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In this paper, we study the problem of domain 
adaptation for structural support vector machines (SVMs). 
We consider a number of domain adaptation approaches 
for structural SVMs and evaluate them on named entity 
recognition, part-of-speech tagging, and sentiment 
classification problems. Finally, we show that a prior 
model for structural SVMs outperforms other domain 
adaptation approaches in most cases. Moreover, the 
training time for this prior model is reduced compared to 
other domain adaptation methods with improvements in 
performance. 
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I. Introduction 

Large-margin methods for structured output prediction, such 
as maximum-margin Markov networks [1] and structural 
support vector machines (SVMs) [2], have recently received 
substantial interest in natural language processing [3]-[6], 
bioinformatics [7], and information retrieval [8]. 

For structural SVMs, Tsochantaridis presented a cutting-
plane algorithm that takes O(1/ε2) iterations to reach a desired 
precision ε [2]. Teo suggested a bundle method [9], while 
Joachims proposed a 1-slack formulation of structural SVMs, 
which is very similar to the bundle method [10]. The 1-slack 
algorithm is substantially faster than existing methods such as 
sequential minimal optimization (SMO) and SVM-light. The 
convergence rate of the 1-slack algorithm is O(1/ε). However, 
domain adaptation methods are not exploited in structural 
SVMs. 

The task of domain adaptation is to develop learning 
algorithms that can be easily ported from one domain to 
another, for example, a TV domain to a sports domain. This 
problem is particularly interesting in natural language 
processing and bioinformatics because we are often in 
situations in which we have a large collection of labeled data in 
one source domain but truly desire a model that performs well 
in a second target domain. 

Two varieties of the domain adaptation problem have been 
addressed in the literature: supervised and semi-supervised 
cases. In a supervised case, we have a large annotated corpus in 
the source domain and a small corpus in the target domain. We 
want to leverage both annotated datasets to obtain a model that 
performs well on the target domain. The semi-supervised case 
is similar, but instead of having a small annotated target corpus, 
we have a large but unannotated target corpus. In this paper, we 
focus exclusively on the supervised case. 

In this paper, we consider a number of domain adaptation 
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approaches for structural SVMs and evaluate them on named 
entity recognition, part-of-speech tagging, and sentiment 
classification problems. We show that a prior model for 1-slack 
structural SVMs outperforms other domain adaptation 
methods in most cases. 

The rest of this paper is organized as follows. In section II, 
we give an overview of related work. Section III describes the 
1-slack structural SVMs. Section IV describes our proposed 
prior model for 1-slack structural SVMs. Section V provides 
the experimental setup and results. Finally, the last section 
offers some concluding remarks. 

II. Previous Work 

There are several ways to solve the domain adaptation 
problem without developing new algorithms. Many of these 
have been presented and evaluated by Daumé and Marcu [11] 
as follows: 

• The SRC-ONLY baseline ignores the target data and trains a 
single model only on the source data. 

• The TGT-ONLY baseline trains a single model only on the 
target data. 

• The ALL baseline simply trains a standard learning 
algorithm on the union of the two datasets. 

• The PRED baseline is based on the idea of using the output 
of the source classifier as a feature in the target classifier. 
Specifically, we first train the SRC-ONLY model. We then 
run the SRC-ONLY model on the target data. We use the 
predictions made by the SRC-ONLY model as additional 
features and train a second model on the target data 
augmented with this new feature. 

• In the LIN-INT baseline, we linearly interpolate the 
predictions of the SRC-ONLY and TGT-ONLY models. 
The interpolation parameter is adjusted based on target 
development data. 

Chelba and Acero introduced the PRIOR model for 
maximum entropy classifiers [12]. The idea of this model is to 
use the SRC-ONLY model as a prior on the weights for a 
second model trained on the target data. The model trained on 
the target data “prefers” to have weights that are similar to the 
weights from the SRC-ONLY model, unless the data demands 
otherwise. 

Daumé and Marcu presented the MEGA model for domain 
adaptation for maximum entropy classifiers [11]. The key idea 
of their approach is to learn three separate models: source-
specific, target-specific, and general models. They present an 
expectation maximization (EM) algorithm for training the 
model. This model consistently outperformed all baseline 
approaches as well as the prior model. However, it is quite 
complex to implement and is roughly 10 times to 15 times 

slower to train than the prior model. 
Daumé proposed a feature augmentation method to augment 

features for domain adaptation [13]. The augmented features 
are used to construct a kernel function for kernel methods. 

