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In this paper, a novel image projection technique for 
face recognition application is proposed which is based on 
linear discriminant analysis (LDA) combined with the 
relevance-weighted (RW) method. The projection is 
performed through 2-directional and 2-dimensional LDA, 
or (2D)2LDA, which simultaneously works in row and 
column directions to solve the small sample size problem. 
Moreover, a weighted discriminant hyperplane is used in 
the between-class scatter matrix, and an RW method is 
used in the within-class scatter matrix to weigh the 
information to resolve confusable data in these classes. 
This technique is called the relevance-weighted (2D)2LDA, 
or RW(2D)2LDA, which is used for a more accurate 
discriminant decision than that produced by the 
conventional LDA or 2DLDA. The proposed technique 
has been successfully tested on four face databases. 
Experimental results indicate that the proposed 
RW(2D)2LDA algorithm is more computationally efficient 
than the conventional algorithms because it has fewer 
features and faster times. It can also improve performance 
and has a maximum recognition rate of over 97%. 
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I. Introduction 

Linear discriminant analysis (LDA) is one of the most 
popular linear projection techniques. It is a well-known feature 
extraction and data representation technique which is widely 
used in the areas of pattern recognition for feature extraction 
and dimension reduction. It finds the set of the largest 
discriminant projection vectors which can map high-
dimensional samples onto a low-dimensional space. Principal 
component analysis (PCA) and LDA research (started in 1991 
by Turk and Pentland [1]) presented the Eigenfaces method for 
the linear projection of face images onto a reduced dimension 
feature space. Belhumeur and others [2] presented a projection 
method based on Fisher’s linear discriminant (FLD) in 1997. 
From 2000 to 2004, there was much work on the theory of 
PCA and LDA [3]-[9] which was motivated by the need to 
solve the small sample problem.  

The objective of LDA is to find the optimal projection so that 
the ratio of the determinants of the between-class and within-
class scatter matrices of the projected samples reaches its 
maximum. However, concatenating 2D matrices into a 1D 
vector leads to a very high-dimensional image vector, where it is 
difficult to evaluate the scatter matrices accurately due to its large 
size and the relatively small number of training samples. 
Furthermore, the within-class scatter matrix is always singular, 
making the direct implementation of the LDA algorithm an 
intractable task. To overcome these problems, a new technique 
called 2-dimensional LDA (2DLDA) was recently proposed. 
This method directly computes the eigenvectors of the scatter 
matrices without matrix-to-vector conversion. Thus, PCA and 
LDA were developed into the 2-dimensional space methods 
which are known as 2DPCA and 2DLDA, respectively [10]-[17].  

The scatter matrices in 2DLDA are quite small compared to 
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the scatter matrices in LDA. The size of the 2DLDA matrix is 
proportional to the width of the image. 2DLDA evaluates the 
scatter matrices more accurately and computes the 
corresponding eigenvectors more efficiently than LDA or PCA. 
However, the main drawback of 2DLDA is that it needs more 
coefficients for image representation than the conventional 
PCA and LDA-based schemes.  

In addition to the basic 2DLDA method, a two-directional 
LDA has been proposed. It works by simultaneously 
combining 2DLDA applied to the row direction of face images 
with alternative 2DLDA applied to the column direction of 
face images. This is called (2D)2LDA. Similarly, the 2-
dimesional version of PCA is known as (2D)2PCA. These 
interesting algorithms were first developed in 2005. Zhang and 
Zhou [18] developed the 2-directional 2DPCA or (2D)2PCA, 
achieving the same or even higher recognition accuracy than 
2DPCA. The main difference between (2D)2PCA and existing 
2DPCA is that the latter only works in the row direction of face 
images, while the former works simultaneously in the row and 
column directions of face images. The main advantage of 
(2D)2PCA over 2DPCA is that far fewer coefficients are 
needed by (2D)2PCA for face representation and recognition 
than are needed by 2DPCA. Nagabhushan and others [19] 
introduced the (2D)2FLD method which has the advantage of 
higher recognition rates, a smaller memory requirement, and 
better computing performance than the standard PCA/2D-
PCA/2D-FLD method. The major advantage of the proposed 
method is that it requires fewer coefficients for object/face 
image representation than the standard PCA/2D-FLD/2D-PCA 
because it works simultaneously in both row and column 
directions. Noushath and others [20] showed that (2D)2LDA 
requires fewer coefficients and less computing time for face 
image representation and recognition than standard PCA, 
2DPCA, and 2DLDA methods.  

