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This paper concerns robust and reliable speaker model 
training for text-independent speaker verification. The 
baseline speaker modeling approach is the Gaussian 
mixture model (GMM). In text-independent speaker 
verification, the amount of speech data may be different 
for speakers. However, we still wish the modeling 
approach to perform equally well for all speakers. Besides, 
the modeling technique must be least vulnerable against 
unseen data. A traditional approach for GMM training is 
expectation maximization (EM) method, which is known 
for its overfitting problem and its weakness in handling 
insufficient training data. To tackle these problems, 
variational approximation is proposed. Variational 
approaches are known to be robust against overtraining 
and data insufficiency. We evaluated the proposed 
approach on two different databases, namely KING and 
TFarsdat. The experiments show that the proposed 
approach improves the performance on TFarsdat and 
KING databases by 0.56% and 4.81%, respectively. Also, 
the experiments show that the variationally optimized 
GMM is more robust against noise and the verification 
error rate in noisy environments for TFarsdat dataset 
decreases by 1.52%. 
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I. Introduction 

Speaker modeling is the main part of a speaker recognition 
system. The Gaussian mixture model (GMM) is the most 
common approach for speaker modeling in text-independent 
speaker recognition [1], [2]. A GMM is composed of a finite 
mixture of multivariate Gaussian components. The advantage 
of using a GMM as the likelihood function is that it is 
computationally inexpensive. Since a GMM is a generative 
approach for speaker modeling, it is vulnerable to data 
insufficiency and cannot adapt its complexity according to the 
data available. 

For numerical and computational reasons, the covariance 
matrices of the GMM are usually diagonal, that is, variance 
vectors, which restricts the principal axes of the Gaussian 
ellipses in the direction of the coordinate axes. Estimating the 
parameters of a full-covariance GMM [3] requires, in general, 
much more training data and is computationally expensive.  

Some previous works applied discriminative models such as 
artificial neural network (ANN) [4] or support vector machines 
(SVM) [5]. The main advantages of ANNs are their 
discriminative training power and flexible architecture that 
permits easy use of contextual information. Another potential 
advantage of ANNs is that feature extraction and speaker 
modeling can be combined into a single network, enabling 
joint optimization of the feature extractor and the speaker 
model [6]. The main disadvantage is that their structure has to 
be selected by trial and error procedures [7].  

SVM is a popular method for speaker modeling specially in 
speaker verification. SVM classifiers are well suited to separate 
complex regions between two classes through an optimal, 
nonlinear decision boundary. SVM is a powerful 
discriminative classifier that has been adopted in speaker 
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recognition. It has been applied both with spectral [8], [9], 
prosodic [10], [11], and high-level features [12]. Currently, 
SVM is one of the most robust classifiers in speaker 
verification, and it has also been successfully combined with 
GMM to increase accuracy [10], [11]. One reason for the 
popularity of SVM is its good generalization performance to 
classify unseen data. The main problem of this model is its 
inappropriateness to handle the temporal structure of the 
speech. 

Generally speaking, speaker modeling based on 
discriminative learning techniques can be tuned to obtain 
comparable performance to the state-of-the-art GMM, and in 
some specific conditions, they can outperform GMM [7]. 
Recent approaches have examined how to apply dynamic 
kernel SVMs to the speaker verification task [13], [14]. These 
approaches have generally been found to outperform 
traditional GMM-based approaches [15]-[17] and a variety of 
dynamic kernels have been successfully applied for speaker 
verification [15], [18]-[21].  

This paper mainly focuses on the GMM approach as the 
most conventionally used speaker modeling and recognition 
method. There are various methods for training the GMMs, 
each with a different optimization criterion. For parameter 
estimation in GMMs, the most commonly used method is the 
maximum likelihood (ML) method. The ML algorithm 
estimates the model parameters and maximizes a likelihood 
function. The best known algorithm that finds maximum 
likelihood estimates in parametric models for incomplete data 
is the expectation maximization (EM) algorithm [22]-[24]. EM 
is an iterative two-step algorithm. The E-step calculates the 
conditional expectation of the complete data log likelihood 
given the observed data and parameter estimates. Then, the M-
step finds the parameter estimates that maximize the complete 
data log likelihood from the E-step.  

