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ABSTRACT

A capacity expansion planning problem
with buy-or-lease decisions is considered.
Demands for capacity are deterministic and
are given period-dependently at each
period. Capacity additions occur by buying
or leasing a capacity,- and leased capacity at
any period is reconverted to original source
after a fixed length of periods, say, lease
period. All cost functions (buying, leasing
and idle costs) are assumed to be concave.
And shortages of capacity and disposals
are not considered. The properties of an
optimal solution are characterized. This is
then used in a tree search algorithm for the
optimal solution and other two algorithms for
a near-optimal solution are added. And
these algorithms are illustrated with
numerical examples.
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I. INTRODUCTION

In this paper, we consider a capacity expansion
planning model with buy-or-lease decistons.
This model treats a deterministic capacity
expansion planning problem with a finite
horizon of discrete time periods where a capacity
addition plan is found to satisfy the demands for
capacity at minimum cost. Demands are
deterministic and known, but variate in time.
Thus, the decisions are treated as dynamic
variables.

Capacity addition can occur by buying or
leasing a capacity at each time period. The
leased capacity at any time period must be
_reconverted to the original supplier after a fixed
leasing period, say, lease period. And all
demands for capacity are satisfied by buying,
leasing and idle capacity.

It is assumed that all involved cost functions
(buying, leasing and holding cost) are concave.
And capacity shortages and disposals are not
allowed. The objective is to find a plan of timing
and sizing for buying or leasing capacities which
minimizes total (discounted) cost subject to
satisfaction the given one type of demands for
capacity.

Some studies have been done for capacity
expansion planning models for two facility types
with two demand types. For example, Kalotay
(1], Erlenkotter (2], and Fong and Rao (3]
have analyzed capacity expansion planning
problems with two demand types under the
assumption that a converted capacity was
reconverted immediately at the end of each
period. Gascon and Leachman (4] have
developed a dynamic programming algorithm
for production scheduling of time-varying
deterministic demands on a single facility. Dutta
and Lim(5) have adapted a Lagrangian
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relaxation for transmission capacity schedule in
a communication network.

And Several models with two facilities for a
single demand type have been developed. Lee
(6] has considered a dynamic lot-size model
with make-or-buy decisions having constraints
on production and purchase capacities, and Sung
(7] has developed a single-product parallel-
facilities production-planning model, where
demands in each period can be supplied by one
of M facilities or some combination of them.
Kamien and Li (8) have analyzed a dynamic lot-
sizing problem with capacity conversion allowed
to have a restriction on the usable amount of
capacity at each period. Since such production
planning models can be regarded as capacity
expansion planning problems with two facility
types for satisfying one demand type, they are
similar to ours. But they differ from ours in the
sense that a capacity added by leasing is
reconverted after a fixed time period in ours, but
the capacity added by buying operates through
the planning horizon in those production
planning models.

This model can be applied to problems with
construction or subcontract decisions, where
subcontract implies that a certain amount of
demands for capacity is supplied from outside
the system and a subcontract period corresponds
to a lease period. This model may also be useful
for a situation in which demands during a certain
period (lease period) can be satisfied by renting a
certain amount of capacity, and for a manpower
scheduling of employing temporary workers for
a fixed time length of period. And the capacity
can be regarded as an optical fiber, transmission
device (e.g., terminal multiplexer, add/drop
multiplexer, digital cross-connector, etc.), or a
set of optical fibers/transmission devices in a
telecommunication system.
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This paper is organized as follows : In Section
II, we formulate the model. In Section III, we
analyze properties of an optimal solution, upon
which a tree search solution algorithm for an
optimal solution is derived in Section IV. Section
V describes a numerical example. In Section VI,
we suggest two other algorithms for near-
optimal solutions,

Il. MODEL FORMULATION

Let us define some notations as follows :

t =index for a time period, (t=1,2,---,7T+1,
where T is a planning horizon)

x =amount of buying capacity at the beginning
of period ¢

y=amount of leasing capacity at the beginning
of period ¢, let y, =0 if t <0

I, =amount of idle capacity at the beginning of
period ¢

7= lease period which represents a period
interval of leasing capacity at any time
period ¢ and hence being reconverted to
the original source at the beginning of the
period t+7, where 7 is a given positive
integer '

r. = increment of demand for additional
capacity at the beginning of period ¢

Bq(x)) = cost function of buying the capacity x.
at the period ¢

LAy, = cost function of leasing the capacity y.
at the period ¢

H(I...) = holding cost idle capacity at period 7.

