
ETRI Journal, Volume 22, Number 4, December 2000 Kyoung Park et al. 13

As more transistors are integrated onto bigger die, an on-
chip multiprocessor will become a promising alternative to
the superscalar microprocessor that dominates today’s mi-
croprocessor marketplace. This paper describes key parts of
a new on-chip multiprocessor, called Raptor, which is com-
posed of four 2-way superscalar processor cores and one
graphic co-processor. To obtain performance characteristics
of Raptor, a program-driven simulator and its program-
ming environment were developed. The simulation results
showed that Raptor can exploit thread level parallelism ef-
fectively and offer a promising architecture for future on-
chip multiprocessor designs.

Manuscript received August 11, 1999 ; revised October 31, 2000.
Kyoung Park is with the Computer System Department, ETRI, Korea. (phone: +82 42 860
3809, e-mail: kyoung@etri.re.kr)
Sung-Hoon Choi is with the Venture Business Technology Department, ETRI, Korea. (phone:
+82 2 525 8050, e-mail: shungchoi@etri.re.kr)
Yongwha Chung is with the Information Security Application Department, ETRI, Korea.
(phone: +82 42 860 5381, e-mail: ywchung@etri.re.kr)
Woo-Jong Hahn is with the API Networks Inc., USA. (phone: 1 978 318 1149, e-mail: woo-
jong.hahn@api-networks.com)
Suk-Han Yoon is with the SecureNetCom Inc., Korea. (phone: +82 42 866 6622, e-mail:
shyoon@icu.ac.kr)

I. INTRODUCTION

The performance of microprocessors has been improving at a
phenomenal rate for the last decade. This performance growth
has been driven by the innovation in compiler, the improvements
in architecture, and the tremendous improvement in VLSI tech-
nology. Currently, most of commercial microprocessors such as
Intel Pentium, Compaq Alpha21264, IBM PowerPC620, Sun
UltraSparc, HP PA8000 and MIPS R10000 use superscalar
design technique [1]–[3]. Such superscalar microprocessor exe-
cutes multiple instructions in a single cycle by exploiting Instruc-
tion-Level Parallelism (ILP) [4]. The latest superscalar micro-
processors can execute four or six instructions concurrently with
many non-trivial techniques including dynamic branch predic-
tion, out-of-order execution, and speculative execution method.
However, significant speed-up may not be achieved by using
these techniques because of the limitation of the instruction win-
dow size and the ILP in a typical program [4], [8]. Moreover,
considerable design efforts are required to develop such high per-
formance microprocessors. Therefore, developing a complex
wide-issue superscalar microprocessor as a next generation mi-
croprocessor may not be an efficient approach to satisfy the re-
quired performance [5]–[7]. Instead, researchers have studied
some alternatives to superscalar architecture [5]–[10]. The On-
chip Multiprocessor [7]–[9] is the one of the alternatives consid-
ered as next generation microprocessors.

This paper reports on the design of a next generation micro-
processor, called Raptor, which has an On-chip Multiprocessor
architecture. Raptor is composed of four 2-way superscalar
processor cores and one graphic co-processor. The key idea of
Raptor is a multiprocessor sharing an off-chip second level ca-
che in a singe chip to exploit Thread-Level Parallelism (TLP)
[9]–[16], in addition to ILP.

On-Chip Multiprocessor with Simultaneous
Multithreading

Kyoung Park, Sung-Hoon Choi, Yongwha Chung, Woo-Jong Hahn, and Suk-Han Yoon

14 Kyoung Park et al. ETRI Journal, Volume 22, Number 4, December 2000

To illustrate the possibility of Raptor as a next generation
microprocessor, we design it with Verilog Hardware Descrip-
tion Language (HDL) and conduct a performance simulation
with a dedicated architectural simulator, called RapSim (Raptor
Simulator). RapSim is a program-driven, cycle-level simulator
consisting of a Pre-Processing Unit as an instruction simulator
and a Post-Processing Unit as a performance simulator for each
processor model. Also, a programming environment, called
Multithreaded Mini-OS (MMOS), is developed to support a
Simultaneous MultiThreading (SMT) environment for RapSim.
Benchmarks programs are chosen from widely used scientific
applications such as FFT and Gaussian Elimination.

Our simulation focused on the performance characteristics of
Raptor including Instructions Per Cycle (IPC), execution cycle
time, speed-up and thread overhead as the number of processor
cores increased. The results showed that the On-chip Multi-
processor could be a strong candidate having scalable IPC and
speed-up. However, the overall performance of the On-chip
Multiprocessor depended on the amount of available parallel-
ism and thread overhead in SMT program.