However, ML training algorithm suffers from overfitting if 
the model complexity is too high [25]. In that case, the model 
fits very well to the training data but lacks the generalization 
ability so that it does not tolerate noise or other deviations from 
the expected training data. As a consequence, the model cannot 
be used for making inferences about the new data. Moreover, 
algorithms such as EM may not converge properly due to an 
unsuitable initialization. 

Overfitting can be reduced by adding a penalty term to the 
ML objective function [26]. The basic idea is that the penalty 
term becomes larger as the model complexity grows. Another 
way to control the overfitting is cross validation [26]. The 
original training data is divided into subsets and the model is 
trained using all subsets except the one which is saved for the 
evaluation. This can be repeated with partitioning the data to 
different training and validation sets. When comparing the 

models, that structure is chosen which gives the best 
performance for the validation data. The cross validation 
method is not suitable when the training dataset is small in size.  

An alternative to ML optimization is to adapt a speaker-
independent world model or universal background model 
(UBM) with the speech data from a specific speaker [27]. The 
background model represents speaker-independent distribution 
of the feature vectors. When enrolling a new speaker to the 
system, the parameters of the background model are adapted to 
the feature distribution of the new speaker. The adapted model 
is then used as the model of that speaker.  

There are various adaptation methods such as maximum a 
posteriori (MAP) [27] or maximum likelihood linear 
regression (MLLR) [28]-[30]. Selection of the proper method 
depends on the amount of available training data [31], [32]. For 
enough enrollment utterances MAP approach is the most 
popular, while for scarce enrollment speech MLLR method 
has shown to be more effective. 

A fundamental question is how to choose the optimal model 
complexity which minimizes the overfitting. In the case of 
using mixture models, we may ask for the optimal number of 
the mixture components. This question may be crucial in 
speaker modeling and recognition tasks such as text-
independent speaker verification. In such systems, the duration 
of available training utterances for each speaker may be 
different. This may be due to the various speaking rates of 
speakers, various amount of usable speech of each speaker, or 
different number of recording sessions. A reliable modeling 
and training framework should have the possibility of tuning 
the model complexity to avoid overfitting. Other than general 
guidelines and experimentation, there is no objective measure 
to determine the right number of components in the GMM 
speaker model a priori. 

This paper proposes a variational approximation approach 
[33], [34] for GMM speaker model training and optimization 
to achieve a better and more reliable performance in text-
independent speaker verification. This method is called the 
variational expectation maximization (VEM) algorithm. The 
proposed approach aims to solve the overfitting issue of the 
traditional expectation maximization GMM optimization 
technique and resolve the data insufficiency problem in 
conditions where the available training data for the speakers is 
scarce or the duration of available speech data for speakers is 
different. 

Using variational approach to GMMs helps to determine the 
optimal number of components in a systematic manner [35]. 
Variational techniques offer a framework for parameter 
estimation and model selection. Similar to the MAP technique 
[27], [36], variational methods consider parameter posterior 
probability distributions but unlike MAP, they are not point 
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estimation methods, but the whole model probability is 
evaluated. Variational estimation provides information about 
the model quality while training it. 

The rest of this paper is organized as follows. Section II 
introduces the variational approximation framework. Section 
III explains the proposed variational GMM approach. The 
experimental setup, a brief explanation of the evaluation 
measures and databases, and the experimental results are 
presented in section IV. Finally, section V concludes this 
paper.  

II. Variational Approximation 

Variational methods are known as deterministic 
approximation optimization schemes in contrast with stochastic 
approximations such as sampling methods [37]. Given a set of 
observed variables x, hidden (unobserved) variables z, and 
parameters θ, Bayesian learning aims at optimizing the 
following marginal likelihood for x:  

ln ( | , ) ln ( | , ) .p x z p x z dzdθ θ θ= ∫ ∫         (1) 

From the Bayes rule, we have p(x|z,θ) = p(x,θ,z)/p(z,θ|x). By 
considering the log of both sides, it is possible to write 
lnp(x|z,θ)=lnp(x,θ,z)–lnp(z,θ|x). Instead of integrating θ and z, 
w.r.t their true unknown pdf, an approximation called 
variational posterior, denoted as q(z,θ|x), is used. Taking 
expectation w.r.t. q(z,θ|x), we obtain 
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According to the variational framework, the above 
mentioned log likelihood can then be expressed as 

( , , )ln ( | , ) ( , | ) ln( )
( , | )

( , | )( , | ) ln( )
( , | )

( , , )( , | ) ln( )
( , | )

