
32 Jang Sun Lee et al. ETRI Journal, Volume 22, Number 2, June 2000

The existing multi-dimensional index structures are not
adequate for indexing higher-dimensional data sets. Al-
though conceptually they can be extended to higher dimen-
sionalities, they usually require time and space that grow
exponentially with the dimensionality. In this paper, we
analyze the existing index structures and derive some re-
quirements of an index structure for content-based image
retrieval. We also propose a new structure, for indexing
large amount of point data in a high-dimensional space
that satisfies the requirements. In order to justify the per-
formance of the proposed structure, we compare the pro-
posed structure with the existing index structures in vari-
ous environments. We show, through experiments, that our
proposed structure outperforms the existing structures in
terms of retrieval time and storage overhead.

Manuscript received July 15, 1999; revised May 17, 2000.
a) Electronic mail: sunny@computer.etri.re.kr

I. INTRODUCTION

Many recent applications such as image databases, medical
databases, Geographic Information Systems (GIS) and CAD/
CAM applications require enhanced indexing for content-
based image retrieval [1]–[6]. Content-based image retrieval is
used to query large on-line databases using the content of images
(such as color, texture, and shape of image objects) as the basis
of queries [7]–[10]. In applications that require content-based
retrieval, indexing of high-dimensional data has become
increasingly important for fast retrieval. For example, in image
databases, image objects are usually mapped into feature vectors
in some very high-dimensional space. Queries are processed on
a database that indexes the feature vectors. Therefore, index
structures for high-dimensional data are required to efficiently
support content-based retrieval.

There are several index structures for high dimensional data
such as SS-tree [11], [12], TV-tree [13], X-tree [14] and SR-
tree [15]. The SS-tree was proposed as an index structure to
efficiently support similarity searches. The idea of the TV-tree
comes from the observation that, in most high-dimensional
data sets, a small number of the dimensions bears most of the
information. The main idea of the X-tree is to minimize the
overlap of bounding boxes in the directory by using a new or-
ganization of the directory. The SR-tree is an extension of the
R*-tree [16] and the SS-tree. The SR-tree uses both bounding
spheres and bounding rectangles to improve the performance
on the nearest neighbor queries [17]. Conceptually they can be
extended to higher dimensionalities; however, they are not suit-
able for an index structure for content-based retrieval, because
they usually require time and space that grow exponentially
with the increase in the dimensionality [18]. The Pyramid-
Technique was proposed based on a special partitioning strat-

An Efficient Content-Based High-Dimensional
Index Structure for Image Data

Jang Sun Leea), Jae Soo Yoo, Seok Hee Lee, and Myung-Joon Kim

ETRI Journal, Volume 22, Number 2, June 2000 Jang Sun Lee et al. 33

egy to break the so-called curse of dimensionality [19]. It is
suitable for high-dimensional range queries.

In this paper, we derive some design requirements of an in-
dex structure for content-based image retrieval. We also propose
a new index structure, called CIR (Content-based Image Re-
trieval)-tree, for indexing large amounts of point data in a high-
dimensional space that satisfies the derived requirements. We
perform extensive experiments with real data as well as synthetic
data. The relationships among various performance parameters
are thoroughly investigated. Through these experiments, we
show that the CIR-tree significantly improves performance in
terms of the retrieval time and the storage overhead over TV-
tree, X-tree and Pyramid-Technique.

The remainder of this paper is organized as follows. In Section
II, we describe related work. In Section III, we present a few
design requirements of an index structure for content-based re-
trieval. In Section IV, we propose a new index structure that
satisfies the requirements. We evaluate the performance of the
index structure with real and synthetic data sets and describe
the evaluation results in Section V. Finally, conclusions are de-
scribed in Section VI.

II. RELATED WORK

The R-tree [20] and its most successful variant, the R*-tree,
have been used most often for indexing high dimensional data
in database literature. The R-tree is a height-balanced tree cor-
responding to the hierarchy of nested rectangles. The rectangle
of an internal node is determined by the minimum-bounding
rectangle that covers all the rectangles of its children. The rec-
tangle of a leaf node is determined by the minimum bounding
rectangle that covers all data entries in that leaf node. Therefore,
the rectangle of the root node corresponds to the minimum
bounding rectangle of the whole data entries.

The R*-tree has two major enhancements over the R-tree.
First, rather than considering the area only, it minimizes the pe-
rimeter and overlap of each enclosing rectangle in the internal
nodes. Second, the R*-tree introduces the notion of forced rein-
sertion to make the shape of the tree less dependent on the or-
der of insertions. However, the R-tree and the R*-tree explode
exponentially with the increase of dimensionality, eventually
being reduced to a sequential scanning.

Another R-tree like index structure is the SS-tree, which uses
k-dimensional spheres as minimum bounding regions instead
of rectangles [11]. The SS-tree provides better performance
than the R*-tree. However, spheres tend to overlap in high-
dimensional spaces, because the volume of bounding spheres is
much larger than that of bounding rectangles. To avoid the
overlap problem, the SR-tree combines the concepts of the R-
tree and SS-tree [15]; it outperforms both the R*-tree and the

SS-tree.
The basic idea of the Pyramid-Technique is to transform the

d-dimensional data points into 1-dimensional values [19]. For
storing and accessing the values, it uses the B+-tree [21]. Poten-
tially, any order-preserving one-dimensional access method can
be used. Operations such as insert, update, delete or search are
performed by using the properties of B+-tree.