The organization of the paper is as follows. A trend in the
microprocessor architecture is given in Section II. Section III
describes Raptor architecture. In Section IV, the architectural
simulator of Raptor and its programming environment are ex-
plained. Simulation results are shown in Section V, and con-
cluding remarks are made in Section VI.

II. TREND IN MICROPROCESSOR
ARCHITECTURE

The major trend in commercial microprocessor architecture is
the use of complex architecture to exploit the ILP. There are two
approaches that are used to exploit the ILP: superscalar and Very
Long Instruction Word (VLIW). Both approaches attempt to
issue multiple instructions to independent functional units at
every clock cycle. Superscalar [1]–[3] uses hardware to dynami-
cally find data-independent instructions in an instruction window
and issue them to independent functional units. On the other
hand, VLIW [4], [17] relies on a compiler to find the ILP and
schedule the execution of independent instructions statically.

Superscalar is more appealing in commercial microproces-
sors because it can improve the performance of existing appli-
cation binaries. However, superscalar is complex to design and
difficult to implement. Looking for parallelism in a large in-
struction window requires a significant amount of hardware
and usually does not improve the performance as much as one
might expect. Due to this complexity, it is difficult not only to
make the architecture correct but also to optimize the pipeline
and circuits to achieve high clock frequency [4]–[5].

On the other hand, VLIW relies on the compiler to find

bunches of independent instructions. Since VLIW does not
require the hardware for dynamic scheduling, it can be much
simpler to design and implement. However, it requires signifi-
cant compiler supports such as a trace scheduling to find out
ILP in an application program. VLIW is preferred over super-
scalar when the issue width is so large that dynamic scheduling
hardware in superscalar is too complex and expensive to im-
plement. However, even in VLIW, such a wide-issue machine
has a centralized register file that must have many ports to sup-
ply operands to independent functional units. The access time
of the register file and complexity of the buses connecting the
functional units may limit the clock frequency. Another disad-
vantage of VLIW is that it does not execute binary programs
for an existing Instruction Set Architecture (ISA). Although this
compatibility problem may be solved by the use of software for
emulating existing ISA, this problem is serious in commercial
market places. In addition, VLIW forces a bunch of instruc-
tions to execute together. If one instruction in the bunch stalls,
then other instructions in the bunch must stall, too. This limits
VLIW’s ability to deal with unpredictable events such as data
accesses causing cache misses [4]–[5].

Therefore, ILP architecture have some limitations on their
performance improvements [6]–[9], even though ILP architec-
tures are dominant in current commercial microprocessor mar-
ketplace. Researchers have proposed two alternative architec-
tures to overcome the limitations of ILP architectures: Multi-
threading processor [6] and On-chip Multiprocessor [7]–[9] to
exploit another type of parallelism, TLP besides ILP. Figure 1
shows the examples of two alternative architectures.

The Multithreading processor, shown in Fig.1(a), augments
the wide-issue superscalar with the hardware allowing it to
execute instructions from multiple threads of control concur-
rently and dynamically selecting and executing instructions
from many active threads simultaneously. This improves utili-
zation of the processor’s execution resources and provides la-
tency tolerance in case of a thread stall due to cache miss or
data dependency. When multiple threads are not available,
however, the Multithreading processor simply looks like a
conventional wide-issue superscalar [6]. Moreover, to keep the
processor’s execution units busy, the Multithreading processor
features advanced branch prediction, register renaming, out-of-
order execution, and non-blocking caches as superscalar proc-
essor does. The design complexity of the dispatch unit in-
creases, since it exploits ILP and TLP simultaneously [8].

The On-chip Multiprocessor, shown in Fig. 2(b), uses rela-
tively simple single-thread processor cores to exploit only
moderate amount of ILP within a thread, while executing mul-
tiple threads in parallel across multiple cores. If an application
can not be effectively decomposed into threads, the On-chip
Multiprocessor will be underutilized [7]–[9].

ETRI Journal, Volume 22, Number 4, December 2000 Kyoung Park et al. 15

Fig. 1. The examples of two alternative architectures.

