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Because a wide variety of multimedia services are  
provided through personal wireless communication 
devices, the demand for efficient bandwidth utilization 
becomes stronger. This demand naturally results in the 
introduction of the variable bitrate speech coding concept. 
One exemplary work is the selectable mode vocoder 
(SMV) that supports speech/music classification. However, 
because it has severe limitations in its classification 
performance, a couple of works to improve speech/music 
classification by introducing support vector machines 
(SVMs) have been proposed. While these approaches 
significantly improved classification accuracy, they did not 
consider correlations commonly found in speech and 
music frames. In this paper, we propose a novel and 
orthogonal approach to improve the speech/music 
classification of SMV codec by adaptively tuning SVMs 
based on interframe correlations. According to the 
experimental results, the proposed algorithm yields 
improved results in classifying speech and music within 
the SMV framework. 
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I. Introduction 

Since multimedia services provided through personal 
wireless communication devices such as cell phones are now 
commonplace due to recent progress in mobile communication 
technology, there has been growing technological demand to 
efficiently utilize limited bandwidth. To make the most of 
limited bandwidth, the variable bitrate speech coding concept 
has been introduced and extensively researched. As an 
example of this trend, the selectable mode vocoder (SMV) 
speech codec adopted by the third-generation partnership 
project 2 (3GPP2) incorporates a speech/music classification 
technique for different bitrate allocations [1], [2]. However, 
given the discovery that a simple heuristic logic inherently 
implemented for speech/music classifications in the SMV has 
room for improvement, a novel classification algorithm based 
on support vector machines (SVMs) was proposed by Kim and 
Chang [3] and achieved a substantial improvement for 
speech/music classification. Inspired by the potential they 
presented, our goal is to further improve the speech/music 
classification of SMV by adding a novel and orthogonal 
enhancement to SVMs. Actually, SVM is one of widely 
acknowledged and employed machine learning techniques that 
is particularly good at pattern recognition, such as face 
recognition, character recognition, and speech recognition as 
well as data mining [4], [5]. In SVM, kernel function plays a 
crucial role. First, it maps target input space to higher 
dimensional space in case the input is not linearly separable. 
After the mapping, the input becomes linearly separable. 
Second, classification performance tends to be sensitive to the 
choice of a kernel function. This implies that it is desirable to 
choose the right kernel function for optimal performance [6]. 

Once a kernel function is chosen, it is also important to 
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optimize parameters of the kernel function [7]. This is because 
not only the performance but also the training time of SVMs 
depends heavily on kernel parameters. A great deal of research 
has been focused on optimizing kernel parameters [6], [8], [9], 
and most of these kernel parameter optimization techniques are 
employed when SVMs are being trained. Meanwhile, a 
technique that applies when SVMs are in a classification phase 
was proposed [10]. This technique improves the performances 
of SVMs by assigning different weight to each input element 
according to its contribution to generalized error. Since it 
applies during classification, it becomes orthogonal to 
techniques that apply during training. It means that our 
proposed approach can be developed and employed in parallel 
with conventional optimizations, resulting in synergistic boost 
in classification performance. 

Therefore, we propose a novel approach with this orthogonal 
nature. A simple way to develop an orthogonal scheme is based 
on a decision function obtained through training and used for 
classification. In a decision function, its kernel function is the 
most relevant parameter because it plays a crucial role in 
training, and no one has ever studied modification of a kernel 
function in classification phase. In this regard, we investigate 
kernel functions with respect to their kernel parameter in terms 
of classification performance. At first, we choose to analyze 
radial basis function (RBF) because it is widely used as the 
kernel function. Afterwards, our investigation shows that we 
can control the outputs of decision function with the kernel 
parameter. This means that it is possible to adaptively tune the 
performance of SVMs. However, adaptive-tuning SVMs 
require guidance that leads to reduction in classification error. 
For this reason, we first identify strong correlations in 
neighboring input frames and then propose a novel approach 
that utilizes the correlations as guidance for tuning SVMs since 
the strong correlation is a relevant property in speech and 
music signals [11]. For example, a music segment lasts for a 
while before it is interrupted by silence or speech segments. 
Thus, it is highly probable that the current frame belongs to 
music if previous frames belong to music. 

