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Several photogrammetric and geographic information
sysem applications such as surface matching, object
recognition, city modeling, environmental monitoring, and
change detection deal with multiple versons of the same
aurface that have been derived from different sources
and/or at different times. Surface regidration is a
necessary procedure prior to the manipulation of these 3D
datasets. Thisneed isalso applicablein the field of medical
imaging, where imaging modalities such as magnetic
resonance imaging (MRI) can provide temporal 3D
imagery for monitoring disease progresson. This paper
will present a general automated surface regigtration
procedure that can establish correspondences between
conjugate surface dements. Experimental results using
light detection and ranging (LIDAR) and MRI data will
verify the feadbility, robustness, and accuracy of this
approach.
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|. Introduction

In generd, regigration is the process of digning overlgoping
datasts 0 thet more information and better inference can be
derived from combined datassts when compared to those
resllting from a sngle source Due to differences in the
acquistion methodologies the involved datassts might have
different geometric and radiomdric characteridics, have
unknown correspondences between conjugate dements, and be
given rdativeto different reference frames Manipulaion of these
types of data should be preceded by having them co-digned
reldive to the same reference frame In other words, accurate
regidration is a necessary procedure for a variety of gpplications
quch as surface metching, pattern recognition, medica image
andysds, environmenta monitoring, and change detection. Thus,
the regigration problem spans sevard resarch fidds wheare
different methodol ogies have been devd oped [1], [2].

With the advances in imaging and computer technologies as
wdl as the higher demand for red-time data processng and
andyds, automatic regidration has become more widdy
employed than traditiond manud techniques In gened,
automatic registration must dedl with four issues: 1) registration
primitives (for example, points, lines and regions) that
represent the involved datasats, 2) a transformation function
that describes the mapping between the reference frames
associaed with the datasats in question; 3) asimilarity measure
that mathematically ensures the correspondence of conjugate
primitives, and 4) a matching sretegy that utilizes the above
componentsto autométicaly solvethe regidtration problem [2].
The choice of primitives, transformation function, smilarity
measure, and maching drategy depends on many factors
induding the nature of the gpplication, data acquistion
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moddlities, inherent distortions and noise, required accuracy,
and available processing and computationd resources.

In the fidds of photogrammetry and remote sensing, accurae
aurface matching drategies are arucid for the regigration of 3D
datesets in severd gpplications such as dty modding, ice sheet
monitoring, change detection, and object recognition. The surface
daa in these gpplications have been traditiondly acquired by
ground-basad, arborne, or space-borne photogrammetric Sensors,
where arich body of postiond and semantic information can be
collected. Recertly, light detection and ranging (LIDAR) systems
have been rapidly emerging as afad, accurate, and cost-effective
technology for aoquiring 3D data representing physcd surfaces
LIDAR sydems are diretly georeferenced using high-end
globd podtioning/inertia navigation sysem (GPS/INS) unitsand
thus can provide direct and accurate 3D coordinates of irregularly
digributed object goace points & high densty. In addition to
postiond data, modern LIDAR sygems can capture intendty
images over the mgpped objects As a result of these advances
LIDAR is bang more extendvedy used in mepping and
geogrgphic  information sysem applications, and can be
combined with photogrammetric sysems to provide
complementary and complete surfeceinformation[3].

The mgority of exising surface matching techniques utilize a
leest squares gpproach that minimizes the distances between
corresponding surface dements to solve for the regigration
problem [4]{7]. Some of these techniques require interpolating
the avalable surfaces into a regular grid where devaion
differences are minimized & correponding pods Surfece
interpolation can induce arors, expedidly when deding with
lage-scde data over urban areas Furthemore, minimizing
devation differences is a vaid matching procedure only when
working with horizontal surfaces [8]. Habib and others [9]
proposed a robust surface matching dgorithm based on the
modified iterated Hough transform (MIHT). In this gpproach,
normd digances, rather than devation differences, between
conjugate surface dements are used to olve the regigration
problem. Ancther gppeding festure of the MIHT is that it can
dmultaneoudy etimate the trandformation parameters rdating
the two surfaces while establishing the correspondence between
conjugate surface dements. In addition, this dgorithm does not
require pre-interpolation of the acquired data. For these reasons,
the MIHT offers some key advantages over other surface
meatching techniques. Hence, the MIHT gpproach isusad in this
research dfter some modification as the surface maching
drategy within the regidtration paradigm. Implementation details
regarding the MIHT will be provided leter in this peper.