Dual-ported Instruction cache

Dispatch
Unit

 PC 1

Registers

 PC 0

Registers

LSU ALU FPU LSU ALU FPU

Dual-ported Data cache

System Interface with L2 Cache System Interface with L2 Cache

Instruction cache

Dispatch
Unit

 PC

Registers

LSU ALU FPU

Data cache

Instruction cache

Dispatch
Unit

 PC

Registers

LSU ALU FPU

Data cache

Processor 0 Processor 1

(a) 2-way multithreading processor (b) 2-way on-chip multiprocessor

From a purely architectural point of view, Multithreading
processor is superior. However, the inherent complexity of
Multithreading processor results in hardware design problems
that On-chip Multiprocessor solves by keeping the hardware
simple. The important factor is the design complexity. As the
complexity increases, more design efforts are needed to opti-
mize critical timing path, increase clock frequency, and reduce
interconnection delays. The effects of interconnection delays,
which are becoming much slower than the transistor gate de-
lays, will become more important in a billion-transistor CMOS
implementation technology. The interconnection delay will
force the architecture to be partitioned into small and localized
blocks. For these reasons, the On-chip Multiprocessor is more
promising because it is already partitioned into individual proc-
essor cores. The simple cores are amenable to speed optimiza-
tion and can be designed relatively easily [8].

III. RAPTOR ARCHITECTURE

Raptor is an On-chip Multiprocessor microprocessor consist-
ing of four independent processor cores, called General Proces-
sor Units (GPU), and one graphic co-processor, called Graphic
Co-processor Unit (GCU). Inter-processor Bus Unit (IBU) is a
shared bus connecting GPUs and External Cache control Unit
(ECU). Multiprocessor Control Unit (MCU) distributes inter-
rupts across GPUs and provides synchronization resources
among GPUs. Port Interface Unit (PIU) is a multiprocessor-
ready bus interface to communicate with the exterior of Raptor.
Four GPUs execute all instructions except extended graphic in-
structions with their own register files and program counters,
but share ECU through IBU. GCP is also shared by four GPUs
and performs graphic instructions with Single In-

Fig. 2. Block diagram of Raptor microprocessor.

MCU

GCU

IBU

ECU

ECU: External Cache Control Unit
GCU: Graphical Co-Processor Unit
GPU: General Processor Unit
IBU: Inter-Processor Bus Unit
MCU: Multiprocessor Control Unit
PIU: Port Interface Unit

P
IU

• Single chip 4-way multiprocessor sharing off-chip 2nd level cache
• 64-bit data and 64-bit virtual address
• SPARC V9 ISA
• Extension of graphic instruction set
• Multiple cache structure consisting of on-chip 1st level cache and off-chip 2nd level cache
• Harvard structure of 1st level cache of 16 Kbyte instruction cache and 16 Kbyte of data cache
• On-chip 2nd level cache controller handling 4 Mbyte of unified off-chip 2nd level cache

GPU

struction stream Multiple Data Stream (SIMD) style pixel
processing hardware. Figure 2 shows the block diagram of
Raptor and main features of Raptor.

1. GPU

GPU is a simple 2-way superscalar RISC core having three
functional units; Integer Execution Unit (IEU), Floating Point
Unit (FPU) and Load Store Unit (LSU). It executes SPARC
V9 [18] instruction set with branch folding and out of order
execution capabilities. Fetch and PreDecoder (FPD) fetches in-
structions from Instruction Cache (I-Cache) and stored into In-
struction Buffer (I-Buffer). In order to reduce the overhead
caused by branch operation, branch folding technique [3] is

16 Kyoung Park et al. ETRI Journal, Volume 22, Number 4, December 2000

used during instruction prefetch stage. Two instructions in I-
Buffer are decoded and issued into proper functional units in
every cycle by Decoder. ReOrder Buffer (ROB) allocates en-
tries for the issued instructions to support the out of order exe-
cution. Reservation Station (RS) of each functional unit re-
solves the dependency problems among instructions. After ex-
ecuting instructions, the functional units return their results to
ROB through a Result Bus in order to update the ROB entries.
ROB checks the status of each entry, updates register files, and
deallocate the entries of the committed instructions.

The IEU has two Arithmetic Logic Units (ALU), a multi-
cycle integer multiplier, and a multi-cycle integer divider to
process integer data. The FPU executes floating point instruc-
tions using a floating point adder, a floating point multiplier and
a floating point divider/SQuare RooT (SQRT). Most floating
point instructions are fully pipelined, have a latency of three
except for divide/SQRT instructions. The divide/SQRT instruc-
tions are not pipelined and take 12/22 cycles (single/double) to
execute. The LSU is responsible for memory access using the
virtual address of all loads and stores instructions.

The register file is organized as 8 windows, where each win-
dow has 32 entries and each register handles 64 bits of integer
data. Floating point register handles single, double and quad
precision floating point data. The floating point register file can
store either 32 entries of single or double precision data, or 16
entries of quad precision data. The graphic register file supports
the extended graphic instruction. 32 entries of graphic register
file can store 32 bits of graphic data. The block diagram of a
GPU is shown in Fig. 3.

Fig. 3. Block diagram of GPU.

