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ABSTRACT

To assess the geomagnetic hazard to power systems it is useful to be able to simulate the geomagnetically induced currents (GIC)
that are produced during major geomagnetic disturbances. This paper examines the methodology used in power system analysis
and shows how it can be applied to modelling GIC. Electric fields in the area of the power network are used to determine the volt-
age sources or equivalent current sources in the transmission lines. The power network can be described by a mesh impedance
matrix which is combined with the voltage sources to calculate the GIC in each loop. Alternatively the power network can be de-
scribed by a nodal admittance matrix which is combined with the sum of current sources into each node to calculate the nodal
voltages which are then used to calculate the GIC in the transmission lines and GIC flowing to ground at each substation. Practical
calculations can be made by superposition of results calculated separately for northward and eastward electric fields. This can be
done using magnetic data from a single observatory to calculate an electric field that is a uniform approximation of the field over
the area of the power system. It is also shown how the superposition of results can be extended to use data from two observatories:
approximating the electric field by a linear variation between the two observatory locations. These calculations provide an efficient

method for simulating the GIC that would be produced by historically significant geomagnetic storm events.
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1. Introduction

During space weather events the energy transfer from the solar
wind leads to electric currents in the magnetosphere and iono-
sphere. The magnetic fields of these electric currents are super-
imposed on the Earth’s main field and produce the magnetic
field variations seen at the Earth’s surface. These magnetic field
variations induce electric currents in the Earth and in technolog-
ical systems involving long conductors, such as pipelines,
phone cables and power systems (Pirjola 2002). In power sys-
tems these geomagnetically induced currents (GIC) flow along
transmission lines and through transformer windings to ground.
The GIC in the transformers creates an extra magnetic field in
the transformer core that interferes with the operation of the
transformer. This can cause overheating of the transformer, gen-
eration of harmonics leading to mis-operation of protective
relays and increased consumption of reactive power that can
cause voltage problems (Molinski 2002; Kappenman 2007).
In extreme cases these effects can result in damage to equip-
ment or power blackouts.

Power systems problems resulting from GIC were first
reported in 1940 (Davidson 1940). Subsequently, GIC effects
have been observed on a number of power systems during
major disturbances (Albertson & Thorson 1974; Albertson
et al. 1974). In March 1989 a magnetic storm caused wide-
spread line trips, damage to transformers in US and UK and
a province-wide blackout in Quebec (Allen et al. 1989; Bolduc
2002). Since then GIC effects have been observed during sig-
nificant space weather events such as the Halloween storm in
2003 (Pulkkinen et al. 2005) and are attributed as the cause
of transformer damage in South Africa (Gaunt & Coetzee

2007). Although the occurrence of significant space weather
events is random, the vulnerability of power systems to GIC
is increasing due to the use of higher voltage, lower resistance,
transmission lines and the increased loading of power systems
which leaves little reserve capacity for dealing with unusual
conditions. This has led to increased concern about the possible
impacts that an extreme space weather event could produce on
modern power systems and prompted work to understand the
geomagnetic hazard to power systems.

To assess the geomagnetic hazard to power systems
requires the ability to simulate the geomagnetically induced cur-
rents (GIC) flowing in the power network. The first attempts at
modelling GIC (Albertson et al. 1981) started by adapting
power system modelling tools such as the Electromagnetic
Transients Program (EMTP; Dommel 1993). Later, Lehtinen
& Pirjola (1985) developed a stand-alone method of calculating
GIC that has been widely used in the geophysics community
(Thomson et al. 2005; Wik et al. 2008; Viljanen et al. 2012).
Meanwhile the engineering community continued to apply
power system analysis tools for calculating GIC (Kappenman
et al. 1981; Radasky et al. 2006; Gilbert et al. 2012). However,
the methodology used here for calculating GIC is not clear for
anyone not familiar with power system analysis and the power
industry software packages have considerable overhead that
makes them unsuitable for dedicated GIC simulation
applications.

This paper examines the methodology behind the power
system analysis software and shows how it can be applied to
develop stand-alone software for simulating GIC. Although
the power system modelling software is based on established
circuit analysis techniques, their exact application to modelling
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Fig. 1. Single-phase diagram of a power network illustrating mesh resistances, 7, induced emfs, e and loop currents, i.

GIC has never been clearly presented. This paper develops the
theory for calculating GIC starting from first principles and
shows how the methods normally used for AC modelling can
be adapted to model the direct current (DC) geomagnetically
induced currents. This clarifies the differences involved in mod-
elling GIC and AC power flow including the placement of the
voltage sources in the network. This provides the theoretical
foundation for simulation of GIC in a power system.

