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The existing multi-dimensional index structures are not 
adequate for indexing higher-dimensional data sets. Al-
though conceptually they can be extended to higher dimen-
sionalities, they usually require time and space that grow 
exponentially with the dimensionality. In this paper, we 
analyze the existing index structures and derive some re-
quirements of an index structure for content-based image 
retrieval. We also propose a new structure, for indexing 
large amount of point data in a high-dimensional space 
that satisfies the requirements. In order to justify the per-
formance of the proposed structure, we compare the pro-
posed structure with the existing index structures in vari-
ous environments. We show, through experiments, that our 
proposed structure outperforms the existing structures in 
terms of retrieval time and storage overhead. 
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I. INTRODUCTION 

Many recent applications such as image databases, medical 
databases, Geographic Information Systems (GIS) and CAD/ 
CAM applications require enhanced indexing for content-
based image retrieval [1]–[6]. Content-based image retrieval is 
used to query large on-line databases using the content of images 
(such as color, texture, and shape of image objects) as the basis 
of queries [7]–[10]. In applications that require content-based 
retrieval, indexing of high-dimensional data has become    
increasingly important for fast retrieval. For example, in image 
databases, image objects are usually mapped into feature vectors 
in some very high-dimensional space. Queries are processed on 
a database that indexes the feature vectors. Therefore, index 
structures for high-dimensional data are required to efficiently 
support content-based retrieval.  

There are several index structures for high dimensional data 
such as SS-tree [11], [12], TV-tree [13], X-tree [14] and SR-
tree [15]. The SS-tree was proposed as an index structure to  
efficiently support similarity searches. The idea of the TV-tree 
comes from the observation that, in most high-dimensional 
data sets, a small number of the dimensions bears most of the 
information. The main idea of the X-tree is to minimize the 
overlap of bounding boxes in the directory by using a new or-
ganization of the directory. The SR-tree is an extension of the 
R*-tree [16] and the SS-tree. The SR-tree uses both bounding 
spheres and bounding rectangles to improve the performance 
on the nearest neighbor queries [17]. Conceptually they can be 
extended to higher dimensionalities; however, they are not suit-
able for an index structure for content-based retrieval, because 
they usually require time and space that grow exponentially 
with the increase in the dimensionality [18]. The Pyramid-
Technique was proposed based on a special partitioning strat-
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egy to break the so-called curse of dimensionality [19]. It is 
suitable for high-dimensional range queries. 

In this paper, we derive some design requirements of an in-
dex structure for content-based image retrieval. We also propose 
a new index structure, called CIR (Content-based Image Re-
trieval)-tree, for indexing large amounts of point data in a high-
dimensional space that satisfies the derived requirements. We 
perform extensive experiments with real data as well as synthetic 
data. The relationships among various performance parameters 
are thoroughly investigated. Through these experiments, we 
show that the CIR-tree significantly improves performance in 
terms of the retrieval time and the storage overhead over TV-
tree, X-tree and Pyramid-Technique. 

The remainder of this paper is organized as follows. In Section 
II, we describe related work. In Section III, we present a few 
design requirements of an index structure for content-based re-
trieval. In Section IV, we propose a new index structure that 
satisfies the requirements. We evaluate the performance of the 
index structure with real and synthetic data sets and describe 
the evaluation results in Section V. Finally, conclusions are de-
scribed in Section VI. 

II. RELATED WORK 

The R-tree [20] and its most successful variant, the R*-tree, 
have been used most often for indexing high dimensional data 
in database literature. The R-tree is a height-balanced tree cor-
responding to the hierarchy of nested rectangles. The rectangle 
of an internal node is determined by the minimum-bounding 
rectangle that covers all the rectangles of its children. The rec-
tangle of a leaf node is determined by the minimum bounding 
rectangle that covers all data entries in that leaf node. Therefore, 
the rectangle of the root node corresponds to the minimum 
bounding rectangle of the whole data entries.  