Even if the proposed algorithm is similar in nature with the 
discriminative weight training algorithm, there is one 
significant distinction. The proposed scheme does not require a 
complex training process, which typically necessitate careful 
selection of training data. The proposed technique is capable of 
enhancing SVM-based speech/music classification without any 
training, provided that SVMs classify speech/music frames 
accurately enough to ensure reasonable class prediction 
performance before the enhancement is applied. 

The rest of the paper is organized as follows. Section II 
briefly explains SMV and then lists parameters used for 
speech/music classifications. Section III contains analysis of an 

RBF in the beginning and then shows feasibility for controlling 
SVM outputs with a kernel parameter. A way to control SVM 
outputs with the kernel parameter is proposed in section IV. 
Section V describes experimental setup and results in detail, 
and conclusions and some future directions are presented in 
section VI.  

II. Brief Review of SMV Codec 

SMV is an adaptive multirate speech codec adopted as a 
standard in 3GPP2 and known for its high efficiency in utilizing 
limited bandwidth [12], [13]. It supports four different average 
data rates dynamically adjusted according to the types of input 
frames and four different operational modes dynamically selected 
based on the status of communication channels between 
communication stations. Because of this flexibility, an appropriate 
tradeoff between quality of service and system capacity can be 
selected for a given situation. 

The speech/music classification step in SMV is conducted only 
for signals that have been identified as speech by voice activity 
detection (VAD), which is able to distinguish speech from silence 
and noise. The following are the employed feature parameters 
used for speech/music classification. 

Running average of energy. The running mean energy is 
given by 

 0.75 0.25 ,E E E= ⋅ + ⋅              (1) 

where E is the frame energy given by the ratio of the signal 
power and the window length. 

Running mean of the reflection coefficients. Reflection 
coefficients k1(i) are calculated by the standard Levinson-Durbin 
algorithm [14] and the running average of the reflection 
coefficients is obtained by 

1( ) 0.75 ( ) 0.25 ( )N Nk i k i k i= ⋅ + ⋅ ,   i = 1, ..., 10.     (2) 

Running mean of the partial residual energy. The running 
mean of the partial residual energy is calculated as 

res res res0.9 0.1 ,N N NE E E= ⋅ + ⋅              (3) 

where res
NE is calculated using the signal power and the reflection 

coefficients [1]. 
Running mean of the normalized pitch correlation. The 

running mean of the normalized pitch correlation is given by 
5

p p p
1

10.8 0.2 ( ) ,
5 i

corr corr corr i
=

⎛ ⎞
= ⋅ + ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
∑       (4) 

where corrp(i) is the pitch correlation obtained from the open loop 
pitch estimation. 

Running average of the periodicity counter. The periodicity 
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counter cpr is given by comparing some extracted parameters with 
a fixed threshold value [1]. The classification algorithm of the 
SMV determines a signal to music when cpr is higher than 18. The 
running mean of the periodicity counter is updated as 

pr pr pr(1 ) ,c c cα α= ⋅ + − ⋅             (5) 

where α is the specified weight. 
Music continuity counter. The music continuity counter cM is 

adaptively incremented and decremented by comparing the 
speech/music classification parameters to a set of fixed thresholds 
[1]. The original algorithm of the SMV classifies a signal into 
music when Mc is higher than 200 in which the running of the 
music continuity counter Mc  is given by 

M M M0.9 0.1 .c c c= ⋅ + ⋅           (6) 

III. Impact of RBF Kernel Parameter on SVM 
Classification 

Our choice of the kernel function, RBF, is one of the classical 
kernel functions in SVMs [9]. In this section, we vary the width 
parameter of RBF to see how it affects the outputs of SVMs. 
When inputs are linearly separable, the decision function is 
given by 