The TV-tree is a method in the database literature that was
proposed specifically for indexing high-dimensional data [13].
The basis of the TV-tree is to use contracting and extending
dynamically feature vectors. That is, it uses as little features as
possible that are necessary to discriminate between objects. An
example of a TV-tree is given in Fig. 1. The points denoted
from A to I represent data points (only the first two dimensions
are shown). In the root level, region R3 uses only one dimen-
sion for discrimination and other regions use two dimensions
for discrimination. The TV-tree, however, does not consider the
overlap problems and thus it still has the possibility of rapid
performance degradation in processing queries.

The X-tree was proposed as an index structure to avoid splits
that would result in high degree of overlaps in the directory
[14]. To do this, the X-tree uses a split algorithm minimizing
overlaps and additionally uses the concept of supernodes. Su-
pernodes are large directory nodes of variable size (a multiple
of the usual block size). Supernodes are created during inser-
tion to avoid splits in the directory that would result in a highly
overlapped structure. The X-tree uses the notion of maximum
overlap value (MaxO) to decide whether it splits a node or ex-
tends a node to a supernode. Most insertion algorithms split a
node in two if an overflow occurs. If the possibility of the over-
lap of the two split nodes becomes larger than MaxO, the X-
tree extends the original node into a supernode instead of split-
ting it. The suggested value of MaxO in [14] is 20 %.

Due to the fact that overlaps increase as the number of di-
mensions increases, the number and size of supernodes in-
crease in the X-tree [14]. Figure 2 shows three examples of X-
tree with different dimensionalities.

Although the overlap is reduced in the directory, the X-tree
loses the efficiency of hierarchical structures. In Fig. 2, when
the number of dimensions D is 32, the structure of the X-tree
looks linear because of large supernodes.

To solve the overlap problems of the TV tree, our proposed
CIR-tree will suggest an improved ChooseSubtree algorithm
that chooses the most appropriate node for inserting an image
object. The detailed algorithm is described in Section IV-3.A.
The CIR-tree also adapts the supernode concept in the Split al-
gorithm to alleviate the overlap problem. However, because
our CIR-tree uses smaller feature vector than the X-tree in the
directory, the size of supernodes and the total size of the directory
will decrease.

34 Jang Sun Lee et al. ETRI Journal, Volume 22, Number 2, June 2000

R1

A B C H F D I E G

R4R3R2

R1

R4
R3

R2

A

B

C

D

E

G

I

F

H

Fig. 1. An example of TV-tree. In the root level, region R3 uses only one dimension for discrimination. But other regions use two
dimensions for discrimination.

Fig. 2. Various shapes of the X-tree in different dimensions.

D = 4:

D = 8:

D = 32:

SupernodesNormal Directory Nodes Leaf Nodes

III. DESIGN REQUIREMENTS FOR HIGH

DIMENSIONAL INDEX STRUCTURES

From the survey of the existing high dimensional index struc-
tures and the characteristics of content-based retrieval, we believe
that a newly created index structure for high-dimensional data
should be designed by considering the following requirements:

• An index structure must efficiently deal with high dimensional
features.

Index structures for a content-based image retrieval system
must deal with high dimensional image features. Most exist-
ing multi-dimensional index structures are not adequate for
handling high dimensionality: they become extremely ineffi-
cient with growing dimensionality because the number of
nodes increases exponentially. When an index structure is con-
structed, the number of nodes should not increase exponen-
tially as the number of dimension increases.

• The overlap between directory regions must be minimized.

In general, an overlap means a region that is covered by
more than one directory area. As the amount of data and the
height of a tree increase, the overlap area increases remarkably
with the growing dimensionality of data. Usually, since the
overlap results in the necessity of traversing multiple paths, it
badly affects the performance of processing queries. Conse-
quently a newly created index structure should provide an algo-
rithm to minimize overlaps.

• Storage utilization must be optimized.

Higher storage utilization generally reduces the query cost
since the height of the tree would be kept low. Eventually,
some query types like a range query that finds all objects that
are within a certain distance from a given query object are mo-
re likely to be influenced by the storage utilization, because the
objects may be spread across more nodes as the storage utiliza-
tion becomes low.

• An index structure must be appropriate for similarity-based
queries.

Unlike conventional database systems, a content-based image
retrieval system processes queries based on similarity, since im-
ages are not atomic symbols but unformatted data [22]. There-
fore the index structure must process similarity queries effi-
ciently.

• An index structure must employ a similarity measure.

Image features are expressed as points in a high-dimensional
feature space in most content-based image retrieval systems.
Euclidean distance between two points is generally used as a
similarity measure in the systems. However, measuring the

ETRI Journal, Volume 22, Number 2, June 2000 Jang Sun Lee et al. 35

similarity between two points in a feature space with just
Euclidean distance may not match the user’s notion of similar-
ity, since the dimensions of image features are independent of
one another and different in respect of relativity and distribution.
As a result, other similarity measures must be employed.