The R*-tree has two major enhancements over the R-tree. 
First, rather than considering the area only, it minimizes the pe-
rimeter and overlap of each enclosing rectangle in the internal 
nodes. Second, the R*-tree introduces the notion of forced rein-
sertion to make the shape of the tree less dependent on the or-
der of insertions. However, the R-tree and the R*-tree explode 
exponentially with the increase of dimensionality, eventually 
being reduced to a sequential scanning. 

Another R-tree like index structure is the SS-tree, which uses 
k-dimensional spheres as minimum bounding regions instead 
of rectangles [11]. The SS-tree provides better performance 
than the R*-tree. However, spheres tend to overlap in high-
dimensional spaces, because the volume of bounding spheres is 
much larger than that of bounding rectangles. To avoid the 
overlap problem, the SR-tree combines the concepts of the R-
tree and SS-tree [15]; it outperforms both the R*-tree and the 

SS-tree. 
The basic idea of the Pyramid-Technique is to transform the 

d-dimensional data points into 1-dimensional values [19]. For 
storing and accessing the values, it uses the B+-tree [21]. Poten-
tially, any order-preserving one-dimensional access method can 
be used. Operations such as insert, update, delete or search are 
performed by using the properties of B+-tree.   

The TV-tree is a method in the database literature that was 
proposed specifically for indexing high-dimensional data [13]. 
The basis of the TV-tree is to use contracting and extending 
dynamically feature vectors. That is, it uses as little features as 
possible that are necessary to discriminate between objects. An 
example of a TV-tree is given in Fig. 1. The points denoted 
from A to I represent data points (only the first two dimensions 
are shown). In the root level, region R3 uses only one dimen-
sion for discrimination and other regions use two dimensions 
for discrimination. The TV-tree, however, does not consider the 
overlap problems and thus it still has the possibility of rapid 
performance degradation in processing queries. 

The X-tree was proposed as an index structure to avoid splits 
that would result in high degree of overlaps in the directory 
[14]. To do this, the X-tree uses a split algorithm minimizing 
overlaps and additionally uses the concept of supernodes. Su-
pernodes are large directory nodes of variable size (a multiple 
of the usual block size). Supernodes are created during inser-
tion to avoid splits in the directory that would result in a highly 
overlapped structure. The X-tree uses the notion of maximum 
overlap value (MaxO) to decide whether it splits a node or ex-
tends a node to a supernode. Most insertion algorithms split a 
node in two if an overflow occurs. If the possibility of the over-
lap of the two split nodes becomes larger than MaxO, the X-
tree extends the original node into a supernode instead of split-
ting it. The suggested value of MaxO in [14] is 20 %. 

Due to the fact that overlaps increase as the number of di-
mensions increases, the number and size of supernodes in-
crease in the X-tree [14]. Figure 2 shows three examples of X-
tree with different dimensionalities. 

Although the overlap is reduced in the directory, the X-tree 
loses the efficiency of hierarchical structures. In Fig. 2, when 
the number of dimensions D is 32, the structure of the X-tree 
looks linear because of large supernodes.  

To solve the overlap problems of the TV tree, our proposed 
CIR-tree will suggest an improved ChooseSubtree algorithm 
that chooses the most appropriate node for inserting an image 
object. The detailed algorithm is described in Section IV-3.A. 
The CIR-tree also adapts the supernode concept in the Split al-
gorithm to alleviate the overlap problem. However, because 
our CIR-tree uses smaller feature vector than the X-tree in the 
directory, the size of supernodes and the total size of the directory 
will decrease. 
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Fig. 1. An example of TV-tree. In the root level, region R3 uses only one dimension for discrimination. But other regions use two
dimensions for discrimination.