In recent years, LDA research has developed several 
refinements to improve its performance, such as using the 
weighting function with the between-class scatter matrix. The 
relevance-weighted (RW) method is also combined with the 
within-class scatter matrix. In addition, both weights are used 
to perform the best recognition process for the LDA and 
2DLDA. The research on weighted conventional LDA started 
by Li and others [21] introduced a weighting factor for each 
pairwise scatter that enables integration of confusable 
information into the between-class covariance matrix. There 
are many possibilities in choosing weighting factors. Li and 
others considered a few of them depending on the Euclidean 
and Kullback-Leibler distances between classes when a single 
Gaussian approximation is used for each class. This is called 
weighted pairwise scatter linear discriminant analysis (WPS-
LDA) transform. Lotlikar and Kothari [22] introduced the 

concept of fractional dimensionality and developed an 
incremental procedure called the fractional-step LDA (F-LDA) 
as the weighting function. Loog and others [23] introduced a 
weighted variant of the well-known K-class Fisher criterion 
associated with the LDA. It can be seen that the LDA weighs 
contributions of individual class pairs according to the 
Euclidian distance of the respective class means. An interesting 
subclass of these criteria is the approximate pairwise accuracy 
criteria (aPAC). Yu and others [24] redefined the between-class 
scatter by adding a weighted function according to the 
between-class distance, which helps to separate the classes as 
much as possible. At the same time, it projects the between-
class scatter into the null space of the within-class scatter that 
contains the most discriminant information. Lu and others [25] 
combined the strengths of the direct LDA (D-LDA) [4] and   
F-LDA approaches in the proposed framework, which will 
hereafter be referred to as DF-LDA. Also, a weighting function 
is introduced into the proposed variant of D-LDA, so that a 
subsequent F-LDA step can be applied to carefully reorient the 
small sample size (SSS)-free subspace, which results in a set of 
optimal discriminant features for face representation. Price and 
Gee [26] proposed a new algorithm as direct weighted LDA or 
DW-LDA. It combines direct LDA (D-LDA) with weighted 
pairwise Fisher criteria. Wang and others [27] proposed the 
weighted two-dimensional maximum margin criterion 
(W2DMMC), which has an additional weighted parameter β 
that further broadens the margin. Wang and others [28] 
developed a multi-block 2DLDA (MB2DLDA) to apply to the 
sub-images instead of the whole image by weighting the 
2DLDA feature of a block; thus, the verification performance 
is improved.  

Another approach in the development of relevance-weighted 
LDA was introduced in 2005 by Tang and others [29] who 
incorporated the inter-class relationships as relevance weights 
into the estimation of the overall within-class scatter matrix. 
Liang and others [30] proposed a generalizing relevance-
weighted LDA or GRW-LDA. When compared with the 
LDA-GSVD and Fisherfaces, the GRW-LDA can extract more 
powerful discriminatory features, thereby achieving the best 
performance using the least features. Chougdali and others [31] 
presented a relevance-weighted LDA and QR decomposition 
matrix analysis. However, all algorithms presented in this paper 
are linear methods. Since facial variations are mostly non-linear, 
LDA, LDA/QR and RW-LDA/QR projections only provide 
suboptimal solutions. Jarchi and Boostani [32] proposed a 
variant LDA method for the multi-class problem which 
redefined the between-class and within-class scatter matrices 
by incorporating a weight function into each of them.  