• The index structure must process various query types effi-
ciently.

An index structure has to be able to process various query
types such as an exact match query, a partial match query, a
range query and a k-nearest neighbor search query. An index
structure must achieve good performance on every query.

• An index structure has to deal with high-dimensional features
dynamically.

Though there are certain applications having an archival na-
ture, i.e., insertions are less frequent and updates/deletions are
seldom necessary, content-based image retrieval systems in
practice require a dynamic information storage structure.

IV. CIR-TREE

1. Characteristics

Various index structures for high dimensional data sets have
been proposed. However most of them have a dimensionality
problem, as surveyed in the previous sections. TV-tree and X-
tree are representative index structures that have been intro-
duced recently to support queries for high-dimensional data.
It is true that they are more adequate index structures for high-
dimensional data than existing ones such as R-tree and its variants.
However, they still have some problems in dealing with over-
laps and a large number of features as pointed out in Section II.

We propose a new high dimensional index structure, called
CIR (Content-based Image Retrieval)-tree, in order to alleviate
these problems. The proposed CIR-tree mostly satisfies the de-
sign requirements mentioned in Section III. The main idea of
CIR-tree comes from the insights of the two structures, that is,
the main characteristics of the X-tree and the TV-tree. We ap-
plied the main idea of both tree structures to CIR-tree in order
to solve the dimensionality problem, and enhance the reinsert
algorithm. For the nodes that are close to the root node, we use
only a few dimensions so that we can store more branches and
obtain a high fanout like the TV-tree. On the other hand, we
used more and more dimensions as descending tree so that we
can see more discrimination. In the CIR-tree, it is assumed that
feature vectors for data objects are ordered in ascending order
by its importance, and the importance can be obtained by em-
ploying various conversion functions [13].

Like other index structures, CIR-tree represents data with a
hierarchical structure. A node in one level has its children nodes.
This constitutes a hierarchical structure starting from a root
node to leaf nodes. An internal node includes the MBRs of its
children nodes, and a leaf node has feature vectors. The CIR-
tree alleviates the disadvantages of the index structures of R-
tree group. According to experimental evaluation of overlaps in
the R*-tree directories, overlaps increase up to about 90 % for
high dimensionality larger than 5 [14]. Increased overlaps dete-
riorate the performance of an index structure remarkably. Over-
laps can be increased when a node is split or a record is inserted.
The CIR-tree employs the concept of supernodes in X-tree to
avoid overlaps and uses a new split algorithm to minimize
overlaps when an overflow occurs in a node. That is, the CIR-
tree avoids or minimizes overlaps using the split algorithm
whenever it is possible without degenerating the tree. Otherwise,
the CIR-tree uses extended variable size directory nodes, so-called
supernodes. Therefore, the structure of the CIR-tree is the mix-
ture of the linear array structure for representing supernodes
and the R-tree like hierarchical structure.

The CIR-tree achieves dynamic reorganizations by forcing
entries to be reinserted during the insert operations, which re-
groups entries and thus decreases overlaps. The CIR-tree uses
the concept of weighted center, or the average coordinates of
each entry, to enhance the performance of the reinsert algo-
rithm: using the weighted center significantly improves cluster-
ing effects of nodes in the CIR-tree. Consequently the CIR-tree
constructs a condensed tree structure and also decreases the
overlap between neighboring nodes.

In general, the existing index structures use Euclidean distance
as a similarity measure on retrieval. However, the Euclidean
distance may not be appropriate as a distance measure for high
dimensional data because of its exactness limit. To alleviate
such a problem, CIR-tree uses the weighted Euclidean distance
such as in (1). The weighted Euclidean distance processes various
kinds of similarity queries more efficiently than the Euclidean
distance.

,))(()(),(yxwdiagyxYXD T −−= (1)

where, x and y are feature vectors and w is a vector representing
a relative weight.

2. Structure of the CIR-tree

The structure of the CIR-tree is similar to that of TV-tree ex-
cept for supernodes. Each node, except leaf nodes, consists of a
set of entries, where each entry is composed of a pointer to a
child node and an MBR of the node. The MBR is a minimum
bounding region containing all entries of a node; it also has a
feature vector that is agreed on the node’s descendents in the

36 Jang Sun Lee et al. ETRI Journal, Volume 22, Number 2, June 2000

sense that the first, say, k dimensions of their feature vectors are
inactive ones. Therefore, our CIR-tree provides a higher fanout
at the top levels of an index structure.

The data structures for an MBR are as follows:

struct MBR { Feature inactive,

Feature lower,

Feature upper};

struct Feature { float feature_value[];

int no_of_dimensions };

where Feature denotes ‘feature vector.’
A directory node contains MBRs that represent minimum

bounding regions of all their descendents. The data structure is
as follows.

struct Branch_node { int no_of_element;

list of(MBR) };

A leaf node includes actual feature vectors. The structure of
the leaf node is as follows.

struct Leaf_node { int no_of_element;

list of(Feature) };

A supernode is created when splitting a directory node. We
will discuss the conditions of creating supernodes in Section
IV-3.B, when we describe the split algorithm. The structure of
supernodes is represented as a contiguous array of nodes.