Fig. 2. Various shapes of the X-tree in different dimensions.
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III. DESIGN REQUIREMENTS FOR HIGH     

DIMENSIONAL INDEX STRUCTURES 

From the survey of the existing high dimensional index struc-
tures and the characteristics of content-based retrieval, we believe 
that a newly created index structure for high-dimensional data 
should be designed by considering the following requirements: 

•  An index structure must efficiently deal with high dimensional 
features. 

Index structures for a content-based image retrieval system 
must deal with high dimensional image features.  Most exist-
ing multi-dimensional index structures are not adequate for 
handling high dimensionality: they become extremely ineffi-
cient with growing dimensionality because the number of 
nodes increases exponentially. When an index structure is con-
structed, the number of nodes should not increase exponen-
tially as the number of dimension increases.   

•  The overlap between directory regions must be minimized. 

In general, an overlap means a region that is covered by 
more than one directory area. As the amount of data and the 
height of a tree increase, the overlap area increases remarkably 
with the growing dimensionality of data. Usually, since the 
overlap results in the necessity of traversing multiple paths, it 
badly affects the performance of processing queries. Conse-
quently a newly created index structure should provide an algo-
rithm to minimize overlaps. 

•  Storage utilization must be optimized. 

Higher storage utilization generally reduces the query cost 
since the height of the tree would be kept low. Eventually, 
some query types like a range query that finds all objects that 
are within a certain distance from a given query object are mo-
re likely to be influenced by the storage utilization, because the 
objects may be spread across more nodes as the storage utiliza-
tion becomes low.  

•  An index structure must be appropriate for similarity-based 
queries. 

Unlike conventional database systems, a content-based image 
retrieval system processes queries based on similarity, since im-
ages are not atomic symbols but unformatted data [22]. There-
fore the index structure must process similarity queries effi-
ciently.  

•  An index structure must employ a similarity measure. 

Image features are expressed as points in a high-dimensional 
feature space in most content-based image retrieval systems. 
Euclidean distance between two points is generally used as a 
similarity measure in the systems. However, measuring the 
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similarity between two points in a feature space with just 
Euclidean distance may not match the user’s notion of similar-
ity, since the dimensions of image features are independent of 
one another and different in respect of relativity and distribution.  
As a result, other similarity measures must be employed. 

•  The index structure must process various query types effi-
ciently. 

An index structure has to be able to process various query 
types such as an exact match query, a partial match query, a 
range query and a k-nearest neighbor search query. An index 
structure must achieve good performance on every query. 

•  An index structure has to deal with high-dimensional features 
dynamically. 

Though there are certain applications having an archival na-
ture, i.e., insertions are less frequent and updates/deletions are 
seldom necessary, content-based image retrieval systems in 
practice  require a dynamic information storage structure. 

IV. CIR-TREE 

1. Characteristics 

Various index structures for high dimensional data sets have 
been proposed. However most of them have a dimensionality 
problem, as surveyed in the previous sections. TV-tree and X-
tree are representative index structures that have been intro-
duced recently to support queries for high-dimensional data.  
It is true that they are more adequate index structures for high-
dimensional data than existing ones such as R-tree and its variants. 
However, they still have some problems in dealing with over-
laps and a large number of features as pointed out in Section II.  

We propose a new high dimensional index structure, called 
CIR (Content-based Image Retrieval)-tree, in order to alleviate 
these problems. The proposed CIR-tree mostly satisfies the de-
sign requirements mentioned in Section III. The main idea of 
CIR-tree comes from the insights of the two structures, that is, 
the main characteristics of the X-tree and the TV-tree. We ap-
plied the main idea of both tree structures to CIR-tree in order 
to solve the dimensionality problem, and enhance the reinsert 
algorithm. For the nodes that are close to the root node, we use 
only a few dimensions so that we can store more branches and 
obtain a high fanout like the TV-tree. On the other hand, we 
used more and more dimensions as descending tree so that we 
can see more discrimination. In the CIR-tree, it is assumed that 
feature vectors for data objects are ordered in ascending order 
by its importance, and the importance can be obtained by em-
ploying various conversion functions [13]. 

