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A biometric system determines the identity of a person by 
measuring physical features that can distinguish that 
person from others. Since biometric features have many 
variations and can be easily corrupted by noises and 
deformations, it is necessary to apply machine learning 
techniques to treat the data. When applying the 
conventional machine learning methods in designing a 
specific biometric system, however, one first runs into the 
difficulty of collecting sufficient data for each person to be 
registered to the system. In addition, there can be an almost 
infinite number of variations of non-registered data. 
Therefore, it is difficult to analyze and predict the 
distributional properties of real data that are essential for 
the system to deal with in practical applications. These 
difficulties require a new framework of identification and 
verification that is appropriate and efficient for the specific 
situations of biometric systems. As a preliminary solution, 
this paper proposes a simple but theoretically well-defined 
method based on a statistical test theory. Our 
computational experiments on real-world data show that 
the proposed method has potential for coping with the 
actual difficulties in biometrics. 
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I. Introduction 

To control the access to secure areas or transact 
electronically through the internet, a reliable personal 
identification infrastructure is required. Conventional methods 
of recognizing the identity of a person by using a password or 
cards are not altogether reliable. Biometrics refers to automatic 
identification of a person based on his/her physiological or 
behavioral characteristics. Biometrics measurements, such as 
fingerprint, face, or iris patterns are common and reliable ways 
to achieve verification of an individual's identity with a high 
level of accuracy. It provides a better way for the increased 
security requirements of our information society than 
traditional identification methods such as passwords or ID 
cards. 

In order to make reliable biometric systems, various 
sophisticated techniques, which involve machine learning, 
artificial intelligence, or signal processing, have been widely 
used [1]-[9]. Most studies, however, have tried to optimize the 
systems to the characteristics of given specific biometric data, 
and thus the researchers have focused on those problem-
dependent aspects, such as the sophistication of feature 
extraction, for given raw data. 

In this paper, we concentrate on the common, core aspect of 
general biometric systems that is relevant to efficiently 
selecting the similarity measure and verification threshold. We 
assume that a set of extracted feature values from raw data is 
already given for further processing. Moreover, we assume that 
the feature values are continuous, even though the overall 
mechanism of the proposed method can be easily extended to 
binary data. 

When new data is given to a trained system, it is necessary to 
measure the similarity between the new data and the registered 
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data. The most basic similarity measure is the Euclidean 
distance and inner product, but this is too simple for 
considering the characteristics of data distribution. To improve 
these methods, Kee et al. tried the normalized Euclidean and 
simplified Mahalanobis distance [6]. However, in a biometric 
system, the number of items of data in a class for each person is 
very small, so it is difficult to get accurate information for the 
distribution of each class. This problem can cause serious 
inaccuracy of the distance measure. 

To overcome this problem, other researchers have proposed 
more sophisticated classification methods, such as neural 
networks and kernel machines [4], [7]. Even in this kind of 
machine learning system, however, we need a sufficient 
number of items of data to achieve good performance. As 
mentioned above, in the field of biometrics, collecting 
sufficient data is difficult. Furthermore, the main difference 
between biometric classification problems and general 
classification problems is that the possibility of the appearance 
of new data that does not belong to any trained class is very 
high. (In fact, one of the main purposes of biometric systems is 
to reject such data.) Since these data have almost infinite 
variations, the usual classification methods can hardly 
guarantee robustness in handling them. It is necessary to 
reconsider the characteristics of the biometric problems and 
develop more appropriate methods for identification and 
verification for biometrics. From this point of view, we propose 
a strategy to extract more robust and essential information of 
data distributions in biometric problems and apply it to 
developing a similarity measure. The information obtained by 
the proposed method does not depend on the distribution of 
each class for each person, but depends on all the data sets. 
Accordingly, we can expect to get a more reliable similarity 
measure. 

