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Several photogrammetric and geographic information 
system applications such as surface matching, object 
recognition, city modeling, environmental monitoring, and 
change detection deal with multiple versions of the same 
surface that have been derived from different sources 
and/or at different times. Surface registration is a 
necessary procedure prior to the manipulation of these 3D 
datasets. This need is also applicable in the field of medical 
imaging, where imaging modalities such as magnetic 
resonance imaging (MRI) can provide temporal 3D 
imagery for monitoring disease progression. This paper 
will present a general automated surface registration 
procedure that can establish correspondences between 
conjugate surface elements. Experimental results using 
light detection and ranging (LIDAR) and MRI data will 
verify the feasibility, robustness, and accuracy of this 
approach. 
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I. Introduction 

In general, registration is the process of aligning overlapping 
datasets so that more information and better inference can be 
derived from combined datasets when compared to those 
resulting from a single source. Due to differences in the 
acquisition methodologies, the involved datasets might have 
different geometric and radiometric characteristics, have 
unknown correspondences between conjugate elements, and be 
given relative to different reference frames. Manipulation of these 
types of data should be preceded by having them co-aligned 
relative to the same reference frame. In other words, accurate 
registration is a necessary procedure for a variety of applications 
such as surface matching, pattern recognition, medical image 
analysis, environmental monitoring, and change detection. Thus, 
the registration problem spans several research fields where 
different methodologies have been developed [1], [2]. 

With the advances in imaging and computer technologies as 
well as the higher demand for real-time data processing and 
analysis, automatic registration has become more widely 
employed than traditional manual techniques. In general, 
automatic registration must deal with four issues: 1) registration 
primitives (for example, points, lines, and regions) that 
represent the involved datasets; 2) a transformation function 
that describes the mapping between the reference frames 
associated with the datasets in question; 3) a similarity measure 
that mathematically ensures the correspondence of conjugate 
primitives; and 4) a matching strategy that utilizes the above 
components to automatically solve the registration problem [2]. 
The choice of primitives, transformation function, similarity 
measure, and matching strategy depends on many factors 
including the nature of the application, data acquisition 
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modalities, inherent distortions and noise, required accuracy, 
and available processing and computational resources. 

In the fields of photogrammetry and remote sensing, accurate 
surface matching strategies are crucial for the registration of 3D 
datasets in several applications such as city modeling, ice sheet 
monitoring, change detection, and object recognition. The surface 
data in these applications have been traditionally acquired by 
ground-based, airborne, or space-borne photogrammetric sensors, 
where a rich body of positional and semantic information can be 
collected. Recently, light detection and ranging (LIDAR) systems 
have been rapidly emerging as a fast, accurate, and cost-effective 
technology for acquiring 3D data representing physical surfaces. 
LIDAR systems are directly geo-referenced using high-end 
global positioning/inertial navigation system (GPS/INS) units and 
thus can provide direct and accurate 3D coordinates of irregularly 
distributed object space points at high density. In addition to 
positional data, modern LIDAR systems can capture intensity 
images over the mapped objects. As a result of these advances, 
LIDAR is being more extensively used in mapping and 
geographic information system applications, and can be 
combined with photogrammetric systems to provide 
complementary and complete surface information [3]. 

The majority of existing surface matching techniques utilize a 
least squares approach that minimizes the distances between 
corresponding surface elements to solve for the registration 
problem [4]-[7]. Some of these techniques require interpolating 
the available surfaces into a regular grid where elevation 
differences are minimized at corresponding posts. Surface 
interpolation can induce errors, especially when dealing with 
large-scale data over urban areas. Furthermore, minimizing 
elevation differences is a valid matching procedure only when 
working with horizontal surfaces [8]. Habib and others [9] 
proposed a robust surface matching algorithm based on the 
modified iterated Hough transform (MIHT). In this approach, 
normal distances, rather than elevation differences, between 
conjugate surface elements are used to solve the registration 
problem. Another appealing feature of the MIHT is that it can 
simultaneously estimate the transformation parameters relating 
the two surfaces while establishing the correspondence between 
conjugate surface elements. In addition, this algorithm does not 
require pre-interpolation of the acquired data. For these reasons, 
the MIHT offers some key advantages over other surface 
matching techniques. Hence, the MIHT approach is used in this 
research after some modification as the surface matching 
strategy within the registration paradigm. Implementation details 
regarding the MIHT will be provided later in this paper. 