Among the available medica imaging moddities, such as X-
ray, ultrasound, and computer tomography, magnetic resonance
imaging (MRI) is becoming widdly accepted and employed in
dinicd and medica research. In contragt to other moddlities,
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MRI dlows grest flexihility in non-invasive acquistion of high
resolution and high contrast images. Moreover, it has no
known adverse effects on human subjects [10]. The nature of
magnetic resonance (MR) is based on the interaction of nuclear
spins of hydrogen protons with magnetic fields. An accurady
cdibrated MR scanner will produce properly scaed 3D daain
the form of many cross-sections. Besides the more familiar
gpplications in vascular, sroke, and functiond imeging, MR
plays an important role in musculoskdetd biomechanics
research such as the monitoring of joint hedth in the presence
of degenerative diseases, for example, ogteoarthritis (OA). OA
is the mogt common form of arthritis, which mainly affects
aticular cartilages and bones of weight-bearing joints such as
knees and hips [11]. Although there is evidence that
biomechanica aggravations, genetic factors, and joint injuries
play arole in the devdopment of OA, the exact pathology is
not wel understood [12]. Therefore, in order to gain more
understanding of OA, it is necessary to study the morphology
and mechanicd properties of cartilages to quantify and anadlyze
joint contact cheracteridtics and assess joint hedth gtatus over
time. For thesetypes of anadlysis, MRI can provide accurate 3D
dataof joint ructuresleading to advancesin the underganding
of OA and its rdaionship to joint biomechanics [12], [13]. For
these andyses, anatomicaly corresponding dements in
tempord daasets have to be identified and compared.
However, within the MR scanner, the subject can be positioned
in multiple ways and a different coordinate sysem is defined
for each set of images. Asareault, it is quite difficult to capture
the same cross-sectiona images at corresponding anatomical
locations. Moreover, diseese progresson might leed to
anatomica changes thus a robugt regidration technique
becomes a necessary prerequiisite for these gpplications[14)].
As reviewed by Antoine Mantz and Viergever [1], many
medica image regidration techniques have been deveoped for
different imaging modalities and gpplications. For the study of
aticular cartilages and degenerdive joint diseases, Sammberger
and others [14] introduced en dadtic regidration technique for
catilage surfaces acquired by MRI to measure loca changesin
catilage thickness over time This method peforms the
meatching by deforming cartilage surfaces, which might pose
problems especidly if degeneraions or changesto these surfaces
took place The authors conduded that locd differences in
catilage thickness of gpproximatdy 1.0 mm can be rdiably
detected using MR imagery with aresolution of 0.31 mm x 0.31
mm x 1.5 mm. Depite the avalability of many registration
techniques more effective regidration methods and daa
visudization are neaded to fully exploit the rich body of
quantitative and quditativeinformation in medica imegery [1].
This paper presents a novd atempt of trandating and
modifying methods, which were initidly developed for
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geographic data, for the accurate regigration of joint surfaces
generated from MRI. Experimentd results from both LIDAR
and MRI data not only confirm the accuracy of the proposed
auface matching and regidration dgorithm, but dso
demongtrateits feasbility and robustnessin registering medica
imagery. The next two sections will provide a detailed
description of the propased dgorithm, which will be followed
by a detaled discusson of the experimentd results from
LIDAR and MRI data Findly, conduding remarks and
recommendationsfor futurework will be presented.

I1. Regigtration Paradigm

This section will explan the four components of the
proposed regidration paradigm: the regigtration primitives,
trandformation function, smilarity messure, and meatching
drategy. Moreover, the rationae behind the choice of specific
paradigm componentswill be discussed.

1. Regidration Primitives

Primitives are the utilized features for representing and
reaing the involved datasets in the regigtration process. For
aurfaces, the most commonly used regidration primitives
include points, lines, and ared paiches. The chosen primitives
depend on the characteridics of the involved data and will
directly influence the mechanics of subsequent components of
the regidration paradigm. The proposed surface matching
dgorithm workswith dataiin its raw formet without the need of
any preprocessing procedures (for example, interpolation).
Therefore, the two surfaces can be represented by irregularly
digtributed point clouds that are not necessarily conjugate, that
is, there is no point-to-point correspondence, and are given
with respect to different reference frames This choice of
primitive is suiteble for LIDAR and MRI data, where fegtures
of interest (for example, terrain, buildings, or bones) are
represented by a doud of randomly distributed points that are
spatidly defined by their 3D coordinates. Since no point-to-
point correspondence can be assumed, points in one of the
aurfaces are further processed to form triangular patches,
smilar to a triangulated irregular network. It should be noted
that since the two datasets are typicaly acquired by the same
sengor, they would exhibit the same data characterigtics (for
example, point dengty), thusthe dgorithm and resultswould not
be affected by the choice of surface presentation for each datasst
(that is, which surface is represented by points and which is by
patches). In other words, deviations between a st of resullts and
those obtained after swapping the representation schemes would
not exceed the noise levd in the implemented data Figure 1
depictsaampleexample of theregidration primitivesused in
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Fig. 1. Regigration primitives for the proposed surface matching
adgorithm: (a) pointsfor S; and (b) triangular patchesfor S,.

the proposed surface matching agorithm: points for one
aurface (S;) and patchesfor the other surfece (S,).