Assume that all cost functions are non-
decreasing concave functions and B.(0)=L(0)
<H{(0)=0. .

The objective is to find out the best strategy
which minimizes the associated total cost while
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satisfying all the forecasted capacity demands
during the project horizon T and to decide when
and how much capacity must be expanded. The
problem (denoted by P) can be formulated as
follows:

T
(Py: Min. Y [B(x)+ L(y)+H,(I,)]
1=1

st. I, =1L +X +y—-r—y_, (L.1)
%20, y,20, (1.2)
120, I,=1,, =0, (1.3)

wherer=1,2,....T.

The objective function in (P) minimizes the
associated total discounted cost which consists
of buying, leasing and idle capacity cost.
Constraint (1.1) represents the idle capacity
balance. Non-negative conditions for variables X
y- and I imply that capacity disposals and
shortages are not allowed, and the condition of
I =1, =0 is added without loss of generality.

A network representation of (P) is depicted as
in Fig.1.

Fig.1. A network flow representation of (P)

1. PROPERTIES OF THE OPTIMAL
SOLUTION

Since the constraints (1.1) through (1.3) of
problem (P) form a non-empty convex set and it
is assumed that all cost functions are concave



50 U.G.Joo

functions, an optimal solution for (P) occurs at
an extreme point. Therefore, we will first find
the characteristics of extreme points, and then
characterize optimal solution properties.

The following Theorem 1 characterizes an
extreme point of (P).

Theorem 1

A feasible point of (P) is an extreme point if
and only if the point satisfies the following
conditions:

%1, =0, @1

Yidy = 0, (2‘2)

£y, =0, 23)
1+1-1

%S X r+y) (2.4)

i=1

where r=1,2,...,T.

Proof
The detailed proof procedure is given in the
Appendix. mi

From Theorem 1, we can notice that it is
not necessary to consider a point y, such that

v, = +ET‘I(r +¥..) , for an extreme point, and we
can find the followings:

If x>0, then y=1=0

If 10, then x=y=0

If y=0, then x=I=0
But the values of x,,, and y,,, are affected by the
size of y, if y, is positive.

Define that a time period ¢ is a capacity point if the
idle capacity at the time period ¢is zero, i.e., I=0.

We can derive Corollary 1 from Theorem 1.
This corollary describes a structure of extreme
points at a sub-problem which is a problem of
only t=u,u+1,++, vv+1 for some integers of u
and vl <u<v<T).
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Corollary 1

Let 4 and v+1 are two consecutive capacity
points. Then, for an extreme point, either x, or y,
has only the following positive value with the
corresponding B"(x,,)+L,,(_\',,)+iH,(I,+,) cost;
either x. or y. has the value of i( r+Y.) »and
other variables of x. and y, (t=u+1,"--,v) equal

ZETOES.

Corollary 2 describes which variable should be
positive, by which computational burden will
considerably be reduced in finding an optimal
solution.

Corollary 2
Let Y(r+y.)=a where u and v+l are two
consecutive capacity. points.

If v-uz1, x, =a andy, =0. (3.1)
Ifv-u<tandT-u<7, then (3.2)
x, =a, when B;(a) £ L (a)
y, =a, when B (a) > L (a)
Ifv-u<tandT-u>r1, thenx, =a,
when B,(a) £ L (a)

B.(a+b)~B.(b)+ Y H(a), x,.>0,
+ Min. s
L.(a+b)—L.(b)+ 3 Hla), y,. >0,

where (u',v’'+1) are two consecutive capacity
points such that v+1<u” €u+7T <v" and

b= (L +y_)-aq,
t=u*
and if «" is the last capacity addition point,
theny, =a,
when B (a) > L, (a)
B.(a+b)— B, (b)+ Y H(a), x,.>0,
+Min. P

L.(a+b)~L (b)+ Y H(a). ¥, >0.