Among the available medical imaging modalities, such as X-
ray, ultrasound, and computer tomography, magnetic resonance 
imaging (MRI) is becoming widely accepted and employed in 
clinical and medical research. In contrast to other modalities, 

MRI allows great flexibility in non-invasive acquisition of high 
resolution and high contrast images. Moreover, it has no 
known adverse effects on human subjects [10]. The nature of 
magnetic resonance (MR) is based on the interaction of nuclear 
spins of hydrogen protons with magnetic fields. An accurately 
calibrated MR scanner will produce properly scaled 3D data in 
the form of many cross-sections. Besides the more familiar 
applications in vascular, stroke, and functional imaging, MR 
plays an important role in musculoskeletal biomechanics 
research such as the monitoring of joint health in the presence 
of degenerative diseases, for example, osteoarthritis (OA). OA 
is the most common form of arthritis, which mainly affects 
articular cartilages and bones of weight-bearing joints such as 
knees and hips [11]. Although there is evidence that 
biomechanical aggravations, genetic factors, and joint injuries 
play a role in the development of OA, the exact pathology is 
not well understood [12]. Therefore, in order to gain more 
understanding of OA, it is necessary to study the morphology 
and mechanical properties of cartilages to quantify and analyze 
joint contact characteristics and assess joint health status over 
time. For these types of analysis, MRI can provide accurate 3D 
data of joint structures leading to advances in the understanding 
of OA and its relationship to joint biomechanics [12], [13]. For 
these analyses, anatomically corresponding elements in 
temporal datasets have to be identified and compared. 
However, within the MR scanner, the subject can be positioned 
in multiple ways and a different coordinate system is defined 
for each set of images. As a result, it is quite difficult to capture 
the same cross-sectional images at corresponding anatomical 
locations. Moreover, disease progression might lead to 
anatomical changes; thus a robust registration technique 
becomes a necessary prerequisite for these applications [14]. 

As reviewed by Antoine Maintz and Viergever [1], many 
medical image registration techniques have been developed for 
different imaging modalities and applications. For the study of 
articular cartilages and degenerative joint diseases, Stammberger 
and others [14] introduced an elastic registration technique for 
cartilage surfaces acquired by MRI to measure local changes in 
cartilage thickness over time. This method performs the 
matching by deforming cartilage surfaces, which might pose 
problems especially if degenerations or changes to these surfaces 
took place. The authors concluded that local differences in 
cartilage thickness of approximately 1.0 mm can be reliably 
detected using MR imagery with a resolution of 0.31 mm × 0.31 
mm × 1.5 mm. Despite the availability of many registration 
techniques, more effective registration methods and data 
visualization are needed to fully exploit the rich body of 
quantitative and qualitative information in medical imagery [1]. 

This paper presents a novel attempt of translating and 
modifying methods, which were initially developed for 
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geographic data, for the accurate registration of joint surfaces 
generated from MRI. Experimental results from both LIDAR 
and MRI data not only confirm the accuracy of the proposed 
surface matching and registration algorithm, but also 
demonstrate its feasibility and robustness in registering medical 
imagery. The next two sections will provide a detailed 
description of the proposed algorithm, which will be followed 
by a detailed discussion of the experimental results from 
LIDAR and MRI data. Finally, concluding remarks and 
recommendations for future work will be presented. 

II. Registration Paradigm  

This section will explain the four components of the 
proposed registration paradigm: the registration primitives, 
transformation function, similarity measure, and matching 
strategy. Moreover, the rationale behind the choice of specific 
paradigm components will be discussed. 

1. Registration Primitives 

Primitives are the utilized features for representing and 
relating the involved datasets in the registration process. For 
surfaces, the most commonly used registration primitives 
include points, lines, and areal patches. The chosen primitives 
depend on the characteristics of the involved data and will 
directly influence the mechanics of subsequent components of 
the registration paradigm. The proposed surface matching 
algorithm works with data in its raw format without the need of 
any pre-processing procedures (for example, interpolation). 
Therefore, the two surfaces can be represented by irregularly 
distributed point clouds that are not necessarily conjugate, that 
is, there is no point-to-point correspondence, and are given 
with respect to different reference frames. This choice of 
primitive is suitable for LIDAR and MRI data, where features 
of interest (for example, terrain, buildings, or bones) are 
represented by a cloud of randomly distributed points that are 
spatially defined by their 3D coordinates. Since no point-to-
point correspondence can be assumed, points in one of the 
surfaces are further processed to form triangular patches, 
similar to a triangulated irregular network. It should be noted 
that since the two datasets are typically acquired by the same 
sensor, they would exhibit the same data characteristics (for 
example, point density), thus the algorithm and results would not 
be affected by the choice of surface presentation for each dataset 
(that is, which surface is represented by points and which is by 
patches). In other words, deviations between a set of results and 
those obtained after swapping the representation schemes would 
not exceed the noise level in the implemented data. Figure 1 
depicts a simple example of the registration primitives used in 
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Fig. 1. Registration primitives for the proposed surface matching 
algorithm: (a) points for S1 and (b) triangular patches for S2.