2. Transformation Function

In generd, the involved datasts in a registration problem
might be given rdaive to different reference frames The
trandformation  function describes  the  mathematica
relationship or mapping function between the reference frames
asociaed with the two surfaces More specificdly, the
transformation function maps the primitives from S; onto the
corresponding primitives in S,. The chosen transformation
function for the proposad surface regidretion is 3D Smilarity,
which includes seven parameters three trandations dong the
coordinate axes (X5 Y5 Zj), three rotetions (o, ¢, «), and a
scaefactor (S); refer to (1). These seven parametersrdating S,
and S;are assumed to be unknowns and are solved for as part
of theregigtration problem.

X7 [x, X
Y'|\=|Y [+SxR(w,0,k)| Y |, @
7| |z, z

where, X, ¥, Z arethe coordinates of apoint on thefirst surface,
X, Y, Z ae coordinates of the trandformed point with respect
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to the second surface reference frame, and R isa 3 by 3 matrix
that describes the rotationa relationship between the involved
reference frames.

Thistrandformation isarigid-body and globd transformation,
which means that one sat of transformation parametersis used
to relate the two surfaces. Moreover, such a transformation
asaumes the absence of any deformations between the two
asurfacesthat cannot be modded by arigid-body transformation.
However, the presence of these deformations can be inferred
by evauating the qudity of fit between registered surfaces.

3. Smilarity Messure

The similarity measure mathematically describes the
coincidence of conjugate registration primitives after
performing the appropriate transformation function. The
formulation of the milarity measure depends on the choice of
primitives as wdl asthe utilized transformation function. Since
points and patches are used as the regidration primitives to
describe the involved surfaces (S; and S, respectively), the
smilarity messure should congrain a transformed point, ¢,
from S, to be coplanar with its conjugate patch from S; as
defined by itsverticesp,, ps, and p., asshown in Fig. 2. In other
words, if point ¢ is assumed to beong to a specific surface
patch, the normd distance (d) between ¢ ; whichis obtained by
goplying the appropriate 3D smilarity transformation on ¢, and
the corresponding patch in S, should be zero. This condition is
known as the coplanarity condition and is mathematically
described by (2), which dates that the volume enclosed by a
point and the corresponding paich is zero. If more than seven
conjugate point-paich pars are identified, the transformation
parameters, which are implicitly present in the first row of (2),
can be solved for by satisfying the coplanarity congraints
through a least squares adjusment procedure. It should be
noted that this Smilarity measure reduces the norma distances
between corresponding surface dements rather than reducing

Fig. 2. Coplanarity condition describes the correspondence
between apoint in S; and apatch in S, after performing
a 3D smilarity transformation.

devation differences. Thus, it is vaid for surfaces with any

orientation, which could be the case for large-scde LIDAR
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data and MR imagery. Moreover, the paamges of the
transformation function can be accuratdy solved for only if
aurface patches with varying orientation are avalable. For
example, horizontal surfaces will only dlow for esimating the
shift component in the Z direction, Z;, as well as the rotation
anglesw and .

@

4. Matching Srategy

The maching drategy is an optimization procedure that
utilizes the primitives, trandformation function, and smilarity
mesesure to automate the regidration procedure by establishing
the correspondences between conjugate surface dements aswl
as the parameters of the trandformation function. As previoudy
mentioned, if seven or more conjugate point-patch pairs are
identified, the transformation parameters can be solved for using
the coplanarity condraints as in (2). However, since the
correspondences  between the two surfaces are typicaly
unknown, conjugate point-petch pairs haveto beidentified ether
menudly or automaticdly. Manud identification of conjugate
point-patch pairs is difficult if not impossible, especidly when
conddering the volume of involved datasets. To overcome this
issue, amodified iterated Hough tranform (MIHT) is proposed
& the maching drategy based on a vating scheme to
smultaneoudy establish the correspondences between surface
dementsand solvefor the transformation parameters.