f=u*

(3.3)
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The Equation (3.1) derived from Equation (2.4)
in Theorem 1 represents the restriction of the
size of y,, and Equation (3.2) results from the fact
that capacity expansion occurs through the
cheaper facility when v-u<7 and T-u<7. And
Equation (3.3) is derived from the cost
comparison between buying and leasing,

IV. A TREE SEARCH SOLUTION
ALGORITHM

We can notice that the original problem can
not be decomposed into smaller sub-problems
which can be solved individually since the value
of x, and y. affect the amount of capacity addition
after the period ¢. Such a dependency results in
the computation of the value of x. and y. to begin
from period 1 and continue until T,

The computational complexity can be
expressed as follows :

The number of total sub-problems is T(T+1)
and total number of eliminative sub-plans related
to size of y: is (T_—T’(g_-llﬁ.where if 7>T, then
the problem becomes a two-facilities capacity
expansion problem for one demand type. And
there are 2™ possible capacity addition timing
sequences. Thus, it is doubtful for existence of
good algorithm for an optimal solution.

We developed a tree search algorithm using
the concept of Baker er al. (9)’s algorithm.
Baker er al.[9] have developed a tree search
backward procedure for a single item problem
with production capacity restrictions that can
vary with time. We consider a tree structure in
which nodes represent various sub-plans for any
described time intervals, and arcs represent
decompositions according to the last time points
where demands are covered. And because of
sequence dependency, we must adapt forward
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procedure.

Let us define the following notations to
describe the algorithm: '

(4,v:x, y)= numbers in a node which represent
capacity addition sub-plan for
covering demands over the interval
from u to v, where u and v+1 are two
consecutive capacity points; either x.
or y. has the value i(,;+ y,_,), from
Corollary 1

v
R =73 (1 +y_,), where y=0, for i<0
d.= arc cost incurred over the time interval
from u to v;

d, =B(x)+L(»)+ 9 H,). fromCorollary I

1=u

fi=node cost incurred over the interval from 1
to v, ﬁ =ﬁ+du\'.

We now formulate an algorithm for finding an

optimal solution.

Step 1. Set v=0.

Step 2. (1) Set u=v+1.

(2) Compute (u,v:x,y,) according to
Corollary 1, and Equations (3.1) and
(3.2) in Corollary 2, for v=u,u+1,-+-,T.

Step 3. If v=T, go to step 4. Otherwise, go to
Step 2.

Step 4. Compose capacity addition plans
which cover all demands. If there exists
v such that v<T, go to Step 2.
Otherwise, go to Step 5.

Step 5. (1) For each (u,v:x.,y.), test which
variable can be positive according to
Equation (3.3) in Corollary 2, where
either x. or y. can be positive.

(2) Eliminate the plans (i,v:x.,y.) which
can not be an optimal solution
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according to the result of the above test
and corresponding capacity addition
plans.

Step 6. Set fi=0, g=cc and v=0.

Step 7. Set u=v+1.

(1) Branch the node (u,v:x.,y.),(v=u,
u+l, 7).

(2) Calculate d.. and f.,(v=uu+1,---,T).
(3) If f,<f,-and R, <R,, then node (x,v*)
need not be branched further.

(4) If f>g, then this node need not be
considered further,

Step 8. If v=T and fr< g, then set g=fr and go
to Step 9. Otherwise, go to Step 9.

Step 9. If the active list is empty, then stop.
Current g is the optimal objective value
and an optimal plan is the capacity
addition sequence which results in g.
Otherwise, select any active list and go
to Step 7.

The computational load by this algorithm is
heavily dependent on the selection of branching
node, but it is difficult to show which node
selection is the best [10). By the way, we can
apply the newest bound rule for the algorithm
giving an advantage of less cumbersome book-
keeping and greater opportunity to obtain the
bound efficiently.

We illustrate the algorithm with a numerical
example in the next section.

V. A NUMERICAL EXAMPLE

Consider the following 4-periods problem with
7=2 and (n, r, n, r)=(2,1,3,2). Associated cost
functions are given as follows:

Bi(x)=(20+10x)(0.9)"',

Ly)=(15+8y)(0.9)",
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H{1.)=51..(0.9)",

where 1=1,2,3.4.

The objective is to find a capacity addition
plan for buying and leasing capacity at minimum
cost. We will find such a plan according to the
algorithm proposed in Section IV.