Yang and others proposed adaptive support vector machine 
(A-SVM) for learning a new SVM classifier for a target 
domain, which is adapted from an existing classifier trained on 
the source domain [14]. However, A-SVM is slow in terms of 
the testing time because it employs auxiliary classifiers for the 
label prediction of patterns in the target domain. 

Our proposed model, a prior model for structural SVMs, is 
different from A-SVM and feature augmentation, as our model 
directly adapts an existing model to new data and avoids 
training time overhead for existing data. 

III. 1-Slack Structural SVMs 

Structured classification is a problem of predicting y from x 
in cases in which y has a meaningful internal structure. For 
example, x might be a word string and y a sequence of part of 
speech labels. Alternatively, y might be a parse tree of x. The 
approach is to learn the discriminant function :f X Y R× →  
over <input, output> pairs from which we can derive a 
prediction by maximizing f over the response variable for a 
specific given input x. Throughout this paper, we assume f to be 
linear in certain combined feature representations of inputs and 
outputs ( , ),x yΨ  ( , ; ) ( , ).Tf x y x y= Ψw w  

The specific form of ( , )x yΨ  depends on the nature of the 
problem. An example of part of speech tagging is shown in  
Fig. 1. 

To deal with problems in which |Y| is very large, 
Tsochantaridis proposed two approaches; namely, slack 
rescaling and margin rescaling [2]. In the case of margin 
rescaling, which we consider in this paper, training a structural 
SVM amounts to solving the following quadratic program. For 
convenience, we define ( , ) ( , ) ( , ),i i i i ix y x y x yδΨ ≡ Ψ − Ψ  
where (xi, yi) is the training data: 
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The  dog  chased  the  cat   

DT—NN—VBD—DT—NN 
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The  dog  chased the  cat 

Fig. 1. Example of part of speech tagging model. 
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This formulation is referred to as an “n-slack” structural 
SVM because it assigns a different slack variable to each n 
training example. Tsochantaridis presented a cutting-plane 
algorithm that requires O(n/ε2) constraints for any desired 
precision ε [2]. 

Joachims proposed an alternative formulation of the SVM 
optimization problem for predicting structured outputs [10]. 
The key idea is to replace the n cutting-plane models of each 
hinge loss with a single cutting plane model for the sum of the 
hinge losses. Since there is only a single-slack variable, the new 
formulation is referred to as “1-slack” structural SVMs. 
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 (2) 
While 1-slack formulations have |Y|n constraints, one for 

each possible combination of labels 1ˆ ˆ( ,..., ) n
ny y Υ∈ , they have 

only one slack variable ξ, which is shared across all constraints. 
Interestingly, the objective functions of the n-slack and 1-slack 
formulations are equal [10]. 

Joachims showed that the dual form of the 1-slack 
formulation has a solution that is extremely sparse with the 
number of non-zero dual variables independent of the number 
of training examples and that the convergence rate is O(1/ε) 
[10]. 

IV. Domain Adaptation for 1-Slack Structural SVMs 

We extended structural SVMs for the domain adaptation 
problem using the prior model. We used the margin rescaling 
formula of 1-slack structural SVMs for the prior model as 
follows: 
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where w0 is the weight vector learned in the SRC-ONLY 
model, (xi, yi) is a training example, and L(yi ,y) is a real-valued 
loss for output y relative to the correct output yi. Unlike regular 
SVMs, structural SVMs can predict complex y outputs, such as 
trees, sequences, or sets. 

We denote the vectors as  

1ˆ ˆ ˆ( ,..., ) ,  n
ny y Υ= ∈y  
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We can solve the optimization problem of the prior model 
for 1-slack structural SVMs in (4) using standard Lagrangian 
duality techniques: 
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Substituting (5) and (6) into (4), we obtain the following dual 
form, which is a quadratic programming (QP) problem where 
the objective function LD is solely dependent on a set of 
Lagrangian multipliers: 
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The only difference in the dual form of 1-slack structural 

SVMs and that of the prior model for 1-slack structural SVMs 
in (7) is that the latter contains an extra term w0. The extremum 
of the object function LD is at 
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Let new
ˆ ˆ sα α= +y y  and new ˆ( ).sδ= + Ψw w y  We can 

then obtain the following equation from (8): 
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After s is computed, it is changed to satisfy a standard box 

constraint, ˆˆ
0 nΥ

Cα
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≤ ≤∑ yy
and ˆ 0α ≥y . 
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       (11) 

To train the prior model for 1-slack structural SVMs, we use 
a modified 1-slack cutting plane algorithm and a modified 
fixed-threshold SMO (FSMO) algorithm [5]. The pseudocode 
of the modified 1-slack cutting algorithm is given in algorithm 1. 
 