(a) 

(b) 

 
 
the proposed surface matching algorithm: points for one 
surface (S1) and patches for the other surface (S2). 

2. Transformation Function 

In general, the involved datasets in a registration problem 
might be given relative to different reference frames. The 
transformation function describes the mathematical 
relationship or mapping function between the reference frames 
associated with the two surfaces. More specifically, the 
transformation function maps the primitives from S1 onto the 
corresponding primitives in S2. The chosen transformation 
function for the proposed surface registration is 3D similarity, 
which includes seven parameters: three translations along the 
coordinate axes (XT, YT, ZT), three rotations (ω, φ, κ), and a 
scale factor (S); refer to (1). These seven parameters relating S1 
and S2 are assumed to be unknowns and are solved for as part 
of the registration problem. 
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where, X, Y, Z are the coordinates of a point on the first surface, 
X′, Y′, Z′ are coordinates of the transformed point with respect 
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to the second surface reference frame, and R is a 3 by 3 matrix 
that describes the rotational relationship between the involved 
reference frames. 

This transformation is a rigid-body and global transformation, 
which means that one set of transformation parameters is used 
to relate the two surfaces. Moreover, such a transformation 
assumes the absence of any deformations between the two 
surfaces that cannot be modeled by a rigid-body transformation. 
However, the presence of these deformations can be inferred 
by evaluating the quality of fit between registered surfaces. 

3. Similarity Measure 

The similarity measure mathematically describes the 
coincidence of conjugate registration primitives after 
performing the appropriate transformation function. The 
formulation of the similarity measure depends on the choice of 
primitives as well as the utilized transformation function. Since 
points and patches are used as the registration primitives to 
describe the involved surfaces (S1 and S2, respectively), the 
similarity measure should constrain a transformed point, q, 
from S1 to be coplanar with its conjugate patch from S2 as 
defined by its vertices pa, pb, and pc, as shown in Fig. 2. In other 
words, if point q is assumed to belong to a specific surface 
patch, the normal distance (d) between q', which is obtained by 
applying the appropriate 3D similarity transformation on q, and 
the corresponding patch in S2 should be zero. This condition is 
known as the coplanarity condition and is mathematically 
described by (2), which states that the volume enclosed by a 
point and the corresponding patch is zero. If more than seven 
conjugate point-patch pairs are identified, the transformation 
parameters, which are implicitly present in the first row of (2), 
can be solved for by satisfying the coplanarity constraints 
through a least squares adjustment procedure. It should be 
noted that this similarity measure reduces the normal distances 
between corresponding surface elements rather than reducing 
 

 

Fig. 2. Coplanarity condition describes the correspondence
between a point in S1 and a patch in S2 after performing
a 3D similarity transformation. 
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elevation differences. Thus, it is valid for surfaces with any 
orientation, which could be the case for large-scale LIDAR 

data and MR imagery. Moreover, the parameters of the 
transformation function can be accurately solved for only if 
surface patches with varying orientation are available. For 
example, horizontal surfaces will only allow for estimating the 
shift component in the Z direction, ZT, as well as the rotation 
angles ω and φ. 
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4. Matching Strategy 

The matching strategy is an optimization procedure that 
utilizes the primitives, transformation function, and similarity 
measure to automate the registration procedure by establishing 
the correspondences between conjugate surface elements as well 
as the parameters of the transformation function. As previously 
mentioned, if seven or more conjugate point-patch pairs are 
identified, the transformation parameters can be solved for using 
the coplanarity constraints as in (2). However, since the 
correspondences between the two surfaces are typically 
unknown, conjugate point-patch pairs have to be identified either 
manually or automatically. Manual identification of conjugate 
point-patch pairs is difficult if not impossible, especially when 
considering the volume of involved datasets. To overcome this 
issue, a modified iterated Hough transform (MIHT) is proposed 
as the matching strategy based on a voting scheme to 
simultaneously establish the correspondences between surface 
elements and solve for the transformation parameters. 

