
470 Chang-Sik Cho et al. © 2011 ETRI Journal, Volume 33, Number 3, June 2011

In this letter, we propose blackbox and scenario-based
testing of multiplayer online games as well as simple load
testing. Game testing is done from outside the source code, and
the access to the source code is not required to testers because
the game logic is described with a game description language
and virtual game map. Instead of using a subset of the main
game client for the test client, only game packet protocols and
the sequence of packets are analyzed for new game testing. In
addition, complex and various scenarios can be tested through
combining defined actions. Scenario-based testing helps testers
mimic real testing environments instead of doing simple load
testing and improves the productivity of game testing.

Keywords: Multiplayer online game testing, load test,
massive virtual users, blackbox testing, scenario-based testing,
game description language, virtual game map.

I. Introduction
A massively multiplayer online game (MMOG) is a

multiplayer video game that can be played via a game server
over the Internet with players from around the world. In an
MMOG, large numbers of players enter a single virtual world
concurrently and interact with each other [1]. World of
Warcraft [2] is the most representative of MMOGs.

MMOGs are deployed using a client-server system
architecture and can actually be run on multiple servers. The
stability and performance of game servers have become major
issues in online games because the servers must be able to
handle and verify a large number of connections. To meet such

Manuscript received May 18, 2010; revised Nov. 3, 2010; accepted Nov. 29, 2010.
Chang-Sik Cho (phone: +82 42 860 5942, email: cscho@etri.re.kr), Dong-Chun Lee (email:

bluepine@etri.re.kr), Kang-Min Sohn (email: sogarian@etri.re.kr), and Chang-Joon Park
(email: chjpark@etri.re.kr) are with the Contents Research Division, ETRI, Daejeon, Rep. of
Korea.

Ji-Hoon Kang (email: jhkang@cnu.ac.kr) is with the Computer Engineering Department,
Chungnam National University, Daejeon, Rep. of Korea.

doi:10.4218/etrij.11.0210.0172

requirements for game servers, many testers are involved in
game testing, and a large number of game players actually
participate in beta testing before a game is deployed. In order to
reduce such testing time by emulating server loads, testing
automation has been used [3], [4].

Traditional server load testing technologies, such as
LoadRunner [5] and QALoad [6], have been applied to online
game testing. They can emulate hundreds or thousands of
concurrent users by reusing captured packets, and this helps
reduce the costs and time required to test and deploy new
applications. However, various game actions cannot be easily
simulated by simply and partly modifying the game packets of
an actual player because an online game server employs
complicated logic compared with a general server application
[7]-[9].

Thus, The Sims Online (TSO) automation [10] and the
Virtual Environment Network User Simulator (VENUS)
system [11] used a virtual client engine with a subset of actual
game clients. The TSO team used a subset of the main game
client to create a test client in which the graphical user
interfaces (GUIs) are mimicked via a script-driven control
system. Also, the VENUS system used dummy game clients
created using the VENUS Software Development Kit. Both
TSO automation and the VENUS system have saved many
person-hours, leading to better game quality, and have been
more efficient than manual testing. However, they both have
some weak points.

First, the VENUS system and TSO automation are whitebox
approaches [3], which require access to the source code of the
game client for the test client code. Although using an existing
game client has minimized the need to create new codes, the
test client code should be rewritten for new game testing.
Game testers typically do not read the game code, and
blackbox testing is the most cost-effective way to test the

Blackbox and Scenario-Based Testing of Online
Games Using Game Description Language

Chang-Sik Cho, Dong-Chun Lee, Kang-Min Sohn, Chang-Joon Park, and Ji-Hoon Kang

ETRI Journal, Volume 33, Number 3, June 2011 Chang-Sik Cho et al. 471

extremely complex network of system [3]. Thus, the testers are
required to test games without access to the game source code.

Second, the VENUS system and TSO automation do not
support scenario-based testing. Their testing has been achieved
using the unit of the simple command script. Although both
have provided more flexible testing actions compared with
traditional server load testing technology, it is difficult for them
to test interactive actions such as multiuser collaborative play.
Complex and varying test scenarios, such as party play and
waypoint movement, are still not supported. However, game
testers want to simulate complex scenarios and mimic real
testing environments instead of doing simple load testing.

In this letter, along with simple load testing, we propose
blackbox and scenario-based testing of online games. As in
existing approaches, massive virtual clients automatically
generate packet loads to test the stability of game servers.
However, by describing game logics using the game
description language and virtual game map, the test client code
itself does not need to be rewritten for new game testing. Also,
complex scenarios, such as iterative attack, party play, and
waypoint movement, can be tested by combining actions.

II. Scenario and Game Description Language

In our approach, testing is automated by using scenarios. To
generate a heavy load and provide a set of stresses to the game
servers, a plurality of virtual users should be created and
controlled. A large number of virtual users can be generated
with group and action commands being applied to the group of
virtual users at the same time. An example of game testing
scenarios is shown in Fig 1. A script language with simple
control constructs and time constraint constructs is used for
describing test scenarios. So, the testers can minimize the
simple and repetitive work by using script.