Like other index structures, CIR-tree represents data with a 
hierarchical structure. A node in one level has its children nodes. 
This constitutes a hierarchical structure starting from a root 
node to leaf nodes. An internal node includes the MBRs of its 
children nodes, and a leaf node has feature vectors. The CIR-
tree alleviates the disadvantages of the index structures of R-
tree group. According to experimental evaluation of overlaps in 
the R*-tree directories, overlaps increase up to about 90 % for 
high dimensionality larger than 5 [14]. Increased overlaps dete-
riorate the performance of an index structure remarkably. Over-
laps can be increased when a node is split or a record is inserted. 
The CIR-tree employs the concept of supernodes in X-tree to 
avoid overlaps and uses a new split algorithm to minimize 
overlaps when an overflow occurs in a node. That is, the CIR-
tree avoids or minimizes overlaps using the split algorithm 
whenever it is possible without degenerating the tree. Otherwise, 
the CIR-tree uses extended variable size directory nodes, so-called 
supernodes. Therefore, the structure of the CIR-tree is the mix-
ture of the linear array structure for representing supernodes 
and the R-tree like hierarchical structure.   

The CIR-tree achieves dynamic reorganizations by forcing 
entries to be reinserted during the insert operations, which re-
groups entries and thus decreases overlaps. The CIR-tree uses 
the concept of weighted center, or the average coordinates of 
each entry, to enhance the performance of the reinsert algo-
rithm: using the weighted center significantly improves cluster-
ing effects of nodes in the CIR-tree. Consequently the CIR-tree 
constructs a condensed tree structure and also decreases the 
overlap between neighboring nodes. 

In general, the existing index structures use Euclidean distance 
as a similarity measure on retrieval. However, the Euclidean 
distance may not be appropriate as a distance measure for high 
dimensional data because of its exactness limit. To alleviate 
such a problem, CIR-tree uses the weighted Euclidean distance 
such as in (1). The weighted Euclidean distance processes various 
kinds of similarity queries more efficiently than the Euclidean 
distance. 

,))(()(),( yxwdiagyxYXD T −−=  (1) 

where, x and y are feature vectors and w is a vector representing 
a relative weight.  

2. Structure of the CIR-tree 

The structure of the CIR-tree is similar to that of TV-tree ex-
cept for supernodes. Each node, except leaf nodes, consists of a 
set of entries, where each entry is composed of a pointer to a 
child node and an MBR of the node. The MBR is a minimum 
bounding region containing all entries of a node; it also has a 
feature vector that is agreed on the node’s descendents in the 
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sense that the first, say, k dimensions of their feature vectors are 
inactive ones. Therefore, our CIR-tree provides a higher fanout 
at the top levels of an index structure. 

The data structures for an MBR are as follows: 

struct     MBR  { Feature inactive, 

Feature  lower, 

Feature  upper}; 

struct Feature { float feature_value[]; 

int no_of_dimensions }; 

where Feature denotes ‘feature vector.’ 
A directory node contains MBRs that represent minimum 

bounding regions of all their descendents. The data structure is 
as follows.   

struct Branch_node { int no_of_element; 

list of(MBR) }; 

A leaf node includes actual feature vectors. The structure of 
the leaf node is as follows. 

struct Leaf_node { int no_of_element; 

list of(Feature) }; 

A supernode is created when splitting a directory node. We 
will discuss the conditions of creating supernodes in Section 
IV-3.B, when we describe the split algorithm. The structure of 
supernodes is represented as a contiguous array of nodes. 

3. Algorithms in CIR-tree 

A. Insertion algorithm 

To insert a new object, we should find the branch at each 
level that is most suitable to hold the new object, and then insert 
the new object to the chosen leaf node. If an overflow occurs at 
this time, we can cope with it by reinserting some entries in the 

node or splitting the node. After inserting, splitting, or reinsert-
ing a node, we update the MBRs of affected nodes. 