The role of the voting scheme within the MIHT is to identify 
the most probable solution for the transformation parameters 
by considering all possible matches between points in S1 and 
patches in S2. To illustrate the voting concept, one can consider 
any seven points in S1 and any seven patches in S2. If each 
point is assumed to match one of the patches, the relationship 
between these pairs can be described by a set of transformation 
parameters that results from the solution to the seven 
coplanarity constraints. Another seven point-patch pairs can be 
chosen to derive another set of parameters. If this process is 
repeated for all possible matches while keeping track of the 
derived solutions, correct matches will result in the same 
solution for the parameters. Therefore, the voting scheme will 
simultaneously establish the correspondences between 
conjugate primitives as well as derive an estimate of the 
transformation parameters. To keep track of the resulting 
solutions from the hypothesized matches, a seven-dimensional 
accumulator array is required, where the frequency of each 
solution vector in this array is recorded. The correct solution 
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will have the highest votes and will manifest itself as a peak in 
the accumulator array. However, the use of a seven-
dimensional accumulator array involving a large number of 
primitives, while keeping track of possible primitive pairings, is 
computationally intensive and will eventually lead to a 
combinatorial explosion. To overcome this problem, the MIHT 
approach solves for the parameters sequentially and iteratively 
by implementing a one-dimensional accumulator array while 
considering one parameter and one hypothesized matching pair 
at a time. In other words, the MIHT procedure replaces the 
seven-dimensional accumulator array with seven one-
dimensional accumulator arrays. Moreover, instead of 
considering seven matching pairs, the MIHT works with one 
single matching pair at a time. The following section describes 
the proposed automated surface matching and registration 
methodology that incorporates the above mentioned 
registration paradigm components. 

III. Automated Surface Matching and Registration 
Methodology 

The proposed matching and registration methodology begins 
by setting up initial approximations for the unknown 
parameters of the transformation function. Subsequently, one 
of the parameters, for example XT, is estimated through a one 
dimensional accumulator array that keeps track of the derived 
solutions from all possible hypothesized point-patch pairs 
between S1 and S2, while considering the other parameters to 
be correct. In other words, the coplanarity constraint resulting 
from a hypothesized matching pair will be used to solve for 
only one parameter. The accumulator array is a discrete 
tessellation of the expected solution range of the parameter in 
question. The cell size and range of the accumulator array 
depend on the quality of the approximate value for the non-
considered parameters. Rough approximations should be 
compensated for by a large range and cell size. The peak of the 
populated accumulator array will indicate the most probable 
solution of the parameter in question, as shown in Fig. 3. The 
initial approximation for that parameter is updated with this 
peak value. This estimation process is then repeated 
sequentially for each of the remaining parameters. Furthermore, 
the procedure for estimating the seven parameters is iterated 
while decreasing the cell size of the accumulator array as well 
as its extent/range to reflect the improvement in the derived 
estimates of the transformation parameters. In this manner, the 
unknown parameters are iteratively solved for in a coarse-to-
fine strategy. The estimated parameters will converge to the 
most probable solution. In other words, when convergence is  

 

Fig. 3. An accumulator array with the peak indicating the most 
probable solution for the parameter in question. 
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achieved, the estimated parameters will not significantly 
change between two successive iterations. 

Unfortunately, due to inherent noise in the data acquisition 
and possible errors introduced by data processing (for example, 
feature digitization in MRI and measurement units in LIDAR), 
the algorithm might not always converge. The non-
convergence probability will be higher with the increase in the 
density of the surface points reaching a critical stage when the 
point density is almost equivalent to the level of the noise in the 
acquired points. This problem should be expected when 
dealing with high resolution LIDAR and MRI data. To 
overcome this limitation, MIHT is complemented by the 
iterative closest point (ICP) procedure [15]. ICP is utilized to 
iteratively establish the correspondence between the surface 
elements and accurately solve for the seven transformation 
parameters. However, the ICP capability depends on the 
quality of the initial approximations. Having rough 
approximations will most probably lead to the ICP converging 
to a local minimum. In this regard, the combination of the 
MIHT and ICP strategies is optimal since the MIHT procedure 
will ensure the availability of good approximations, which 
could be further refined through the ICP approach. Figure 4 
shows a comparison of the convergence of the parameter φ 
based on only the MIHT approach and the combined 
MIHT/ICP approach. It is clear that ICP complements MIHT 
and refines the convergence of the parameter. 

As the name suggests, using approximate parameters, the 
ICP finds the closest patch in S2 for each point in S1 and 
considers them as a matching pair. Using the resulting matches 
for the involved points in S1, the ICP procedure estimates an 
updated solution vector through a least squares adjustment. 
Estimated parameters are then used to derive updated matching 
pairs, which are used again to update the solution vector. This 
procedure is repeated until convergence where the estimated  
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Fig. 4. Convergence for the angle φ with (a) the MIHT approach 
and (b) the combined MIHT/ICP approach. 
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Fig. 5. Matching criterion 1: (a) shortest normal distance.
Matching criterion 2: (b) projected point is inside and
(c) outside the patch. 
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parameters do not significantly change between two successive 
iterations. In our implementation of the ICP, as shown in Fig. 5, 
a point and a patch are considered as a matching pair if the 
following criteria are satisfied: 

Shortest normal distance: A point matches a patch when the 
normal distance is less than a certain threshold and is also the 
shortest distance compared to the other patches. The threshold 
value depends on the amount of noise inherent in the involved data. 

