 
q(x), r(x), and t(x) with the embedding degree k and the CM-
discriminant D from definition 2.6 in [8]. If q(x0) is a prime and 
t(x0) is an integer for some integer x0 , then we can construct an 
elliptic curve E / Fq(x0) having a subgroup of prime order r̃(x0) 
and the embedding degree k by using the CM-discriminant D, 
where r̃(x0) is the largest prime factor of r(x0). 

Proof. Because q(x), r(x), and t(x) satisfy the condition of 
embedding degree k, proposition 2.4 in [8] implies that E / Fq(x0)  
has embedding degree k with respect to r̃(x0). Since r(x) is a 
factor of q(x) + 1 − t(x), r̃(x0) is a factor of q(x0) + 1 − t(x0) and E 
has a subgroup of prime order r̃(x0). Since the choice of r̃(x0) 
does not affect q(x) and t(x), CM-discriminant D remains 
unchanged.                                       □ 

When a composite number r(xi) is selected, it needs to be a 

small cofactor times a prime. Let ρ̃ be the ratio of the bit 
length between q(x0) and r̃(x0), and let ρ be the ratio of the 
degree between q(x) and r(x). If r(x0) = c·r̃(x0) where r̃(x0) is a 
large prime and c is an integer less than 2α, then we have the 
following relation between ρ and ρ̃: 

ρ̃ = log2 q(x0)/(log2 r̃(x0)) ≤ log2 q(x0)/(log2 r(x0)−α) 
= [ log2 q(x0)/log2 r(x0) ] [ log2 r(x0)/(log2 r(x0)−α)] 
≈[ deg q(x)/deg r(x) ] [1+α/(log2 r(x0)−α)] 
≤ ρ [1+α/(log2 r(x0)−α)]. 

Given a family of pairing-friendly curve (q(x), r(x), t(x)), the 
following algorithm will output parameters with security loss 
C/2 and ρ̃ which is less than or equal to ρ[1+α/(log2 r(x0)−α)]. 

 Algorithm 1: Searching for parameters of pairing-friendly
curves. 

Input: q(x), r(x), t(x), C, α 
Output: prime numbers q(x0), r̃(x0). 
(i) Find an integer x0 so that q(x0) is a prime, t(x0) is an

integer, and r(x0) is a large prime times a cofactor less
than 2α. 

(ii) For the largest prime factor r̃(x0) of r(x0), factorize
r̃(x0)±1. 

(iii) For the largest prime factor d± of r̃ (x0)±1, if
(r̃(x0)±1)/d± is greater than 2C, then return to step 1. 

(iv) Output q(x0), r̃(x0).  
In algorithm 1, finding r(x0) and factorizing r̃(x0) ± 1 require 

r(x0) and r̃(x0) ± 1 to have only small factors less than 2α and 
2C, respectively. If we use the elliptic curve factorization 
method [9], the complexity of this process will be 
O(L1/2,√2(2α)M(logr(x0))) and O(L1/2,√2(2C)M(log r̃ (x0)±1))), 
where M(log x) is the complexity of multiplication mod x and 
Lm,n(p) is exp(n(log p)m(log log p)1–m). In step (i), the primality 
test of q(x0) has a running time of O(log q(x0)4+ε) for 0<ε<1 by 
using the elliptic curve primality proving method [10]. 
Therefore, the total complexity of algorithm 1 is O(logq(x0)4+ε)+ 
O(L1/2,√2(2α)M(log r(x0)))+O(L1/2,√2(2C)M(logr̃(x0)±1))).  