Algorithm 1. 1-slack cutting plane algorithm for PRIOR model. 
1: Input: (x1, y1), …, (xn, yn), C, ε 
2: S Ø 
3: repeat 

4:   
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5:    for i=1,…,n do 
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10: return (w, ξ) 

 
The modified FSMO uses the fact that the formulation of  

1-slack structural SVMs has no bias and no linear equality 
constraint of binary classification SVMs [5]. Therefore, the 
modified FSMO breaks the QP of a structural SVM into a 
series of smallest QPs, each involving only one variable. By 
involving only one variable, the modified FSMO is 
advantageous in that each QP sub-problem does not require a 
working set selection when support vectors are unbounded. 

A pseudocode of the modified FSMO for PRIOR model is 
depicted in algorithm 2. The algorithm is called a 1-slack 
cutting plane algorithm (line 4 in algorithm 1) and is used to 
solve the dual problem over working set S. Iterating through 
the constraint 1ˆ ˆ ˆ( , , )ny y=y  in working set S, the algorithm 
updates individual Lagrange multipliers (that is, ˆαy ) and w 
when support vectors are unbounded (lines 4 to 9). When 
support vectors are bounded, the algorithm chooses two 
Lagrange multipliers by using the working set selection 
algorithm of SMO and updates two Lagrange multipliers. The 
algorithm stops if no ˆαy  has changed during iteration. 

Algorithm 2. Modified FSMO algorithm for PRIOR model: 
1-slack cutting plane algorithm (line 4 in algorithm 1) used to solve 
dual problem over working set S. 

1: Input: (x1, y1), …, (xn, yn), S, Sα , C, ε 

2: repeat 
3:    if ˆˆ nΥ
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9:       end for 
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13:       if ˆ ˆ( ) ( ')g g ε− >y y  do 
14:          calculate s2 and s2

clipped  
15:         new clipped new clipped

ˆ ˆ ˆ ˆ2 2' ',  s sα α α α= + = −y y y y  

16:       end if 
17:   end if 
18: until no ˆαy  has changed during iteration. 

 
V. Experiments 

We demonstrated the effectiveness of our domain adaptation 
for structural SVMs on named entity recognition (NER), part-of-
speech (POS) tagging, and sentiment classification problems. 

For the NER problem, we used a Korean named entity data 
set. We used three domains: a TV domain (TV scripts), a sports 
domain (sports news articles), and a celebrity domain (celebrity 
news articles). In the dataset, 108,984 (TV domain), 84,564 
(sports domain), and 5,988 (celebrity domain) sentences were 
annotated into 15 NE categories: person, location, organization, 
artifacts, study fields, theory, civilization, date, time, quantity, 
event, animal, plant, material, and term. For the training set, we 
used 105,265 (TV domain), 81,829 (sports domain), and 4,804 
(celebrity domain) sentences. For the test set, we used 3,719 
(TV domain), 2,735 (sports domain), and 1,184 (celebrity 
domain) sentences. 

For POS tagging, we used 18,537 Wall Street Journal (WSJ) 
sentences from sections 00-18 of the Penn Treebank as the 
source domain data, and 1,964 PubMed sentences from the 
ontology section of the PennBioIE corpus [15] as the target 
domain data [16]. 

For sentiment classification, we used a multidomain 
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Table 1. Data sets used in experiments. 

Task    
(data set) 

Source 
domain 

training set 
(#sent.) 

Target 
domain 

training set 
(#sent.) 

Target 
domain test 

set  
(#sent.) 

#class #feature

TV 
(105,265) 

Sports 
(10,000)

Sports 
(2,735) 

31 408,542

Sports 
(81,829) 

TV 
(30,000)

TV 
(3,719) 

31 408,542
NER 

(Korean 
NER) 

Sports 
(81,829) 

Celebrity
(4,804) 

Celebrity 
(1,184) 

31 301,722

POS tagging 
(PubMed) 

WSJ 
(18,537) 

PubMed
(1,964) 

PubMed 
(1,065) 

45 720,522

Books 
 (6,065) 

Kitchen
(1,600) 

Kitchen 
(400) 

2 224,156

DVD 
(5,186) 

Kitchen
(1,600) 

Kitchen 
(400) 

2 220,070
Sentiment 

classification 
(Amazon) 

Electronics 
(7,281) 

Kitchen
(1,600) 

Kitchen 
(400) 

2 154,126

 

sentiment dataset [17] containing product reviews from 4 
Amazon domains (book, dvd, electronics, and kitchen) [18]. 
The goal in each domain is to classify a product review as 
either positive or negative. We used 6,065 (book), 5,186 (dvd), 
and 7,281 (electronics) reviews as the source domain data, and 
1,600 kitchen reviews as the target domain data. Table 1 
summarizes the characteristics of the data sets. 