Projected point is inside the patch: A point matches a patch if 
its projection onto the patch is inside the polygon defined by its 
vertices. The decision of whether the projected point is inside 
or outside the patch is determined by the number of 
intersections a shooting ray from that point makes with the 
edges of the patch. 

Unmatched points within the ICP procedure can be classified 
as changes or blunders. In this regard, the combined 
MIHT/ICP approach is highly robust to changes and outliers in 
the involved datasets due to the fact that only matches will be 
considered in the estimation of the transformation parameters. 
The quality of fit between the registered surfaces can be 
measured by the variance component resulting from the least 
squares adjustment procedure. A smaller variance component 
indicates a better fit. In addition, the quality of fit can be 
evaluated by the root mean squares (RMS) of the normal 
distances between the matched point-patch pairs. The RMS of 
the normal distances provides a meaningful and direct measure 
of the quality of the registration outcome. In summary, the 
proposed automated surface matching and registration 
procedure can be described by the flow chart in Fig. 6. 

As a concluding remark, the proposed algorithm can be 
applied to match small as well as extended areas. The size of 
the area will only influence the execution time of the algorithm. 
The extent of the involved area of the dataset for matching 
 

 

Fig. 6. Automated surface matching and registration algorithm.
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depends on the underlying objectives of the surface matching 
procedure. For example, if surface matching is applied for 
quality control of a LIDAR system, one can match the entire 
region in the overlap area between adjacent strips.  
Alternatively, one can work with a set of smaller and well 
distributed regions in the overlap area. For change detection 
applications, on the other hand, the proposed algorithm can be 
applied to larger areas. For all these applications, it is crucial to 
have sufficient surface geometry (that is, variations in the 
surface topography) for accurate estimations of the 
transformation parameters.  

IV. Experimental Results 

To verify the feasibility of the proposed matching and 
registration methodology, several experiments using LIDAR 
and MRI data are conducted. The following sub-sections 
describe the involved data in each experiment, the necessary 
pre-processing procedures for surface generation, and the 
respective results/discussions. 

1. LIDAR 

In this experiment, the performance of the proposed 
registration algorithm is checked by the automated matching of 
two adjacent and overlapping LIDAR strips. The utilized 
LIDAR data covers an urban area in Brazil and is given with 
respect to the World Geodetic System 1984 (WGS84) 
reference frame. This dataset was captured by an OPTECH 
ALTM 2050 airborne laser scanner from an average flying 
height of 975 m. The point density for these strips is 
approximately 2.24 points/m2, with S2 and S1 comprised of 
22,799 and 44,156 points, respectively. According to the flight 
and sensor specifications, this data is expected to have a 
horizontal accuracy of 0.5 m and a vertical accuracy of 0.15 m.  
 

 

Fig. 7. Overlapping LIDAR range images over an urban area: (a)
S1 and (b) S2. 
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Fig. 8. Sections of (a) the first LIDAR surface represented by 
44,156 points and (b) the second surface modeled by 
45,520 triangular patches. 
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Figure 7 shows range images of the overlap area between S1 

and S2, which mainly covers buildings, vegetation (for example, 
trees), roads, and other man-made structures. The 22,799 points 
of S2 were used to generate 45,520 triangular patches based on 
Delaunay triangulation. 

Figure 8 displays a closer look at corresponding windows in 
these strips. It shows that due to the nature of LIDAR data 
acquisition, only a small number of points were captured on the 
vertical facets of buildings, the blank areas in Fig. 8(a). 

Since the LIDAR strips are given relative to the same 
reference frame, WGS84, the transformation parameters (XT, 
YT, ZT, ω, φ, κ, S) relating these strips should assume the values 
0 m, 0 m, 0 m, 0°, 0°, 0°, and 1, respectively. However, such 
values will only be valid if there are no biases in the data 
acquisition system. For the MIHT procedure, the cell sizes for 
the accumulator arrays ranged from 1.0 to 0.2 m for the shifts, 
0.10 to 0.01 for the scale factor, and 1.0° to 0.5° for the 
rotations. A distance threshold of 0.5 m was used for the first 
matching criterion. Due to the large numbers of points and 
patches, the algorithm took approximately 1 day to complete 
with a 3.0 GHz computer. Table 1 shows the results from the 
automated registration of S1 and S2 using the proposed surface  
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Table 1. Initial approximations, expected parameters, estimated transformation parameters, and registration results of the LIDAR data. 