3. Algorithms in CIR-tree

A. Insertion algorithm

To insert a new object, we should find the branch at each
level that is most suitable to hold the new object, and then insert
the new object to the chosen leaf node. If an overflow occurs at
this time, we can cope with it by reinserting some entries in the

node or splitting the node. After inserting, splitting, or reinsert-
ing a node, we update the MBRs of affected nodes.

The insertion algorithm calls ChooseSubtree algorithm first.
ChooseSubtree algorithm chooses the most appropriate node
using predefined criteria to insert a new object. The algorithm
is important to make a well-clustered tree structure, and then to
reduce overlaps and significantly improve retrieval perform-
ance. The algorithm ChooseSubtree uses the following criteria,
in a descending priority:

① Select the MBR that will result in a minimum number of
newly created overlapping MBRs within a node. Figure 3 (a)
shows an example of inserting a new object with this criterion.

② Select the MBR that uses more dimensions for discrimina-
tion, that is, the MBR of which more dimensions are inac-
tive. Figure 3 (b) shows only the first two dimensions. R1
and R2 are overlapped. R1 uses two dimensions for dis-
crimination and R2 uses one dimension for it. R1 may have
more regions in the direction of the next higher dimensions.
When inserting the point P, R1 is selected rather than R2,
because R1 uses more dimensions than R2. Using more
dimensions means that similar objects are clustered in a
small region.

③ Select the MBR whose center will be close to a new object.

When an overflow occurs during an insertion operation, the
CIR-tree firstly tries to reinsert some of the entries in the node.
If the CIR-tree cannot reinsert the entries, however, because the
overflow has occurred while reinserting some other entries
caused by another overflow, then it splits the node instead of re-
inserting the entries. If the area of overlaps within the node ex-
ceeds a certain threshold value in the split algorithm, the node
is extended to a supernode. The detailed split algorithm will be
explained in Section IV-3.C. The pseudo code for the insertion
algorithm is as follows.

Fig. 3. Illustration of the criteria of ChooseSubtree algorithm.

(b) R1 is selected because R1 uses two dimensions for
 discrimination, but R2 uses only one dimension.

R1

R2

P

(a) R3 is selected because extending R1 or R2 will
 lead to a new pair of overlapping regions.

R3

R2

R1 P

New R2 New R3
New R1

ETRI Journal, Volume 22, Number 2, June 2000 Jang Sun Lee et al. 37

Algorithm Insertion

1. ChooseSubtree() // choose the best branch

// to follow, descend the

// tree until the leaf

// node is reached

2. Insert a new object into the leaf node.

3. if(node overflows)

4. Call Reinsert

5. if(Reinsert fail)

6. Call Split

5. if(the split routine returns supernode)

6. Extend the leaf node to supernode

7. else

8. Insert the MBRs of the two split

nodes into the parent node

9. UpdateTree() // update the MBRs of the

// parent node

B. Reinsert algorithm

In most tree structures for high dimensional data, including
R-tree, R*-tree and TV-tree, different sequences of insertions
will result in different tree structures. MBRs that have been in-
troduced during the early growth of the tree structure in some
sequences may lead to a bad retrieval performance in the cur-
rent situation. Therefore, we need a mechanism to reorganize
the tree dynamically to avoid performance degradation.

The R-tree, the R*-tree and the TV-tree force the entries to be
reinserted during the insertion routine to reorganize tree struc-
tures. However, the X-tree does not perform reinsertion, and
thus it can have more overlapped bounding rectangles than
other index structures. Supernodes are used in the X-tree to
avoid overlaps; however, the size of supernodes may increase
and then deteriorate the retrieval performance.

If an overflow occurs in a node, p entries farthest from the
center of the node are deleted and then reinserted into the tree.
This provides a possibility of eliminating dissimilar entries
from the node so that it accomplishes more efficient clustering.
The parameter p can be varied in performance tuning stage.
The experimentally suggested value of p in [16] is 30 % of the
maximum number of entries in a node.

The R*-tree and TV-tree use geometric center to find the far-
thest entries. The CIR-tree uses weighted center. The weighted
center c

r
 of a node N is defined as

,1

n

e
c

n

i
i∑

==

r

r

where ic
r

 denotes the center vector of the entry and n denotes
the number of entries in a node N.

(a) Weighted and Geometric centers

(b) Reinsert with weighted center (c) Reinsert with geometric center

Fig. 4. Comparison of a weighted center with a geometric center
where p = 40 %. Reinsertion with weighted center makes
smaller bounding rectangle.

If we use the weighted center as one of a node, the center of a

node is moved toward a place where, in its vicinity, the entries
are denser. Figure 4 shows the effect of the weighted center
when %.40=p By using the weighted center, we can get
smaller, or well-clustered MBRs, after deleting the farthest
entries. In addition, the smaller MBRs would decrease overlaps.
The computation cost for a weighted center will be dependent
on the number of entries and the number of dimensions of each
entry; however, it is not a great burden in the whole algorithm.