The insertion algorithm calls ChooseSubtree algorithm first. 
ChooseSubtree algorithm chooses the most appropriate node 
using predefined criteria to insert a new object. The algorithm 
is important to make a well-clustered tree structure, and then to 
reduce overlaps and significantly improve retrieval perform-
ance. The algorithm ChooseSubtree uses the following criteria, 
in a descending priority: 

① Select the MBR that will result in a minimum number of 
newly created overlapping MBRs within a node. Figure 3 (a) 
shows an example of inserting a new object with this criterion. 

② Select the MBR that uses more dimensions for discrimina-
tion, that is, the MBR of which more dimensions are inac-
tive. Figure 3 (b) shows only the first two dimensions. R1 
and R2 are overlapped. R1 uses two dimensions for dis-
crimination and R2 uses one dimension for it. R1 may have 
more regions in the direction of the next higher dimensions. 
When inserting the point P, R1 is selected rather than R2, 
because R1 uses more dimensions than R2. Using more 
dimensions means that similar objects are clustered in a 
small region. 

③ Select the MBR whose center will be close to a new object. 

When an overflow occurs during an insertion operation, the 
CIR-tree firstly tries to reinsert some of the entries in the node. 
If the CIR-tree cannot reinsert the entries, however, because the 
overflow has occurred while reinserting some other entries 
caused by another overflow, then it splits the node instead of re-
inserting the entries. If the area of overlaps within the node ex-
ceeds a certain threshold value in the split algorithm, the node 
is extended to a supernode. The detailed split algorithm will be 
explained in Section IV-3.C. The pseudo code for the insertion 
algorithm is as follows. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Illustration of the criteria of ChooseSubtree algorithm.
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Algorithm Insertion 

1. ChooseSubtree() // choose the best branch  

// to follow, descend the  

// tree until the leaf  

//  node is reached 

2. Insert a new object into the leaf node. 

3. if(node overflows)  

4.  Call Reinsert 

5.  if(Reinsert fail) 

6.  Call Split 

5.  if(the split routine returns supernode) 

6.  Extend the leaf node to supernode 

7.  else 

8. Insert the MBRs of the two split 

nodes into the parent node 

9. UpdateTree() // update the MBRs of the 

// parent node 

B. Reinsert algorithm 

In most tree structures for high dimensional data, including 
R-tree, R*-tree and TV-tree, different sequences of insertions 
will result in different tree structures. MBRs that have been in-
troduced during the early growth of the tree structure in some 
sequences may lead to a bad retrieval performance in the cur-
rent situation. Therefore, we need a mechanism to reorganize 
the tree dynamically to avoid performance degradation.  

The R-tree, the R*-tree and the TV-tree force the entries to be 
reinserted during the insertion routine to reorganize tree struc-
tures. However, the X-tree does not perform reinsertion, and 
thus it can have more overlapped bounding rectangles than 
other index structures. Supernodes are used in the X-tree to 
avoid overlaps; however, the size of supernodes may increase 
and then deteriorate the retrieval performance. 

If an overflow occurs in a node, p entries farthest from the 
center of the node are deleted and then reinserted into the tree. 
This provides a possibility of eliminating dissimilar entries 
from the node so that it accomplishes more efficient clustering. 
The parameter p can be varied in performance tuning stage. 
The experimentally suggested value of p in [16] is 30 % of the 
maximum number of entries in a node. 

The R*-tree and TV-tree use geometric center to find the far-
thest entries. The CIR-tree uses weighted center. The weighted 
center c

r
 of a node N is defined as 
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where ic
r

 denotes the center vector of the entry and n denotes 
the number of entries in a node N. 

(a) Weighted and Geometric centers

(b) Reinsert with weighted center (c) Reinsert with geometric center

Fig. 4. Comparison of a weighted center with a geometric center
where p = 40 %. Reinsertion with weighted center makes
smaller bounding rectangle.