Therole of the voting scheme within the MIHT isto identify
the mogt probable solution for the trandformation parameters
by consdering dl possible matches between pointsin S; and
patchesin S,. To illusgtrate the voting concept, one can consider
any seven points in S; and any seven patches in S,. If each
point is assumed to match one of the patches, the rdaionship
between these pairs can be described by aset of trandformation
parameeas tha results from the solution to the seven
coplanarity congdraints. Ancther seven point-patch pairs can be
chosen to derive ancther st of parameters. If this process is
repested for al possble matches while keeping track of the
derived solutions, correct matches will result in the same
solution for the parameters. Therefore, the voting scheme will
smultaneoudy establish the correspondences  between
conjugate primitives as well as derive an etimate of the
trandformation parameters. To keep track of the reaulting
solutions from the hypothesized matches, a seven-dimensiond
accumulator array is required, where the frequency of each
solution vector in this array is recorded. The correct solution
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will have the highest votes and will manifest itsdf asapesk in
the accumulator aray. However, the ue of a seven
dimensond accumulator array involving a large number of
primitives, while kegping track of possible primitive pairings, is
computetiondly intendve and will eventudly leed to a
combinatoria explosion. To overcomethis problem, the MIHT
approach solves for the parameters sequentiadly and iteratively
by implementing a one-dimensond accumulator array while
condgdering one parameter and one hypothesized matching pair
a atime In other words, the MIHT procedure replaces the
svendimensond accumulator aray with saven one
dimensond accumulator arays Moreover, indead of
condgdering seven matching pairs, the MIHT works with one
sngle matching pair a atime. The following section describes
the proposed automaed surface matching and regigtration
methodology that incorporates the above mentioned
regigtration paradigm components.

[1l. Automated Surface Matching and Regidtration
Methodology

The proposed matching and registration methodology begins
by setting up initial approximations for the unknown
parameters of the trandformation function. Subsequently, one
of the parameters, for example X7, is esimated through a one
dimensiond accumulator array that keeps track of the derived
solutions from al possible hypothesized point-patch pairs
between S; and S,, while conddering the other parameters to
be correct. In other words, the coplanarity condraint resulting
from a hypothesized matching pair will be used to solve for
only one parameter. The accumulator array is a discrete
tesdlation of the expected solution range of the parameter in
quegtion. The cdl dze and range of the accumulator array
depend on the qudity of the gpproximate vaue for the non-
considered parameters. Rough approximations should be
compensated for by alarge range and cdl size. The pesk of the
populated accumulator array will indicate the most probable
solution of the parameter in question, as shown in Fig. 3. The
initid approximation for that parameter is updated with this
peak value. This estimation process is then repeated
sequentidly for each of the remaining parameters. Furthermore,
the procedure for esimating the seven parameters is iterated
while decreasing the cdl Sze of the accumulator array as well
as its extent/range to reflect the improvement in the derived
edtimates of the transformation parameters. In this manner, the
unknown parameters are iteratively solved for in a coarse-to-
fine drategy. The esimated parameters will converge to the
maog probable solution. In other words, when convergence is
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Fig. 3. An accumulator array with the peak indicating the most
probable solution for the parameter in question.

achieved, the edimated parameters will not dgnificantly
change between two successveiterations.

Unfortunately, due to inherent noise in the data acquisition
and possible errorsintroduced by data processing (for example,
feature digitization in MRI and measurement unitsin LIDAR),
the dgorithm might not adways converge The non-
convergence probability will be higher with the increesein the
dengty of the surface points reaching a criticd stage when the
point dendty isalmogt equivadent to thelevd of thenoiseinthe
acquired points. This problem should be expected when
deding with high resolution LIDAR and MRI daa To
overcome this limitation, MIHT is complemented by the
iterative closest point (ICP) procedure [15]. ICP is utilized to
iteratively establish the correspondence between the surface
dements and accurady solve for the seven transformeation
parameters. However, the ICP capability depends on the
qudity of the initid gpproximations. Having rough
gpproximations will most probably lead to the ICP converging
to a locd minimum. In this regard, the combination of the
MIHT and ICP drategiesis optima sincethe MIHT procedure
will ensure the availability of good approximations, which
could be further refined through the 1CP gpproach. Figure 4
shows a comparison of the convergence of the parameter ¢
based on only the MIHT gpproach and the combined
MIHT/ICP gpproach. It is cdear that ICP complements MIHT
and refines the convergence of the parameter.