From IBU (2nd Cache)

IEU

FPU-RSIEU-RSLSU-RS

Register
File

 Decoder
I-BufferFPD

I-Cache I-MMU

GCU-RS

D-MMU

D-Cache
LSU FPU

To
GCU

From
GCU

Result
Bus

Arbitration

From/To IBU (2nd Cache)

Reorder
Buffer

2. GCU

The instruction set supported by GCU is essential instruc-
tions widely used in multimedia and signal processing algo-
rithms. The GCU architecture follows the design philosophy of

a SIMD. The functional units of GCU can perform 8 bits, 16
bits, 32 bits of packed arithmetic operations, boolean algebras
and bit-wise manipulations. Also, it can calculate the sum of
absolute pixel distances so that MPEG algorithm can be han-
dled more efficiently.

As we mentioned before, all GPUs share one GCU by issu-
ing GCU instruction via corresponding buffers. The scheduler
of GCU fetches the instructions and distributes them to proper
functional units. Then, the results of GCU operations are re-
turned to GPUs.

As shown in Fig. 4, GCU has the following four major func-
tional units.

• Graphic ALU(GALU): Performs packed arithmetic and
boolean operations for graphics and multimedia data, synthe-
sizes the results from GMUL and GSAD, and extracts
max/min.

• Graphic Multiplier(GMUL): Performs packed mul-
tiplication with four 1616× multipliers and packing net-
work.

• Graphic Bit Manipulation Unit(GBMU): Per-
forms bit-wise logic operations and shift operations within
packed words, data copy and exchange operations among
packed words, and packing and unpacking operations for
type conversion.

• Graphic Sum of Absolute Difference(GSAD):
Performs SAD operations used for MPEG encoding with
eight processing elements.

Fig. 4. Block diagram of GCU.

Buffer
(GPU0)

Buffer
(GPU1)

Buffer
(GPU2)

Buffer
(GPU3)

Scheduler

GALU GMUL GBMU GSAD

Result0 Result1 Result2 Result3

To Result Bus of
GPU0

To Result Bus of
GPU1

To Result Bus of
GPU2

To Result Bus of
GPU3

From GPU0 From GPU1 From GPU2 From GPU3

3. MCU

All GPUs should be the same in servicing external interrupts.
Otherwise, software should identify which GPU on a chip is to
run a particular service. MCU processes two classes of external
interrupts. One is for a direct interrupt that should be serviced by

ETRI Journal, Volume 22, Number 4, December 2000 Kyoung Park et al. 17

a specific GPU, and the other is for an arbitration interrupt that
is serviced by any one of four GPUs. For arbitration interrupts,
MCU gathers the external interrupts and distributes them
equally among the four GPUs.

Furthermore, MCU provides GPUs with message passing
resources for inter-GPU communications. When GPUs work
together to perform a tightly coupled multithreaded task, an ef-
ficient inter-GPU communication mechanism is required.
MCU has 32 entries of a message register file shared by all
GPUs so that GPUs can use it as message buffers or synchro-
nization resources among GPUs. In order to access MCU re-
sources, each GPU uses special instructions. In addition, MCU
initializes the whole chip on a reset and distributes a central
clock.

4. IBU, ECU, and PIU

IBU is a shared bus connecting GPUs and ECU. Each GPU
accesses ECU through IBU when it requires a memory access
due to internal cache miss or a write-through.

ECU gets the request through IBU and returns a proper re-
sponse according to modified MESI cache coherency protocol.
It is responsible to keep the cache coherency among ECUs
through PIU and maintain inclusion properties with the internal
cache of GPU.

PIU acts as an interface between Raptor and outside world. It
provides a multiprocessor-ready shared bus interface with a
snooping cache coherency protocol. PIU also provides a
SRAM module interface for accessing off-chip second level
cache RAMs.

IV. SIMULATION ENVIRONMENT

To evaluate several tradeoffs in designing Raptor quantita-
tively, we developed a dedicated simulator, called RapSim.
RapSim, shown in Fig. 5, is a program-driven microarchitecture
simulator that models four GPUs and a memory hierarchy
shared by four GPUs. Each GPU model consists of a Pre-
Processing Unit as an instruction set simulator and a Post-
Processing Unit as a performance simulator. Also, a program-
ming environment, called Multithreaded Mini-OS (MMOS),
was developed to support a SMT among GPUs. The overall
configuration of RapSim and MMOS is shown in Fig. 6.

1. RapSim

Main features of RapSim are as follows:

• Execution of SPARC V9 instructions and graphic co-processor
instructions

• Program-driven simulator having timing information

Fig. 5. Block diagram of RapSim simulator.