The practical aspects of GIC simulation are then considered,
starting with setting up the model including the resistance val-
ues for the transmission lines, transformers and substation
grounding. Then it is shown how the GIC simulations can be
made using electric field values to calculate the voltage sources
or equivalent current sources. It is also shown how superposi-
tion of modelling results for northward and eastward electric
fields can be combined with time series of magnetic observa-
tory data to provide simulation of GIC for specific events.
These techniques are illustrated using a benchmark power sys-
tem model to show how archived magnetic data can be utilised
to simulate the GIC that would be produced during extreme
events.

2. Power system modelling

The modelling presented here is based on the Mesh Impedance
Matrix method and the Nodal Admittance Matrix method that
are the standard approaches used for analysis of alternating cur-
rent (AC) power flow (Guile & Paterson 1977; Stirling 1978).
To model GIC in the power system requires knowledge of the
transmission line and transformer resistances and of the ground-
ing resistances of the substations. These resistances are then
used to construct a network model which is utilized with the
electric fields as input to give the GIC in each branch of the net-
work. Here it is shown how the Mesh Impedance Matrix
method and the Nodal Admittance Matrix method can be used
for modelling GIC. The Mesh Impedance Matrix method is pre-
sented first as there is a more obvious connection between the
electric fields and the voltage sources in the lines used in the
modelling. It is then shown how the voltage sources can be con-
verted into equivalent current sources and used in the Nodal
Admittance Matrix method to calculate GIC.

2.1. Mesh impedance matrix method

In the Mesh Impedance Matrix method the power network is
considered as a mesh of loops and a matrix solution is obtained
for the current around each loop. The primary element in the
mesh impedance network is the loop and the numbering con-
vention is based on the loop number. i, is the current around
loop p. 1, is the resistance of the transmission line in loop p,

and r,,, is the resistance common to loops p and ¢ (i.e., the resis-
tance through the transformers at a substation to ground). e, is
the induced emf in series with the transmission line impedance
in loop p.

2.1.1. Example of a simple network

The derivation of the Mesh Impedance Matrix method can be
most clearly illustrated by reference to a simple circuit as shown
in Figure 1 where ry;, 715, etc. are the resistances to ground, and
r1, I, etc. are the resistances of the transmission lines between
substations.

The starting point for the derivation is Kirchhoff’s voltage
law that the algebraic sum of the voltages around any loop is
zero. Applying this to the network in Figure 1 gives equations
for each loop

roriy + iy + iy — i) = e
Flz(iz — l]) +I’2i2 +I”23(i2 - 13) =€
r3(is — i) +r3iy +ra(is —ia) = e3

r34(is — I3) + Faiy + Fasis = e4

Rearranging gives
(ro1 + 71 +r12)iy — ripiy = €
—rii + (Fo 12+ ra)iy — iz = e
—roiy + (ra3 + 13 + 134)iz — raais = €3

—Fyals + (ryg +ra +145)is = €4

(2)

This can be written in matrix form:

ror +r 412 —ri2 0 0
—r rip+r s —r3 0
0 —r3 ro3 413+ —I34
0 0 —r3a 734 + g + ras
L €
1% (5]
>< = b
13 €3
I7 €y

3)
where the diagonal elements of the coefficient matrix are the
sum of the resistances round each loop and the off-diagonal
elements involve the resistances common to two loops.
Matrix inversion can then be used to give the loop currents
from which we get the currents in the lines and the currents
to ground.
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Fig. 2. Modelling GIC using the Mesh Impedance Matrix method.

2.1.2. General equations

To develop the matrix equations for a general network, consider
a loop p in the middle of a network as shown in Figure 2. This
has a line resistance r,, and resistances to ground at opposite
ends of the loop 74, and rp,. e, represents the emf in the line
and is obtained by integrating the electric field along the length
of the line

e[,—/ABE~dl. (4)

Current i, circulates in loop p and produces a voltage drop
in each resistance. This is the only voltage drop in the line resis-
tance 7,,, however resistances r,, and 7, are also part of other
loops and currents in those loops contribute to the voltage drops
in 74, and rg,. Thus to obtain a solution for loop p requires
knowledge of the currents in the other loops and it is necessary
to obtain a solution that applies simultaneously to all loops in
the network — hence the use of matrix methods.