Our research indicates that LDA has in fact been improved 
in the (2D)2LDA method. In other words, the RW method can 
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be used to achieve better face recognition performance than 
that of LDA or 2DLDA. Therefore, it is best to combine the 
(2D)2LDA method with RW method in order to improve its 
discrimination performance. This algorithm will be hereafter 
referred to as the relevance-weighted (2D)2LDA 
(RW(2D)2LDA).  

This paper is organized as follows. Section II presents 
background of the LDA and its development starting from the 
conventional LDA, the 2-dimensional LDA (2DLDA), an 
alternative 2DLDA, the 2-dimensional and 2-directional LDA, 
and application with the pairwise scatter approaches. Section III 
describes the proposed algorithm, which uses weighted and RW 
methods with the (2D)2LDA method. Experimental results and 
discussion are presented in section IV. The conclusion is given in 
section V. Finally, future work is proposed in section VI. 

II. LDA Background  

By using the set of projection vectors determined by the 
LDA as the projection axes, all projected samples form the 
maximum between-class scatter and the minimum within-class 
scatter simultaneously in the projective feature space.  

1. Conventional LDA  

When using appearance-based methods, the 2D face image 
matrices must be first transformed into 1D image vectors. The 
LDA maps high dimensional samples of the projection vectors 
onto a low-dimensional space and computes eigenvectors in 
the underlying space that give the best discrimination among 
classes. More formally, given a number of independent features 
relative to which the data is described, LDA creates a linear 
combination of these which yields the largest mean differences 
between the desired classes. Mathematically speaking, for all 
the samples of all classes, two measures are defined. One 
measure is called the within-class scatter matrix, as given by 

w
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( )( ) ,
jNC

j j T
i j i j

j i
S A Aμ μ

= =

= − −∑∑         (1) 

where j
iA is the i-th sample of class j, μj is the mean of class j, 

C is the number of classes, and Nj is the number of samples in 
class j. The other measure is called the between-class scatter 
matrix, as given by 
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where μ represents the mean of all classes. 
Once Sb and Sw are computed, we compute the optimal 

projection axes, denoted by X, so that the total scatter of the 
projected samples of the training images is maximized. To 

 

Fig. 1. LDA technique results: (a) data samples and (b) result of 
1D projection. 
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maximize the total scatter of the projected samples we used 
Fisher’s criterion:  

b

w

( ) .
T

T

X S X
J X

X S X
=                  (3) 

The maximized J(X) can be obtained by applying an 
eigenvector corresponding to the maximum eigenvalues of  
Sw

-1Sb. This is the optimal projection axis. It is usually not 
enough to have only one optimal projection axis, and we 
compute q projection axes, that is, X1,X2,···,Xq, which are 
eigenvectors corresponding to the first q largest eigenvalues of 
Sw

-1Sb. 
To show the principle of the LDA algorithm, example results 

of the LDA projection technique are shown in Fig.1. Example 
data of three classes is shown in Fig. 1(a), and 1D projection 
results using the LDA method are shown in Fig. 1(b).  

2. Two-Dimensional LDA (2DLDA) 

The LDA has two drawbacks when directly applied to the 
original input space. First, some non-face information such as 
image background data is misclassified when the face of the 
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same subject is presented on different backgrounds. Secondly, 
when the SSS problem occurs, the within-class scatter matrix is 
singular. This is the so-called singularity problem. Projecting 
the high-dimensional input space into low-dimensional 
subspace via PCA can solve these LDA problems. 
Nevertheless, the spatial structure information is still lost. To 
overcome this drawback, the 2-dimensional LDA is based on 
2D matrices rather than 1D vectors. This means that the image 
matrix does not need to be converted into a vector. As a result, 
the 2DLDA has two advantages: it is easier to evaluate the 
covariance matrix accurately, and it has lower time-
consumption.  