Algorithm Reinsert

1. delete p% of entries from a node

2. insert them into the tree

3. if overflow occurs during insertion

4. return fail

5. else

6. return success

C. Split algorithm

The purpose of splitting a node is to divide the set of MBRs
into two groups in order to facilitate upcoming operations and
provide high space utilization. The creation or extension of a
supernode occurs if there is no possibility to find a suitable hi-
erarchical structure. In other words, if dividing of the MBRs
results in a large overlap split, we do not split the node but create
a supernode of twice the size of the node, or append a block if
the current node is a supernode.

When splitting a node, we sort the entries of the node by the
first active dimension, then look for the best break point in the
sorted entries where the overlap of the two split MBRs becomes
the minimum. Of course, both of the two split nodes have a

38 Jang Sun Lee et al. ETRI Journal, Volume 22, Number 2, June 2000

larger size than the minimum fill factor. If the overlap exceeds
MaxO, mentioned in Section II, the directory node would be
extended to a supernode. In CIR-tree, we set the value of
MaxO as 20 %.

Algorithm Split

1. find the 1st dimension with which overlap

free split is possible.

2. if the dimension found

3. do split

4. return the MBRs of the two nodes

5. else // overlap-free split is impossible

6. split with the first active dimension

7. If(overlap_ratio > MaxO) return supernode

8. else return the MBRs of the two nodes

9. end

D. Search algorithm

In this algorithm, a search starts from the root node. It
examines each entry that intersects the search area, recursively
following the entries, because MBRs are allowed to be over-
lapped. The following is the pseudo-code of the search algo-
rithm:

Algorithm Search

1. If(accessed node == Leaf node)

2. Evaluate the similarity of the query and

the entries in the node.

3. Return the objects satisfying the query

according to similarity.

4. else // for directory nodes

5. Select all MBRs including the query for

active dimensions.

6. Call the search algorithm recursively

with each child node selected in step 5.

7. end

E. Nearest Neighbor Search algorithm

We used Hjaltason and Samet’s algorithm known as optimal
[23], [24]. This algorithm uses MINDIST as a metric to prune
nodes from a search list; MINDIST is an Euclidean distance be-
tween the query point and the nearest edge of a rectangle. Since
the CIR-tree and the TV-tree do not use full dimensions to
compute MINDIST, the effectiveness of pruning can be de-
graded. However, the small number of directory nodes of CIR-
tree compensates the ineffectiveness in pruning. The following
is the pseudo-code of the nearest neighbor search algorithm.

Algorithm NN_Search

SearchQueue : Priority Queue

1. push the child nodes of the root and their

MINDISTs into SearchQueue

2. while (SearchQueue is not empty)

3. if(top of SearchQueue is a leaf)

4. find nearest point NNP

5. if(NNP is closer than NN)

6. prune SearchQueue with NNP

7. let NNP be the new NN

8. else

9. push its child nodes into Search-

Queue

10 endif

11. endwhile

F. Deletion

Deletion is quite simple unless underflow occurs. In this case,
the remaining entries of the node will be deleted and reinserted.
The underflow may be propagated to the upper levels of the tree.

V. EXPERIMENTS

We show the characteristics of the proposed CIR-tree by
comparing its performance with those of TV-tree, X-tree and
Pyramid-Technique. In the experiments, we used SUN SPARC
station 20 with 128 Megabytes of main memory and 6 Giga-
bytes of hard disk. All simulation programs were implemented
with ANSI C++ and compiled with a GNU C++ compiler.
We used the TV-tree, the X-tree and the Pyramid-Technique
programs without modifying the program sources that were
implemented by the authors of [13], [14], [19]. The size of a
standard block in these experiments is 4 KB. As a synthetic
data set, we generated 2,000,000 uniformly distributed float-
ing-point numbers between 0.0 and 10.0, and then we grouped
them with desired dimensions to make data points. The dimen-
sion, say D, was varied from four with 500,000 data points up
to 18 with 111,111 data points.

1. Retrieval Performance

Figures 5 and 6 show the performance of three index struc-
tures for exact match queries. We have applied 50,000 exact
match queries to uniformly distributed data varying the number
of dimensions of the data points, i.e., each graph of the figures
represents the average of 50,000 independent experiments.
Note that, in order to count the number of page accesses, the
access to a supernode of size s was counted as s page accesses.
As shown in Fig. 5, the CIR-tree outperforms other index trees.
Since the number of data points is decreased with growing di-
mensionalities of the data points, the number of page accesses
of the TV-tree is reduced. The retrieval performance of the X-

ETRI Journal, Volume 22, Number 2, June 2000 Jang Sun Lee et al. 39

Fig. 5. The number of page accesses for an exact match query.

Dimension

P
ag

e
ac

ce
ss

es

4 6 8 10 12 14 16 18
0

10

20
30

40
50

60

70

80

90

X-tree CIR-tree TV-tree

Fig. 6. An average size of directory nodes.