 
If we use the weighted center as one of a node, the center of a 

node is moved toward a place where, in its vicinity, the entries 
are denser. Figure 4 shows the effect of the weighted center 
when %.40=p  By using the weighted center, we can get 
smaller, or well-clustered MBRs, after deleting the farthest  
entries. In addition, the smaller MBRs would decrease overlaps. 
The computation cost for a weighted center will be dependent 
on the number of entries and the number of dimensions of each 
entry; however, it is not a great burden in the whole algorithm. 

Algorithm Reinsert 

1. delete p% of entries from a node 

2. insert them into the tree 

3. if overflow occurs during insertion 

4.  return fail 

5. else 

6. return success 

C. Split algorithm 

The purpose of splitting a node is to divide the set of MBRs 
into two groups in order to facilitate upcoming operations and 
provide high space utilization. The creation or extension of a 
supernode occurs if there is no possibility to find a suitable hi-
erarchical structure. In other words, if dividing of the MBRs  
results in a large overlap split, we do not split the node but create 
a supernode of twice the size of the node, or append a block if 
the current node is a supernode.   

When splitting a node, we sort the entries of the node by the 
first active dimension, then look for the best break point in the 
sorted entries where the overlap of the two split MBRs becomes 
the minimum. Of course, both of the two split nodes have a 
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larger size than the minimum fill factor. If the overlap exceeds 
MaxO, mentioned in Section II, the directory node would be 
extended to a supernode. In CIR-tree, we set the value of 
MaxO as 20 %. 

Algorithm Split 

1. find the 1st dimension with which overlap 

free split is possible. 

2. if the dimension found 

3. do split 

4. return the MBRs of the two nodes 

5. else  // overlap-free split is impossible 

6. split with the first active dimension 

7. If(overlap_ratio > MaxO) return supernode 

8. else return the MBRs of the two nodes 

9. end 

D. Search algorithm 

In this algorithm, a search starts from the root node. It    
examines each entry that intersects the search area, recursively 
following the entries, because MBRs are allowed to be over-
lapped. The following is the pseudo-code of the search algo-
rithm:  

Algorithm Search 

1. If(accessed node == Leaf node) 

2.  Evaluate the similarity of the query and 

the entries in the node. 

3. Return the objects satisfying the query 

according to similarity. 

4. else // for directory nodes 

5. Select all MBRs including the query for 

active dimensions. 

6. Call the search algorithm recursively 

with each child node selected in step 5. 

7. end  

E. Nearest Neighbor Search algorithm 

We used Hjaltason and Samet’s algorithm known as optimal 
[23], [24]. This algorithm uses MINDIST as a metric to prune 
nodes from a search list; MINDIST is an Euclidean distance be-
tween the query point and the nearest edge of a rectangle. Since 
the CIR-tree and the TV-tree do not use full dimensions to 
compute MINDIST, the effectiveness of pruning can be de-
graded. However, the small number of directory nodes of CIR-
tree compensates the ineffectiveness in pruning. The following 
is the pseudo-code of the nearest neighbor search algorithm. 

Algorithm NN_Search 

SearchQueue : Priority Queue 

1. push the child nodes of the root and their 

MINDISTs into SearchQueue 

2. while (SearchQueue is not empty) 

3.  if(top of SearchQueue is a leaf) 

4.  find nearest point NNP 

5.  if(NNP is closer than NN)  

6. prune SearchQueue with NNP 

7. let NNP be the new NN 

8.  else 

9.  push its child nodes into Search-

Queue 

10  endif 

11.  endwhile  

F. Deletion 

Deletion is quite simple unless underflow occurs. In this case, 
the remaining entries of the node will be deleted and reinserted. 
The underflow may be propagated to the upper levels of the tree. 