Let j
iA  be an image of size a×b representing the i-th 

sample in the j-th class. The between-class scatter matrix Gb 
and within-class scatter matrix Gw are computed as   
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Once Gb and Gw are computed, we compute the optimal 
projection axes, denoted by X, so that the total scatter of the 
projected samples of the training images is maximized. To 
maximize the total scatter of the projected images we used 
Fisher’s criterion as follows: 

b

w
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Thus, the eigenvectors of the final covariance matrix Gw
-1Gb 

are computed, and then q eigenvectors corresponding to the 
first q largest eigenvalues of Gw

-1Gb are chosen. Thus, the 
dimension of the optimal projection axes X is b×q. 

Projection of a training image onto these optimal projection 
axes results in a feature matrix of the respective training image. 
That is, we define the feature matrix of j

iA as 

,j j
i iZ A X=                     (7) 

where j
iZ  is the feature matrix of dimension a×q. 

The proposed 2DLDA works in the row-wise direction as 
the image covariance matrix Gw is obtained by the outer 
products of the row vectors of the training images.  

Training images are subsequently projected onto the optimal 
projection axes, and their dimension is reduced. During the 
query phase, query images are also projected onto the optimal 
projection axes to reduce their dimensionality, and they are 
subjected to a Euclidean nearest neighbors classifier to contrast 
them with the projected training images. The class label of the 
training images which is nearest to the query is retrieved as 
their class label. In this case, the class of the nearest training 

face to that of the query face image is identified as its class.  

3. Alternative 2DLDA 

Equation (5) reveals that the scatter matrix Gw can be 
obtained from the outer products of row vectors of images, 
assuming that the training images have a zero mean. For this 
reason, we claim that the original 2DLDA works in the row 
direction of images. Apparently, a natural extension is to use 
the outer product between column vectors of images to 
construct Gb and Gw. To devise an alternative 2DLDA, we 
propose that the between-class scatter matrix Hb and the 
within-class scatter matrix Hw be computed as   
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It can be observed that Hb and Hw in (8) and (9) are obtained 
in this new formulation as outer products of column vectors, 
unlike Gb and Gw in (4) and (5) in the case of the original 
2DLDA. Using these two scatter matrices, which are similar to 
the original 2DLDA, in this proposed model we also find the 
optimal projection axes W (m×q) so that the total scatter of the 
projected samples is maximized using the same Fisher’s 
criterion given by  
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Thus, the eigenvectors of 1
w bH H−  are computed, and then q 

eigenvectors corresponding to the first q largest eigenvalues of 
1

w bH H−  are chosen. Finally, projection of a training image 
onto these optimal projection axes results in a feature matrix of 
the respective training image. That is, if j

iZ  represents the 
feature matrix of ,j

iA  then  

.j T j
i iZ W A=                  (11) 

Equation (9) reveals that the image covariance matrix Hw can 
be obtained from the outer products of the column vectors of 
the training images, assuming that they have a zero mean. 
Therefore, the proposed alternative 2DLDA works in the 
column direction of images. An illustration of the 2DLDA 
projection technique is shown in Fig. 2.  

4. (2D)2LDA 

Let X denote the n×d optimal projection matrix obtained in 
the original 2DLDA method as explained in section II.2, and 
let W denote the m×q matrix obtained by an alternative 
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Fig. 2. 2DLDA projection technique. 
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2DLDA method as explained in section II.3. For (2D)2LDA 

method, each training image j
iA  is projected onto both X and 

W simultaneously to obtain the respective feature matrix 
,j

iF which is of dimensions q×d as follows: 

.j T j
i iF W A X=                (12)  

The matrix F is also called the coefficient matrix in image 
representation. When used for face recognition, the matrix F is 
also called the feature matrix. After projecting each training 
image j

iA  onto X and W, the feature matrices j
iF can be 

obtained.  
In a data set, distance or similarity relationships between 

pairs of classes is the important information for classification. 
Distance or similarity relationships, usually acquired through 
statistical approaches such as Euclidean distance, Mahalanobis 
distance, and so on, reflect how well two classes are separated 
in the feature space. In multi-class LDA, the relationships 
between pairs of classes are likely to be different from one pair 
to another. The classes that are closer to each other are 
potentially more confusing, and they should be given more 
attention during the feature extraction stage. The weighted 
LDA works by using the pairwise scatter matrix approach 
which only points at the between-class scatter matrix. 
Generally, the Sb of this pairwise scatter is computed by 