In addition to the similarity measure, the threshold for 
determining acceptance is also important for the system 
performance. The basic method is to find the boundary where 
the summation of the false rejection rate (FRR) and false 
acceptance rate (FAR) is minimized using some training data. 
In this case, the threshold absolutely depends on the 
distribution of the training data set, which is usually not big 
enough. Consequently, there is no guarantee to get a good FAR 
and FRR for new input with noises and deformations. We need 
to consider the characteristics of the underlying probability 
distribution of the data. 

Daugman's method [5], which exploited the Neyman-
Pearson method [10], investigated the data distributions of the 
imposter class and the authentic class in order to find the 
threshold for verification. The proposed method takes the same 
approach, except that the proposed method deals with real 
(continuous) values whereas Daugman's method handled 

binary data. In addition, the current paper proposes a method 
for choosing the threshold based on the assumed data 
distributions, whereas Daugman just empirically decided an 
explicit value for the threshold using a given data set. In these 
senses, the current paper can be considered as a generalization 
or extension of Daugman's work. 

II. Similarity Measure 

Let us first describe the conventional approaches for 
identification from the statistical viewpoint. To make a 
similarity measure based on the statistics of data, let us 
represent the data as a random variable x=(x1,…,xD) with 
dimension D. The whole data set X={xn|n=1,…,N} can be 
decomposed into subsets Xk = { kn n

k
x = 1,…, Nk} (k=1,…,K), 

where each subset Xk consists of data from the class Ck 
corresponding to a person k. For identification, conventional 
methods consider the statistical properties of data 

knx  
(nk=1,…,Nk) in class Ck. It can be represented by a probability 
density function pk(x). If we have pk(x) for each k, then the 
identification process can be done based on the probability; for 
given data x, we calculate pk(x) (or f(pk(x))), where f is a 
monotonic function and find a class Ck maximizing pk(x). 
Therefore, the main issue of identification is to find a good 
estimate of pk(x). The conventional methods can be considered 
as finding the estimate of pk(x). For example, for K-means 
clustering, we assume that the probability density pk(x) is 
defined as a Gaussian distribution with a mean µk and an 
identity covariance matrix, and then we estimate µk using data 
set Xk for each class. Then the similarity measure between a 
new data item and the center µk of class Ck is given by 

.
2
1)(log 2

kk µp −=− xx               (1) 

Note that this is the Euclidean distance. If we also estimate the 
covariance matrix ∑k for pk(x), then the similarity measure 
defined as –log pk(x) is the Mahalanobis distance. In addition, 
if we assume the covariance matrix is a diagonal matrix, then 
we get the simplified Mahalanobis distance. For more 
sophisticated non-linear classifiers, such as neural networks, 
the pk(x) (or its monotonic mapping f(pk(x)) is estimated by a 
complicated nonlinear function through learning. 

The main problem of these conventional approaches is that 
we need a sufficient number of data x for each class in order to 
a get good estimate of pk(x). However, in biometrics, it is costly 
to get a large enough number of items of data for each person 
to give meaningful statistics. This problem can cause 
significant deterioration of system performance. 

To solve such a problem, we introduce a new random value 
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y, which can be defined by using a pair of data (x, x′) from the 
same person: 

).,( xxy ′= h                   (2) 

We then try to estimate p(y) instead of pk(x) (k=1,...,K) and 
use it to define the similarity measure. An important merit of 
this approach of not considering p(x) is that y does not depend 
on the distribution of class Ck. This is justified by the fact that 
the stochastic uncertainty existing in data does not originate 
from the bio-signal itself, but comes from the measuring 
process, such as the properties of the equipment, the measuring 
environment, and so forth. Therefore, we can represent the 
stochastic uncertainty using some function of the pair of data 
items x and x′, which we define using y = h(x, x′). This is the 
basic concept of the proposed method based on intraclass 
information. 