We implemented the prior model for 1-slack structural 
SVMs using a modified FSMO in C++ [5]. For comparison, 
we ran baseline domain adaptation methods using structural 
SVMs as a base learner. For all experiments, a linear kernel 
was used. Regularization constant C from {1, 3, 10, 30, 100, 
300, 1,000, 3,000, 10,000} was chosen based on an 
optimization of the test set for all experiments. For a precise 
stopping condition, we set e = 0.1. All experiments were 
conducted on an Intel Core i5 CPU PC with 2.67 GHz and   
8 GB of RAM. 

In our first NER experiment, we used the sports domain as 
the target domain and the TV domain as the source domain. 
Figure 2 shows the accuracy of the compared methods, while 
Table 2 shows their F-measure. S-SVM+Src, S-SVM+Tgt,  
S-SVM+Lin, and S-SVM+Pred are SRC-ONLY, TGT-ONLY, 
LIN-INT, and Pred baselines using structural SVMs as a base 
learner, respectively. S-SVM+Prior is the prior model for    
1-slack structural SVMs. All domain adaptation algorithms 
perform better than S-SVM+Tgt baseline when there is very 
little target data available. For the largest amount of target data, 
however, only S-SVM+Prior significantly outperforms S-SVM+ 
Tgt. The improvements of S-SVM+Prior over S-SVM+Pred  

 

Fig. 2. Accuracy of compared methods vs. training set size (# of 
words) on sports domain. 
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Table 2. F-measure of compared methods on sports domain. 

Training 
words 

S-SVM+Tgt
(baseline)

S-SVM+Pred S-SVM+Lin S-SVM+Prior

1.1×104 63.19 66.47  
(+3.28) 

68.14 
(+4.95) 

69.10 
(+5.91) 

2.2×104 69.52 71.74  
(+2.22) 

72.93 
(+3.41) 

72.70 
(+3.18) 

7.4×104 76.77 77.84  
(+1.07) 

77.40 
(+0.63) 

77.99 
(+1.22) 

2.2×105 81.67 81.65  
(–0.02) 

82.24 
(+0.57) 

82.38 
(+0.71) 

 

and S-SVM+Lin are statistically significant with a significance 
level less than 0.01 using paired t-tests (the two-tailed p-values 
are 3.9×10-7 and 3.1×10-4, respectively). 

In a second NER experiment, we used the TV domain as the 
target domain and the sports domain as the source domain. 
Figure 3 shows their accuracy, while Table 3 shows their    
F-measure. Similar to the first experiment, all domain 
adaptation algorithms perform much better than the target-only 
baseline when there is very little target data available. Among 
the domain adaptation algorithms, S-SVM+Prior performed 
the best in most cases, while S-SVM+Lin performed second 
best. For the largest amount of target data, S-SVM+Prior 
significantly outperforms other algorithms. The improvements 
of S-SVM+Prior over S-SVM+Pred and S-SVM+Lin are 
statistically significant with a significance level less than 0.01 
using paired t-tests (the two-tailed p-values are 2.1×10-7 and 
0.0018, respectively). 

In our final NER experiment, we used the celebrity domain 
as the target domain and the sports domain as the source 
domain. Figure 4 shows their accuracy, while Table 4 shows 
their F-measure. S-SVM+Prior significantly outperformed the 
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Fig. 3. Accuracy of compared methods vs. training set size (# of 
words) on TV domain. 
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Table 3. F-measure of compared methods on TV domain. 