V. EXPERIMENTS 

We show the characteristics of the proposed CIR-tree by 
comparing its performance with those of TV-tree, X-tree and 
Pyramid-Technique. In the experiments, we used SUN SPARC 
station 20 with 128 Megabytes of main memory and 6 Giga-
bytes of hard disk. All simulation programs were implemented 
with ANSI C++ and compiled with a GNU C++ compiler.  
We used the TV-tree, the X-tree and the Pyramid-Technique 
programs without modifying the program sources that were 
implemented by the authors of [13], [14], [19]. The size of a 
standard block in these experiments is 4 KB. As a synthetic 
data set, we generated 2,000,000 uniformly distributed float-
ing-point numbers between 0.0 and 10.0, and then we grouped 
them with desired dimensions to make data points. The dimen-
sion, say D, was varied from four with 500,000 data points up 
to 18 with 111,111 data points. 

1. Retrieval Performance 

Figures 5 and 6 show the performance of three index struc-
tures for exact match queries. We have applied 50,000 exact 
match queries to uniformly distributed data varying the number 
of dimensions of the data points, i.e., each graph of the figures 
represents the average of 50,000 independent experiments. 
Note that, in order to count the number of page accesses, the 
access to a supernode of size s was counted as s page accesses. 
As shown in Fig. 5, the CIR-tree outperforms other index trees. 
Since the number of data points is decreased with growing di-
mensionalities of the data points, the number of page accesses 
of the TV-tree is reduced. The retrieval performance of the X- 
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Fig. 5. The number of page accesses for an exact match query.
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Fig. 6. An average size of directory nodes.
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tree depends on the size of the supernodes. For example, when 
,12=D  the number of page accesses increases significantly, 

because the X-tree does not employ the forced reinsertion 
technique and the number and size of supernodes increase as 
the number of dimensions increases. The facts that no forced 
reinsertion technique is used and that different sequences of in-
sertions may result in different tree structures may fluctuate the 
graph for the X-tree. However, the number and size of super-
nodes of CIR-tree are smaller than those of the X-tree even 
though CIR-tree uses supernodes, because the CIR-tree main-
tains smaller directory sizes. Eventually the CIR-tree always 
provides better performance for exact match queries over the 
other index structures. 
We also performed range queries and nearest neighbor queries 
with the TV-tree, the X-tree and the CIR-tree. For the range 
queries we first generated 5,000 center vectors using random 
number generation, and then made two range-bounding rec-
tangles: for the upper bound vector we added one to each di-
mension of the center vector; for the lower bound vector we 
subtract one from the center vector. We extended the TV-tree to 
process the range queries and the neighbor queries, because the    

Fig. 7. Range query.
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original TV-tree supports point queries only. The results of the 
range queries are presented in Fig. 7. Similar to the results 
shown in Fig. 5, the number of page accesses of the X-tree  
depends on the size of supernodes and the number of page  
accesses of the CIR-tree seems stable. 

Figure 8 shows the results of 10 nearest neighbor queries. We 
only compare the performance of the proposed CIR-tree with 
that of X-tree, because the performance of the k nearest 
neighbor queries with the TV-tree are so poor that it is mean-
ingless to present the results as a graph in the figure. The num-
ber of page accesses of the X-tree increases exponentially with 
dimension. On the other hand, the number of page accesses of 
the CIR-tree increases linearly with dimension. 

Finally, we compared the CIR-tree with the Pyramid-Technique 
by using a real data set. We used the letter image recognition data 
in [25] as the real data set, which consists of 20,000 points of 17-
dimensional data (1 category and 16 numeric features). The cate-
gory is one of the 26 capital letters in the English alphabet and the 
numeric features are scaled to fit into a range of integer values 
from 0 to 15. Figure 9 shows the experimental results with the real 
data. In this figure we can see that the CIR-tree provides better per-
formance than the Pyramid-Technique and X-tree in range queries 
and nearest neighbor queries. Note that, in Fig. 9 
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Fig. 9. Comparison with Pyramid Technique and X-tree by using the real data.