1
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Therefore, the 2DLDA and an alternative 2DLDA method 
can rewrite the between-class scatter matrix (4) and (8) as 
follows: 

1

b
1 1

1 ( ) ( ),
C C

T
j k j k j k

j k j
G N N

N
μ μ μ μ

−

= = +

= − −∑ ∑      (14) 

1

b
1 1

1 ( )( ) .
C C

T
j k j k j k

j k j
H N N

N
μ μ μ μ

−

= = +

= − −∑ ∑       (15) 

Equation (14) is the between-class scatter matrix of 2DLDA 
which essentially works in the row-direction of images, and (15) 
is the between-class scatter matrix of an alternative 2DLDA 
which works in the column direction of images.  

The within-class scatter matrix is still not changed because 
the pairwise scatter approach analyzes how the classes are 
discriminated from each other pairwise. Thus, it does not 
measure discrimination inside the within-class scatter matrix. 
However, we can rewrite the within-class scatter matrices (5) 
and (9) as  
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Similar to (14) and (15), (16) is the within-class scatter matrix 
of 2DLDA which essentially works in the row-direction of 
images, and (17) is the within-class scatter matrix of an alternative 
2DLDA which works in the column direction of images.  

III. Proposed Algorithm 

1. Weighted (2D)2LDA 

Because (14) and (15) are not directly related to classification 
accuracy and focus equally on every pair of classes, the outlier 
classes may negatively influence the estimation of the overall 
between-class covariance matrices Gb and Hb. Therefore, Loog 
and others [23] proposed an extended criterion named the 
approximate pairwise accuracy criterion (aPAC) which 
replaces (14) and (15) with 

1
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where the weights Ljk are usually estimated based on 
relationships between classes j and k.  

In order to keep enough discriminant information, we need 
to adjust the weights. A natural candidate is a normalization 
weight equal to the square of the inverse of the Euclidean 
distance between class means: 

( ) ( )2

1 1 .jk T

j k j k j k

L
μ μ μ μ μ μ

= =
− − −

    (20) 

Here, Ljk is defined as the dissimilarity between class j and k 
or how well classes j and k are separated in the original space. 
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Fig. 3. Adjacency relationships in weighted and relevance-
weighted calculation. 
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2. Relevance-Weighted (2D)2LDA 

We can see that in addition to assigning different 
considerations to classes when estimating the between-class 
covariance matrix, a weighting scheme should also be employed 
when estimating the within-class covariance matrix. To reduce 
the influence of outlier classes, (16) and (17) are modified to give  
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where rj is the relevance-based weight. By integrating rj in (16) 
and (17), we intend to ensure that if class i is an outlier class, it 
only has a slight influence on the estimated Gw and Hw. This is 
reasonable because if one class is well separated from the other 
classes in the data set, the within-class covariance matrix of this 
class in the new space is compact, and it will not have much 
influence on the classification.  

To calculate a class’s separation from other classes, a 
straightforward weighting function is defined: 

1
j

j k jk

r
L≠

=∑ .                  (23) 

We normalize rj so that the largest weight is 1. Although 
several dissimilarity measures have been proposed in the past, 
it is impossible to choose one of them as the best measure 
independent of the data set.  

We weight the classes which have their means closer to each 
other more heavily than those that have means further apart. In 
this sense, more confusable classes are weighted more heavily, 
and less confusable classes are weighted more lightly. The 
weighted between-class relationships and the relevance- 
weighted within-class relationships are shown in Fig. 3. 