Dimension

A
ve

ra
ge

 s
iz

e
of

 d
ire

ct
or

y
no

de
s

4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

X-tree CIR-tree

tree depends on the size of the supernodes. For example, when
,12=D the number of page accesses increases significantly,

because the X-tree does not employ the forced reinsertion
technique and the number and size of supernodes increase as
the number of dimensions increases. The facts that no forced
reinsertion technique is used and that different sequences of in-
sertions may result in different tree structures may fluctuate the
graph for the X-tree. However, the number and size of super-
nodes of CIR-tree are smaller than those of the X-tree even
though CIR-tree uses supernodes, because the CIR-tree main-
tains smaller directory sizes. Eventually the CIR-tree always
provides better performance for exact match queries over the
other index structures.
We also performed range queries and nearest neighbor queries
with the TV-tree, the X-tree and the CIR-tree. For the range
queries we first generated 5,000 center vectors using random
number generation, and then made two range-bounding rec-
tangles: for the upper bound vector we added one to each di-
mension of the center vector; for the lower bound vector we
subtract one from the center vector. We extended the TV-tree to
process the range queries and the neighbor queries, because the

Fig. 7. Range query.

X-tree CIR-tree TV-tree

Dimension

P
ag

e
ac

ce
ss

es

4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

Fig. 8. Ten nearest neighbor query.

X-tree CIR-tree

Dimension

P
ag

e
ac

ce
ss

es

4 6 8 10 12 14 16 18
4

504

1,004

1,504

2,004

2,504

3,004

original TV-tree supports point queries only. The results of the
range queries are presented in Fig. 7. Similar to the results
shown in Fig. 5, the number of page accesses of the X-tree
depends on the size of supernodes and the number of page
accesses of the CIR-tree seems stable.

Figure 8 shows the results of 10 nearest neighbor queries. We
only compare the performance of the proposed CIR-tree with
that of X-tree, because the performance of the k nearest
neighbor queries with the TV-tree are so poor that it is mean-
ingless to present the results as a graph in the figure. The num-
ber of page accesses of the X-tree increases exponentially with
dimension. On the other hand, the number of page accesses of
the CIR-tree increases linearly with dimension.

Finally, we compared the CIR-tree with the Pyramid-Technique
by using a real data set. We used the letter image recognition data
in [25] as the real data set, which consists of 20,000 points of 17-
dimensional data (1 category and 16 numeric features). The cate-
gory is one of the 26 capital letters in the English alphabet and the
numeric features are scaled to fit into a range of integer values
from 0 to 15. Figure 9 shows the experimental results with the real
data. In this figure we can see that the CIR-tree provides better per-
formance than the Pyramid-Technique and X-tree in range queries
and nearest neighbor queries. Note that, in Fig. 9

40 Jang Sun Lee et al. ETRI Journal, Volume 22, Number 2, June 2000

Fig. 9. Comparison with Pyramid Technique and X-tree by using the real data.

Number of objects

P
ag

e
ac

ce
ss

es

(b) Ten Nearest neighbor query

Pyramid T. CIR-tree X-tree

1 2 3 4
4

54

104

154

204

(a) Range query

Query range

P
ag

e
ac

ce
ss

es

1 2 3 4 5 6 7 8 9
4

54
104
154
204
254
304
354
404

Pyramid T. CIR-tree X-tree

Fig. 10. Number of directory nodes depending on the dimensionality.

Dimension

N
um

be
r o

f d
ire

ct
or

y
no

de
s

4 6 8 10 12 14 16 18
0

50

100

150

200

250

X-tree
CIR-tree

(a), the difference of the number of the page accesses of them
becomes smaller as the range increases. The performance of
the CIR-tree seems better than those of the Pyramid-Technique
and X-tree in large ranges, but we cannot definitely say that it is
superior to the Pyramid-Technique because the Pyramid-
Technique has a simpler node structure than the CIR-tree. In
other words, although the Pyramid-Technique needs more page
accesses than the CIR-tree, it may spend less CPU time than
the CIR-tree because of its simple node structure.

2. Storage Space

Figure 10 shows an experimental result of each index structure
in terms of storage space. Due to the fact that the CIR-tree and
X-tree create similar number of leaf nodes, the comparison of
the number of leaf nodes is meaningless. So we only compared
the number of directory nodes. The figure shows that the space
usage of the X-tree increases with dimension, but the space us-
age of the CIR-tree is stable. This is because the CIR-tree stores
a small number of features in the directory node for all dimen-
sions. The CIR-tree creates a small number of nodes and uses
the storage space effectively. As a result, the performance com-
parison in terms of storage space shows that the storage

Fig. 11. Insertion Time of CIR-tree and X-tree.

X-tree
CIR-tree

Dimension

S
ec

on
ds

6 10 14 18
0

10

20

30

40

50

60

70

overhead of the CIR-tree is much less than that of the X-tree.