We give a primary application of the proposed concept in 
this paper. However, it is also possible to define the shape of h 
and a model of p(y) in various forms according to the 
properties of the equipment and the characteristics of a given 
bio-signal. Let us define 

,),( xxxxy ′−=′= h               (3) 

and the probability distribution of y is a multivariate Gaussian 
distribution. This is given under the assumption that the 
difference between each pair of samples from the same 
individual, x–x′, originates from some additive Gaussian noises. 
Even though this assumption is somewhat ideal, it can still be 
applied to real data if the data item x is well pre-processed, as 
we show later. The basic assumption used in this paper shows 
how the concept of intraclass statistics can be used for 
biometrics. 

Here, since we assume p(y) is Gaussian, we need to estimate 
its mean µ and covariance ∑ in order to know p(y). In this 
paper, for simplicity, we assume that each feature element xd, 
d=1,…,D is independent of each other, and thus we need to 
estimate only its diagonal elements, 2

dσ , d=1,…,D. 
Let us first construct the set Y of y from the original data set 

X. It can be simply given by the following two steps. 

Step 1. For each subset Xk, for all possible combinations of 
two different data items x and x′, calculate y = x – x′, and put it 
into the set Y. 

Step 2. Repeat step 1 for all subsets Xk, k=1,…,K. 
Using this set, we can estimate the statistics of y = (y1,…,yD). 

The standard deviation σ of y can be estimated by 

,)(1
1

2∑
=

−=σ
M

m
d

m
dd µy

M
            (4) 

where µ = (µ1,…,µD) is the sample mean given by 

∑
=

=
M

m

m
dd y

M
µ

1

,1                  (5) 

and m
dy  is the d-th element of m-th data ym in Y. 

Using these statistics, we can define a similarity measure  
s(x, x′) as 

.
)(

),(
1

2

2

∑
= σ

−′−
=′

D

d d

ddd µxx
xxs             (6) 

For a new item of data xnew, the similarity between the new 
one and a registered item of data xreg is measured by the 
function s(xreg, xnew). 

Note that the statistics µ = (µ1,…,µD) and σ = (σ1,…,σD), 
which are obtained from the data set Y and used for the 
similarity measure, are different from those of the conventional 
distances, such as the normalized Euclidean and the simplified 
Mahalanobis distance. Since the number of items of data in Y is 
much more than that of each subset Xk, the obtained estimates 
of the mean and variance are more accurate and more robust 
against noises. 

III. Verification Threshold 

To determine a specific threshold for verifying new input 
data, we need to consider the distribution of the similarity 
values. Let us consider (6). If the two items of data x and x′ are 
from a same subset Xk, then each factor (xd - x′d - µd)/ σd is 
subject to the standard normal distribution N(0,1) from our 
assumption on p(y). Therefore, the similarity measure s(x, x′) 
can be considered as a random variable that is subject to the χ2 
distribution with D degree of freedom, 2χ

p (s;D), where D is 
the dimension of x. 

From this, we can easily apply the likelihood ratio test to the 
verification process. The overall process of the likelihood test 
can be summarized by the following steps: 

Step 1. For a new item of data xnew, calculate s(xnew, xn) for all 
data xn in X and find the minimum value smin and the most 
similar data xmin that can be written as 

{ },),(minarg Xs nn
newmin ∈= xxxx          (7) 

.),( minnewmin ss xx=                (8) 

Step 2. Under the assumption that the two data xnew and xmin 
are given from a same subset, calculate probability P(s> smin) 
using χ2 distribution. 
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Step 3. If probability P(s> smin) is smaller than a pre-defined 
small probability, α, then reject the data. Otherwise, accept it. 
 

 

Fig. 1. Likelihood test. 
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Figure 1 illustrates the basic concept of the likelihood test. 
The likelihood test uses probability value P(s>smin)=1–P(s< smin) 
as a criterion, where the value P (s< smin) roughly means the 
probability that smin is obtained from the assumed probability 
density 2χ

p (s;D). If P(s>smin) is smaller than a pre-defined 
probability value α, then we consider that smin is not subject to 

2χ
p (s;D) and decide that xnew and xmin are from different 

persons. On the other hand, if P(s>smin) is larger than α, then 
we decide that xnew and xmin are from the same person. 