From the viewpoint of an individual, a test scenario is a
sequential list of actions with corresponding positions. These
actions are meaningful user activities, such as logins,
movement, attack, trading, and so on. Figure 2 shows a
conceptual view of a test scenario from the viewpoint of an
individual user. As shown in the example, a test scenario is
made up of a sequence list of position and action pairs.

In our method, the position information is represented in a
virtual game map and the actions are represented using the
game description language. That is, all of the game logics are
described by defining the game description language and
virtual game map, and thus the test client code does not need to
be rewritten when a new game is to be tested.

A virtual game map is a collection of x, y, and z positions and
contains texture information and building objects. The process
by which a virtual game map is generated is as follows. At first,

Fig. 1. Example of game testing scenarios.

Per 1 second, login 10 users continuously until the number of
the users is reached to N_MAX.
For 1 hour, individual users repeatedly do the hunting and
looting, gathering, and trading.

For 1 hour, per 1 second, repeatedly logout 10 users and login
new 10 users.

Fig. 2. Test scenario with positions and actions.

Go to position A, B, C and D sequentially.
In A, generate user and enter game world.
In B, hunt 70 mobs and loot the item.
In C, gather the 30 minerals, then go to D position.
There, sell all your gathered items.

AB C

D

Fig. 3. Syntax of game description language.

Game_Description_Language := (Protocol, Action, Generation_Rules)
Protocol := (Element)
Action := (Time_Constraint, Socket, Protocol, Parameter)
Generation_Rules := (Endianess_Rule, Encryption_Rule,

TimeStamp_Rule, HeartBeat_Rule, ...)
Element := (Name, Type, Length, Byte_string)

the virtual game map is blank. The actual game players or
virtual users move randomly and en masse around the game
world. The game world is gradually searched using the position
information gathered by game users’ movements. The packet
analyzing tool determines which areas the game users are and
are not allowed to visit. Finally, the tester can modify the map
textures and place building objects such as villages, stores, and
hunting grounds manually.

The game description language consists of actions, packet
protocols, and packet generation rules. The actions consist of a
series of packet protocols, and the packet protocols define the
individual packet messages transmitted between the game
server and game client. The packet generation rules define the
overall packet structure rules such as encryption, endianness,
timestamp, and so on. Figure 3 shows the syntax of the game
description language.

III. Experimental Results

1. Implementation Results

Our system consists of a packet analyzing tool and a virtual

472 Chang-Sik Cho et al. ETRI Journal, Volume 33, Number 3, June 2011

Fig. 4. Virtual user control tool.

User interaction
pane Virtual game map pane Virtual user

property pane

user control tool. Actual game packets transmitted between a
game client and game server are captured and stored in the
packet analyzing tool. Then, the stored packet lists are analyzed,
and the game description language is generated manually. To
provide an efficient analysis of a game protocol, a packet
analyzing tool provides various functionalities, such as coloring,
filtering, type conversion utilities, and packet difference
checking utilities.

Figure 4 is a screenshot of the virtual user control tool. A
virtual user is an entity of a single online game user. To the
main game server, these test clients look identical to an actual
connected game player. In the virtual user control tool, there are
three window panes: a user interaction pane, virtual game map
pane, and virtual user property pane. The virtual user control
tool generates an actual load when the tester inputs actions or
scenarios in the user interaction pane. In the virtual game map
in the center, virtual users and mobs are displayed according to
their position using circles and triangles. The red bar below the
shape indicates the health points or life bar of the game objects,
and the color of the shape indicates the states of the objects,
such as in-combat, walking, dead, and so on. When the tester
selects a virtual user in the virtual game map, the detailed
properties of the virtual user are shown in the property pane
window.

2. Experimental Results

To verify the effectiveness of our method, our system has
been applied to several online games. The applied game genres
[1] include the massively multiplayer online role-playing game
(MMORPG), multiplayer online game (MOG), and casual
game. For MOGs and casual games, the testing is rather
simple; it includes entering, leaving, and re-entering rooms
repetitively, and a virtual game map is not used.

In this subsection, we explain the experimental results

Fig. 5. Number of required PCs.

25

50

75

100

125

150

1 3 4 6 9
1

0

20

40

60

80

100

120

140

160

500 1,000 1,500 2,000 2,500 3,000

PC
s

Users

Manual testing
Our approach

1,000 users 3,000 users

applied to ELMA, which is a typical MMORPG in its alpha
testing period. The login/logout, movement, attack, looting,
gathering, and trading actions are successfully defined using
the game description language in the packet analyzing tool.
The virtual user control tool generated and controlled 1,000
ELMA virtual users in a 2.8 GHz Intel Core2 Quad CPU PC
with a 100 Mbps Ethernet card.

Figure 5 illustrates the changes in the number of PCs
required when massive game clients enter the game world. The
number of virtual clients is increased from 500 up to 3,000. A
single PC can handle 20 ELMA clients, so the number of
required PCs for manual testing can be easily calculated. Our
system requires only 9 PCs for testing 3,000 users, while
manual testing by human testers requires 150 PCs. In our
system, the number of required PCs is not linear but quadratic
because the movement and notification messages are in
proportion to the number of users. The bottleneck of our
system is the amount of network traffic, and a PC can handle
50 Mbps game packets in ELMA game.