Training 
words 

S-SVM+Tgt 
(baseline) 

S-SVM+Pred S-SVM+Lin S-SVM+Prior

2.2×104 62.70 68.53 (+5.83) 71.91 (+9.21) 73.35 (+10.7)

7.3×104 70.82 73.18 (+2.36) 74.07 (+3.25) 75.52 (+4.70)

2.2×105 76.79 77.48 (+0.69) 78.97 (+2.18) 78.76 (+1.97)

6.7×105 80.17 80.84 (+0.67) 81.26 (+1.09) 82.07 (+1.90)

 

 
other methods in all cases. For the largest amount of target data, 
the improvements of S-SVM+Prior over S-SVM+Pred and  
S-SVM+Lin are statistically significant with a significance 
level less than 0.01 using paired t-tests (the two-tailed p-values 
are 6.7×10-8 and 1.3×10-30, respectively). Figure 5 shows the 
training time of the compared methods. The training time for 
S-SVM+Prior is reduced 2.5 times (from 5 minutes to 2 
minutes) compared to S-SVM+Pred with an improvement in 
performance. 

For POS tagging experiments, we used sections 00-18 of the 
Penn Treebank as the source domain data and ontology 
sections of the PennBioIE corpus as the target domain data. We 
additionally ran the feature augmentation method (S-SVM+ 
FA) that Daumé proposed in [13] and used structural SVMs as 
a base learner. Figure 6 shows their accuracy. S-SVM+FA and 
S-SVM+Prior significantly outperformed the other methods. 
The improvement of S-SVM+Prior over S-SVM+Pred is 
statistically significant with a significance level less than 0.01 
using a paired t-test (the two-tailed p-value is 3.5×10-6). The 
difference of S-SVM+Prior and S-SVM+FA is not statistically  

 

Fig. 4. Accuracy of compared methods vs. training set size (# of
words) on celebrity domain. 
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Table 4. F-measure of compared methods on celebrity domain. 

Training 
words

S-SVM+Tgt
(baseline)

S-SVM+Pred S-SVM+Lin S-SVM+Prior

1.7×104 68.51 83.02 (+14.5) 79.88 (+11.4) 83.88 (+15.4)

3.2×104 72.90 83.09 (+10.2) 80.69 (+7.79) 84.01 (+11.1)

6.6×104 76.90 83.76 (+6.86) 81.36 (+4.46) 84.77 (+7.87)

1.6×105 80.37 84.70 (+4.33) 82.19 (+1.82) 85.69 (+5.32)

 

Fig. 5. Training time of compared methods vs. training set size
(# of words) on celebrity domain. 
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significant (the two-tailed p-value is 0.57). However, the 
performances of S-SVM+All and S-SVM+Lin were lower 
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Fig. 6. Accuracy of compared methods on POS tagging task. 
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Fig. 7. Training time of compared methods on POS tagging task.
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than S-SVM+Tgt. Figure 7 shows the training time of the 
compared methods. The training time for S-SVM+Prior is 
reduced by over 100 times (from 10 hours to 6 minutes) 
compared to S-SVM+FA. 

For sentiment classification experiments, we used product 
reviews from 3 Amazon domains (books, dvd, and electronics) 
as the source domain data and kitchen reviews as the target 
domain data. Figure 8 shows accuracies for all pairs of domain 
adaptation. For each set of bars, the first letter is the source 
domain and the second letter is the target domain. For example, 
the first set of bars shows that S-SVM+All achieves 89% 
accuracy adapting from books domain to kitchens domain. We 
can observe S-SVM+All and S-SVM+Prior outperformed the 
other methods. For all data sets, the differences of S-SVM+ 
Prior and S-SVM+All are not statistically significant having a 
significance level less than 0.01 (the two-tailed p-values are 
0.66, 0.66, and 0.37, respectively). For E->K data set, the 
improvements of S-SVM+Prior over S-SVM+Lin and 
SVM+Pred are not statistically significant (the two-tailed p-
values are 0.058 and 0.059, respectively), but the improvement 
of S-SVM+Prior over S-SVM+FA is statistically significant 
(the two-tailed p-value is 0.0065). 

From our observations, we can conclude that S-SVM+Prior 

 

Fig. 8. Accuracy of compared methods on sentiment classification
task. 
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outperforms the other domain adaptation methods in most 
cases. Moreover, the training time for S-SVM+Prior is reduced 
by 2.5 times and 100 times compared to S-SVM+Pred and  
S-SVM+FA, respectively. 

VI. Conclusion 

In this paper, we extended structural SVMs for domain 
adaptation using our prior model. We evaluated the proposed 
model on NER, POS tagging, and sentiment classification 
problems. We showed that the proposed model outperforms 
the other domain adaptation methods in most cases. Moreover, 
the training time for the proposed model is reduced by 2.5 
times to 100 times compared to other domain adaptation 
methods, that is, the Pred baseline and feature augmentation 
methods. 

References 

[1] B. Taskar, C. Guestrin, and D. Koller, “Max Margin Markov 
Networks,” Proc. NIPS, vol. 16, 2004. 