The value α corresponding to the threshold is determined by 
the policy of a system builder. If we determine a desired error 
rate of the test (P(s>sα)), then α can be obtained by solving the 
equation, 

∫
α

−=> α

S
dsspssP

0
,)(1)(             (9) 

or easily using the lookup table of percentile values for the χ2 
distribution. 

In practical cases, the values sα and smin are used instead of α 
and P(s>sα), which are difficult to calculate. Thus, sα plays the 
role of the specific threshold we want in the practical 
verification tasks. Daugman [5] proposed a similar strategy for 
binary values using binomial distribution. 

However, to apply this strategy, we need a revision. We need 
to pay attention to the first step of the verification process. As 
shown in (8), we select smin, which is the minimum of si= s(xnew, xn). 
Therefore, smin is not just a sample from χ2 distribution, but the 
order statistics obtained from n samples {s1,…,sn}. Accordingly, 
smin is not subject to 2χ

p (s;D) but subject to d{1–(1– 2χ
p  

(s<smin))}/ds (See [11] for details). Considering this fact, we 
obtain a revised method for determining the threshold sα, 
which is defined by 

.log1exp1)(2







 α−=< αχ n

ssP           (10) 

Using (10) and the desired value of α, we can find the 
corresponding threshold sα from the lookup table. Here, one 
can easily see that the value α means the FRR in the test. If we 
want to decrease the FRR, we can decrease α and find the 
corresponding sα. Therefore, the threshold can be determined 
and can be easily changed according to our goal for the FRR. 

The overall verification process can be summarized by the 
following steps: 

Step 1. Set the goal of α and find the corresponding value of 
sα using (10) and the lookup table for χ2 distribution. 

Step 2. For new data xnew, calculate smin and xmin. 
Step 3. If smin < sα, then accept xnew as registered and identify 

the new person as corresponding to xmin. 
Step 4. If smin > sα, then reject xnew. 

IV. Computational Experiments 

In order to check if the proposed method is suitable for a real 
biometric system, we conducted some computational 
experiments using real human iris images, which is one of the 
representative physiological features for biometrics [3], [5], [6], 
[9]. We collected 375 iris images from 21 persons. From the 
total data set, we selected 14 persons for the registered 
individuals, and randomly chose 5 items of data from each 
registered person. These 70 data items were used for building 
the identification and verification system. The other 305 data 
items were used to test the system. The test data set was 
composed of two groups: the authentic group with 190 data 
items for the 14 registered persons and the imposter group with 
115 data items for 7 non-registered persons. 
 
 

Fig. 2. Examples of images with bad quality.  
 

To obtain the experimental images from the human eye 
images (Fig. 3), we did the following preprocessing [6]: 
evaluation of the image quality, iris localization, and 
normalization on the localized iris area. We first used this 
method to check the quality of images to determine whether 
the given iris images were appropriate for the subsequent 
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processing and then to select the proper ones among them in 
realtime. Some images deemed inappropriate were excluded 
from the next processing. Figure 2 indicates the type of 
inappropriate images excluded by the method. 

The iris localization on the images deemed proper was 
required to detect the iris area between pupil and sclera from an 
eye image. To determine that area exactly, it was important to 
precisely detect the inner boundary (between the pupil and iris) 
and the outer boundary (between the iris and sclera). At first, we 
needed to get the exact reference point, the center of the pupil, 
and then compute the distance from that point to the boundaries 
as the radius. We used a three-step technique for detecting the 
reference point and localizing the iris area from an eye image. In 
the first step, we applied the Canny edge detector to the image 
to extract edge components and then labeled the connected 
components. In the next step, we used a 2D bisection-based 
Hough transform, not a 2D gradient-based Hough transform 
[12], to get the center of the pupil. In the last step for the iris 
localization, we validated the existence of a circle and calculated 
its radius with a radius histogram technique. 