As the name suggests, using goproximate parameters, the
ICP finds the dosest patch in S; for eech point in S; and
congders them as amatching pair. Using the resulting matches
for the involved points in S, the ICP procedure estimates an
updated solution vector through a leest squares adjustment.
Estimated parameters are then used to derive updated matching
pairs, which are used again to update the solution vector. This
procedure is repeated until convergence where the estimated
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Fig. 4. Convergence for the angle ¢ with (&) the MIHT approach
and (b) the combined MIHT/ICP approach.
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Fig. 5. Matching criterion 1: (a8 shortest norma distance.
Matching criterion 2: (b) projected point is inside and
(c) outside the patch.

parameters do not Sgnificantly change between two successive
iterations. In our implementation of the ICP, asshownin Fg. 5,
a point and a paich are conddered as a matching pair if the
following criteriaare satisfied:
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Shortest normal distance: A point matches a patch when the
normd digance is less than a catain threshold and is d<o the
dhortest digance compared to the other patches. The threshald
vaue depends on the amount of noiseinherent intheinvolved data

Projected point is inside the patch: A point matchesa patch if
its projection onto the patch isingde the polygon defined by its
vertices. The decision of whether the projected point is insde
or outdde the pach is deemined by the number of
intersections a shooting ray from that point makes with the

edges of the patch.

Unmatched points within the | CP procedure can be classified
as changes or blunders In this regard, the combined
MIHT/ICP gpproach is highly robust to changes and outliersin
the involved datasets due to the fact that only matches will be
consdered in the estimation of the transformation parameters.
The qudity of fit between the registered surfaces can be
measured by the variance component resulting from the leasst
squares adjusment procedure. A smdler variance component
indicates a better fit. In addition, the qudity of fit can be
evauated by the root mean squares (RMS) of the normd
distances between the matched point-patch pairs. The RM S of
the normal distances provides ameaningful and direct measure
of the qudity of the regidration outcome. In summary, the
proposed automated surface matching and regidration
procedure can be described by the flow chartin Fig. 6.

As a conduding remark, the proposed dgorithm can be
gpplied to match amdl as well as extended areas. The sze of
the areawill only influence the execution time of the agorithm.
The extent of the involved area of the dataset for matching

Surface 1 Surface 2 Initial approximations for
(points) (patches) transformation parameters

[ I ¢ |
MIHT

3D similarity transformation, coplanarity condition

Updated approximations
ICP
Matching
Established correpondence, identified non-matches
Least squares with matches

Estimated transformation parameters
estimated variance component
estimated RMS of the normal distance

Fig. 6. Automated surface matching and registration algorithm.
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depends on the underlying objectives of the surface matching
procedure. For example, if surface matching is applied for
qudlity control of a LIDAR system, one can maich the entire
region in the overlagp aea beween adjacent dgrips
Alternetively, one can work with a st of smaler and wdl
digributed regions in the overlap area. For change detection
applications, on the other hand, the proposed dgorithm can be
goplied to larger areas For dl these gpplications, it is crucid to
have sufficient surface geometry (that is, variaions in the
surface topogrephy) for accurae edimaions of the
transformation parameters.

IV. Experimental Results

To verify the feashility of the proposed matching and
regidration methodology, severd experiments using LIDAR
and MRI data are conducted. The following sub-sections
describe the involved data in each experiment, the necessary
pre-processing procedures for surface generation, and the
respective results/discussions.

1. LIDAR

In this experiment, the performance of the proposed
regigration dgorithm is checked by the auttomated matching of
two adjacent and overlapping LIDAR srips. The utilized
LIDAR data covers an urban areain Brazil and is given with
respect to the World Geodetic System 1984 (WGS84)
reference frame. This dataset was captured by an OPTECH
ALTM 2050 arborne laser scanner from an average flying
height of 975 m. The point density for these strips is
approximately 2.24 pointgn?, with S, and S; comprised of
22,799 and 44,156 points, regpectively. According to the flight
and sensor specifications, this data is expected to have a
horizontd accuracy of 0.5 m and averticd accuracy of 0.15m.

7183500

7183450

7183400

7183350

7183350

7183300

7183300

678000 678050 678100 678150 678000 678050 '678100 678150

@ (b)

Fig. 7. Overlapping LIDAR range images over an urban area: (a)
Sy and (b) S.
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(b)

Fig. 8. Sections of (@) the first LIDAR surface represented by
44,156 points and (b) the second surface modeled by
45,520 triangular patches.

Figure 7 shows range images of the overlgp area between S,
and S,, whichmainly coversbuildings, vegetation (for example,
trees), roads, and other man-made structures. The 22,799 points
of S, were used to generate 45,520 triangular patches based on
Ddaunay triangulation.

Figure 8 disdlays a closer look at corresponding windows in
these drips. It shows that due to the nature of LIDAR daa
acquidtion, only asmall number of pointswere captured on the
vertica facetsof buildings, the blank areasin Fig. 8(a).