To develop the matrix equations we start by applying
Kirchhoft’s voltage law. Thus for loop p

N
(rap +1p + 18y, — Z iyt = e, (5)
q=1(#p)

where the first term is the voltage drops produced by loop
current i, and the second term is the sum of contributions
to voltage drops produced by currents in other loops that
share a resistance to ground with loop p with the sign of i,
depending on whether the current is in the same or opposite
direction to current i, at the shared resistance. In the example
shown in Figure 2, r;, and r;, have the value 7, 7y, and 7y,
have the value r3,. Currents in other loops do not contribute
to the voltage drops in loop p so the “shared resistances” for
these cases are set to zero.

Equation (5) can be generalised to a matrix equation for all
loops

[Z)l1] = [E], (6)

where
Zpp =Tap +1p+ Iy, (7)
Zpg==try g # D, (8)

with the sign in Eq. (8) depending on whether a loop current
iy is in the same or opposite direction to current i, at the

y (=1/z)

3

j (zelz)

Fig. 3. Equivalence of series voltage source and parallel current
source.

shared resistance. The currents are then found by finding
the inverse of the impedance matrix [Z] and multiplying by
the input voltage sources:

1] = 2] [E). ©)

The currents in the lines are given directly by the mesh cur-
rents. The currents through a particular resistance to ground are
the sum of all mesh currents sharing a path through the resis-
tance to ground.

2.2. Nodal admittance matrix method

In the Nodal Admittance Matrix method the power network is
considered as nodes connected together and to ground. Driving
voltages (emfs), e, are converted to equivalent current sources,
J> as shown in Figure 3. For a voltage source e in series with
impedance z, the corresponding equivalent circuit has admit-
tance, y = 1/z, and current source, j = e/z in parallel. A matrix
solution is then obtained for the voltage of each node. The node
voltages are used to obtain the currents throughout the
network.

2.2.1. Example of a simple network

The Nodal Admittance Matrix method can be illustrated by
considering Figure 4. Nodes are labelled 1-5 and represent
the high voltage connection (bus) at individual substations.
The admittances between nodes, y1», V3, etc. represent the
admittances of the transmission lines connecting pairs of nodes
and yy, y», etc. represent the admittances of the connection to
ground at each substation. Figure 4 represents the same circuit
as shown in Figure 1 but with all the components redrawn in
terms of admittances and equivalent current sources.

For the nodal admittance network the starting point for the
derivation is Kirchhoff’s current law that the algebraic sum of
the currents entering any node is zero, i.e., sum of currents
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Fig. 4. Single-phase diagram of a power network illustrating nodes and admittances, y, and equivalent current sources, j.

entering on transmission lines equals current flowing to ground.
Applying this to the network in Figure 4 gives equations for
each node

—inp =1
ip—ls =10
I3 — i =13 . (10)
i34 —l4s = Iy

Igs = Is

The current in a line is determined by the current source, the
voltage difference between nodes at the ends of the line, and the
admittance of the line

(11)

Also, using Ohm’s law, the current in the connection to
ground can be written in terms of the nodal voltage

ink = jnk + (U" - vk)ynk'

i = Vi Uk- (12)

Making these substitutions the equations above for each
node now become
—jip =y —v2) = yv
Jiz T Y12(01 = 02) = a3 — ¥a3(v2 — v3) = 1,02
Jos T Y3(02 = 03) = J3g — Y3a(v3 — va) = y303 .
Jaa T 3403 = 04) = Jas — as(va — Us) = Y44
Jas T Vas(0a — vs) = ysvs

Rearranging gives

—j12 = 1 Fyi)v =yt

Ji2 = Jas = =Via01 + (Via + 32+ ¥a3)02 — Y303
Joy = Jza = Vo302 + (Vo3 + 13 +130)0s — s . (14)
J3a = Jas = V3403 + (V34 + V4 + Vas)0s — YysUs

Jas = —VasUa + (Va5 + Us)Us

The current sources in parallel with the line from node £ to
node n can be represented by “nodal current sources” at each
end of the line: one pulling current out of node & and one inject-
ing current into node n. The currents on the left-hand side
of Eq. (14) represent the total of the equivalent source currents
directed into each node, which we term J;. Thus we can rewrite
the equations in the form:

Ji = Fyp)v —ypn

Jr = =y + (Via + 32+ ¥23)02 — 303
J3 = =302 + (Vo3 + 5 + V3403 — V34ls . (15)
Ja = —y303 + (V34 + V4 + V4s5)0a — VysUs

Js = =454 + (Vas + 5)vs

These equations can be written in matrix form

Ji
Jo
Js | =

Ja
Js

»tyn Y 0 0 0 vy

Vi YTty txn —Vn 0 0 vy

0 —V2 Vo3 T Y3tV —V3a 0 3

0 0 V34 Yaa t V4t Vas —Vas Uq

0 0 0 —Vas Vas T Vs Us

(16)

Matrix inversion can be used to solve for the nodal voltages
which are then substituted into Eq. (11) to obtain the currents in
the lines and also combined with the admittances to ground
Eq. (12) to give the currents flowing to ground.