3. Classification 

Given a test face image A, we first use (12) to get the feature 

 

Fig. 4. Sample images from the FERET database.  
 
matrix j

iF . Then, we use a nearest neighbor classifier for 
classification. Here, the distance between 1 j

iF  and 2 j
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IV. Experimental Results and Discussion 

In our work, we have used four face databases, namely, the 
Facial Recognition Technology Database (FERET) [33]; the 
CMU Pose, Illumination, and Expression (PIE) Database [34]; 
the ORL Face Database [35]; and the YALE Face Database 
[36]. All of our experiments were carried out on a PC with an 
Intel Core2Duo CPU E6750 at 2.66 GHz with 1.96 GB of 
RAM memory under a MATLAB R2007b platform. 

1. RW(2D)2LDA Performance Test 

We first used the FERET face database, which is designed to 
advance the state of the art in face recognition, with the 
collected images directly supporting both algorithm 
development and the FERET evaluation tests. The database is 
divided into a development set which is provided to researchers 
and a set of sequestered images for testing. The dataset tested 
included 2,413 still facial images of 856 individuals. Some 
sample FERET face images are shown in Fig. 4.  

The results of our first accuracy test of the RW(2D)2LDA 
algorithm are presented in a 3D view. We tested the recognition 
rate in row and column feature dimensions. The results of this 
performance test are shown in Fig. 5. 

The number of feature dimensions was varied from 0 to 60. 
The RW(2D)2LDA accuracy is over 70% when tested with 2-3 
dimensions and over 97% at 5-8 dimensions. It becomes less 
steady when there are over 10 feature dimensions.  

2. Pose, Illumination, and Expression Condition Test 

It is not easy to compare all three algorithms within a 3D 
view graph because the lines of the graph would be 
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Fig. 5. RW(2D)2LDA accuracy in 3D view. 
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Fig. 6. Sample images from the PIE database.  
 

 

Fig. 7. Result of pose, illumination, and expression test in 2D.
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complicated. Therefore, it is more suitable to use a 2D view 
graph for accurate comparisons between these algorithms. For 
this reason, we conducted a second experiment to show the 
performance improvement of the proposed method 
(RW(2D)2LDA and W(2D)2LDA) compared with the previous 
method ((2D)2LDA).  

We used the PIE face database for pose, illumination, and 
expression condition tests. This database consists of 41,368 
images of 68 individuals. The PIE database was able to image 
each person under 13 different poses, 43 different illumination 
conditions, and with 4 different expressions. Some sample PIE 
face images are shown in Fig. 6.  

As seen in Fig. 7, the results of this test demonstrate that, for  

Table 1. Result of pose, illumination, and expression test. 

Methods Feature 
dimensions (2D)2LDA W(2D)2LDA RW(2D)2LDA 

1 14.50 13.50 19.50 

2 72.50 75.00 81.00 

3 88.50 89.50 91.50 

4 90.00 94.00 95.50 

5 91.50 95.00 95.00 

6 91.50 95.00 96.50 

7 93.00 95.50 96.50 

8 93.00 95.50 97.00 

9 93.50 96.00 97.50 

10 93.50 96.50 97.00 

 

 
the accuracy of training groups, the RW(2D)2LDA and 
W(2D)2LDA methods can improve the performance of the 
previous (2D)2LDA method. 

The interesting aspect of the RW(2D)2LDA and 
W(2D)2LDA methodologies is that they are more 
computationally efficient than the original formulation of 
(2D)2LDA because they have fewer features and are more 
accurate.  

Table 1 reveals the recognition accuracy obtained by three 
methods when the number of diagonal feature dimensions 
varies from 1 to 10. The W(2D)2LDA and RW(2D)2LDA 
methods can increase the performance by up to 2.10% and 
8.11%, respectively, when compare with the (2D)2LDA. 

3. Facial Scaling and Rotation Condition Test  

Next, we experimentally evaluated our proposed 
RW(2D)2LDA, W(2D)2LDA, and (2D)2LDA methods on well-
known face databases. The first of these is the ORL database. It 
is used to test the performance of face recognition algorithms 
under the condition of minor variation of scaling and rotation.  

