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ABSTRACT—The distributions of electric field and induced 
second-order nonlinearity are analyzed in the periodic poling 
of optical fibers. A quasi-phase matching efficiency for the 
induced nonlinearity is calculated in terms of both the 
electrode separation distance between the applied voltage and 
generalized electrode width for the periodic poling. Our 
analysis of the quasi-phase matching efficiency implies that the 
conversion efficiency can be enhanced through adjusting the 
separation distance, and the electrode width can be maximized 
if the electrode width is optimized. 
 

Keywords—Periodic poling, quasi-phase matching efficiency, 
optical fiber, distributions of electric field, induced second-
order nonlinearity. 

I. Introduction 
For more than a decade, the induction of second-order nonlinear 

phenomena and the enhancement of conversion efficiency in silica 
fibers have been attractive concerns for the application of such 
fibers in optical communications. Due to the centrosymmetric 
structure of silica, which a priori implies the absence of the second-
order nonlinear effect in silica fibers, a poling technique was 
introduced [1]. In flat poling (uniform poling), ultraviolet exposure 
was simultaneously applied to a twin-hole fiber to induce a higher 
nonlinearity [2], while in periodic poling, lithography patterning 
was explored in a D-shape fiber to obtain higher second-harmonic 
generation (SHG) [3] by means of quasi-phase matching (QPM) 
[4]. The exact origin of the nonlinearity induction in the silica by 
the poling is not known yet, but the induced nonlinearity is known 
to possess a linear relationship with the strength of an applied 
electric field [5]. 
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In periodic poling, it is believed that not only the absolute 
magnitude of the nonlinearity but also its distribution to fit the 
required QPM condition make crucial contributions to 
conversion efficiency. In the conventional fabrication of periodic 
electrodes for QPM in the D-shape fiber, half of a QPM period is 
normally in contact with a designed electrode, but the remaining 
half period is devoid of the electrode so as to yield a +/0 
distribution of the electric field and of the consequent 
nonlinearity. Regardless of such intension, assuming one half of 
the period is exposed to the constant electric field while the other 
half of the period is free from any field, the tailed field leaking 
out to the region outside of the periodic electrode is unavoidable. 
In a QPM point of view, the field leakage should be avoided 
because the leakage distribution of the induced nonlinearity is 
believed to damage QPM efficiency quite severely. Therefore, to 
enhance an effective second-order nonlinear coefficient, or 
equivalently the conversion efficiency, a precise-as-possible 
QPM fitted by the nonlinearity distribution is indispensable. 

For the analytical study of QPM efficiency in the periodic 
poling, a theory was proposed based on a simplified modeling 
of the nonlinearity distribution induced by the electric field [6]. 
In following experimental tests of the model by polymer 
waveguides, which in fact confirmed the validity of the model, 
the converted power distributions measured in the SHG were 
in accordance with the theoretical prediction [7], [8], and the 
phenomenon of difference-frequency generation was observed 
[9]. In this study, based on the established theory and 
experimental confirmations, we analyze the induced 
nonlinearity distribution and discuss the QPM efficiency in the 
periodic poling of optical fibers. 

II. Analysis and Results 

As mentioned above, the highest conversion efficiency in the 
SHG of optical fibers was accomplished through the D-shape 
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fiber that employed the +/0 poling scheme and adopted the 
same scale of the periodic electrode width and the coherent 
length defined as one half of the QPM period )2/( Λ≡Lc  
[3]. Based on the experimental situations, let’s now consider 
the corresponding poling scheme where the periodic electrodes 
are placed in period intervals on one side while a continuous 
flat electrode (uniform electrode) is placed on the other side, as 
given in Fig. 1. 
 

 

Fig. 1. The simplified side view of a poling scheme. 
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As discussed in detail in [6], a basic distribution of electric 
field E0 between a single periodic electrode centered at 

2/Lcx = , where the coordinate x is the propagation direction 
of light along the center of the core, and the flat electrode can 
be proposed as 
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Here, w is the generalized width Lcw ≤<0  of the single 
QPM electrode, d  is the electrode separation distance (fiber 
thickness) between the periodic electrode and the flat electrode 
where a potential difference is applied, and EQ represents the 
simplified field strength. The field strength by definition should 
be constant and uniform between the periodic and flat 
electrodes, similar to the case of infinite planes. Since the QPM 
period is determined only by a QPM condition among the 
wave vectors of the coupling waves propagating in the core 
region and the field distribution in (1) is generated naively from 
the poling electrodes, which are irrelevant for waveguide 
geometry, the field distribution can be applicable directly to 
fiber geometry as well [6]. Due to the translation symmetry of 

the electrode structure, any period can be taken without loss of 
any generality, and the whole structure is nothing but a simple 
repetition of the single period. The basic field distribution then 
yields a total electric field if the potential difference is applied 
to the whole structure of the electrodes. 

The total electric field is in fact a linear superposition of the 
electric field generated between the single QPM and the flat 
electrode in the period of interest and other fields tailed from 
the remaining regions outside of the period. After lengthy 
calculation, the total electric field results in 
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where Rn  is the effective number of neighboring periods for 
the contribution. The total electric field will leave a poling 
effect on the optical fiber to induce the second-order nonlinear 
coefficient ),,(2 dwxd  according to the linear relationship, 

).,,(),,(2 dwxEdwxd t∝  The physical characteristics of the 
induced coefficient can then be determined from the total field 
distribution. 