3. Insertion Performance

Because the CIR-tree uses a reinsertion technique in the inser-
tion algorithm, the cost for insertion operations is higher than
those of the X-tree and the Pyramid-Technique which do not
use reinsertion technique. The Pyramid-Technique always
spends less time than CIR-tree since it uses B+-tree, so its inser-
tion time is B+-tree construction time and transformation time.
The X-tree spends less time than CIR-tree, but as the size of the
supernode grows, the X-tree tends to spend more time than
CIR-tree. Even though the CIR-tree performs reinsert opera-
tions, the number of directory nodes is much smaller than that of
X-tree especially in a higher-dimension data space. Figure 11
shows the insertion time of X-tree and CIR-tree. The number
of data objects was fixed as 10,000 and the dimension varied
from 6 up to 18.

VI. CONCLUSIONS

In this paper, we have analyzed existing index structures for
high-dimensional data and proposed several desired design re-

ETRI Journal, Volume 22, Number 2, June 2000 Jang Sun Lee et al. 41

quirements that a new index structure must have. We have also
proposed a new efficient index structure, called CIR-tree,
which satisfies the design requirements. The proposed CIR-tree
uses fewer dimensions at the upper levels, which allows an in-
dex structure to have a higher fanout at the top levels and a no-
de to hold more data. The CIR-tree makes the height of a tree
become lower, solving the dimensionality problems; it supports
high dimensional data more efficiently, reduces the number of
disk accesses, and improves the disk storage utilization. The
CIR-tree produces well-clustered index structures by using the
weighted center in the reinsert algorithm as well as using su-
pernodes to avoid overlaps. The CIR-tree also uses a weighted
Euclidean distance to overcome the exactness problem of
Euclidean.

We have compared the proposed CIR-tree with the TV-tree,
the X-tree and the Pyramid-Technique through various experi-
ments to manifest the superiority of CIR-tree. The experiments
show that the CIR-tree outperforms the TV-tree, the X-tree and
the Pyramid-Technique in terms of retrieval speed and space
requirements. But the CIR-tree needs further investigation to
improve nearest neighbor query performance.

REFERENCES

[1] W. E. Mackay and G. Davenport., “Virtual video editing in interac-
tive multimedia applications,” Communications of the ACM, July
1989, Vol. 32, pp. 802–810.

[2] Myron Flickner and et. al., “Query by Image and Video Content :
The QBIC System,” IEEE Computer, Vol. 28, No. 9, 1995.

[3] Charles E. Jacobs, Adam Finkelstein, and David H. Salesin., “Fast
Multiresolution Image Query,” Proc. of the 1995 ACM SIG-
GRAPH, New York, 1995.

[4] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D.
Petkovic, P. Yanker, C. Faloutsos, and G. Taubin, “The QBIC pro-
ject: Querying image by content using color, texture and shape,”
Proc. SPIE Storage and Retrieval for Image and Video Databases,
February 1993, pp. 173-187.

[5] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D.
Petkovic, and W. Equiz, “Efficient and Effective Querying by Im-
age Content,” Journal of Intelligent Information System (JIIS), Vol.
3, No. 3, July 1994, pp. 231–262.

[6] B. Furht, S. W. Smoliar, and H. Zhang, “Video and Image Proc-
essing in Multimedia Systems,” Kluwer Academic Publishers,
1994.

[7] Y. Alp Aslandogan, Chuck Their, Clement T. Yu, Chengwen Liu,
and Krishnakumar R. Nair, “Design, Implementation and Evalua-
tion of SCORE (a System for Content based Retrieval of pic-
tures),” Proc. of 11th international conference of Data Engineer-
ing, 1995, pp. 280–287.

[8] P. M. Kelly, T. M. Cannon and D. R. Hush, “Query by image ex-
ample: the CANDID approach.,” Proc. SPIE Storage and Re-
trieval for Image and Video Database III, Vol. 2420, 1995, pp.

238–248.
[9] J. K. Wu, A. Desai Narasimhalu, B. M. Mehtre, C. P. Lam, and Y.

J. Gao, “CORE: a content-based retrieval engine for multimedia
systems,” ACM Multimedia Systems, Vol. 3, 1995, pp.25–41.

[10] M. J. Swain and D. H. Ballard., “Color indexing,” International
Journal of Computer vision, Vol. 7, No. 1, 1991, pp. 11–32.

[11] D. A. White and R. Jain, “Similarity Indexing with the SS-tree,” In
Proc. 12th Intl. Conf. On Data Engineering, New Orleans, 1996,
pp. 516–523.

[12] D. A. White and R. Jain, “Similarity Indexing: Algorithms and
Performance,” In Proc. of the SPIE : Storage and Retrieval for
Image and Video Databases IV, Vol. 2670, 1996, pp. 62–75.

[13] K.I. Lin, H. Jagadish, and C. Faloutsos, “The TV-tree: An Index
Structure for High Dimensional Data,” VLDB Journal, Vol. 3,
1994, pp. 517–542.

[14] S. Berchtold, D. A. Keim, and H-P. Kriegel, “The X-tree: An In-
dex Structure for High-Dimensional Data,” Proc. of the 22nd
VLDB Conference, Bombay, India, 1996.