0

* * *

1

1

H

( ( )) , ( ) 0,

H

M

i i i
i

f X t z X X t bα
=

>
= ⋅ +

<∑       (7) 

where Xi
* is the i-th vector of M support vectors, zi is the label 

for support vector Xi
*, and <Xi

*, X(t)> is the  inner product 
between the support vector and the t-th input frame X(t). If the 
output of the decision function is greater than zero, X(t) is 
classified as speech (H0), but otherwise X(t) is classified as 
music (H1). Optimization bias b* and Lagrange multiplier α* 
are obtained by solving a quadratic programming problem. If 
input vectors are not linearly separable, its decision function is 
slightly modified incorporating a kernel function, as shown in 
the following:  
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If RBF is used as the kernel function, the kernel function is 
defined as  

2*, *( , ( )) exp( ( ) ),i iK X X t X X tγ= − −        (9) 

where γ is the kernel parameter of RBF and is related to the 
width of RBF. If we add a small positive value δ to γ 

( )
2* *( , ( )) exp ( ) .i iK X X t X X tγ δ⎛ ⎞′ = − + ⋅ −⎜ ⎟

⎝ ⎠
    (10) 

If we rewrite (10), it can be expressed as 
2 2* * *'( , ( )) exp( ( ) ) exp( ( ) ).i i iK X X t X X t X X tγ δ= − − ⋅ − −

(11) 
This is the form that the original kernel function K(Xi

*, X(t)) 
is multiplied by exp(−δ||Xi

*−X(t)||2). Since ||Xi
*−X(t)||2 is 

positive and a positive number is usually chosen for γ,    
exp(−γ ||Xi

*−X(t)||2) is a positive value between 0 and 1. Here, 
if a positive value δ is added to γ, exp(−δ||Xi

*−X(t)||2) is a 
positive number between 0 and 1, making the modified kernel 
function produce smaller values than the original kernel 
function does for a given ||Xi

*−X(t)||2. On the contrary, if a 
negative value δ is added to γ, exp(−δ||Xi

*−X(t)||2) is a positive 
value bigger than 1, making the modified kernel function 
produce bigger values than the original function does for a 
given ||Xi

*−X(t)||2. With this simple analysis, the relation 
between the additive modification δ and the kernel function can 
be clarified, but we do not know how much the decision 
function f(X(t)) is affected by δ due to αi·zi in (8). In this regard, 
we vary δ and summarize the changes of the decision function 
in Table 1. The first row of Table 1 indicates δ added to the 
kernel parameter γ. The second row shows the ratio between 
the number of transitions from positive to negative outputs and 
the positive outputs before γ is modified. The last row 
represents the ratio between the number of transitions from 
negative to positive outputs and the number of negative outputs 
before the modification. This table is populated with 50 
database files that will be described in section V. 

If a positive value is added to γ, outputs of SVMs tend to 
change from positive to negative values, and the reverse 
transitions are rare. On the other hand, the opposite behavior is 
observed with negative δ. These behaviors tell us that if we can 
add a value to γ, more classifications are made for one class 
and subsequently fewer classifications are made for the other 
class. Because we label music as –1 and speech as 1, if a 
positive value is added to γ, more classifications are made for 
music, whereas the number of classifications as speech is 
decreased. One more thing to note from the table is that the 
number of transitions is proportional to δ. Judging from these 
 

Table 1. Impact of kernel parameter γ on polarity of f(X(t)). 

δ –0.9 –0.6 –0.3 0.3 0.6 0.9 

+ → – 0.23 0.29 0.17 23.4 46.7 55.8 

– → + 62.1 35.9 7.44 0.18 0.37 0.56 
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two observations, we can conclude that we are able to control 
output of the decision function by varying δ. Even though we 
can control outputs of SVMs, a rigorous rule for adjusting γ is 
still required. The next section introduces a way to achieve 
such a rule. 