We used a normalization process on the localized iris area to 
compensate for size variations due to the possible changes in 
the camera-to-face distance and to facilitate the feature 
extraction process by converting the iris area represented by a 
polar coordinate system into a Cartesian coordinate system. 

 
 

Fig. 3. Examples of human iris images after preprocessing.  
 

Since the iris images in Fig. 3 have 7200 pixels (225×32), we 
first applied the principal component analysis method to reduce 
the dimensions, which is a common method for high dimensional 
data [7], [13]. With the principal component analysis, we obtained 
70 dimensional feature vectors for each item of raw data. Using 
the obtained feature set, we made the set of y, the difference vector. 

To check the performance of the proposed similarity 
measure, we first conducted an identification (classification) 
test for the registered individuals using the authentic group in 
the test data set. For the test data, we calculated the similarity 
with all registered data, and found the xmin that was the most 
similar to the test data. Then we assigned the test data to the 
class in which xmin was included. We compared the proposed 
measure with the simplified Mahalanobis distance and the 
Euclidean distance (Table 1). The result confirms that the 
proposed measure is superior to the standard methods. 

Table 1. Identification results for the authentic test data. 

Similarity measure Classification rate 

Simplified Mahalanobis 83.68% 

Euclidean distance 90.53% 

Proposed measure 98.95% 

 

 

Table 2. Identification results using k-nearest neighbor rules (%).

 k=1 k=2 k=3 k=4 k=5 

Simplified Mahalanobis 83.68 83.68 26.32 26.32 13.16

Euclidean distance 90.53 90.53 85.26 85.26 82.83

Proposed measure 98.95 98.95 98.42 98.42 96.84

 

 

Table 3. Verification results on the test data. 

 Threshold = 47.89 Threshold = 46.76 

FRR 1.05% 1.58% 

FAR 8.70% 6.96% 

 

 
We also conducted another simple experiment with the k-

nearest neighbor rule to compare the proposed method with 
other standard methods. We can see from Table 2 that the 
proposed method is better than other methods with regard to 
the identification performance. 

For the verification task, we used two thresholds, 47.89 (for 
α = 0.05) and 46.76 (for α = 0.1), which was obtained using 
(10). The verification test was conducted for 190 authentic 
items of data and for 115 imposter items. The result is shown in 
Table 3. This result suggests that the proposed method can be 
applied to practical biometric systems. 

The ROC curve [14], [15] of Fig. 4 also demonstrates the 
relation between the FAR and the FRR by generating a 
continuously varying threshold. Varying the threshold trades 
the FAR off against the FRR, so it can be changed according to 
the security level of application problems. We can get an equal 
error rate of 4.28% at around the threshold 44.0. 

V. Conclusions and Discussions 

In this paper, we considered the properties of data sets used 
in biometrics and proposed a statistical framework of 
identification and verification for biometric systems. In order to 
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Fig. 4. ROC curve for the proposed method. 
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get a novel biometric system with good performance, many 
parts of the system need to be optimized to the specific features 
of given data. To do so, more sophisticated data processing 
methods, such as neural networks, can be used for better 
performance. Nevertheless, we can expect that the proposed 
method is meaningful as a standard statistical method in 
treating the data for identification and verification problems. In 
addition, for the newly introduced random variable y in this 
paper, more novel data processing tools can be applied to 
estimate its probability distribution so that we can expect better 
performance. Even in this case, the proposed method for 
determining a threshold can still be applied to the estimated 
density function p(y). 

The proposed method is based on the assumption that the 
number of individuals is large and the number of items of data 
from each individual is small. Therefore, the proposed method 
can be applied to any other applications with these properties, 
such as the diagnosis of diseases from pathological data. 
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