The ORL database contains 400 images of 40 individuals. 
These images were captured at different times and have 
different variations including expression (open or closed eyes, 
smiling or not smiling) and facial details (glasses or no glasses). 
The images were taken with a tolerance for some tilting and 
rotation of the face up to 20 degrees. All images are in 
grayscale and normalized to the resolution of pixels and 
histogram equilibrium in the preprocessing step. Some sample 
images from the ORL database are shown in Fig. 8. In our 
experiments, we split the whole database into two equal parts. 
The first five images of each class were used for training, and  
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Fig. 8. Sample images from the ORL database.  

Table 2. Result of scaling and rotation. 

Methods Top recognition Dimensions Running time

(2D)2LDA 98.50 8×8 4.14 

W(2D)2LDA 98.75 7×8 5.26 

RW(2D)2LDA 99.15 6×7 7.85 

 

 

Fig. 9. Sample images from the YALE database.  
 
the rest of the images were used for testing. 

Table 2 compares the three methods in term of their top 
recognition accuracy and gives the corresponding dimensions 
of the feature matrices and running times. It can be found that 
the top recognition accuracy of the original (2D)2LDA method 
is comparable to that of the other methods. This table also 
reveals that the top recognition accuracy of the proposed 
RW(2D)2LDA and W(2D)2LDA methods is significantly 
higher than that of the existing (2D)2LDA method despite the 
RW(2D)2LDA having a reduced feature matrix. Conversely, 
the RW(2D)2LDA and W(2D)2LDA methods consume more 
running time than the (2D)2LDA. 

4. Facial Expression and Lighting Condition Test  

Finally, we compared the proposed RW(2D)2LDA and 
W(2D)2LDA methods with the (2D)2LDA using the YALE 
face database. We tested the performance under the condition 
of minor variations of facial expression and lighting conditions. 
The images are in grayscale with white background and are 
320×243-pixels in size. We used a total of 165 images of 15 
individuals in GIF format. There are 11 images per subject, and 
each image shows a different facial expression or lighting 
configuration. Some sample images from the YALE database  

Table 3. Result of facial expression and lighting conditions. 

Number of training samples per class 
Methods 

2 4 6 8 

(2D)2LDA 86.25 93.60 94.67 96.00 

W(2D)2LDA 87.36 95.00 96.50 98.45 

RW(2D)2LDA 89.57 96.48 97.20 99.40 

 

 
are shown in Fig. 9. 

Table 3 shows the top recognition accuracy under the 
condition of minor variation of facial expression and lighting 
conditions obtained by three methods for varying numbers of 
training samples. The proposed RW(2D)2LDA and 
W(2D)2LDA methods are comparable to the (2D)2LDA 
method in terms of recognition accuracy. 

V. Conclusion 

This paper examined two efficient face recognition methods 
called the weighted (2D)2LDA or W(2D)2LDA, and the 
relevance-weighted (2D)2LDA or RW(2D)2LDA incorporating 
weighted outlier class relationships into the estimation of the 
overall between-class scatter matrix. In the same way, 
relevance-weighted inner class relationships are incorporated 
into the overall within-class scatter matrix to improve the 
performance of the (2D)2LDA method. The experimental 
results have shown that our algorithms can be used under 
various conditions and can achieve better performance 
accuracy than existing methods. 

VI. Future Work 

The proposed RW(2D)2LDA method applies the weighting 
function in the within-class scatter matrix, but the W(2D)2LDA 
method applies the weighting function in the between-class 
scatter matrix. It would be good to combine the proposed 
methods with other methods to improve the performance of the 
(2D)2LDA. However, the effectiveness of kernel-based 
methods has been reported recently. It may be interesting to 
focus on the problem of kernelizing an existing supervised 
Mahalanobis distance, such as the kernelizing Mahalanobis 
distance learning algorithm. Therefore, we plan to apply 
neighborhood component analysis, large margin nearest 
neighbors, and discriminant neighborhood embedding to this 
algorithm. An alternative kernelization framework will also be 
used in the between and within-class scatter matrix in our 
future work. 
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