IV. Guidance Based on Correlations among 
Neighboring Frames 

In this section, we introduce a method to guide adaptive 
tuning of the kernel parameter based on correlations in adjacent 
frames. The speech/music signals used in our experiments are 
made up of three distinct segments: speech segment, music 
segment, and silence segment. Each segment lasts for seconds, 
so each segment consists of a group of frames. Therefore, it is 
highly probable that the current frame belongs to the same 
class as previous ones. Actually, we measured the probability 
that the current frame is in the same class as previous ones and 
found that the probability was almost 100%. Practically, 
however, we do not have a priori information about the class of 
each frame. Consequently, we have no choice but to use the 
classification results of previous frames made by the SVM. If a 
certain number of consecutive prior frames belong to a class, 
we predict the current frame to be in the same class as them 
and adjust the kernel parameter accordingly. Figure 1 shows 
the accuracy and the usefulness of frame class predictions as 
we vary the length of consecutive frames that we consider for 
class predictions. Note that the classification of our SVM is 
either 1 (speech) or –1 (music). The dashed lines and the solid 
lines represent the speech class and the music class, 
respectively. The bolder lines and the narrower lines denote 
prediction accuracy and prediction usefulness, respectively. 
The prediction accuracy is the ratio between the number of 
correct predictions for a class and the number of total 
predictions made for the class, and the prediction usefulness is 
defined as the ratio between the number of correct prediction 
for a class and the total number of frames of the class. The 
prediction accuracy does not directly represent the benefit from 
the predictions because it can be misleading especially when 
the number of predictions is either mush larger or smaller than 
the number of corresponding frames. Contrarily, the prediction 
usefulness directly conveys information on the potential benefit 
from the predictions. The x-axis represents the number of 
consecutive frames previously classified to be in the same class, 
and the y-axis denotes the probability that predictions based on 
previous classifications are correct. The figure is obtained from 
50 database files that will be described in section V. 

From the figure, it is observed that the accuracy increases 
and the usefulness decreases as a longer sequence of identically 
classified frames are required for a prediction. The reason why  

 

Fig. 1. Class prediction accuracy and usefulness with respect to 
number of previous frames classified as same class using 
TIMIT database [15] and commercial music CDs. 
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the usefulness drops, judging from the definition of the 
usefulness above, is that the number of occurrences of a longer 
identically-classified sequence is generally fewer than that of a 
shorter sequence.  

The prediction accuracy can reflect the influence of 
mispredictions if the number of predictions is large enough. A 
misprediction becomes a significant problem because the 
kernel modification is dependent on the class predictions and 
this, in turn, affects the final SVM classification. Moreover, a 
misclassification caused by a misprediction may result in 
another misprediction because class predictions are based on 
the classifications from the SVM. Therefore, this detrimental 
chain of misprediction and misclassification must be avoided, 
and it may be possible to estimate such a devastating 
performance drop with the prediction accuracy. On the other 
hand, the prediction usefulness can reflect the influence of 
correct predictions. A correct class prediction enables the kernel 
modification to convert otherwise misclassified frames to 
correctly-classified frames. Thus, we can estimate the impact 
of correct predictions by the prediction usefulness. 

Since it is evident that there is room for improvement for the 
class prediction from the analysis in terms of the two metrics 
shown in Fig. 1, we adopt a different approach to speculate 
frames. Instead of predicting the current frame with previous 
classifications, we predict the beginning of each segment. For 
instance, if a certain number of consecutive frames are 
classified as speech, it may indicate the beginning of a speech 
segment. After detecting the start of speech segment, every 
following frame is predicted as a speech frame until a sequence 
of frames is classified to be music. This method improves the 
accuracy of frame class prediction without increasing 
algorithmic complexity. Figure 2 shows a pseudocode for this 
algorithm. 

Specifically, Pc is the variable that indicates the class 
prediction for the current frame, DH is a fixed constant that  
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 DH: history depth 
Pc: class prediction 
Hc[Pc]: classification history 
CH0: counter representing the number of classification as H0 
CH1: counter representing the number of classification as H1 
THH0: threshold for predicting as H0 
THH1: threshold for predicting as H1 
γ: RBF kernel parameter 
γ′: modified RBF kernel parameter 
δ: additive modification to RBF kernel parameter 

Fig. 2. Pseudocode for adaptive kernel parameter modification.