2.2.2. General equations

To develop the general equations for the Nodal Admittance
Matrix method consider nodes k£ and » in the middle of a net-
work as shown in Figure 5. This circuit is identical to that
shown in Figure 2, except voltage sources e have been replaced
by their equivalent current sources j and impedances have been
replaced by the equivalent admittances y. yy, represents the
admittance of the transmission line between nodes & and n (note
that y, = y), and y, and y, represent the admittances to
ground from nodes & and n, respectively.

Applying Kirchhoff’s current law we can write an equation
for any node k of the form

N
E ink == ik n 7& k.
n=1

The current in a line is determined by the current source, the
voltage difference between nodes at the ends of the line, and the
admittance of the line, given by Eq. (11).

Substituting this into Eq. (17) gives

N N
Zjnk + Z(U’l - vk)ynk = ik'
n=1 n=1

(17)

(18)
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Fig. 5. Modelling GIC using the Nodal Admittance Matrix method.

We make the further substitution

N
Je=D (19)
n=1

where J; is the total of the equivalent source currents directed
into node £. Thus we obtain the equation

N
Ji+ Z (Un = Vk) Vo = - (20)
n=1

This equation involves both the nodal voltages, v;, and the
currents to ground from each node, i;, as unknowns. The nodal
voltage v, is related to the current to ground i, by Ohm’s law so
we can substitute for either v or i, to obtain equations involving
only one set of unknowns. In this derivation we make the
substitution

i = Uy (21)

Substituting for i, gives equations involving only the node
voltages v, as the unknowns:

N
T+ Y (00— 0y = vy (22)
n=1
Regrouping terms gives
N N
Jk :Ukyk+zvkynk_zvnyrlk' (23)
n=1 n=1
This can be written in matrix form
V] =[], (24)
where the column matrix [/] contains the voltages v, and [Y] is
the admittance matrix in which the diagonal elements are the
sums of the admittances of all paths connected to node %, and

the off-diagonal elements are the negatives of the admittances
between nodes k and n, i.e.,

N
Ykk :yk+zynk k 7& i? (25)

n=1

Yo = Yk (26)

The voltages of the nodes are then found by taking the inverse
of the admittance matrix and multiplying by the nodal current
sources:

V] =[]l (27)

These node voltages can be substituted into Eq. (11) to give
the currents in the branches and into Eq. (21) to give the cur-
rents to ground from each node.

3. Practical calculations

The above section has shown that both the Mesh Impedance
Matrix method and the Nodal Admittance Matrix method can
be used for modelling GIC in a power system. The Mesh
Impedance Matrix method is conceptually simpler, but the
greater computational efficiency of the Nodal Admittance
Matrix method makes this the preferred method for simulation
of GIC. To perform practical calculations using this theory
requires setting up the model of the power system and then cal-
culating the sources to use in the transmission lines for the spec-
ified electric fields.

3.1. Setting up the model

Because of their low frequencies (<1 Hz), GIC are usually con-
sidered as varying DC currents in the power system and GIC
models have only considered the DC resistances of the system.
AC power networks utilise three-phase power transmission
with conductors and transformer windings for each phase con-
nected in parallel. GIC flowing in the three phases meet at the
neutral point of the transformer and share a common path
through the substation grounding resistance to Earth. The net-
work model can be set up to either calculate the GIC in all three
phases or the GIC in each phase individually. In either case it is
assumed that the parallel paths of the different phases have
identical resistances. Thus the “all phases” model can be con-
structed by combining the three parallel phase transmission
lines resistances into one value (dividing the single line resis-
tance by three) and combining the parallel transformer winding
resistances into one value (dividing the single transformer
winding resistance by three) and using the substation grounding
resistance. The equivalent “single phase” model gives values
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Fig. 6. Transmission line between substations A and B superim-
posed on lines of latitude and longitude. The North-South and East-
West distances between the substations are Ly and Lz respectively
(from Horton et al. 2012).

that are all three times the ““all phases” values, i.e., the trans-
mission line and transformer winding resistances per phase
and three times the substation grounding resistance.

The actual resistance values vary from system to system,
however, there are some general characteristics as shown by
Zheng et al. (2014). Higher voltage lines use bundles of con-
ductors for each transmission line resulting in lower resistances.
Similarly transformers designed to work at higher voltages han-
dle greater power transfers and are designed with lower resis-
tance windings to reduce the power losses in the transformer.
Substation grounding resistance values depend on the soil con-
ditions where the substation is built but are designed to have
low values for safety reasons. Neighbouring networks can also
influence the GIC in a power system but can be modelled by
using a suitable equivalent circuit for the neighbouring network
(Boteler et al. 2013). All of these values are used to construct
the admittance matrix for the power network.