We will first find all sub-plans (i, v.x.,y.) to be
considered, according to Steps 1, 2 and 3.

For example, the sub-plan (1,3:xi,y1) is derived
according to Steps | and 2 as follows: either x, or
i has the value i(r, +y,_.=6,Therefore, (1,3:x,,y,)
={(1,3:6,0),(1,3:0,6)}. But (1,3:0,6) is eliminated
by Equation (3.1), since v-u=2=1

And the sub-plan (3,3:3+y,,0) is eliminated by
Equation (3.2), since B(a)>L{a) in the problem,
for any ¢ and a, (a>0). By the similar way, we
can obtain Table 1. And we can obtain all
capacity addition plans to be considered which
are found from Steps 4 and 5, where there are
eliminative plans resulted from Step 5. For
example, plans (y,.=2: x,=1: y;=5: y,=2) and (y,-
=2: y,=1: y;=5: y,=3) are eliminated because B,(2)
=40 < L(2)+[L(5)-Ly(3))=31+19.44 = 50.44, and
the plan (x,=2: xy-=1: y,=3: y,=2) is eliminated
because B,(1)=27 > L(1) + [La(3)-L,(2)]=26.53
and v* =4=T. We will now find an optimal plan
by cost comparisons among uneliminated plans
which resulted from Step 1 through Step 5. Such
cost comparisons are made by a tree structure
search. For example, arc cost of the sub-plan (1,
4:8,0) is B,(8)+H,(6)+H(5)+H3(2) = 160.6 and g
= 160.6 = f,, since v=4=T. Node (3,4:0,5) gives
the arc cost of L;(5)+H;(2)=52.65 and node cost
of fy = fi+dsy = 55+52.65 = 107.65 < 112.62 = g.
Thus, g becomes the current cost f; = 107.65.
And node (1,3:6,0) is disregarded, since f; = 113.
5> g =107.65. By the similar way, we can form
a tree structure as shown in Fig.2 and find the
optimal solution (x,,y, : Xp,V2:X3,Y3:Xs,Ye) = (3,0:0,
0:0,5:0,0), with the objective value of 107.65.
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Table 1. Capacity addition sub-plans

(#,v:x.,y.) | possible capacity addition sub-plans
(Lyvex,y) (1,1:2,0),(1,1:0,2),(1,2:3,0),
(1,2:0,3),(1,3:6,0),(1,4:8,0)
(2,vix,y2) (2,2:1,0),(2,2:0,1),(2,3:44+y,0),
(2,3:0,44y1),(2,4:64+y.,0)
(Bvixys) (3,3:0,3+y1),(3,4:0,5+y1+y2)
(4,v:x4,y4) (4,4:0,2+y2)

1606

11860 B419) 1:B2 1301

12361 11664 10718

11262 (13) ———  denowcs the optimal capacity additian plen

(1,120) 8 (2340) 15 2210
(1,102) 9 (24:60) 16 2201)
(12:30) 10 (3405) 17 (3407
(13:60) 11 (3.3.03) 18 (34:08)
(1.480) 12 (3.406) 19 (3303)
22:10) 13 @403) 0 (3405)
(2201) 14 (4402) 21 4402

~N o m s — iR

Fig. 2. Tree of sub-plans
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V1. ALGORITHMS FOR NEAR-OPTIMAL
SOLUTIONS

Since this model is not solved in polynomial
time, it requires the development of a
heuristically efficient algorithm to find a good
solution. We developed two heuristic algorithms
for near-optimal solutions, where one is a tree
search algorithm which we will call the
simplified tree search algorithm and the other
one is a piecewise linear approximation
approach.

1. SIMPLIFIED TREE SEARCH ALGORITHM

In this heuristic algorithm, we will find a near-
optimal solution by considering only a subset of
extreme points. The basic idea of this heuristic
algorithm is as follows. Construct a sub-optimal
solution by using optimal plans of sub-problems.
For such a solution, the algorithm in Section IV
can be used with some modifications as follows:

Step 1. Setfo=0, g=o0 and v =0,

Step 2. If the active list is empty, then stop.
Current g is a good objective value and
the resulting plan is a capacity addition
sequence associated with g. Otherwise,
select any active list and go to Step 3.

Step 3. Set u=v+1.