Initialize variables; 
// count the number of previous classifications as H0 or H1
for i = 0 to DH { 
   if Hc[i] > 0 
      CH0 = CH0 + 1; 
   else 
      CH0 = CH0; 
   if Hc[i] < 0 
      CH1 = CH1 + 1; 
   else 
      CH1 = CH1; 
} 
// make a prediction based on classification history  
if CH0 > THH0 
   Pc=H0; 
else 
   Pc=Pc; 
if CH1 > THH1 
   Pc=H1; 
else 
   Pc=Pc;      
    
// adjust the kernel parameter according to the prediction
if Pc=H0 

γ′ = γ – δ; 
if Pc=H1 

γ′ = γ + δ; 
 

 
 
determines how many previous classifications are considered 
for the prediction, and Hc[•] is an array holding previous SVM 
classifications, which are represented as 1 for speech and 0 for 
music. In the proposed algorithm, the number of previous 
classifications for speech (H0) and the one for music (H1) 
within previous DH frames are counted from the classification 
history array (Hc[•]) and recorded in counter variables, CH0 and 
CH1, respectively. If the number of classifications as speech 
reflected by CH0 is greater than a predefined threshold THH0, it 
is assumed that the beginning of a speech segment is detected, 
and Pc is set to H0. It should be noted that the current prediction 
Pc is not changed until the opposite behavior (CH1 > THH1) is 
observed. This ensures that all subsequent frames as well as the 
current frame are predicted as speech until a music segment is 
encountered. Likewise, if CH1 is greater than THH1, Pc is set to 
H1 and all subsequent frames are predicted to be music until a 
beginning of a speech segment is detected. 

Table 2. Analysis about influence of kernel parameter modification 
on how fast music onsets can be detected in terms of 
number of frames between onsets and their corresponding 
detections. 

 δ0,0 δ0.02,0.02 δ0.04,0.04 δ0.06,0.06 δ0.08,0.08

Number of 
frames 32.12 37.97 39.35 43.93 63.02 

 

  Once the prediction for the current frame is made, the kernel 
parameter γ is adjusted according to the prediction. For frames 
predicted to be speech, a predefined additive modification δ is 
subtracted from γ producing a smaller kernel parameter γ'. The 
reason for reducing the kernel parameter for speech frames is 
based on the observation that if a positive value is subtracted 
from γ, outputs of SVMs tend to change from negative values 
to positive values as shown in Table 1. The opposite 
modification is performed for frames predicted to be music. 

The modified decision function incorporating the 
dynamically adjusted kernel parameter γ' is finally given by 

0

2* *

1

1

H

ˆ( ( )) exp( ( ) ) .

H

M

i i i
i

f X t z X X t bα γ η
=

>
′= − − +

<∑   (12) 

In this way, a correct prediction elevates the probability that 
the modified decision function produces the correct 
classification for the frame for which the prediction is made. 
However, detecting the beginning of each segment has both 
advantages and disadvantages. One advantage is that it hinders 
sequences of misclassifications whose sizes are smaller than 
the history depth parameter in affecting class predictions once 
the beginning of a segment is detected. However, it is also hard 
to switch to correct predictions because one such switch 
requires DH identical classifications. If a misclassification 
occurs before DH identical classifications are encountered, it 
prevents the class prediction from being switched. Therefore, it 
is crucial to select a reasonable history depth. In addition, the 
modification δ affects how fast the beginning of a segment is 
discovered. Table 2 shows the influence of the modification δ 
on detecting the onsets of music segments. This table is 
tabulated from test files that contain metal genre. 