3.2. Calculating sources in the transmission lines

The other input needed for the Nodal Admittance Matrix calcu-
lations is the set of equivalent current sources into each node
(Eq. (19)). These are the sum of the equivalent current sources
in each line derived from the voltage sources obtained by inte-
grating the electric field along the line (Eq. (4)). When the elec-
tric field is uniform or varies linearly with distance along the
line this reduces to multiplication of the electric field at the
mid-point of the line by the line length. Because the calcula-
tions from magnetic field components yield the northward

Table 1. Parameters of the WGS84 Earth model.

Parameter Symbol Value
Equatorial radius a 6378.137 km

Polar radius b 6356.752 km
Eccentricity squared ¢’ 0.00669437999014

and eastward components of the electric field, it is easier to
use these to calculate the voltages produced by these compo-
nents and then sum these component voltages to give the volt-
age in the line for the particular direction of the electric field:

e = EXLN + EyLE (28)

Thus calculation of the voltage sources requires calculation
of the North-South and East-West distances spanned by a trans-
mission line.

Calculation of distances on a spherical earth is more com-
plicated than calculation of distances on a flat surface. Consider
a transmission line between substations A and B as shown in
Figure 6. Assuming a spherical earth, the NS distance is simply
calculated from the difference in latitude of substations
A and B. However, there is no similar simple relationship for
the EW distance because, as shown in Figure 6, lines of longi-
tude converge as they approach the pole. Consequently it is
necessary to take into account the latitude of the substations
when converting their longitudinal separation into a distance.

To get more accurate values and to be consistent with sub-
station latitudes and longitudes obtained from GPS measure-
ments it is necessary to take account of the non-spherical
shape of the Earth. The Earth is an ellipsoid with a smaller
radius at the pole than at the equator. The precise values depend
on the Earth model used. Horton et al. (2012) recommend the
WGS84 model (Table 1) which is utilised in the GPS system.

For an ellipsoid Earth, the North-South distance is given by:
.o
180

where M is the radius of curvature in the meridian plane and
is given by

Ly M- Alat, (29)

~a(l—-é)
M= (1- ezsinzqﬁ)l‘5 ’ (30)

Substituting in the values from Table 1 gives the expression
for the North-South distance in km:
Ly = (111.133 — 0.56 cos (2¢)) - Alat, (31)

where Alat is the difference in latitude (degrees) between the
two substations A and B, and ¢ is the average of the latitudes
of A and B:

LatA + LatB
¢ = — (32)
Similarly the East-West distance is given by:
b
Ly =— - Al
E 180Ncos ¢ - Along, (33)

where N is the radius of curvature in the plane parallel to the
meridian as defined in Eq. (34) and Along is the difference in
longitude (degrees) between the two substations A and B

a

Ne——ro (34)

/1= esin2¢p
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Sub 2 Sub7 Sub8

Sub1  gyp4 Sub6

500kV

Sub5 345KV
Fig. 7. Map of sample network. Note: Substation 1 and Substation 7
have no connection to ground (from Horton et al. 2012).

Substituting the values from Table 1 gives the following
expression for the East-West distance in km:

Ly = (111.5065 — 0.1872 cos 2¢p) - cos ¢ - Along.  (35)

The lengths from Egs. (31) and (35) are then used in
Eq. (28) to give the voltage source in the transmission line to
be used in the GIC modelling.

4.. Simulation of GIC

To illustrate the application of the GIC modelling for simulation
of GIC it is convenient to use an example network as shown in
Figure 7. This was designed to be used as a benchmark model
for testing GIC modelling software, and it includes many fea-
tures found in real power systems (Horton et al. 2012). Here
a distinction is made between “modelling GIC” produced by
a specified electric field and “simulation of GIC” produced
by a magnetic disturbance: the simulation requiring the use of
magnetic field recordings with the GIC modelling to produce
GIC values for the duration of the event.

Magnetic observatory data can be used with suitable Earth
conductivity models to calculate the electric fields experienced
by the power network. There are well established techniques for
making these calculations in the time domain or frequency
domain using a “uniform field” approximation with one-
dimensional models of the Earth conductivity structure (Ward
& Hohmann 1988; Boteler 1994; Pirjola 2002). There are also
more sophisticated methods available for calculating the electric
fields produced by more complex source fields (Viljanen et al.
2004). However these require special studies and many power
systems do not have sufficient data available to enable their use.
Here an examination is made of the GIC simulation that can be
performed with magnetic data from one or two magnetic
observatories.