( ( , | ) | ( , | ))

( ( , | )) ( ( , | ) | ( , | )),

p x zp x z q z x dzd
q z x

p z xq z x dzd
q z x

p x zq z x dzd
q z x

KL q z x p z x

L q z x KL q z x p z x

θθ θ θ
θ

θθ θ
θ

θθ θ
θ

θ θ

θ θ θ

=

−

=

+

= +

∫

∫

∫

(3)

 

where KL(q(z,θ|x)|p(z,θ|x)) denotes the Kullback-Leibler (KL) 
distance between the variational posterior and the true posterior. 
The term L(q(z,θ|x)) is often considered as negative free energy. 
Because the KL distance is always positive, L(q) represents a 
lower bound on lnp(x|z,θ), which means that lnp(x|z,θ)≥L(q). 
Variational learning aims at maximizing the lower bound, 
L(q(z,θ|x)), using an EM-like algorithm [33]. 

Variational algorithms guarantee to provide a lower bound 
on the approximation error [38]-[40]. The models which are 
previously trained by variational learning include mixtures of 
Gaussians [33], [34], hidden Markov model (HMM) [41], [42], 
mixtures of factor analyzers [43], linear models [44], and 
mixtures of products of Dirichlet and multinomial distributions 
[45]-[47]. Also, variational algorithms have been applied in 
different applications including independent component 
analysis [48], audio clip classification [49], speech emotion 
recognition [50], audio indexing [51], joint factor analysis [52], 
speech recognition [53], voice activity detection [54], and 
speech enhancement [55]. Next section concerns the 
variational optimization of GMM model. 

III. Variational Gaussian Mixture Model 

Let us denote the observations by X={x1,…,xN}. GMM is a 
linear superposition of K Gaussian distribution in the form of 

1
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Following the above definition, there is a random variable zk 
for each xk. Random variables Z are latent variables because 
their value is not known beforehand and are different from 
parameters in that their number grows with the size of the 
observations, while the number of parameters does not depend 
on the size of training dataset. We can write down the 
conditional distribution of the observed data vectors given the 
latent variables and the parameters of the components as 

1

1 1

( | , , ) ( | , ) ,nk

N K
z

n k k
n k

p X Z Normal xμ μ −

= =

Λ = Λ∏∏    (5) 

where µ={µk} and Λ={Λk} are the mean vector and precision 
matrix of the corresponding Gaussian component, respectively. 
Literature proposes conjugate priors over the parameters for 
simplicity [35]. Therefore, Dirichlet distribution is defined as 
the prior over mixing coefficients πk, and Gaussian-Wishart 
distribution is considered as the prior over the mean and 
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precision of each component: 
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where α, β, m, W, and υ are the parameters of the 
corresponding distributions and C(α0) is the normalization 
constant in the Dirichlet distribution. We can consider a 
variational distribution which factorizes between the latent 
variables and the parameters: 

( , , , ) ( ) ( , , ).q z q z qπ μ π μΛ = Λ            (8) 

Let us denote the model parameters by Θ={π,µ,Λ}. Using 
the variational framework, the objective function to be 
maximized is the variational lower bound defined as  
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 (9) 
The functional form of the factors q(Z) and q(π,μ,Λ) can be 

obtained via VEM. VEM is an iterative method that consists of 
two steps, namely: i) variational expectation (VE) and ii) 
variational maximization (VM). In the VE-step, the posterior 
over latent variables are computed by solving ( ) ( ).L q q Z∂ ∂  
This results in the following equation [14]: 

log( *( )) ( ) ln ( , | ) .q Z q p X Z d∝ Θ Θ Θ∫       (10) 

Then the log of the optimized q(Z) is given by [14]: 
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In (11), Const is a constant value and can be removed by 
normalizing ρnk values as  

1
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where the quantities rnk play the role of responsibilities and sum  
to unity: 1nkk

r =∑ . 