Number of objects

P
ag

e 
ac

ce
ss

es

(b) Ten Nearest neighbor query

Pyramid T. CIR-tree X-tree

1 2 3 4
4

54

104

154

204

(a) Range query

Query range

P
ag

e 
ac

ce
ss

es

1 2 3 4 5 6 7 8 9
4

54
104
154
204
254
304
354
404

Pyramid T. CIR-tree X-tree

Fig. 10. Number of directory nodes depending on the dimensionality.
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(a), the difference of the number of the page accesses of them 
becomes smaller as the range increases. The performance of 
the CIR-tree seems better than those of the Pyramid-Technique 
and X-tree in large ranges, but we cannot definitely say that it is 
superior to the Pyramid-Technique because the Pyramid-
Technique has a simpler node structure than the CIR-tree. In 
other words, although the Pyramid-Technique needs more page 
accesses than the CIR-tree, it may spend less CPU time than 
the CIR-tree because of its simple node structure. 

2. Storage Space 

Figure 10 shows an experimental result of each index structure 
in terms of storage space. Due to the fact that the CIR-tree and 
X-tree create similar number of leaf nodes, the comparison of  
the number of leaf nodes is meaningless. So we only compared 
the number of directory nodes. The figure shows that the space 
usage of the X-tree increases with dimension, but the space us-
age of the CIR-tree is stable. This is because the CIR-tree stores 
a small number of features in the directory node for all dimen-
sions. The CIR-tree creates a small number of nodes and uses 
the storage space effectively. As a result, the performance com-
parison in terms of storage space shows that the storage     

Fig. 11. Insertion Time of CIR-tree and X-tree.
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overhead of the CIR-tree is much less than that of the X-tree. 

3. Insertion Performance 

Because the CIR-tree uses a reinsertion technique in the inser-
tion algorithm, the cost for insertion operations is higher than 
those of the X-tree and the Pyramid-Technique which do not 
use reinsertion technique. The Pyramid-Technique always 
spends less time than CIR-tree since it uses B+-tree, so its inser-
tion time is B+-tree construction time and transformation time. 
The X-tree spends less time than CIR-tree, but as the size of the 
supernode grows, the X-tree tends to spend more time than 
CIR-tree. Even though the CIR-tree performs reinsert opera-
tions, the number of directory nodes is much smaller than that of 
X-tree especially in a higher-dimension data space. Figure 11 
shows the insertion time of X-tree and CIR-tree. The number 
of data objects was fixed as 10,000 and the dimension varied 
from 6 up to 18. 

VI. CONCLUSIONS 

In this paper, we have analyzed existing index structures for 
high-dimensional data and proposed several desired design re-
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quirements that a new index structure must have. We have also 
proposed a new efficient index structure, called CIR-tree, 
which satisfies the design requirements. The proposed CIR-tree 
uses fewer dimensions at the upper levels, which allows an in-
dex structure to have a higher fanout at the top levels and a no-
de to hold more data. The CIR-tree makes the height of a tree 
become lower, solving the dimensionality problems; it supports 
high dimensional data more efficiently, reduces the number of 
disk accesses, and improves the disk storage utilization. The 
CIR-tree produces well-clustered index structures by using the 
weighted center in the reinsert algorithm as well as using su-
pernodes to avoid overlaps. The CIR-tree also uses a weighted 
Euclidean distance to overcome the exactness problem of 
Euclidean. 

We have compared the proposed CIR-tree with the TV-tree, 
the X-tree and the Pyramid-Technique through various experi-
ments to manifest the superiority of CIR-tree. The experiments 
show that the CIR-tree outperforms the TV-tree, the X-tree and 
the Pyramid-Technique in terms of retrieval speed and space 
requirements. But the CIR-tree needs further investigation to 
improve nearest neighbor query performance. 
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