4.1. Using magnetic data from one observatory

Magnetic observatory data used with a suitable Earth conduc-
tivity model will provide calculations of the northward, Ej,
and eastward, Ey, components of the electric field. These calcu-
lated time series of electric field components Ex(f) and Ey(?)
can be used in the Nodal Admittance Matrix method calcula-
tions for every time increment, ¢, to calculate GIC. However
a more convenient method is to make the calculations of the
GIC produced by “reference” electric fields of 1 V/km north-
ward and 1 V/km eastward. Using the principle of superposi-
tion, these reference results can be combined to give the GIC
for any electric field values (Boteler 2013). First the Nodal
Admittance Matrix method calculations are made to obtain
the GIC values o; for a northward electric field, i.e.,
Ey=1V/km, Ey =0 and then to obtain the GIC values f;
for and eastward electric field, i.e., Ex=0 and Ey =1 V/km.

These values are then scaled by the size of the Ey(f) and
EW(¢) values relative to the reference values to obtain the current
i (t) to ground at each substation.

() = Ex (1) + BEv (0). (36)

Figure 8 shows a time series of Ex(f) and Ey(¢) values cal-
culated from magnetic data at the Ottawa Magnetic Observa-
tory on November 8, 2004, using the E/B transfer function
for Quebec, and the GIC to ground calculated for substations
5 and 6 in the network in Figure 7.

4.2. Using magnetic data from two observatories

If data are available from two magnetic observatories on oppo-
site sides of a network then linear interpolation of the electric
field calculated for each observatory can be used to estimate
the electric fields throughout the network. Consider the case
of the benchmark network (Fig. 7) with an observatory A to
the North and an observatory B to the South. The magnetic data
from each observatory is used to calculate the electric field at
the observatory locations. With the time variations of these
electric fields there are different values at each time step to
use for the interpolation, thus it is not immediately possible
to use the scaling of reference results as done for one observa-
tory (Eq. (35)). However, although the actual electric field val-
ues from observatory A and observatory B are different their
relative contributions to the interpolated electric field at a given
location are always the same. The percentage contribution from
the observatory A electric field goes from 100% at observatory
A to 0% at observatory B. Correspondingly the percentage con-
tribution from the observatory B electric field goes from 100%
at observatory B to 0% at observatory A. This is illustrated in
Figure 9 where £, is 100 mV/km and Ejp is 50 mV/km, which
shows that the total interpolated electric field can be expressed
as the sum of the contribution from Observatory A and the con-
tribution from Observatory B.

Thus, at any location in the network, the electric field can be
written as

Ei=E, fi + Ep(1 = i), (37)

where f; is the fraction of the distance from observatory B to
observatory A.

Using the Nodal Admittance Matrix method, partial solu-
tions can be produced for the electric fields calculated from
observatory A and for the electric fields calculated from obser-
vatory B. Calculations are first made for a northward electric
field (Ex4 = 1 V/km, Ey, = 0 V/km) contribution from obser-
vatory A, taking account of the factor f;, to give the voltage
sources in each line across the network to give the GIC values
at each substation o4, Repeating the calculations for observa-
tory A, but for an eastward electric field (Ey, = 0 V/km,
Ey, =1 V/km) gives the GIC values f54. Then calculations
are made for the contributions from observatory B, again for
a northward electric field (Eyz = 1 V/km, Eyg = 0 V/km) and
an eastward electric field (Exz = 0 V/km, Eyg = 1 V/km), uti-
lizing the factor (1 — f;) in each case, to give the GIC values
opr and P These “reference” values can then be scaled by
the actual electric field components Ex,(¢), Ey,(f) and Exz(f),
Eyz(?) to give the GIC values

i (1) = okExy (t) + BuEva(t) + apeExs(t)
+ BaEvs(t). (38)
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Fig. 8. Calculations made using the Nodal Admittance Matrix method and superposition (Eq. (36)) of results for electric field components Ex
and Ey calculated using data from the Ottawa magnetic observatory to give the GIC at substations 5 and 6 in the sample network of Figure 7.
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Fig. 9. Relative contributions when using linear interpolation
between the electric fields calculated for Observatory A and
Observatory B.

Figure 10 shows electric fields for the calculated from mag-
netic data at the Poste de la Baleine magnetic observatory to the
North and the Ottawa Magnetic Observatory to the South on
November 8, 2004, using the E/B transfer function for Quebec,
and GIC calculated for substations 5 and 6 in the sample net-
work, using the geoelectric fields calculated from the North
and South observatories.