2 nd Level Cache

Main Memory

Binary Loader & Initialization

On-the-fly-trace

Cycle
Calculator

Pre-Processing
Unit

Post-Processing
Unit

System
Call

Proxy

Trap
Handler

Init. ISA decoder

Execution
Units

Processor
Model 1 st

Level
Cache

Fetcher

Decoder

Issue

Executer

Reservation
Stations

Write-back & commit

Reorder
Buffer

Fig. 6. Simulation environment.

SunOS SPARC Workstation

4-way Raptor Simulator

RapSim

MMOS Benchmark Program RapSim
Interface

Thread
Scheduler

Timer
Interrupt

Keyboard
Interrupt

OS
Service

SMT Safe
Pthread Library Math Library SMT Safe

C Library

• Multiprocessor model consisting of four processor cores and

one graphic co-processor
• Support for out-of-order execution of a processor core
• Support SMT programming model
• Information gathering for performance evaluation

Pre-Processing Unit, shown in Fig. 7, is an instruction set
simulator having a processor model for executing instructions,
data structures for register files, proxy model for processing
system calls, and first level cache model. Pre-Processing Unit
fetches instructions and data from a shared memory hierarchy
including second level cache model, executes the instructions,
and generates an on-the-fly trace consumed by Post-Processing

18 Kyoung Park et al. ETRI Journal, Volume 22, Number 4, December 2000

Fig. 7. Block diagram of pre-processing unit.

Binary Loader

On-the-fly-trace to Post-processing Unit

Benchmark Binary
(Stactic Binded ELF file)

System Area

Text Area

Data Area

RED Area

Stack Area

Main Memory

2nd
Level
Cache

Processor Models

System
Call

Proxy

Trap
Handler

I-Cache

Control Registers
Status Registers

Register File

I-MMU

D-MMU

D-Cache

Trace
Generator

ISA Decoder

Instruction Fetcher Program Counter

Stack Pointer

Execution Units
IEU
FPU
LSU

Unit. Binary Loader of Pre-Processing Unit starts the simula-
tion by loading a benchmark binary file, compiled and stati-
cally linked with MMOS library, into memory model. During
the loading of the benchmark binary, a proper starting Program
Counter (PC) and a Stack Pointer (SP) are set in the processor
model, trap table and trap handlers are initialized in the mem-
ory model, and a stack is also constructed in the memory
model. Then, Instruction Fetcher fetches instructions using PC
and ISA Decoder issues the instructions to Execution Units af-
ter instruction decoding. Execution Units execute the instruc-
tions using the internal resources like IEU, FPU, LSU, register
files, and first level cache model. As Pre-Processing Unit runs
its instruction streams, Trace Generator generates an on-the-fly
trace that is the sequence of executed instructions. Each entry
of the on-the-fly trace contains enough information so that
Post-Processing Unit can conduct the performance simulation
using the on-the-fly trace as inputs.

As shown in Fig. 8, Post-Processing Unit is a RISC pipeline
model conducting performance simulation by using the instruc-
tion traces generated from Pre-Processing Unit. It is modeled
as a 2-way superscalar including RS and ROB to support the
out-of-order executions. Two instructions in a Trace Buffer are
fetched and pre-decoded in a cycle. The pre-decoded instruc-
tions in an Instruction Buffer are decoded and issued into
proper RS, and ROB is updated simultaneously. Each execu-
tion unit runs safe instructions from a proper RS resolving de-
pendency problems. The execution results of execution units
reflect on ROB, and the terminated entries of ROB are updated
into register files. The cycle calculator gathers the timing in-
formation from each pipeline model and calculates the per-
formance information including execution cycle times and the
number of total instructions.

The architectural parameters used in the simulation are listed
in Table 1. In particular, our simulation focused on the effect of

Fig. 8. Block diagram of post-processing unit.

On-the-fly Trace

Integer RS Load/Store RS FPU RS GCU RS

Integer Unit Load/Store Unit FPU Unit GCU Unit

Intq Lsq Fpuq Gcuq

Eventq

Register Files

ROB

Fetch

Predecode

Decode & Issue

Exec1

Exec2

Writeback

Commit

Cycle Calculator

Trace Buffer

Fetchq

Instruction Buffer

Decoder

Readyq

Table 1. Architectural configuration.