In the VM-step, the posterior distribution over the parameters 
is computed by solving )()( Θ∂∂ qqL and therefore we have  

ln( *( )) ln( ( )) ( ) ln ( , | ) .q p q Z p X Z dZΘ ∝ Θ Θ∫   (14) 

The parameters posterior is computed in two stages. First, 
using the result of the previous step (VE-step), the parameters 
are updated as  
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The above values are analogous to the quantities evaluated in 
the ML-EM algorithm for GMM. Then, the posterior 
parameters are updated. Using the independence property of 

kπ against kμ and kΛ , the variational posterior distribution of 
parameters can be stated as 

1
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The optimum for each log posterior distribution ln( ( ))q π  
and ln( ( , ))k kq μ Λ  can be given as follows [10]: 
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Also, in the VM-step, the parameters are updated as  
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The described variational EM learning algorithm proceeds 
by iterating between VE-step (13) and (15) and VM-step (19). 
To perform the VM-step, we need to calculate rnk. These 
parameters are calculated with normalizing ρnk values using 
(13). To calculate ρnk values, we need to calculate the 
following expectation w.r.t. the variational distribution of the 
parameters: 
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The final values of the posterior parameters are the results of 
the variational EM algorithm and can be used for making 
inference about new data values. Variational GMM is not 
affected by initial model choice because the model prunes extra 
degrees of freedom. 

IV. Experiments 

1. Evaluation Metrics 

The performance measures which are used in this paper are 
the same as the metrics used in the 2010 NIST Speaker 
Recognition Evaluation plan [56]. Our primary speaker 
verification performance measures are the false alarm rate 
(FAR) and the miss detection rate (MDR). A false alarm occurs 
when an imposter speaker is accepted. Miss detection occurs 
when a genuine speaker is not recognized and rejected by the 
system. Taking inspiration from [56], we use a single cost for 
measuring speaker verification performance. For this purpose, 
the cost function is defined as a weighted sum of miss detection 
and false alarm probabilities: 

( )DET Miss|Target FalseAlarm|NonTarget Target*(1 ) ,C P P P= + − (21) 

where PMiss|Target and PFalseAlarm|Target are the MDR and FAR, 
respectively. Also PTarget is the a priori probability of the 
specified target speaker. The values of the above measures are 
between zero and 1. 

The traditional equal error rate (EER) is also employed as 
another evaluation metric in our experiments. This metric is 
usually reported in percent. An accurate speaker verification 
approach tries to minimize the aforementioned measures. 

2. Evaluation Databases 

In the speaker verification experiments, we need three sets of 
speech data for each speaker. The first one which is used for 
training should be long enough to facilitate model training. The 
second set of speech files will be used as development data for 
decision threshold determination. The third set is an amount of 
short duration speech segments which are used as the test data 
in evaluations. In the following experiments, the duration of 
training speech may be different, but in all experiments, the 
duration of development and test utterances is equal to 3 s.  

Our first evaluation database is the telephony Farsi speech 
database called TFarsdat [57]. This database includes 64 
speakers and two speech files from each speaker which are 
collected in two different sessions. The first session includes 

read speech. This file is considerably longer than the second 
session and can be used as training and development speech. 
The other speech file which includes spontaneous speech is 
clipped to short duration utterances and is used as test set in our 
evaluations. A set of 50 speakers from this database is selected 
and used in our experiments.  

The second speech database is the KING corpus [58], which 
contains recorded speech from 51 male speakers in two 
versions which differ in channel characteristics. For each 
speaker and channel, there are ten files corresponding to 
sessions of about 30 s to 60 s duration. KING is designed 
principally for closed set experiments in text-independent 
speaker identification or verification over telephone lines and 
high-quality microphone. Fifty speakers from this database are 
selected as the evaluation data. For each speaker, the telephone-
quality utterances are used. In the evaluations, one session is 
used as training and development data, and the other sessions 
are used as test data. 

3. Experimental Setup 

In both evaluation databases, silence detection is performed 
on original speech signals using the approach proposed in [59]. 
Then, apart from the training speech, for each speaker, six 3 s 
utterances are extracted as development data and six 3 s 
utterances as test speech. In the experiments of this paper, the 
duration of the training data is 30 s, unless otherwise 
mentioned. 

As speech features, 12-order mel-frequency cepstral 
coefficients (MFCCs) [60] are used. Features are extracted 
from 30-ms frames multiplied by a Hamming window. A   
24-channel mel filter bank is used and the frames are shifted 
every 10 ms. 

GMMs are constructed using 64 components with diagonal 
covariance matrix. The number of iterations in EM and also 
VEM optimization is limited to 50. 