In algorithm 1, we need to find an integer x0 satisfying the 
condition. There are two approaches to this problem. One is the 
exhaustive search for x0, and another is the random selection of 
x0. We assume r(x0) is in [2(2w+α−1), 2(2w+α+10)] for w-bit security 
level because r(x0) must have a factor less than 2α and a  
prime factor greater than 22w in algorithm 1. Then the number 
of integer x0 for exhaustive search is about 2(2w+α+10)/deg(r).    
By the prime number theorem or argument in [1], the 
probability that p, (p–1)/2C, and (p+1)/2C are prime for small C 
is approximately O(1/log3p) if we assume three conditions are 
independent. Thus, the probability that integer x0 satisfies the 
condition of algorithm 1 is less than O(1/log3r̃(x0)) if we 
assume all conditions in algorithm 1 are independent. Because 
r̃(x0) is greater than 22w, the expected number of x0 for random 
search is about less than 2(2w+α+10)/deg(r)/(2w)3. We summarize the 
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Table 1. Expected number of x0 in algorithm 1. 

α=15 # for exhaustive search # for random search

w=80, deg(r)=4 246 222 

w=128, deg(r)=6 246 223 

w=192, deg(r)=8 251 227 

Table 2. Pairing-friendly elliptic curves. 

BN curve (k = 12) 

q(x) 36x4+36x3+24x2+6x+1 

r(x) 36x4+36x3+18x2+6x+1 

KSS curve (k = 18) 

q(x) (x8+5x7+7x6+37x5+188x4+259x3+343x2+1763x+2401)/21

r(x) x6+37x3+343 

FST curve (k = 24) 

q(x) (x–1)2(x8–x4+1)/3+x 

r(x) x8–x4+1 

 

expected number of x0 for exhaustive search and random 
search under some conditions in Table 1. 

III. Examples 

Consider the following three well-known pairing-friendly 
elliptic curves: the Freeman-Scott-Teske (FST) curve [8], 
Barreto-Naehrig (BN) curve [11], and Kachisa-Schaefer-Scott 
(KSS) curve [12]. The polynomials defining each curve are 
shown in Table 2. 

All of these curves have CM-discriminant D=3. Therefore, 
the curves are given by y2=x3+A, and A can be easily found by 
using algorithm 1 in [11]. Since k is a multiple of 6, these 
curves have a sextic twist. Consider the following bit security 
levels: AES-80, AES-128 (k=12,18), and AES-192 (k=24).  

In each table, k, p, n, r̃, and ρ̃ represent the embedding 
degree, the size of finite fields, the order of elliptic curves, the 
prime order of subgroups of elliptic curves, and the ratio of the 
bit length between p and r̃, respectively. In each curve, r̃±1 is 
a prime times a small cofactor less than 22L.  

Note that by lemma 1 in [6], if Φk(x) has a prime factor p, 
then p=k or p≡1 (mod k). Because r(x) in FST curve, BN 
curve, and the KSS curve is a factor of Φk(u(x)) for some 
polynomial u(x), we have r̃=k or r̃≡1 (mod k) for a prime 
divisor r̃ of r(x). In KSS curve, if r̃ is a prime of the form 
18t+1, then t must be a large odd prime for r̃ to induce 
minimal security loss by Cheon’s algorithm. This implies that 
r̃+1=4s where s is a large prime. Therefore, each curve has as 
minimal security loss as shown in Table 6. 

Table 3. Parameters of BN curve. 

k=12 r̃: 162-bit prime, L=2, ρ̃=1.07, y2=x3+10 

p 
30044516319073486542338136244413186924491721
508017673 

n 
30044516319073486542338136071079646260637812
277386409 

r̃ 
80483569030467416400584345221215232415316936
18373 

r̃ – 1
22·3·6706964085872284700048695435101269367943
07801531 

r̃ + 1
2·402417845152337082002921726106076162076584
6809187 

k=12 r̃: 266-bit prime, L=2, ρ̃=1.04, y2=x3+2 

p 
16811764514730282268993358329982630298018340
9639586768617985750798949133918522866373 

n 
16811764514730282268993358329982630298018299
9618068860956433850534919814584565135469 

r̃ 
74487215395349057461202296544008109428525919
192764227273563956816535141597060317 

r̃ – 1
22·3·6207267949612421455100191378667342452377
159932730352272796996401377928466421693 

r̃ + 1
2·372436076976745287306011482720040547142629
59596382113636781978408267570798530159 