Since the LIDAR drips are given reative to the same
reference frame, WGS34, the trandformation parameters (X
Y5 Z5 o, ¢, x, S) relating these gtrips should assume the vaues
om 0m 0m 0° 0° 0° and 1, regpectively. However, such
vaues will only be vdid if there are no biases in the data
acquisition system. For the MIHT procedure, the cdll sizes for
the accumulator arrays ranged from 1.0 to 0.2 m for the shifts,
0.10 to 0.01 for the scde fector, and 1.0° to 05° for the
rotetions. A distance threshold of 0.5 m was used for the first
matching criterion. Due to the large numbers of points and
patches, the agorithm took approximately 1 day to complete
with a 3.0 GHz computer. Table 1 shows the results from the
automated regigtration of S; and S, using the proposed surface
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Table 1. Initid approximations, expected parameters, estimated transformation parameters, and regigtration results of the LIDAR data

Xr (m) Yr(m) Zr(m) S o (°) 9 (°) x (%)
Initial approximations 3.000 -3.000 3.000 0.900 -3.000 3.000 -3.000
Expected parameters 0.000 0.000 0.000 1.000 0.000 0.000 0.000
Estimated parameters -0.660 -0.367 0.007 1.001 -0.017 0.002 0.003
(* standard deviation) (1.26e-3) (155e-3) (244e3) (2.20e5) (6.40e5) (1.14e-4) (1.80e5)
Estimated variance component 0.122
RMS of the normal distances 0.142m

Fig. 9. Matched (blue) and unmatched-points (red) of the first
surface displayed on an ortho-photo of the target area.

matching dgorithm. As shown in Table 1, the initid
goproximetions are chosen to be dgnificantly different from
the expected vaues to test the performance of the proposed
drategy. The RMS of the normd disances between the
matched point-patch pairs is found to be 0.142 m, which
indicates an accurate regisration, consdering the horizonta
and verticd accuracy of the involved data It is aso important
to note that poor initid gpproximations gill lead to accurate
edimations of the transformation parameters. The deviations of
the esimated transformation parameters from the expected
vauesindicate that some biases do exist between the two strips.
The larger deviations for X7 and Yy might result from bore-
sghting biases between the GPSINS unit and the laser system.
However, these biases are fill withinthe noiseleve inthe data.
In summary, the reported results in Table 1 indicate that there
ae no sgnificant biases between the LIDAR grips, which
cannot be modeled by arigid body transformation.

A quditative analyss of the results can further verify the
accuracy of the registration. In Fg. 9, the matched (blue) and
unmatched (red) pointsin S, are overlaid on top of an ortho-
photo of the target area. The group of unmatched points on the

ETRI Journal, Volume 28, Number 2, April 2006

Fig. 10. Unmatched points (red) are mainly located along building
boundaries and around areas with vegetation.

left edge of the target areais due to a amdl section of a non-
overlapping portion covering S;. Figure 10 shows adoser ook
a a portion of unmatched points within the overlap area. As
can be seen in this figure, the unmatched points are mainly
located adong building boundaries and around arees with
vegetation. Such an observetion is judtified by the fact that
physical surface representation using planar patichesisnot vaid
a building boundaries (where the paiches are formed by
vertices on the ground and building tops) and in vegetation
aress (Where LIDAR rays can penetrate through to reech lower
levels of vegetation or the ground); refer to Fig. 8(b).

To further vaidate the accuracy of the surface matching and
registration agorithm, the esimated transformeation parameters
are compared to those obtained using manudly extracted and
identified conjugate linear festures. Regidration by utilizing
linear festures can provide accurae results as they can be
rdliably and accuratdly extracted from LIDAR data[16].

In a pardld study to this work, 164 conjugeate lines were
extracted from the same LIDAR dgtrips. The extraction of the
linear festures starts with the identification of planar patchesin
each drip. Afterwards, neighboring patches with different
orientation are intersected to produce the linear fegtures. These
festures are then used in a line-based absolute orientation
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Table 2. Transformation parameters derived based on linear features and from surface matching for the LIDAR data.

Registration method X7 (m) Yr (m) Zr (m) S o (°) o (°) x (°)
Linear features and
oo | 088 | o | oo | wow oo | oo oo
¢ smdadevigion) | 298D | (@7%2) | (876D | (30e5 | (229%2 | (3782 | (130e3)
Surface matching -0.660 -0.367 0.007 1.001 -0.017 0.002 0.003
(+ standard deviation) (1.26e-3) (1.55e-3) (2.44e-3) (2.20e-5) (6.40e-5) (1.14e-4) (1.80e-5)

procedure to solve for the transformation parameters between
the dtrips [16]. The edimated transformation parameters from
the line-based absolute orientation are summarized in Table 2,
adong with the results from the surface matching dgorithm. It
can be seen tha the trandformation parameters from both
goproaches are Smilar, especidly when considering the noise
levd in the LIDAR data and the preprocessng procedure for
the derivation of the linear features. Thus, this comparison has
vdidated the accuracy of the proposed surface matching and
regigration agorithm. It should be noted that dthough the
surface regigtration using linear festures can produce accurate
reallts, the presented procedure in this paper is more
advantageous dnce it directly works with the raw LIDAR
point clouds with minima pre-processng. Furthermore, for
aress with a limited number of linear fegtures the presented
goproach will be more appropriate.