The numbers presented in the table denote the number of 
frames between the first frame of a music segment and the 
frame from which algorithm detects the segment as music. The 
first row represents how the modification δ is set. For example, 
δα,β means that the kernel parameter is incremented by α for 
music frames and is decremented by β for speech frames. From 
the figure, it is observed that bigger the modification is, slower 
the onset is detected. If each segment is very short (less than 
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100 frames), this may be a significant overhead. However, 
even commercials from radio broadcasts, known to be 
composed of short segments, have average segment length of 
8.77 seconds, which is translated to 438.3 frames. If we use 
δ0.06,0.06, then the overhead of this onset detecting algorithm is 
11.81 frames, which is 2.7% of a segment that contains 438.3 
frames. If the benefit from the kernel parameter modification 
outweighs the overhead and the impact of incorrect kernel 
parameter modifications, the overall performance would be 
improved. Experiments with various test data will be presented 
in the next section. 

V. Experiments and Results 

To evaluate the proposed enhancement, comparisons with 
the original algorithm in SMV [1], the previously proposed 
SVM-based speech/music classification algorithm [3], and the 
discriminative weight training algorithm [10] were performed 
on the TIMIT speech database [15], commercial music CDs, 
and actual radio broadcasts. From TIMIT database and music 
CDs, 50 database files were constructed and used for 10-fold 
cross-validation. The speech portion of the database was 
created on utterances from 326 male and 138 female speakers 
from the TIMIT database and the music portion was created on 
music CDs of five different genres: metal, jazz, blues, hip-hop, 
and classical music. All data was sampled at 8 kHz with a 
frame size of 20 ms. Each database file consisted of five speech 
segments (6 s to 12 s each), five music segments (28 s to 32 s 
each), and ten periods of silence (randomly selected between  
3 s and 15 s), and these segments alternated. Each of these files 
contained music segments from one genre only, and there were 
10 database files for each genre.  

In addition to the cross-validation, we recorded one-hour-
long radio broadcasts from two different internet radio stations 
and used them for verifying the proposed algorithm. Because 
of the nature of radio broadcasting, the data contained 
segments where speech and music coexisted in addition to 
speech-only and music-only segments. We labeled these 
segments as music to provide enough bitrate for them. 

To determine the correctness of classifications, we manually 
classified each frame and compared it with classification results 
from the SVM. As a feature vector, those six parameters 
introduced in section II were concatenated to form a feature 
vector for each frame. The kernel parameter for the baseline 
RBF was set to 0.1, and the history depth DH is experimentally 
chosen to be 10. 

As explained in section IV, the kernel parameter was 
modified based on the predicted class of current frame. As 
shown in Table 1, for the output of SVM to change from a 
positive value to a negative value, the kernel parameter should  

 

Fig. 3. Influence of RBF kernel width parameter γ on 
classification accuracy of proposed SVM. 
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be incremented. Therefore, the parameter has to be 
incremented for music and decremented for speech. Figure 3 
depicts how the classification accuracy changes as δ, the 
modification to the kernel parameter, varies. This figure is 
obtained from test files that contain metal genre. All other test 
files produce similar results, so their results are not shown here. 
The x-axis represents how the kernel parameter is modified, 
and the y-axis indicates the classification accuracy of the SVM 
enhanced by the proposed mechanism.  

There are two sets of lines in the figure, and each set has 
three lines: speech, music, and overall. The set labeled as oracle 
is based on actual classes of frames, and the other set is based 
on predicted classes of frames. 

For the case where actual class information is used for 
manipulating the kernel parameter, more misclassifications are 
fixed when the kernel parameter is modified by bigger values. 
On the other hand, for the case where predicted class 
information is used for predicting the class of current frame, it 
is observed that the accuracy begins to drop from δ0.06,0.06. To 
unveil the reason, we analyzed the transitions caused by the 
kernel parameter modification and show the observations in 
Tables 3 and 4. The tables are based on the same test files as the 
ones used for Fig. 3. Table 3 corresponds to the oracle case and 
Table 4 shows the other case. The leftmost column indicates 
different transitions entailed by changing the kernel parameter. 
‘S’ means speech and ‘M’ represents music. Subscript ‘c’ 
means correct classifications and ‘ic’ indicates incorrect 
classifications. For instance, Sic-c represents the transitions of 
speech frames from being incorrectly classified as music to 
being correctly classified as speech. Mic-ic is the transitions of 
music frames that a kernel parameter modification fails to 
convert the original incorrect classification. The numbers in the 
tables represent how many times each transition takes place. 