(1) Compute (u,v:x.,y.) according to
Corollary 1 and Equation (3.1) in
Corollary 2, v=u,u+1,--,T.
(2) Test (u,v:x.,y.) according to
Equation (3.2.1), not necessary
Equation (3.3) in Corollary 2, where
(3.2.1) is derived as follows:
fv-u<T,
x, =a, when B,(a) £ L (a).
then [yu =a, when B,(a) > L (a).
(3.2.1)

(3) Calculate d,, and f., v=u,u+1,---T.
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(4) Iffi<f, and R,<R,, then node (,v * )
need not be branched further.

(5) If f. > g, then this node need not be
considered further.

Step 4. If v=T and f<g, then set g=fr and go to

Step 2. Otherwise, go to Step 2.

Since this heuristic algorithm always has a
unique candidate at a sub-plan for forming a
good solution, it will reduce the number of
capacity addition sequences to be considered.
Thus we can find a good solution easily. But in
this heuristic algorithm, sequence dependency
exists where the value of d.. changes according
to the previous addition sequence.

To illustrate the heuristic algorithm, we will
reconsider the example given in Section V. We
form the tree structure as given in Fig.3 obtained
from the proposed algorithm.

(1,1:02) (4403)

|

2 (12:03) (2480) 12 3,3:05)
3| (1360 (G305) | 13 | (3408
4 | (1480) G408 | 4 | @402
5| 200 4403)

Fig. 3. Tree structure for capacity addition plans
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For example, the sub-plan (1,1:2,0) is
disregarded at Step 3(2), because Bi(2)=40 > Li(2)
=31, and costs associated with sub-plan (1,1:0,2)
are computed at Step 3(3) such that d,, = L,(2)=31
and fi = 0+d,, = 31. And the sub-plan (1,3:6,0) is
fathomed, since the current value of g=111.15 is
smaller than the value fi'= 113.5, and hence it need
not be branched further. By the similar way, we
can find a good solution such that (x,,y,:x, Y= x;.
Ys:xaya) = (0,3:0,0:0,5:0,2) and the comresponding
costis 111.15 which has 3.25% relative error to
the optimal solution.

2. PIECE-WISE LINEAR APPROXIMATION
APPROACH
In this section, we discuss a piece-wise linear
approximation(relaxation) to the solution for
handling the concave objective function by
adapting a mixed integer programming
technique.
For this purpose, we define the following
notations:
R = number of intervals
r,t = indices for the segment interval and time
period, respectively, where r=1,2,---,R and
=12, T
M, = length of interval r at period ¢
b, L., h, = slopes of interval r at period t at cost
function B(.), L(.) and HY(.), respectively
X Ym I, = decision variables corresponding to
the amount of capacity in interval r at
period ¢ such that

X, = ixﬂ, y, = iyn and /, =2R:ln_
r=1 r=1 r=l

To illustrate this formulation, consider the
concave function, B(x,).

For our problem, x, must satisfy the following
conditions:

If x,> 0, then x, = M,, (i=1,2,---r-1), and

X, <M,.
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These conditions can be mathematically
expressed by introducing O-1 integer variables
U- as follows:

Xn MU, i

M, U.<x,,,

where r=1,2,---.Rand U.=0or 1.

Therefore, for each ¢, B(x) is approximated as
follows:R
B(x)= b,x,, where x, <M, U,, M,, U,<x.,,
and U.=0or 1, forr=12,.,R.

Likewise, the approximation for other
functions, L(y:) and H(I.), can be accomplished.

As the result, the piece-wise linear approx-
imation of the original problem is formulated as
follows:

T R
Min. Y Y (b,x, +1,y, +h,1,,.,]

1=l r=1

R R R R R
S.L. er.lﬂ =Z]rl +2xﬂ +Eyﬂ_’; _Zyl:l»“l'
r=1 r=1 r=1 r=l r=1

X, <M U, M U <x_,
Y. =M, U, M_ U<y,
=M U, M_ U<I_,
x,y, 1,20,

I,=1,=0,

ri o+l T
U,V W,=0or],
where r=1,2,..., Randr=1,2,...T.