Feature Default Value

Number of GPUs (P) 4 (1, 2, 4)

GPU issue width 2

1st level cache Size 16 Kbyte I-cache, 16 Kbyte D-cache / 32 bytes line

2nd level cache size 4 Mbyte / 32 bytes line

Write update policy 1st level cache to 2nd level cache: write through
2nd level cache to Main memory: write back

1st level cache access
latency 1 cycle

2nd level cache access
latency 4 cycle

Main memory access
latency 10 cycle

Instruction Execution
Latency [18]

Integer ALU = 1 cycle
Integer Multiply = 4 ~ 34 cycle
Integer Division = 36 (single), 68 (double) cycle
Load / Store = 1 cycle
Control Transfer = 1 cycle
FP Addition/Subtraction = 1 cycle
FP Multiply = 4 cycle
FP Division / SQRT = 12 (single), 22 (double) cycle,

not pipelined

simultaneous multithreading parameter such as the number of

ETRI Journal, Volume 22, Number 4, December 2000 Kyoung Park et al. 19

GPUs in an On-chip Multiprocessor. Therefore, we fixed other
architectural parameters as Raptor’s design specification used
in HDL-design, except for the number of GPUs. The execution
cycle and latency of each instruction are set to be equal to Ul-
traSPARC-I microprocessor [19] executing SPARC-V9 ISA.

2. MMOS

In order to maximize the performance of the On-chip multi-
processor, TLP needs to be exploited. MMOS, modified
Pthreads [16] for RapSim, help programmers to explicitly di-
vide the code into threads to utilize four GPUs. MMOS has a
SMT-safe Pthread library, SMT-safe C library, and RapSim in-
terface.

The SMT-safe C library allows multiple thread to access the
shared C library without synchronization problems, while the
SMT-safe Pthread library provides a coarse-grain multithread-
ing execution model with software support for creating, syn-
chronizing, and scheduling threads. The RapSim interface as-
signs PCs, SPs, and register files in the processor models in or-
der to allocate threads into the processor models in RapSim,
which simulates 4-way On-chip Multiprocessor with quad
threads simultaneously.

We chose some benchmarks from scientific applications [20],
[21], and vision tasks from DARPA Image Understanding
Benchmark [22]. This paper focuses on the results of the scien-
tific applications only. The results of the vision tasks can be
found in manuscript [22].

The codes of FFT, MP3D and LU have been obtained from
SPLASH [20], [21] suite of benchmarks, whereas Matrix mul-
tiply (MMULT) and Gaussian Elimination (GAUSS) have
written by the authors. MMULT and GAUSS were manually
ported to be simultaneous multithreading program using SMT-
safe Pthread library calls of MMOS. To port the SPLASH
benchmarks to RapSim, the ANL macros were replaced with
their SMT-safe Pthreads equivalents. Each benchmark is
briefly described in the following:

• MMULT parses the matrix data into blocks and assigns them
to threads. The data set for the threads is relatively disjoint,
whereas the row by column operation produces considerable
overlapping of data among threads. Moreover, there is no in-
ter-thread communication or synchronization.

• GAUSS partitions nn× matrix into threads by using the
row-wise block cyclic approach. Initially, one thread per-
forms a division step with its pivot value, and then all other
threads perform elimination step. These two steps are coordi-
nated with barriers. GAUSS threads tend to have distinct data
sets with a minimal data sharing besides the pivot value.

• LU factors a dense matrix into the product of a lower triangu-
lar and an upper triangular matrix. The dense nn× array A

is divided into N × N array of B × B blocks (n = N × B).
Every thread factors a N/P × N/P subarray. The data sets be-
tween threads are very localized.

• FFT implements a complex 1-D version of the n six step
FFT algorithm. The data set consists of n complex data points
and another n complex data points, called the roots of unity.
Every thread is reponsible for transposing a contiguous
submatrix PnPn // × with every other thread and one
submatrix by itself. The data sets between threads are very
localized.

• MP3D is a simple simulator for rarefied gas flow over an ob-
ject in a wind tunnel. The algorithm is primary occupied with
a loop consisting of three phases. Each thread is given parti-
cles and proceeds to move them within a defined cell space.
The thread continuously detects any possible collisions of its
molecules with other molecules and updates the geometry of
molecules each time step. MP3D contains data that is very
localized and shares much of that data among threads. Also,
each phase has to be completed by all the threads before con-
tinuing the next phase, requiring a larger amount of synchro-
nization.

V. SIMULATION RESULTS AND ANALYSIS

In this paper, we focus on performance of the On-chip Mul-
tiprocessor, typically IPC, execution cycles, speed-up, and
thread overhead are measured as our performance metrics.

Three sets of simulation runs were performed for each
benchmark described in previous section. The first set was non-
multithreaded benchmarks running on a single GPU to be
served as a point of reference. The second set was 2-way SMT
benchmarks running on two GPUs, and the final set was 4-way
SMT benchmarks running on four GPUs. Three sets of simula-
tion results were compared and analyzed to find out the archi-
tectural characteristics of Raptor.