Score normalization is proved to be effective in speaker 
verification systems and helps to reduce the effect of session 
variations [2]. In the following experiments, we employed the 
well-known T-norm score normalization approach [61] which 
applies the mean and variance of the scores of the input 
utterance on all the registered speaker models to normalize the 
score of the utterance on the target speaker model. This 
normalization approach can be formulated as  

Tnorm(Score(U| TargetModel )) 
= (Score(U| TargetModel)-MeanScore)/ScoresVar ,  (22) 

where Score(U| TargetModel) is the likelihood of the input test 
utterance U on the speaker model TargetModel, and 
MeanScore and ScoresVar are respectively the mean and  
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Fig. 1. MDR versus FAR of GMM-based speaker verification for
EM and VEM optimization approaches on TFarsdat
speech database. EER and CDET of both approaches are
summarized in Fig. 1. 
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Fig. 2. MDR versus FAR of GMM-based speaker verification for 
EM and VEM optimization approaches on KING speech
database. EER and CDET of both approaches are 
summarized in Fig. 2. 
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variance of the likelihood scores of U on all registered speaker 
models except for TargetModel. 

4. Speaker Verification Performance 

In our first experiments, the performance of EM and VEM 
approaches is evaluated on the TFarsdat speech database. In 
these experiments, the number of iterations and the amount of 
speech data for all 50 speakers are the same. Figure 1 illustrates 
the detection error tradeoff (DET) of the mentioned approaches 
in which the MDR is plotted against the FAR Figure 1 also 
depicts the EER and the CDET of these two approaches on the 
evaluations datasets. 

Figure 1 shows that the performance of the proposed GMM-
VEM approach is higher than the performance of traditionally 
used GMM-EM speaker modeling approach. As illustrated in 
Fig. 2, similar result is yielded on KING speech database. 

Figure 2 illustrates that the improvement ratio on the KING  

 

Fig. 3. MDR versus FAR of GMM-based speaker verification for
EM and VEM optimization on TFarsdat speech database
when training speech duration for each speaker is limited
to 10 s. EER and CDET of both approaches are
summarized in Fig. 3. 
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database is higher than the TFarsdat dataset which is due to the 
higher verification error on the KING database. Apart from the 
verification performance, it is worth remembering that since 
the obtained models and even the likelihood computation 
algorithm have the same complexity in both approaches, the 
response time of the two methods is the same. Therefore, no 
significant overload is imposed on the verification framework 
when the EM approach is substituted with VEM. 

5. Speaker Verification Performance in Adverse Conditions 

The other experiments are conducted in adverse conditions 
which are probable in real world conditions and may occur in a 
specific application. Let’s first consider a situation in which the 
amount of available training data is limited. In this condition, 
the available data may be very scarce to build a reliable speaker 
model.  

To observe the impact of this data insufficiency on the 
proposed GMM-VEM approach and also the traditional 
GMM-EM approach, an experiment is conducted for a 
condition in which the duration of the training speech data for 
each speaker is limited to 10 s. Figure 3 shows the ROC curve 
of this evaluation on the TFarsdat database. Figure 3 shows the 
better performance of the GMM-VEM approach compared to 
the GMM-EM method in data insufficiency. 

On the other hand, another experiment is conducted for the 
condition in which the available amount of speech data for 
speakers is different. This condition will happen in real world 
applications in which the number of registration sessions for 
speakers is different. A reliable modeling approach should be 
robust against this data variability. This robustness may 
originate from two characteristics of the model, namely 
robustness against data insufficiency and overfitting immunity. 
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Fig. 4. MDR versus FAR of GMM-based speaker verification for
EM and VEM optimization on TFarsdat speech database
when training speech for half of speakers is 10 s and for
other half is 30 s. EER and CDET of both approaches are
summarized in Fig. 4. 
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In the following experiment, the duration of training data for 
25 of the speakers is 30 s, while for the other 25 speakers, the 
duration of the available training data is limited to 10 s. The 
results of this experiment is illustrated in Fig. 4 in terms of FAR 
and MDR. 

Once again, Fig. 4 depicts the better robustness and higher 
performance of the proposed GMM-VEM approach in this 
abnormal operating condition. This can lead us to two 
conclusions. First, as concluded from the previous experiment 
(see Fig 3), the proposed optimization approach is robust 
against data insufficiency. Second, the proposed GMM-VEM 
modeling approach is relatively robust against overfitting 
which may occur in presence of different amount of training 
data. However, the second issue will also be justified in the 
next experiments from a different point of view. 