The above experiment confirms the feasbility and accuracy
of the proposed surface meatching dgorithm for registering
remotey sensed data. It suggests the presence of some biases
between the LIDAR dgtrips. However these biases are within
thenoiseleve inthe data and therefore their presence could
not be verified. The next section will further demondrate the
feagbility of the same dgorithm for registering anatomica
surfaces based on MRI.

2.MRI

For this experiment, tempora MR imagery of a knee joint
was acquired with a baanced steady-dtate free precession
sequence on a 3-Telsa Generd Electric MR unit located at the
Seaman Family MR Research Centre, Foothills Medica
Centre, Cdgary. The unit is shown in Fig. 11. Ethics gpprova
was obtained from the Conjoint Hedth Research Ethics Board,
University of Cagary, for performing hedlth research on
human subjects. Written informed consent was also obtained
from each subject prior to imaging. The subject’s lower limb
was positioned by a custom-designed loading apparatus inside
the MR scanner gantry [17]. Thefirst st of images of the knee
joint was acquired with the lower limb flexed a a30° angle, as
shown in Fig. 12(a). On the other hand, the second dataset was
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Fig. 11. 3-Telsa GE MR unit used for MR imagery acquisition.

Fig. 12. Subject positioned at (a) a 30° knee flexion angle for the
first dataset, and at (b) 0° (full extension) for the second
dateset.

captured with thelimb a full extension, asshownin Fig. 12(b).
Both datasets contain 36 sagitta images with a 0.625 mm in-
plane resolution (that is, image pixe Sz6) and 3.000 mm
acrossdice resolution (dice thickness). Thus, each image
voxd hasasze of 0.625 mm x 0.625 mm x 3.000 mm. Figure
13illugrates asampleimage dice from each dataset.

To generate 3D surfaces from raw MRI data, points are
manudly digitized dong the bone-cartilage interface of the
femur (thigh bone) for each image dice usng SiceOmatic
software, Tomovision, Canada. The red points in Fig. 13
illugtrate the digitized points dong the femur for those image
dices. These points form contours of the femur surface. The
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Fig. 13. MR image dices from (@) the first dataset with a 30°
knee flexion and (b) the second dataset with the lower
limb at full extension.

(b)

Fig. 14. Sections of (&) the firss MRI surface represented by
15,085 points and of (b) the second surface (reference
surface) modeled by 6,789 triangular patches.

bone surface is assumed to remain rigid at different flexion
angles. It isimportant to note that even if some locd changes
occur aong the bone surface over time, these changes will be
isolated by the proposed a gorithm as non-matches and will not
be included in the least squares solution of the transformation
parameters.

Due to the lower resolution in the acrossdice direction, the
points are dendfied by athin plate spline (TPS) dgorithm [18].
The resampled points in one of the datasets are then used to
generate triangular patches using Delaunay triangulation to
modd the second surface S,. Sections of the involved surfaces

in this experiment after performing the above pre-processing
procedures are shown in Fig. 14, with S; represented by 15,085
points (TPS resampling rate 0.5 mm) and S, modeled by
6,789 triangular patches (TPS resampling rate: 1.0 mm).

For the surface maiching dgorithm, the cdl sizes of the
MIHT procedure ranged from 0.8 mm to 0.5 mm for the shifts,
0.10 to 0.01 for the scde fector, and 1.0° to 05° for the
rotations. A 0.4 mm distance threshold was used for dassifying
matches. The dgorithm took 2 hr 20 min to processusing a3.0
GHz processor. Table 3 summarizes the results from the
registration of the two MR surfaces using the proposed surface
matching dgorithm. Due to the different knee flexion angles
and subject re-podtioning between the dataset acquidtions,
dgnificant trandations and rotations are expected. The
expected true values for these parameters are unknown since
no control markers were used during data acquisition. However,
the scde between these datasets is expected to be 1.0 since
MRI captures the true dimendgons of scanned objects. The
edimated RMS of the normd disances between matched
point-patch pairs turned out to be 0.201 mm. Such a vaue
indicates a high levd of accuracy congidering the resolution of
theinvolved MR images.