5. Discussion

This paper has described the methodology for simulation of
GIC in a power network utilizing the Mesh Impedance Matrix
method or the Nodal Admittance Matrix method. GIC can also

be modelled using the Lehtinen-Pirjola (1985) method.
The accuracy of results from all these methods depends on
how well the input data used represents the characteristics of
the magnetic disturbances, the Earth conductivity and the sys-
tem resistances. Viljanen et al. (2004), Ngwira et al. (2009)
and others have used the spherical elementary current system
(SECS; Amm & Viljanen 1999) for interpolating the spatial
variation of the magnetic field disturbance across the area of
a power system. Magnetic field variations can also be fitted
using spherical cap harmonic analysis (SCHA; Haines 1985;
Haines & Torta 1994) providing an alternative method for inter-
polation across a power network. These techniques are appro-
priate when there are a sufficient number of magnetic
recording sites to map the spatial structure of the magnetic field
variations.

In many cases there may be only one or two magnetic
observatories in the vicinity of a power system which does
not provide sufficient data to justify use of sophisticated inter-
polation techniques such as SECS or SCHA. When data is only
available from one magnetic observatory these data are used to
calculate the electric fields which are then assumed to be uni-
form across the power network. When data are available from
two magnetic observatories they can each be used to calculate
electric fields and linear interpolation is then used to calculate
the electric field at any location in the power network. In such
cases these approximations are forced on the modelling by the
limitations of the available data. Whether or not these are rea-
sonable approximations to a real magnetic disturbance depends
on the size of the network and the proximity of the magnetic
observatory(ies), as well as characteristics of the magnetic dis-
turbance. These approximations are likely to be more reason-
able at mid and lower latitudes, away from the more
structured magnetic disturbances experienced at high latitudes.
However, situations can occur where the geomagnetic monitor-
ing available is insufficient to allow reliable interpolation for
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Fig. 10. Calculations made using the Nodal Admittance Matrix method and superposition (Eq. (38)) of results for electric field components Ey
and EYy calculated using data from the Poste de la Baleine magnetic observatory (A) to the North and the Ottawa magnetic observatory (B) to the
South to give the GIC at substations 5 and 6 in the sample network of Figure 7.

GIC modelling. The maximum acceptable spacing between
magnetometers will depend on the spatial characteristics (both
latitudinal and longitude variations) of the geomagnetic distur-
bance and will be different for different types of disturbance
and in different locations around the world. This is an aspect
of GIC simulation that requires further investigation.

Accuracy of GIC simulations can also be affected by spatial
variations in the electric fields due to lateral changes in the
Earth conductivity structure. The calculations above used a sin-
gle Earth conductivity model for the whole area of the power
system. Where the power system extends over several geolog-
ical regions then a different 1-D Earth conductivity model can
be used for each region and has been found to give reasonable
results (Viljanen et al. 2004; Marti et al. 2014). However this
approach fails to take into account the enhanced electric fields
that occur at conductivity boundaries. These are especially
important at boundaries where there is a large conductivity con-
trast such as at a coastline (Pirjola 2013). Determining the elec-
tric fields in such situations requires 2-D or 3-D modelling
(Dong et al. 2013). This is a subject that requires further
research in connection with GIC applications.

This paper is about the methodology for modelling GIC in a
power system. GIC calculations can be made using either the
Mesh Impedance Matrix method or the Nodal Admittance
Matrix method. Obtaining the solution in the Nodal Admittance
Matrix method involves taking the inverse of the nodal admit-
tance matrix and multiplying by the nodal current sources (27)
to give the nodal voltages that are then used to calculate GIC.
In contrast the Mesh Impedance Matrix method involves taking
the inverse of the mesh impedance matrix and multiplying by
the voltage sources (9) to give GIC values. The two matrices
involved in these calculations should not be confused. The

inverse of the nodal admittance matrix is termed the nodal
impedance matrix; however, this is not the same as the mesh
impedance matrix. This is because the matrices use different
numbering schemes: one is based on mesh number and the
other is based on node number. The central part of the calcula-
tion is taking the inverse of the appropriate matrix. The size of
the mesh impedance matrix is determined by the number of
loops in the network and is often considerably larger than the
nodal admittance matrix which is determined by the number
of nodes. For example the simple circuit in Figure 7 has 13
loops but only 8 nodes. For large power networks this size dif-
ference becomes important. The Nodal Admittance Matrix
method is thus the preferred choice. Sparse matrix techniques
can also be used to speed up the calculations.