The effectiveness of the piecewise linear
approximation technique depends heavily on the
degree of non-linearity to be approximated.
Precision in the approximation increases as the
size of the linear segments decreases. In
principle, the model can be formulated with an
arbitrary number of linear segments, where both
model size and precision of the resulting model
increase with the number of such segments.
Since slopes of incorporated cost functions are
nonincreasing with amounts of capacity, an
efficient approach may require the size of
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segments to be small initially, and then to
increase with amount of capacity.

We must consider, then, how segment sizes
vary as the slopes of cost functions decrease. We
can suggest one way such as doubling the size of
segments sequentially, except for the first
segment, with an identical rate of variation in
slope average [11].

For example, the example problem considered
in Section V is solved by the above approach,
which results in the same optimal solution in
Section V.

The formulation for the example is made with
some modifications to handle set-up cost as shown
below and others are formulated by the above way.
We select R=1 and M, = 31, =8. since this problem
itself has piecewise liné?ilr cost functions for each
time t, and formulate B(x,) and L{y,) as follows:

B(x,)=(20+10x,)(0.9)",

R
=20(0.9)" p, +10(0.9) " Y x,,,

r=1
=20(0.9)"' p, +10(0.9) ' x,, and
L(y,)=(15+8y,)(0.9)",
=15(0.9)"q, +8(0.9)'y,,
where p,, ¢, =0 or 1,
x, <8p,,
Y., £8q, and
r=1,2,3,4.

We can now obtain a Mixed Integer
Programming(MIP) formulation for the given
problem as follows:

4
Mil‘L Z[zo(og)llp, +bl:x|: + 15(0‘9)l-|qt +l|lyll +h1r1|‘r+l]
=1

st 1.,
X“ ES 8Ull. ‘rll < Spl’

¥ <8V, 5, S8,

= 1]1 +x, +yll —n = Yo
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1, <8W,

X, Y, 1, 20,

f,=15=0,

U, V... W,. p,and q, equal to 0 or 1,
wheret=1, 2, 3, 4.

The coefficients of objective functions, b, I«
and hu, are computed as follows:

b, =[B(8)-20(0.9)')/8 = 10(0.9),

I, =(L(8)-15(0.9)~')/8 = 8(0.9)",

h,, =H,(8)/8 = 5(0.9)",

where =1, 2, 3, 4.

Then, we can find a solution for such MIP
problems by using a software available in the
market .

Vil. CONCLUSION

This paper described a deterministic capacity
expansion planning model with buy-or-lease
decisions for one demand type. These decisions
are treated as dynamic variables. The problem
has sequence dependency in decisions. But if 7
=T, then this model becomes a two facilities
capacity expansion planning model without any
sequence dependency as studied by Lee (6] and
Sung (7).

We analyzed the characteristics of an extreme
point such that capacity addition can occur only
at a capacity point and there is a restriction to the
size of leasing capacity for an extreme point. We
showed that this problem can not be solved in
polynomial time, and developed a tree search
forward procedure for an optimal solution. And
two heuristic algorithms for a near-optimal
solution such as a simplified tree search
algorithm and a piecewise linear approximation
approach were added.
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Based on the major contribution of this paper,
the first investigation (mathematical formulation
and characterization of the optimal solution) of
the buy-or-lease capacity expansion situations,
some further researches can be considered. A
problem with integral capacity additions is a
further study subject. And an extension by
allowing capacity disposals and shortages may
be considered. But such models may still have
the sequence dependency of the leased capacity.
Therefore, some efficient heuristic algorithms
need to be developed.

APPENDIX : PROOF FOR THEOREM 1

Proof

First, we will prove "only if" part. Since
problem (P) is a single commodity network
problem, as shown in Fig. 1, each node has at
most one positive input to be an extreme flow
(12). Thus, the Conditions (2.1), (2.2) and (2.3)
are sufficient conditions for an extreme point.
And if Condition (2.4) is not satisfied, then
neither Condition (2.1) nor (2.2) is satisfied for
a feasible solution. Thus, Condition (2.4) must
be satisfied.

Now we will prove “if" part by contraposition.
The proof is accomplished by the following
procedure. Let Z = (X,Y) = (x,p1,02,y2- - X, Vi
xr,yr). Assume that Z = (X,Y) is a feasible but not
an extreme point vector. Then there exist feasible
points Z' and Z* such that

Z2'+7?