From Table 3, we can observe that the number of transitions 
from incorrect classification to correct classification (Sic-c and 
Mic-c) increases, and this results in decrease in the number of  



ETRI Journal, Volume 33, Number 6, December 2011 Chungsoo Lim and Joon-Hyuk Chang   877 

Table 3. Detailed analysis on changes in pattern classification made 
by adjusting RBF kernel parameter γ (actual frame class 
information is used). 

 δ0,0 δ0.02,0.02 δ0.04,0.04 
Sc-c 1,390 1,387 1,383 

Mc-c 5,063 5,063 5,051 

Sic-c 0 54 109 

Mic-c 0 472 1,366 

Sic-ic 601 547 492 

Mic-ic 2,437 1,965 1,071 

Sc-ic 0 3 7 

Mc-ic 0 0 12 

 δ0.06,0.06 δ0.08,0.08 δ0.99,0.99 
Sc-c 1,381 1,379 1,379 

Mc-c 5,032 5,012 5,000 

Sic-c 156 197 236 

Mic-c 1,749 1,891 1,972 

Sic-ic 445 404 365 

Mic-ic 688 546 465 

Sc-ic 9 11 11 

Mc-ic 31 51 63 
 

Table 4. Detailed analysis on changes in pattern classification made
by adjusting RBF kernel parameter γ (predicted frame
classes are used). 

 δ0,0 δ0.02,0.02 δ0.04,0.04 

Sc-c 1,390 1,383 1,383 

Mc-c 5,063 4,916 4,769 

Sic-c 0 46 94 

Mic-c 0 150 637 

Sic-ic 601 555 507 

Mic-ic 2,437 2,287 1,800 

Sc-ic 0 7 7 

Mc-ic 0 147 294 

 δ0.06,0.06 δ0.08,0.08 δ0.99,0.99 

Sc-c 1,386 1,222 1,074 

Mc-c 4,564 3,297 3,082 

Sic-c 144 149 133 

Mic-c 1,217 769 760 

Sic-ic 457 452 468 

Mic-ic 1,220 1,668 1,677 

Sc-ic 4 168 316 

Mc-ic 499 1,766 1,981 

 

Table 5. Comparison with original algorithm in SMV [1],
discriminative weight training algorithm [10], and 
previous SVM-based algorithm [3] in terms of 
speech/music detection probability PD and total error 
probability PE on TIMIT database and music CDs. 

Class Method 
Speech

PD 
Music 

PD 
Total 

PE 
Onset 

PE 
SMV [1] 0.882 0.424 0.488 0.201 

SVM [3] 0.839 0.925 0.101 0.243 

SVM+WT [10] 0.872 0.937 0.083 0.207 
Blues

Proposed 0.899 0.932 0.078 0.202 

SMV [1] 0.86 0.394 0.511 0.290 

SVM [3] 0.739 0.681 0.302 0.219 

SVM+WT [10] 0.816 0.721 0.251 0.264 
Classic

Proposed 0.778 0.694 0.288 0.204 

SMV [1] 1.000 0.111 0.707 0.202 

SVM [3] 0.821 0.901 0.123 0.229 

SVM+WT [10] 0.844 0.909 0.111 0.195 
Hiphop

Proposed 0.917 0.92 0.081 0.194 

SMV [1] 0.975 0.558 0.358 0.226 

SVM [3] 0.719 0.909 0.148 0.227 

SVM+WT [10] 0.75 0.918 0.132 0.267 
Jazz

Proposed 0.82 0.932 0.102 0.196 

SMV [1] 0.989 0.104 0.727 0.201 

SVM [3] 0.758 0.862 0.169 0.243 

SVM+WT [10] 0.776 0.869 0.159 0.203 
Metal

Proposed 0.843 0.874 0.135 0.208 

SMV [1] 0.897 0.304 0.556 0.225 

SVM [3] 0.775 0.856 0.169 0.232 

SVM+WT [10] 0.812 0.871 0.147 0.227 
Avg

Proposed 0.851 0.871 0.135 0.203 

 