Table 4. Parameters of KSS curve. 

k=18 r̃: 162-bit prime, L=3, ρ̃=1.41, y2=x3+15 

p 
45556506188568204694511971217196125524556062
6663728567842656966003939 

n 
45556506188568204694511971217196124127265228
1084156741040827623564883 

r̃ 
46938537575920739215977971079508390917530628
64723 

r̃ – 1
2·32·2607696531995596623109887282194910606529
47936929 

r̃ + 1
22·117346343939801848039944927698770977293826
5716181 

k=18 r̃: 262-bit prime, L=3, ρ̃=1.38, y2=x3+13 

p 
41908528288528380731981346376004466815723422
16015854270904760027145718973065366962510130
127051107405094739099 

n 
41908528288528380731981346376004466815723422
16015854269564581015299079238120548169246970
817388213113768028043 

r̃ 
44090351125910574066861745400827215735720551
51316564253993183503108303714414643 

r̃– 1
2·32·2449463951439476337047874744490400874206
69730628698014110732416839350206356369 

r̃ + 1
22·110225877814776435167154363502068039339301
3787829141063498295875777075928603661 
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Table 5. Parameters of FST curve. 

k=24 r̃: 173-bit prime, L=3, ρ̃=1.33, y2=x3+3 

p 
13374171350320546228612795187785960215360802
16803117468963832384367817 

n 
13374171350320546228612795187785960215360802
16803117468963832393495043 

r̃ 
11597075993145642609104593362754747103486457
265418617 

r̃ – 1 
23·3·4832114997144017753793580567814477959786
02386059109 

r̃ + 1 
2·579853799657282130455229668137737355174322
8632709309 

k=24 r̃: 395-bit prime, L=3, ρ̃=1.27, y2=x3+10 

p 

34988959101369960326660128421263641796102887
16896841664612415025282748557287389764701382
92949449163227474599377357447706985689242725
65947999262774106637 

n 

34988959101369960326660128421263641796102887
16896841664612415025282748557287389764701382
92949449163227474599377357447706985689242725
65949591857333433243 

r̃ 
90557749661667749903990677782104836298807865
80663129690953220847577622501207867202813795
1479865457762597440087882392553 

r̃ – 1 
23·3·3773239569236156245999611574254368179116
99440860963737123050868649067604216994466783
9081311661060740108226670328433023 

r̃ + 1 
2·452788748308338749519953388910524181494039
32903315648454766104237888112506039336014068
975739932728881298720043941196277 

Table 6. Minimal security loss L of each curve. 

Curve r̃ + 1 r̃–1 L  
BN (k=12) 2s1 12t1 2 

KSS (k=18) 4s2 18t2 3 

FST (k=24) 2s3 24t3 3 

si, ti : 
large 

primes 

 

 
By 230 times of random selection of integer x0 in 

[2(2w+α−1)/deg(r), 2(2w+α+10)/deg(r)], where w is security level and α=15, 
we found parameters of each curve in Tables 3, 4, and 5 which 
induced minimal security loss by Cheon’s algorithm.  

IV. Conclusion 

The results show that the proposed method for searching 
parameters of pairing-friendly elliptic curves induces minimal 
security loss by Cheon’s algorithm. The sample set of 
parameters of BN, FST, and KSS curves for pairing-based 
cryptography verifies the performance of the proposed method.  

Finally, we remark that although Freeman and others 
investigated all of the construction of pairing-friendly curves in 
[8], they did not consider the security against Cheon’s 
algorithm but focused on the construction with a small ρ-value. 
Our proposed method also verifies the existence of parameters 
of pairing-friendly elliptic curves with minimal security loss by 
Cheon’s algorithm using parameters with a ρ-value slightly 
larger than that of Freeman and others. 
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