6. Speaker Verification Performance in Noisy Conditions 

To evaluate the proposed VEM optimization approach in 
noisy conditions and compare its performance with the GMM-
EM approach, three different noise signals from the NOISEX-
92 noise corpus [62], including White, Babble, and Factory 
noises, are synthetically added to the test utterances in different 
SNR levels, that is, 30 dB, 20 dB, and 10 dB. Figures 5 and 6 
denote the verification accuracy of GMM-EM and GMM-
VEM approaches in presence of noise. The accuracy measure 
in Fig. 5 is the EER (%) while the values in Fig. 6 denote the 
previously introduced detection cost (CDET). The evaluation 
database is TFarsdat. 

The average EER of the proposed approach in the presence 
of noise (averaged for all noises and all SNRs) is 25.6%, while 
this measure for the GMM-EM approach is 27.12%. The same 
improvement on the verification accuracy can be seen for  

 

Fig. 5. Accuracy (denoted in EER (%)) of EM-GMM and VEM-
GMM approaches in presence of different noises and
SNR levels. Evaluation database is TFarsdat. 
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Fig. 6. Accuracy (denoted in detection cost (CDET)) of EM-GMM
and VEM-GMM approaches in presence of different
noises and SNR levels. Evaluation database is TFarsdat.
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average CDET measure, which is 0.129 and 0.142 for the 
proposed method and the GMM-EM approach, respectively. 
Again, these achievements confirm that the proposed VEM 
approach not only provides better accuracy in clean speech 
condition but also improves the verification accuracy in 
presence of noise due to its resistance against overfitting. 

7. Overfitting Investigation 

Overfitting happens when the model is highly adapted to the 
training data and its generalization ability in confrontation with 
unseen data is decreased. This reduction in generalization 
ability can be depicted in the likelihood of the unseen data on 
the resulting model. General EM optimization approach is well 
known for its overfitting problem. To see if the proposed VEM 
approach can resolve this overfitting problem, experiments are 
conducted in this section. In these experiments, each of the two 
approaches are performed in increasing number of iterations 
and, after each iteration, the likelihood of a set of test utterances 
on the resulting model is computed. The contour of the average 
likelihood ratio will illustrate the change in the likelihood of 
unseen data with the increment of the iterations. To perform 
these experiments, a randomly chosen speaker from the 
TFarsdat database and its 6 test utterances are used. Figure 7 
illustrates the contours of changes in the likelihood ratio with 
the increment in the number of iterations for the GMM-EM 
and GMM-VEM methods. For better illustration, the average 
log likelihood values are normalized. 

As can be seen in Fig. 7, the likelihood of the test data on the 
GMM speaker model resulted from the EM optimization 
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Fig. 7. Change in average likelihood ratio of unseen test
utterances on the GMM model versus number of
iterations of optimization algorithm using either EM or
VEM approaches. 
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technique rises until about 40 iterations and reduces for more 
iterations. This is due to the model overfitting. On the other 
hand, as expected, the average likelihood of the test data on the 
VEM trained GMM speaker model increases with the number 
of iterations. However, in contrary to the GMM-EM approach, 
the VEM approach maintains its generalization power and the 
average likelihood ratio contour becomes relatively flat. These 
experiments show that the proposed GMM-VEM approach is 
robust against the overfitting problem. 

The above results are the same as expected. Since the 
variational approach uses an approximate substitute for the 
conventional ML/EM optimization, it avoids fitting the training 
data. Also, it has lead to a more generalizable modeling 
approach which has achieved a more robust speaker 
verification performance in the previously discussed 
experiments.  

V. Conclusion 

This paper proposed a variational approach for GMM 
speaker model training and optimization to achieve a better and 
more reliable performance in text-independent speaker 
verification. The proposed approach aims to solve the 
overfitting issue of the traditional expectation maximization 
GMM optimization technique and resolve the data 
insufficiency problem in conditions where the available 
training data for the speakers is scarce or the duration of 
available speech data for speakers is different. The proposed 
approach is evaluated on two different speech databases and in 
adverse conditions. Also, the performance of the proposed 
approach in noisy environments and different SNR levels is 
compared with the traditional EM approach. The experiments 
show that the proposed approach outperforms the GMM-EM 

approach and can resolve the troublesome characteristic of EM 
approach, namely overfitting. The reason behind this 
improvement is that the proposed variational approach 
optimizes the likelihood function of the GMM model 
approximately and hence avoids fitting the training data 
maximally.  
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