cases where incorrect classification cannot be fixed by kernel 
parameter modifications (Sic-ic and Mic-ic). This explicates the 
ideal performance improvement of oracle case shown in Fig. 3. 
Likewise, Table 4 holds information that explains why 
accuracy drops after a certain point in non-oracle case. Both 
significant modifications to the kernel parameter and error-
prone class prediction increase the number of undesirable 
transitions from correct classifications to incorrect 
classifications (Sc-ic and Mc-ic). Thus, the number of correct 
classifications regardless of kernel parameter adjustments also 
decreases. These phenomena then lower the accuracy of class 
prediction, leading to the reduction in the number of cases 
where kernel parameter modifications successfully convert 
incorrect classifications to correct classifications (Sic-c and Mic-c). 
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Table 6. Comparison with original algorithm in SMV [1], 
discriminative weight training algorithm [10], and 
previous SVM-based algorithm [3] in terms of 
speech/music detection probability PD and total error 
probability PE on radio broadcast. 

Class Method Speech PD Music PD Total PE 

SMV [1] 0.706 0.229 0.541 

SVM [3] 0.580 0.885 0.283 

SVM+WT [10] 0.602 0.891 0.270 
Radio 

Proposed 0.634 0.888 0.254 

 

Consequently, the number of misclassifications not corrected 
by kernel parameter adjustments (Sic-ic and Mic-ic) is increased. 

Table 5 shows the performance improvement of the 
proposed enhancement. We compared the proposed algorithm 
with the original algorithm in SMV in [1], the previous SVM-
based algorithm (denoted by SVM) in [3] and the 
discriminative weight training algorithm (denoted by 
SVM+WT) in [10]. The first column shows the different 
music genres each test file represents, and the second column 
has the four classification algorithms under comparison. The 
results summarized in the table are average values obtained 
from all 50 database files. PD is the probability that music and 
speech are correctly classified, and PE is the error probability 
that encompasses both music and speech. While total PE is 
for the entire frames, onset PE is only for the onset frames. 
We vary δ, an additive modification to the kernel parameter, 
to see how classification performance is affected. The δ value 
for the Table 5 is chosen in such a way that it produces the 
lowest PE while improving both speech and music 
classification rates. 

From the table, it can be observed that the proposed 
enhancement successfully improves the performance of SVM-
based classification by adaptively modifying the kernel 
parameter according to class predictions. It is also discovered 
that the proposed algorithm outperforms or at least produces 
comparable performance to the discriminative weight training 
algorithm and the algorithm in SMV in terms of both total PE 
and onset PE. Another advantage of the proposed scheme over 
the weight training scheme is that the proposed technique does 
not require a training process whereas the weight training 
technique necessitates it. 

Additionally, we verified the proposed algorithm with an 
actual radio broadcast that included fast-paced switches 
between speech and music segments, and present the result in 
Table 6. Compared with the results in Table 5, it can be easily 
seen that the detection probability for speech is lower when an 
actual radio broadcast is used. This might be attributable to the 

fact that the length of speech is generally much longer in the 
radio broadcast than in the data used for the training affecting 
the running average of the periodicity counter. Through the 
experiment with the actual radio broadcast, we can observe that 
the proposed algorithm shows the best performance in terms of 
classification accuracy. 

VI. Conclusion 

We have proposed a novel and orthogonal algorithm that 
adaptively tunes classifications of SVMs with the RBF kernel 
parameter utilizing interframe correlations abundant in speech 
and music frames. Our experiments show that with this 
enhancement, classification accuracies of SVMs can be 
improved and that the enhancement still has potential for 
further improvement. In addition to performance improvement, 
this approach can be combined with existing techniques 
without any side effect. To take advantage of the full potential 
of this approach, future work may include an algorithmic way 
of determining the additive modification to the kernel 
parameter and a scheme for more accurate frame class 
predictions.  
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