1. Simultaneous Multithreading

In general, a workload)(W consists of a sequential part
)(seqW and a parallel part)(parW as expressed in (1):

.parseq W WW += (1)

The parallel part can be partitioned into a number of parallel
threads simultaneously running with multiple processors, while
the sequential part cannot. MMOS converts the parallel part of
a workload into multiple threads and assigns them into GPUs
so that Raptor exploits TLP to utilize multiple processor cores.
The SMT workload (Wsmt) converted by MMOS can be ex-
press as (2):

20 Kyoung Park et al. ETRI Journal, Volume 22, Number 4, December 2000

Fig. 9. Instructions distribution among GPUs.

Instruction Distribution

0%

20%

40%

60%

80%

100%

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

Number of GPUs

GPU3

GPU2

GPU1

GPU0

FFT MP3D LU MMULT GAUSS

Instruction Distribution

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

50000000

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

Number of GPUs

N
u
m

b
e
r
o
f

In
s
tr
u
c
ti
o
n
s

GPU3

GPU2

GPU1

GPU0

FFT MP3D LU MMULT GAUSS

FFT: No. of Elements = 16384, MP3D: No. of Molecules = 400, LU: Matrix size = 128, MMULT: Matrix size = 64, GAUSS: Matrix size = 64

(b) Instruction distribution (proportional)(a) Instruction distribution (amount)

overhdparseqsmt W PW W W ++=)/(

,][
1

overhd

p

n
threadseq W nW W ++= ∑

=
 (2)

where P is the number of GPUs and Wthread[n] is the nth thread
among P threads. The thread overhead(Woverhd) denotes the
amount of additional works for the thread control and synchro-
nizations.

Figure 9 shows the simultaneous multithreading effect on
Raptor. Figure 9(a) and (b) show the instruction distributions of
benchmarks in amount and proportional among GPUs respec-
tively. As the number of GPUs increased, the instructions were
distributed evenly over all of GPUs except FFT. FFT had about
45 % of sequential part that computes 1D FFT, while others
contained extremely low portion of the sequential part. There-
fore, in all cases except for FFT, all GPUs were well utilized
using simultaneous multithreading in most cases.

2. Execution Cycle vs. IPC

In general, the important performance metric of a micro-
processor is IPC. The IPC is computed according to (3):

,cycleinst / T NIPC = (3)

where Ninst and Tcycle refer to the number of executed instruc-
tions and the number of execution cycles, respectively.

The conventional processors exploit only ILP to increase the
IPC. However, the processors face the limit on the IPC. Raptor
uses another approach that exploits TLP using SMT to achieve
the IPC scalability.

Figure 10 shows the scalability of IPC. As the number of
GPUs increased, the IPC increased linearly except for FFT. In
all cases except FFT, the IPC of Raptor having four GPUs
ranges from 3.5 to 4.1, while the IPC of a single GPU ranges

from 0.9 to 1.1. In FFT, the IPC of a GPU was about 0.9 and
the IPC of 4-way Raptor was about 1.5. The major portion of
FFT utilizes only single GPU, while others are idle. The
amount of sequential part that can not be multithreaded is so
large in FFT case.

The number of execution cycles is another interesting metric
representing the performance. The number of execution cycles
was reduced as the number of GPUs increased except for
MP3D. Because MP3D had a significant amount of parallel
part, it can be scalable in the IPC. However, as shown in Fig.
9(a), the number of instructions increased as the number of
GPUs increased due to thread overhead. The issue regarding
the thread overhead will be discussed in later section.

3. Speed-up vs. Thread Overhead

The amount of absolute performance gain of the simultane-
ous multithreading over a sequential programming can be ex-
pressed as (4):

smtWW gainerformanceAbsolute p −=

.)1(*)/(overhdparoverhdparpar WPWWPWW −−=−= (4)

As shown in (4), the absolute performance gain depends on
two major factors: available parallelism)(parW included in a
workload and the thread overhead).(overhdW If workload
does not exhibit sufficient amount of parallelism for simultane-
ous multithreading, the GPU utilization will not increase.
Though workload has sufficient amount of parallelism, the
thread overhead of thread management, inter-thread commu-
nications, and synchronizations may limit the overall perform-
ance.

The speed-up is a general metric that presents the performance
enhancement quantitatively. Let T and smtT denote the execu-

ETRI Journal, Volume 22, Number 4, December 2000 Kyoung Park et al. 21

tions times of W and ,smtW respectively. Then, the speed-up, t h e

Fig. 10. Cycle time vs. IPC.