It took only 24.8 min (1,485 s) in our system when a
scenario similar to Fig. 2 was tested for 1,000 users, while it
took 6.7 hours (24,000 s) for manual testing. It took 24 s for a
single actual gamer to perform the scenario, and 32 windows
keyboard/mouse interactions were required. Our system is 16
times faster than manual testing. Also, we found there is an
average of 3.5 socket connection errors and 3% authentication
errors when the number of users reaches 2,000.

The result shows that bugs can be found efficiently in
massive load testing, and many person-hours can be saved by
replacing time intensive work with our system. Of course, there
is always the human factor that can never be replaced with
automated testing [12]. So the testers should adequately use
both human testing and tool testing, rather than relying wholly
on our system.

Table 1 shows a comparison with previous approaches. Our

ETRI Journal, Volume 33, Number 3, June 2011 Chang-Sik Cho et al. 473

Table 1. Comparison with previous approaches.

Approaches
Categories

HP LoadRunner [5] TSO automation [10] VENUS [11] Our approach

Main idea
Reuse

captured data
Reuse

game client code
Reuse

game client code
Capture, analyze,
and generate GDL

Backbox/whitebox Blackbox Whitebox Whitebox Blackbox

Requiring source code No Yes Yes No

Blackbox
testing

Reusable to another game Yes (but very hard) No No Yes

Game map support No No No Yes

Unit of testing Protocol Action Action Scenario Scenario-
based testing Flexibility to various test

scenario Hard Easy Moderate Easy

approach is compared with existing game testing approaches
from the viewpoint of blackbox and scenario-based testing.
TSO automation and the VENUS system are based on
whitebox testing. Therefore, their approaches can be applied to
game developers only and are not adequate for game testers
because the developed game client code must be provided and
rewritten for game testing. Though LoadRunner from Hewlett-
Packard supports blackbox testing by reusing captured packet
data, it is difficult for it to be applied to game testing because an
online game server employs complicated logic compared with
a general server application, such as a web server.

IV. Conclusion

In this letter, along with simple load testing, we propose
blackbox and scenario-based testing of online games. In
previous test automation, developers were required to provide
their client code to the game testers because a test client code is
based on a dummy game client code without a GUI. In our
approach, the game logic is described using game description
language and a virtual game map, so the test client code does
not need to be rewritten when a new game is to be tested. The
virtual clients automatically generate a packet load according to
the game description language. Moreover, complex scenarios,
such as iterative attack and looting, party play, and waypoint
movement, can be tested by combining actions. In our system,
the testing unit is scenario-based instead of command script
and we use the game map for intuitive user interface.

To verify the effectiveness of our method, we have applied
our system to several online games. When applied to the online
game ELMA, various actions, such as the login, attack, and
trading, are defined using the game description language in the
packet analyzing tool, and the virtual user control tool
generated massive virtual users and gave some clues for server

error. Experimental results show that a remarkable amount of
time can be saved by replacing time intensive work with our
system.

Future research is planned to improve our system, provide
more intelligent test scenarios, and create a standard model for
online game testing.

References

[1] Game genres. http://en.wikipedia.org/wiki/Game_genres
[2] Blizzard - World of Warcraft. http:// www.worldofwarcraft.com
[3] C.P. Schultz, R. Bryant, and T. Langdell, Game Testing All In One,

Thomson Course Technology PTR, 2005.
[4] L. Mellon et al., “Large-Scale Engineering for Online and Offline

Games,” GDC, Spring 2007.
[5] HP LoadRunner software - HP - BTO Software. http://www.

hp.com
[6] QALoad. http://www.compuware.com/
[7] S. Elbaum, S. Karre, and G. Rothermel, “Improving Web

Application Testing with User Session Data,” Proc. 25th Int. Conf.
Software Eng, May 3-10, 2003, pp. 49-59.

[8] Y.-T. Han and H.-S. Park, “Game Traffic Classification Using
Statistical Characteristics at the Transport Layer,” ETRI J., vol. 32,
no. 1, Feb. 2010, pp. 22-32.

[9] K. Shin et al., “Transformation Approach to Model Online
Gaming Traffic,” ETRI J., vol. 33, no. 2, Apr. 2011, pp. 219-229.

[10] L. Mellon, “Automated Testing of Massively Multi-player
Systems: Lessons Learned from The Sims Online,” GDC, Spring
2003.

[11] B.H. Lim, J.R. Kim, and K.H. Shim, “A Load Testing
Architecture for Network Virtual Environment,” Proc. 8th Int.
Conf. Adv. Commun. Tech., Feb. 20-22, 2006, pp. 848-852.

[12] E. Rees and L. Fryer, Best Practices in Quality Assurance/Testing,
IGDA Business Committee, Apr. 2003.

	Untitled
	I. Introduction
	II. Scenario and Game Description Language
	III. Experimental Results
	IV. Conclusion
	References