 XT (m) YT (m) ZT (m) S ω (°) φ (°) κ (°) 

Initial approximations 3.000 -3.000 3.000 0.900 -3.000 3.000 -3.000 

Expected parameters 0.000 0.000 0.000 1.000 0.000 0.000 0.000 
Estimated parameters  
(± standard deviation) 

-0.660 
(1.26e-3) 

-0.367 
(1.55e-3) 

0.007 
(2.44e-3) 

1.001 
(2.20e-5) 

-0.017 
(6.40e-5) 

0.002 
(1.14e-4) 

0.003 
(1.80e-5) 

Estimated variance component 0.122 

RMS of the normal distances 0.142 m 

 

 

Fig. 9. Matched (blue) and unmatched-points (red) of the first
surface displayed on an ortho-photo of the target area.  

 
matching algorithm. As shown in Table 1, the initial 
approximations are chosen to be significantly different from 
the expected values to test the performance of the proposed 
strategy. The RMS of the normal distances between the 
matched point-patch pairs is found to be 0.142 m, which 
indicates an accurate registration, considering the horizontal 
and vertical accuracy of the involved data. It is also important 
to note that poor initial approximations still lead to accurate 
estimations of the transformation parameters. The deviations of 
the estimated transformation parameters from the expected 
values indicate that some biases do exist between the two strips. 
The larger deviations for XT and YT might result from bore-
sighting biases between the GPS/INS unit and the laser system. 
However, these biases are still within the noise level in the data. 
In summary, the reported results in Table 1 indicate that there 
are no significant biases between the LIDAR strips, which 
cannot be modeled by a rigid body transformation. 

A qualitative analysis of the results can further verify the 
accuracy of the registration. In Fig. 9, the matched (blue) and 
unmatched (red) points in S1 are overlaid on top of an ortho-
photo of the target area. The group of unmatched points on the  

Fig. 10. Unmatched points (red) are mainly located along building 
boundaries and around areas with vegetation.  

 
left edge of the target area is due to a small section of a non-
overlapping portion covering S1. Figure 10 shows a closer look 
at a portion of unmatched points within the overlap area. As 
can be seen in this figure, the unmatched points are mainly 
located along building boundaries and around areas with 
vegetation. Such an observation is justified by the fact that 
physical surface representation using planar patches is not valid 
at building boundaries (where the patches are formed by 
vertices on the ground and building tops) and in vegetation 
areas (where LIDAR rays can penetrate through to reach lower 
levels of vegetation or the ground); refer to Fig. 8(b). 

To further validate the accuracy of the surface matching and 
registration algorithm, the estimated transformation parameters 
are compared to those obtained using manually extracted and 
identified conjugate linear features. Registration by utilizing 
linear features can provide accurate results as they can be 
reliably and accurately extracted from LIDAR data [16]. 

In a parallel study to this work, 164 conjugate lines were 
extracted from the same LIDAR strips. The extraction of the 
linear features starts with the identification of planar patches in 
each strip. Afterwards, neighboring patches with different 
orientation are intersected to produce the linear features. These 
features are then used in a line-based absolute orientation  
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Table 2. Transformation parameters derived based on linear features and from surface matching for the LIDAR data. 

Registration method XT (m) YT (m) ZT (m) S ω (°) φ (°) κ (°) 
Linear features and 
absolute orientation 

(± standard deviation) 

-0.418 
(2.98e-2) 

-0.209 
(2.79e-2) 

-0.019 
(7.87e-2) 

1.000 
(2.30e-5) 

-0.010 
(2.29e-2) 

0.017 
(3.78e-2) 

0.003 
(1.30e-3) 

Surface matching 
(± standard deviation) 

-0.660 
(1.26e-3) 

-0.367 
(1.55e-3) 

0.007 
(2.44e-3) 

1.001 
(2.20e-5) 

-0.017 
(6.40e-5) 

0.002 
(1.14e-4) 

0.003 
(1.80e-5) 

 

procedure to solve for the transformation parameters between 
the strips [16]. The estimated transformation parameters from 
the line-based absolute orientation are summarized in Table 2, 
along with the results from the surface matching algorithm. It 
can be seen that the transformation parameters from both 
approaches are similar, especially when considering the noise 
level in the LIDAR data and the preprocessing procedure for 
the derivation of the linear features. Thus, this comparison has 
validated the accuracy of the proposed surface matching and 
registration algorithm. It should be noted that although the 
surface registration using linear features can produce accurate 
results, the presented procedure in this paper is more 
advantageous since it directly works with the raw LIDAR 
point clouds with minimal pre-processing. Furthermore, for 
areas with a limited number of linear features, the presented 
approach will be more appropriate. 