In order to calculate an effective contribution of the 
coefficient to any nonlinear optical phenomenon, the QPM 
mean distribution of the nonlinear coefficient is defined as 
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in a period. In the case of the flat poling with a constant 
nonlinearity Qddwxd =),,(2  in the entire period, the mean 
distribution is null. However, in the case of the perfect QPM 
with Qddwxd =),,(2 in Lcx ≤<0  and 

Qddwxd −=),,(2  in ,0≤≤− xLc  the mean distribution is 
,),(2 Qddwd =><  which leads to 100% QPM efficiency. 

Based on (3), the QPM efficiency of the nonlinear coefficient is 
calculated to be 
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in a dimensionless unit. 
In Fig. 2, the two-dimensional plot of the QPM efficiency 

Qddwd /),(2 ><  is illustrated in terms of the normalized 
electrode width w/Lc by dotted and solid lines corresponding to 
d/Lc=0.1, 0.3, 0.57, 1.0, 2.0, and 5.60 from the upper right 
corner down, in the case of nR=3. The general behaviors of the 
distributions show that each of the efficiency lines increases as 
w/Lc decreases from 1, but they begin to decrease after each 
critical maximum point. Also, as the d/Lc values increase, the 
QPM efficiencies at w/Lc=1.0 become lower, the values of 
w/Lc where the critical maximum points exist tend to be shifted 
to the left, and the efficiency change for each d/Lc becomes 
smaller for each change of w/Lc. This implies that if the 
electrode width becomes shorter than the conventional 
coherent length, then both a region of the electrode width 
where the QPM efficiency is enhanced and an optimum of the 
electrode width where the QPM efficiency is maximized exist 
when compared with the efficiency at w/Lc=1. 
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Fig. 2. A Two-dimensional plot of the QPM efficiency in terms
of the normalized electrode width. 
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The most efficient SHG using the D-shape fiber was carried 
out with d/Lc=158 µm/28.225 µm=5.6 at the end point 
w/Lc=1.0, which resulted in the QPM efficiency of 1%, as 
shown by the lowest solid line in Fig. 2. In this case, the figure 
of merit (normalized efficiency) [10] 
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defined in terms of the peak powers, as specified in [3], is 
0.75 kW/(2.5 kW×7.5 cm)2=2.13×10-4 %/Wcm2. This figure 
of merit can be enhanced by a factor of 9 by dint of shortening 
the width of the periodic electrodes to the critical optimum 
w/Lc=0.1, which leads to a 3% efficiency. In the case of 
d/Lc=5.6, the QPM efficiencies are inevitably low because the 

electrode separation distance d is relatively so long when 
compared with the coherent length Lc that the leakage of the 
electric field strength outside of the electrode width becomes 
intensive. 

However, the intrinsic enhancement of the QPM efficiency 
can be possible, as explicitly illustrated by the upper solid line 
of d/Lc=16 µm/28.225 µm=0.57, if, for example, the 
distance d can be shortened by making the round cladding part 
of the D-shape fiber flat enough to maintain 5 µm separations 
from the core edge to the two side surfaces or equivalently by a 
different geometry of the twin-hole fiber [11], as compared 
schematically in Fig. 3. The middle electrode in the left D-type 
fiber is the virtual one prepared for use in cases when the round 
cladding part is polished and flattened to make d shorter, while 
the two holes in the right twin-hole fiber are the ones fabricated 
to put the electrodes into the fiber. In this case, if all the 
conditions are assumed identical, the QPM efficiencies can be 
enhanced to 10% at w/Lc=1.0 and to 16% at w/Lc= 0.5, as 
shown by the upper solid curve in Fig. 2. As a result, at its 
optimum, the figure of merit increases up to 
(16%/1%)2×2.13×10-4 %/Wcm2=5.45×10-2 %/Wcm2 and the 
effective nonlinear coefficient given by the average powers in 
[3] becomes <d2(w,d)> = (16%/1%)×0.014 pm/V = 0.224 
pm/V. 
 
 

Fig. 3. A schematic comparison of a poling scheme between 
two types of fibers. 
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In Fig. 4, the normalized nonlinearity distributions 
d2(x,w,d)/dQ induced from the field strength are plotted in terms 
of the normalized position x/Lc from top to bottom in cases 
where w/Lc=1.0 and 0.1 for d/Lc=5.6, and w/Lc=1.0 and 0.5 
for d/Lc=0.57, respectively, under nR=3. Each distribution is 
on the whole plane in the QPM electrode region centered at 
position x/Lc=1/2 with the given width, but each makes a 
smooth dip in the remaining region of the period. In the case of 
a large d, the field leakage outside of the QPM electrode region 
increases as given in (1), (2). Hence, the two upper lines show 
a seemingly larger magnitude of distributions when compared 
with the two lower lines due to the larger leakage fields tailed 
from the effective neighboring electrodes. In spite of such 
larger inductions, the distributions imply almost no difference 



280   Jongbae Kim et al. ETRI Journal, Volume 26, Number 3, June 2004 

in the regions 0/1 <≤− Lcx  and .1/0 <≤ Lcx  
Therefore the QPM efficiencies are low according to the 
definition in (3). The two lower distributions, however, show 
better behaviors in view of the QPM distribution and thus lead 
to the enhanced efficiencies, as indicated by the upper solid line 
in Fig. 2. 
 

 

Fig. 4. Normalized nonlinearity distributions in terms of 
the normalized position. 
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III. Conclusions 

The distributions of electric field and induced nonlinearity in 
the periodic poling of optical fibers are derived. Through the 
theoretical analysis of quasi-phase matching efficiency, we 
suggest a new poling scheme for optimizing the electrode 
width to maximize the conversion efficiency in future 
experiments. Our poling scheme can be applied to a twin-hole 
fiber and other relevant nonlinear devices. 
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