[15] Norio Katayama, and Shin’ichi Satoh, “The SR-tree: An Index
Structure for High-Dimensional Nearest Neighbor Queries,” Proc.
ACM SIGMOD Int. Conf. On Management of Data, Tucson, Ari-
zona, 1997, pp. 369–380.

[16] N. Beckmann, H.P. Kriegel, R. Schneider and B. Seeger, “The R*-
tree: An Efficient and Robust Access Method for Points and Rec-
tangles,” ACM SIGMOD, May 1990, pp. 322–331.

[17] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest Neighbor
Queries,” Proc. ACM SIGMOD Int. Conf. On Management of
Data, San Jose, CA, 1995, pp. 71–79.

[18] Roger Weber, Hans-Jorg Schek, and Stephen Blott, “A Quantita-
tive Analysis and Performance Study for Similarity-Search Meth-
ods in High-Dimensional Spaces,” Proc. of the 24th VLDB Conf.,
New York, USA, 1998, pp 194–205.

[19] Stefan Berchtold, Christian Bohm, and Hans-Peter Kriegel, “The
Pyramid-Technique: Towards Breaking the Curse of Dimension-
ality,” Proc. ACM SIGMOD Int. Conf. on Management of Data,
Seattle, WA, 1998, pp. 142–153.

[20] A.Guttman, “R-trees: A Dynamic Index Structure for Spatial
Searching,” Proc. 7th Int. Conf. on Data Engineering, 1991, pp.
520–527.

[21] D. Comer, “The Ubiquitous B-tree,” ACM Computing Surveys,
Vol. 11, No. 2, 1979, pp.121–138.

[22] Y. Gong et al., “An Image Database System with Content Captur-
ing and Fast Image Indexing Abilities,” In Proc. of the Interna-
tional Conf. on Multimedia Computing and Systems, IEEE, Boston,
MA, May 1994, pp. 121–130.

[23] Gisli R. Hjaltason and Hanan Samet, “Ranking in spatial Data-
bases,” Proc. of the 4th Symposium on Spatial Databases, Portland,
Maine, Aug. 1995, pp. 83–95.

[24] Andreas Henrich, “A Distance Scan Algorithm for Spatial Access
Structures,” ACM-GIS, 1994, pp. 136–143.

[25] C. L. Blake and C. J. Merz, “UCI Repository of Machine Learn-
ing Databases,” Irvine, University of California, Department of
Information and Computer Science, 1998.

42 Jang Sun Lee et al. ETRI Journal, Volume 22, Number 2, June 2000

Jang Sun Lee received the B.S. degree in Com-
puter engineering from Kyungpook National
University, Taegu, Korea in 1983, the M.S. de-
gree in computer science form Korea Advanced
Institute of Science and Technology (KAIST),
Taejon, Korea in 1985, and his Ph.D. in com-
puter science from Syracuse University in 1997.
He joined ETRI in 1985 and has worked for the

development of system software technologies. Currently he is the head
of Storage System Software Research Team. His current research inter-
ests include parallel I/O, SAN and NAS, database systems, parallel and
distributed systems, and operating systems.

Jae Soo Yoo received the B.S. degree in Com-
puter engineering from Chonbuk National Uni-
versity in 1989, and the M.S. and Ph. D. degrees
in computer science form Korea Advanced In-
stitute of Science and Technology (KAIST), in
1991 and 1995, respectively. From March 1995
to August 1996, he was a faculty member of the
department of computer science at Mokpo Na-

tional University. He has been an assistant professor in the department
of computer and communication engineering at Chungbuk National
University since 1996. His research interests include database systems,
multimedia database, information retrieval and distributed object com-
puting

Seok Hee Lee received the B.S. and M.S. de-
gree in the department of computer & commu-
nication engineering from Chungbuk National
University, Cheongju Korea, in 1994 and 1998,
respectively. Since 1998, he has been studying
database systems at the department of computer
& communication engineering in Chungbuk
National University for his Ph.D. Since March

2000 he has been with the department of internet broadcasting at the
Dong-Ah Broadcasting College, Anseong Korea, where he is currently
a full-time lecturer. His research interests include multimedia and im-
age database systems, information retrieval, image processing and im-
age communication.

Myung-Joon Kim received the B.S. degree
from Seoul National University, Korea, the M.S.
degree from KAIST (Korea Advanced Institute
of Science and Technology) Taejon Korea and
the Ph.D. degree from University of Nancy I,
Nancy France in 1978, 1980 and 1986 respec-
tively, all in computer science. He joined ETRI
in 1986 and has worked for the development of

system software technologies especially database systems and distrib-
uted system technologies. He served as head of Database Section
(1989-1992), head of Software Engineering Section (1994), director of
System Software Department (1995-1997), director of Database Tech-
nology Department (1998) and director of Internet Service Department
(1999). In 1993 he worked at University of Nice Sophia-Antipolis,
France as a visiting professor. Currently he is Vice President of Com-
puter & Software Technology Laboratory. His current research interests
include database system, transaction processing, distributed systems,
real-time OS, object technologies and their deployment for new Inter-
net applications.