Some circuit analysis textbooks (Dorf & Svoboda 2006;
Hayt & Kemmerly 1993) use terms from topology to classify
networks and make a distinction between a circuit made up
of a set of meshes that is “planar”, i.e., it can be drawn on a
plane, and a circuit of loops that can be non-planar. The impor-
tance of this for power system analysis is that a planar circuit
cannot include lines that cross. When analysing multiple volt-
ages levels of a power system there are going to be situations
where a power line at a lower voltage levels crosses under a
high voltage line. There are also some situations where lines
at the same voltage level cross each other. Thus it is important
to know if the GIC modelling techniques can handle lines that
Cross.

A number of tests have been made to check the ability of
the various GIC modelling methods to handle crossing lines.
Crossing lines were included as a feature in the GIC benchmark
model and tests with the different methods all gave the
same results. The circuit analysis textbooks state that Nodal
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Admittance Matrix method based on Kirchhoff’s current law
can handle non-planar circuits (i.e., with crossed lines). For
methods based on Kirchhoff’s voltage law, these textbooks dis-
tinguish between two methods saying that loop analysis, but not
mesh analysis, can handle non-planar circuits. Examining the
derivation of the Mesh Impedance Matrix method there is no
reason, in electrical terms, why the planar or non-planar classi-
fication should matter and it gives identical results to the other
methods. The term “Mesh Impedance Matrix” method was
introduced long before topological definitions started to be
applied to circuit analysis. In the topological classification it
should perhaps be called a “loop analysis”. The important thing
for GIC modelling is that all the methods work for non-planar
networks that include lines that cross.

The GIC simulation examples presented in this paper have
been made for the benchmark model which does not allow
comparison with measured GIC values. It is obviously desirable
to test GIC simulations by making comparisons with GIC
recordings at a number of sites on a power network. Such mea-
surements provide a test of the overall simulation, including
both the modelling method and the data used in the model.
The development from first principles described in this paper
provides the theoretical validity of the methodology for model-
ling GIC. The accuracy of GIC modelling in real situations is
more dependent on the accuracy and resolution of the data used
as input in the calculations. These include how well the data
from a limited number of geomagnetic observatories capture
the spatial structure of the geomagnetic disturbance; the accu-
racy of the Earth conductivity models used to calculate the elec-
tric fields, and the accuracy of the resistance values used in the
power network model. Therefore comparison of model results
with GIC observations is a test of how good are the inputs to
the model rather than a test of the GIC modelling methodology
itself.

6. Conclusions

GIC in a power network can be calculated using the Mesh
Impedance Matrix method or the Nodal Admittance Matrix
method can be utilised for modelling GIC.

The Mesh Impedance Matrix method involves construction
of the impedance matrix [Z] for the power network, taking the
inverse, and multiplying by the input voltage sources [E]
obtained by integrating the electric fields along the transmission
lines:

1) = 2] [E). (39)

This gives the mesh currents [/] that can be used directly to
give the GIC in the transmission lines. The GIC through a par-
ticular resistance to ground are then obtained by summing all
the mesh currents sharing a path through the resistance to
ground.

The Nodal Admittance Matrix method involves construc-
tion of the admittance matrix [Y] for the power network. The
voltage sources in the lines are converted to equivalent current
sources which are combined to give the current source into each
node [J]. The voltages of the nodes [ V] are then found by taking
the inverse of the admittance matrix and multiplying by the
nodal current sources:

V] =[]Vl (40)

These node voltages are then used to calculate the currents
in the transmission lines and the currents to ground from each
node.

Although the Mesh Impedance Matrix method is conceptu-
ally simpler, the greater computational efficiency of the Nodal
Admittance Matrix method makes this the preferred method
for simulation of GIC in power systems.

Superposition of GIC model results for “reference” north-
ward and eastward electric fields can be combined with electric
fields calculated using date from one or two magnetic observa-
tories to provide time series of GIC values during a space
weather event.

A number of factors influence the accuracy of the GIC sim-
ulation. The number of magnetic observatories in the vicinity of
a power network may not be adequate to describe the spatial
variation of the magnetic disturbance across a large power sys-
tem. Regional 1-D Earth conductivity models provide a good
first approximation for calculating electric fields; however,
these calculations could be improved by taking account of
the localised electric field enhancements that occur at Earth
conductivity boundaries, such as at a coastline. Finally, the
DC resistance values used to construct the system models will
influence the accuracy of the GIC results. Thus the accuracy of
the GIC simulations is limited, not by the modelling methodol-
ogy, but by how well the available input data represent the true
magnetic variation, the Earth conductivity, and the system
characteristics.
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