The above experiment confirms the feasibility and accuracy 
of the proposed surface matching algorithm for registering 
remotely sensed data. It suggests the presence of some biases 
between the LIDAR strips. However these biases are within 
the noise level in the  data and therefore their presence could 
not be verified. The next section will further demonstrate the 
feasibility of the same algorithm for registering anatomical 
surfaces based on MRI. 

2. MRI 

For this experiment, temporal MR imagery of a knee joint 
was acquired with a balanced steady-state free precession 
sequence on a 3-Telsa General Electric MR unit located at the 
Seaman Family MR Research Centre, Foothills Medical 
Centre, Calgary. The unit is shown in Fig. 11. Ethics approval 
was obtained from the Conjoint Health Research Ethics Board, 
University of Calgary, for performing health research on 
human subjects. Written informed consent was also obtained 
from each subject prior to imaging. The subject’s lower limb 
was positioned by a custom-designed loading apparatus inside 
the MR scanner gantry [17]. The first set of images of the knee 
joint was acquired with the lower limb flexed at a 30° angle, as 
shown in Fig. 12(a). On the other hand, the second dataset was  

Fig. 11. 3-Telsa GE MR unit used for MR imagery acquisition.  
 

 

Fig. 12. Subject positioned at (a) a 30° knee flexion angle for the 
first dataset, and at (b) 0° (full extension) for the second 
dataset.

30° 

(a) 

(b) 

 
 
captured with the limb at full extension, as shown in Fig. 12(b). 
Both datasets contain 36 sagittal images with a 0.625 mm in-
plane resolution (that is, image pixel size) and 3.000 mm 
across-slice resolution (slice thickness). Thus, each image 
voxel has a size of 0.625 mm × 0.625 mm × 3.000 mm. Figure 
13 illustrates a sample image slice from each dataset.  

To generate 3D surfaces from raw MRI data, points are 
manually digitized along the bone-cartilage interface of the 
femur (thigh bone) for each image slice using SliceOmatic 
software, Tomovision, Canada. The red points in Fig. 13 
illustrate the digitized points along the femur for those image 
slices. These points form contours of the femur surface. The  
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Fig. 13. MR image slices from (a) the first dataset with a 30°
knee flexion and (b) the second dataset with the lower
limb at full extension. 

(a) (b) 

 
 

 

Fig. 14. Sections of (a) the first MRI surface represented by
15,085 points and of (b) the second surface (reference
surface) modeled by 6,789 triangular patches. 

(a) (b) 

 
 
bone surface is assumed to remain rigid at different flexion 
angles. It is important to note that even if some local changes 
occur along the bone surface over time, these changes will be 
isolated by the proposed algorithm as non-matches and will not 
be included in the least squares solution of the transformation 
parameters. 

Due to the lower resolution in the across-slice direction, the 
points are densified by a thin plate spline (TPS) algorithm [18]. 
The resampled points in one of the datasets are then used to 
generate triangular patches using Delaunay triangulation to 
model the second surface S2. Sections of the involved surfaces 
 

in this experiment after performing the above pre-processing 
procedures are shown in Fig. 14, with S1 represented by 15,085 
points (TPS resampling rate: 0.5 mm) and S2 modeled by 
6,789 triangular patches (TPS resampling rate: 1.0 mm). 

For the surface matching algorithm, the cell sizes of the 
MIHT procedure ranged from 0.8 mm to 0.5 mm for the shifts, 
0.10 to 0.01 for the scale factor, and 1.0° to 0.5° for the 
rotations. A 0.4 mm distance threshold was used for classifying 
matches. The algorithm took 2 hr 20 min to process using a 3.0 
GHz processor. Table 3 summarizes the results from the 
registration of the two MR surfaces using the proposed surface 
matching algorithm. Due to the different knee flexion angles 
and subject re-positioning between the dataset acquisitions, 
significant translations and rotations are expected. The 
expected true values for these parameters are unknown since 
no control markers were used during data acquisition. However, 
the scale between these datasets is expected to be 1.0 since 
MRI captures the true dimensions of scanned objects. The 
estimated RMS of the normal distances between matched 
point-patch pairs turned out to be 0.201 mm. Such a value 
indicates a high level of accuracy considering the resolution of 
the involved MR images. 