[2] I. Tsochantaridis et al., “Support Vector Machine Learning for 
Interdependent and Structured Output Spaces,” Proc. ICML, 2004. 

[3] Ben Taskar et al., “Max-Margin Parsing,” Proc. EMNLP, 2004. 
[4] C. Lee and M. Jang, “Fast Training of Structured SVM Using 

Fixed-Threshold Sequential Minimal Optimization,” ETRI J., vol. 
31, no. 2, Apr. 2009, pp. 121-128. 

[5] C. Lee and M. Jang, “A Modified Fixed-Threshold SMO for   
1-Slack Structural SVMs,” ETRI J., vol. 32, no. 1, Feb. 2010, pp. 
120-128. 

[6] C. Lee, S. Lim, and M. Jang, “Large-Margin Training of 
Dependency Parsers Using Pegasos Algorithm,” ETRI J., vol. 32, 
no. 3, June 2010, pp. 486-489. 

[7] C.N. Yu et al., “Support Vector Training of Protein Alignment 
Models,” Proc. RECOMB, 2007. 

[8] Y. Yue et al., “A Support Vector Method for Optimization 
Average Precision,” Proc. SIGIR, 2007, pp. 271-278. 



ETRI Journal, Volume 33, Number 5, October 2011 Changki Lee and Myung-Gil Jang   719 

[9] C.H. Teo et al., “A Scalable Modular Convex Solver for 
Regularized Risk Minimization,” Proc. KDD, 2007, pp. 727-736. 

[10] T. Joachims, T. Finley, and C.N. Yu, “Cutting-Plane Training of 
Structural SVMs,” MLJ, vol. 77, no. 1, 2008, pp. 27-59. 

[11] H. Daumé III and D. Marcu, “Domain Adaptation for Statistical 
Classifiers,” J. Artificial Intell. Research, vol. 26, 2006, pp. 101-
126. 

[12] C. Chelba and A. Acero, “Adaptation of Maximum Entropy 
Capitalizer: Little Data Can Help a Lot,” Comput. Speech 
Language, vol. 20, no. 4, 2006, pp. 382-399. 

[13] H. Daumé III, “Frustratingly Easy Domain Adaptation,” Proc. 
ACL, 2007, 2010, pp. 256-263. 

[14] J. Yang et al., “Cross-Domain Video Concept Detection Using 
Adaptive SVMs,” Proc. 15th Int. Conf. Multimedia, 2007, pp. 
188-197. 

[15] PennBioIE Corpus. http://bioie.ldc.upenn.edu/publications/latest_ 
release/data 

[16] J. Jiang and C. Zhai, “Instance Weighting for Domain Adaptation 
in NLP,” Proc. ACL, 2007, pp. 264-271. 

[17] Multidomain Sentiment Dataset. http://www.cs.jhu.edu/~mdredze/ 
datasets/sentiment/ 

[18] J. Blitzer, M. Dredze, and F. Pereira, “Biographies, Bollywood, 
Boom-boxes and Blenders: Domain Adaptation for Sentiment 
Classification. Association of Computational Linguistics,” Proc. 
ACL, 2007, pp. 440-447. 

 
Changki Lee received the BS in computer 
science from KAIST, Rep. of Korea, in 1999. 
He received the MS and PhD in computer 
engineering from POSTECH, Rep. of Korea, in 
2001 and 2004, respectively. Since 2004, he has 
been with ETRI, Rep. of Korea, as a senior 
member of research staff. He has served as a 

reviewer for international journals, such as Information System, 
Information Processing & Management, and ETRI Journal. His 
research interests are natural language processing, information retrieval, 
data mining, and machine learning. 

 
Myung-Gil Jang received the BS and MS in 
computer science and statistics from Pusan 
National University, Rep. of Korea, in 1988 and 
1990, repspectively. He received the PhD in 
information science from Chungnam National 
University in 2002. From 1990 to 1997, he was 
a researcher with System Engineering Research 

Institute (SERI), Rep. of Korea. Since 1998, he has been with ETRI, 
Rep. of Korea, as a senior/principle member of research staff. His 
research interests are natural language processing, information retrieval, 
question answering, knowledge and dialogue processing, media 
retrieval/management, and the semantic web.  

 
 


	I. Introduction
	II. Previous Work
	III. 1-Slack Structural SVMs
	IV. Domain Adaptation for 1-Slack Structural SVMs
	V. Experiments
	VI. Conclusion
	References