Z= NVAEYVAS)

We will show that Z does not satisfy the
Conditions (2.1), (2.2), (2.3) and (2.4).
According to the above procedure, it is sufficient
to consider the following five cases:
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Case (1) Z'=Z+ep-ephy; and Z°=Z-pi+ £,
Case (2) Z'=Z+eps-epy, and Z=Z-gp.+ e,
Case (3) Z'=Z+epa-epy, and Z>=Z- g+,
Case (4) Z'=Z+epy-eps and Z=Z-epy+£psy,
Case (5) Z'=Z+ep,-epy, and Z°=Z-gpy+ £y,

where u., and py, represent a 1 X 2T unit vector in
which i-th elements of X and Y are one and
others equal zero, respectively, i.e.,

H= (ullhu;""’/"é{i—l)’u’;i""”{T) ’
Hy = (/112,.‘17%’---s.uzz(.‘-l)’”gi'-"#iT) ,

where u,,_,, = u3; =1, others equal zeros, and 1 < i<
J = T. First, we will work on Case (1). Assume
that Z is a feasible but not an extreme point, then
there exist feasible points as follows :

Z'=Z+ep,—ep, adZ’' =Z—gp, +eu,
e, Z' =X,y X FE Y X = €, Ve Xy ¥y)

L8 = (XY Xy = € Yeens Xy BV o es Xy, V)

To find feasible conditions of Z' and Z2, denote
idle capacity results given from the plan Z(i=1,
2) by I'. Then, we can derive the followings:

I'=I'=1,for1<t<i,
I'=sL+gand I’ = I +¢, fori+1<r<j,
L'=I'=I,forj+1<:<T+1

Thus, for feasibility of Z' and Z?, we can select
an € (€ >0) such that

£= —;—Min.[x,.,xj, i, e, (1,11

There exists such an € when x =¢e>0, x;>¢
>0 and I. = € >0, for i+1 <r<j. However, xI; +0.
Therefore, the feasible point Z must satisfy
Condition (2.1) so as to be an extreme point.

We now work on Case (2). Assume that Z is a
feasible but not an extreme point. Consider the
following feasible points.

U.G. Joo 57

I 2
Z=Z+eu,—eu, andZ° =Z-¢eu ,+eu
ie, Z' = (X, Vom0 X FE YV~ E Yjrre X Vr)
Z? = (X Yyse -0 X ~E Vs ¥, HE Y Xy, Vr)

The idle capacities of Z' and Z* are derived as
follows:

I'=I'=1, forl1<r<i,
I'=lL+eand I’ = I -¢, fori+1<1<,
I'=sr'=1,forj+1<t<T+1
where T-j < 7.
Note that if T-j >, then I',,=¢ and F,,=-¢.
Thus, it is an infeasible plan.
We can select an € for feasibility of Z' and Z2
such that

£= %Min.[x,.,xj, miqmggj[l,]] >0.

Such an € exists when x> € >0, yi>€ >0 and
=€ >0, (j+1 <t<jand T<j+7).

However, yii==0, which contradicts to Condition
(2.2). Thus, the feasible point Z must satisfy
Condition (2.2) s0 as to be an extreme point.

By the similar way, we can show that Case (3)
contradicts to Condition (2.3) and Case (4)
contradicts to Condition (2.1). Likewise, Case
(5) contradicts to Condition (2.2). Thus,
Conditions (2.1), (2.2) and (2.3) must be
satisfied for an extreme point solution.

It remains to show that Condition (2.4) is a
necessary condition. This is accomplished by
showing that at least one of the Conditions (2.1),
(2.2) and (2.3) are not satisfied for a feasible
solution if the condition (2.4) is not satisfied.
That is to say, if y, = HE:(Jr,. + ¥y, forj>1 and
y=0 (t+1<i<t+7+j), then a capacity addition
must occur at period +71 to satisfy the demand.
But it contradicts to Condition (2.1) or (2.2).
And if there exist at least one i such that y:>0,
(t+1 <i<t+74)), then this point contradicts to
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Condition (2.2), though it need not have a
capacity addition at period 7+7. As a result, the
feasible point Z must satisfy Conditions (2.1), (2.
2), (2.3) and (2.4) so as to be an extreme point.
Thus, the proof is completed.
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