A visual display of the matched and unmatched points is 
shown in Fig. 15. The unmatched points (red) around the edges 
are believed to result from possible errors introduced during the 
digitization process as well as discrepancies between the 
surfaces caused by the different re-sampling resolutions used in 
TPS. Since only the bone cartilage interface has been used for 
the registration, it is important to evaluate whether this is 
sufficient to produce a good alignment of the whole femur. 
Such an evaluation is achieved by simultaneously displaying 
corresponding image slices after applying the estimated 
transformation parameters, as shown in Fig. 16. The 
transformed images were then re-sampled so that they fell onto 
the same planes as the reference image slices. A closer look at 
the mosaics in Fig. 16 reveals that even though a small portion 
of the femur is used for the registration, corresponding features 
from other areas are also well-aligned. 
 

Table 3. Initial approximations, expected true parameters, estimated transformation parameters, and registration results of the MRI data. 

 XT (mm) YT (mm) ZT (mm) S ω (°) φ (°) κ (°) 

Initial approximations 0.000 0.000 0.000 0.900 0.000 0.000 0.000 

Expected parameters N/A N/A N/A 1.000 N/A N/A N/A 
Estimated parameters 
(± standard deviation) 

0.770 
(1.37e-2) 

-0.518 
(7.33e-3) 

1.049 
(4.85e-3) 

0.997 
(2.91e-4) 

-2.088 
(1.90e-4) 

-9.301 
(4.99e-4) 

-2.973 
(1.76e-4) 

Estimated variance component 0.044 

RMS of the normal distances 0.201 mm 
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Fig. 15. Co-registered MRI surfaces with the green mesh
representing the reference surface (S2), blue points
representing the matched points, and red points
representing the non-matches in the first surface (S1).  

 

Fig. 16. Mosaics showing a good match between the reference
image from the first dataset (background) and its
corresponding image from the second dataset
(foreground/small windows).  

V. Conclusions and Future Works 

For both photogrammetric and medical imaging applications 
dealing with data acquired by different modalities and/or at 
different times, accurate surface registration strategies are 
essential. This paper introduced a robust and automatic surface 
matching and registration algorithm that can establish 
correspondences between conjugate surface elements while 
accurately estimating the transformation parameters. The 
proposed approach addressed the appropriate primitives, 
transformation function, similarity measure, and matching 

strategy for automated matching and registration of 3D data. 
The algorithm is general enough that it can be applied in the 
registration of LIDAR and MR surfaces. The modified iterated 
Hough transform (MIHT) is used as the matching strategy that 
evaluates the correspondences between conjugate elements 
while filtering out discrepancies using a voting scheme. To 
cope with the high point density in the acquired LIDAR and 
MR imagery, the MIHT is coupled with the iterative closest 
point (ICP) procedure to assure the convergence of the 
automated registration process. Experimental results have 
shown the capability of the proposed methodology in 
accurately and robustly aligning LIDAR and MR 3D datasets. 
The robustness stems from the fact that discrepancies are 
filtered out prior to the least squares solution of the unknown 
parameters. 

For future work, the authors propose to improve the overall 
system’s efficiency through the application of the introduced 
methodology in a coarse-to-fine strategy. This can be done by 
first using a generalized version of the surfaces to achieve 
approximate values for the transformation parameters. These 
estimates can then be improved by restarting the process with 
less-generalized versions of the surfaces. This process would 
be repeated while increasing the resolution and reducing the 
MIHT iterations thus reducing the overall execution time. 
Another future direction of this research is to apply the surface 
matching algorithm to a wider range of applications. In fact, the 
algorithm was applied to successfully register data acquired by 
a close-range laser system, and this application will be reported 
in a future publication. 

In this research, the quality of the automated registration of 
LIDAR strips has been checked by a relative comparison with 
the registration results from manually identified linear features. 
Also, the presence of biases was identified in the LIDAR data 
as deviations were found between the estimated transformation 
parameters and the optimum values (zero shifts and rotations). 
The future extension of this application is to investigate and 
justify for the identified biases, and perform bias compensation. 

For the MRI experiment, future research will focus on 
validating the registration accuracy of MRI data. Since a gold 
standard is typically unavailable for in vivo human studies, the 
validation will be performed by using a cadaver joint (porcine). 
Linear control markers (for example, glass tubes) will be 
implanted into the joint tissues and used as the registration 
primitives for deriving the transformation parameters to 
validate the ones obtained from the proposed surface 
registration. In addition, factors that might affect the 
registration accuracy, such as image resolution, digitization, 
and surface generation, will be identified and their influence 
will be analyzed. Successfully registered MR data will be used 
to study joint biomechanics and detect local changes over time 
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resulting from disease progression. Such a study will increase 
our understanding of osteoarthritis and will lead to more 
effective approaches for the diagnosis, evaluation, and 
treatment of patients. 
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