A visud digplay of the maiched and unmatched points is
shownin Fig. 15. The unmatched points (red) around the edges
are believed to result from possible errorsintroduced during the
digitization process as wel as discrepancies between the
aurfaces caused by the different re-sampling resolutionsused in
TPS. Since only the bone cartilage interface has been used for
the regigration, it is important to evauate whether this is
aufficient to produce a good aignment of the whole femur.
Such an evaudion is achieved by smultaneoudy displaying
corresponding imege dices after gpplying the etimated
trandformation parameters, as shown in Fg. 16. The
transformed images were then re-sampled so that they fell onto
the same planes as the reference image dices. A doser look at
the mosaicsin Fg. 16 revedsthat even though asmal portion
of the femur is used for the regigtration, corregponding features
from other areas are dso wdl-aligned.

Table 3. Initid approximations, expected true parameters, estimated transformation parameters, and registration results of the MRI data.

Xr (mm) Yr(mm) Zr(mm) S o (%) (%) (%)
Initial approximations 0.000 0.000 0.000 0.900 0.000 0.000 0.000
Expected parameters N/A N/A N/A 1.000 N/A N/A N/A
Estimated parameters 0.770 -0.518 1.049 0.997 -2.088 -9.301 -2.973
(z standard deviation) (1.37e-2) (7.33e-3) (4.85e-3) (2.91e-4) (1.90e-4) (4.99¢e-4) (1.76e-4)
Estimated variance component 0.044
RMS of the normal distances 0.201 mm
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Fig. 15. Coregistered MRI surfaces with the green mesh
representing the reference surface (S,), blue points
representing the matched points, and red points
representing the non-matchesin the first surface (Sy).

Fig. 16. Mosaics showing a good match between the reference
image from the first dataset (background) and its
corresponding image from the second dataset
(foreground/small windows).

V. Conclusions and Future Works

For both photogrammetric and medica imaging applications
deding with data acquired by different moddities and/or a
different times, accurate surface regidration drategies are
essentid. This paper introduced a robust and autometic surface
matching and regidration dgorithm tha can edablish
correspondences between conjugate surface dements while
accuratdy edimating the trandformation parameters. The
proposed gpproach addressed the agppropriate primitives,
trandformation function, smilarity messure, and meatching
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srategy for automated matching and registration of 3D data
The dgorithm is generd enough that it can be gpplied in the
regigration of LIDAR and MR surfaces. The modified iterated
Hough transform (MIHT) is used as the matching Strategy that
evauates the correspondences between conjugate dements
while filtering out discrepancies usng a voting scheme. To
cope with the high point density in the acquired LIDAR and
MR imagery, the MIHT is coupled with the iterdtive closest
point (ICP) procedure to assure the convergence of the
automated regidration process. Experimentd results have
shown the cgpability of the proposed methodology in
accuratdly and robustly digning LIDAR and MR 3D datasets.
The robusness gems from the fact that discrepancies are
filtered out prior to the least squares solution of the unknown
parameters.

For future work, the authors propose to improve the overdl
sysem’s efficiency through the application of the introduced
methodology in a coarse-to-fine Srategy. This can be done by
fird usng a generdized verson of the surfaces to achieve
gpproximate vaues for the transformetion parameters. These
egimates can then be improved by restarting the process with
lessgenerdized versons of the surfaces. This process would
be repested while increasing the resolution and reducing the
MIHT iterations thus reducing the overal execution time.
Anocther future direction of this research isto apply the surface
matching agorithm to awider range of gpplications. Infact, the
dgorithm was gpplied to successfully register data acquired by
acloserange laser system, and this gpplication will be reported
inafuture publication.

In this research, the quality of the automated regidration of
LIDAR strips has been checked by a rdative comparison with
the regidration results from manudly identified linear festures
Also, the presence of biases was identified in the LIDAR data
as deviations were found between the estimated transformetion
parameters and the optimum vaues (zero shifts and rotations).
The future extengon of this application is to investigate and
judtify for theidentified biases, and perform bias compensation.

For the MRI experiment, future research will focus on
vaidating the regidtration accuracy of MRI data. Since a gold
gandard is typicdly unavailable for in vivo human sudies, the
vdidation will be performed by using a cadaver joint (porcine).
Linear control markers (for example, glass tubes) will be
implanted into the joint tissues and used as the regidration
primitives for deriving the trandformation parameers to
vdidate the ones obtaned from the proposed surface
regigration. In addition, fectors that might affect the
regidration accuracy, such as image resolution, digitization,
and surface generdtion, will be identified and ther influence
will be andyzed. Successfully registered MR data will be used
to study joint biomechanics and detect local changes over time
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resulting from disease progresson. Such a study will increase
our understanding of ogeoarthritis and will lead to more
effective gpproaches for the diagnods evduation, and
trestment of patients.
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