FFT:Cycle Time vs. IPC
(N = Number fo Elements)

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 2 4 1 2 4 1 2 4 1 2 4

Number of GPUs

C
yc

le
 T

im
e

0

0.5

1

1.5

2

2.5

3

IP
C Cycles

IPC

N=256 N=1024 N=4096 N=16384

MP3D:Cycle Time vs. IPC
(N = Number of Molcecules)

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 2 4 1 2 4 1 2 4 1 2 4

Number of GPUs

C
yc

le
 T

im
e

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

IP
C Cycles

IPC

N=200 N=300 N=400 N=500

LU:Cycle Time vs. IPC
(N = Matrix size)

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

1 2 4 1 2 4 1 2 4 1 2 4

Number of GPUs

C
yc

le
 T

im
e

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

IP
C Cycles

IPC

N=128 N=256 N=512 N=1024

MMULT:Cycle Time vs. IPC
(N = Matrix size)

1
10

100
1000

10000
100000

1000000
10000000

100000000
1000000000

10000000000
100000000000

1 2 4 1 2 4 1 2 4 1 2 4

Number of GPUs

C
yc

le
 T

im
e

0

0.5

1

1.5

2

2.5

3

3.5

4

IP
C Cycles

IPC

N=64 N=128 N=256 N=512

Summary:Cycle Time vs. IPC

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

100000000000

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

Number of GPUs

C
yc

le
 T

im
e

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

IP
C Cycles

IPC

FFT
N=16384

MP3D
N=500

LU
N=1024

MMULT
N=512

GAUSS
N=1024

GAUSS:Cycle Time vs. IPC
(N = Matrix size)

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

1 2 4 1 2 4 1 2 4 1 2 4

Number of GPUs

C
yc

le
 T

im
e

0

0.5

1

1.5

2

2.5

3

3.5

4

IP
C Cycles

IPC

N=64 N=128 N=512 N=1024

ratio of performance enhancement of the simultaneous multi-
threading over a sequential programming, can be given as (5):

./- smtTTupSpeed = (5)

Figure 11 shows the speed-up as increasing the number of
GPUs. As the number of GPUs increased, the speed-up in-
creased except MP3D. MP3D had a sufficient amount of paral-
lelism to be multithreaded, but heavy data sharing generated very
frequent inter-thread communications and synchronizations.
Such a heavy amount of thread overhead can limit the speed-up.

In FFT, the speed-up was small. As described before, FFT
had a large amount of the sequential part and a little amount of
available parallelism. Therefore, the speed-up was limited and

the utilization of GPUs was not good.
VI. CONCLUDING REMARKS

The On-chip Multiprocessor is a promising candidate for a
billion-transistor architecture, which can overcome the limit of
ILP processors. By integrating simple processor cores, it can
exploit TLP in addition to ILP.

In this paper, we have discussed the architecture of a new on-
chip multiprocessor Raptor composed of four 2-way superscalar
processor cores and one graphic co-processor. To evaluate per-
formance of Raptor, we developed a program-driven, dedicated
architecture simulator and its programming environment first.
By conducting simulations, we analyzed the IPC, execution cy-

22 Kyoung Park et al. ETRI Journal, Volume 22, Number 4, December 2000

cle time, speed-up, and thread overhead as the performance met-
rics.

On the basis of our simulations, the IPC increased as the number

Fig. 11. Speed-up vs. thread overhead.

FFT:Thread Overhead vs. Speed-up
(N = Number of Elements)

0%

10%

20%

30%

40%

50%

60%

70%

1 2 4 1 2 4 1 2 4 1 2 4

Number of GPUs

O
ve

rh
ea

d

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S
pe

ed
 U

p

Overhd.
speedup

N=256 N=1024 N=4096 N=16384

MP3D:Thread overhead vs. Speed-Up
(N = Number of Molecules)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 1 2 4 1 2 4 1 2 4

Number of GPUs

O
ve

rh
ea

d

0

0.2

0.4

0.6

0.8

1

1.2

S
pe

ed
 U

p

Overhd.
speedup

N=200 N=300 N=400 N=500

LU:Thread Overhead vs. Speed-Up
(N = Matrix size)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1 2 4 1 2 4 1 2 4 1 2 4

Number of GPUs

O
ve

rh
ea

d

0

0.5

1

1.5

2

2.5

3

3.5

S
pe

ed
 U

p

Overhd.
speedup

N=128 N=256 N=512 N=1024

MMULT:Thread Overhead vs. Speed-Up
(N = Matrix size)

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

1 2 4 1 2 4 1 2 4 1 2 4

Number of GPUs

O
ve

rh
ea

d

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

S
pe

ed
 U

p

Overhd.
speedup

N=64 N=128 N=256 N=512

GAUSS:Thread Overhead vs. Speed-Up
(N = Matrix size)

0%

10%

20%

30%

40%

50%

60%

70%

1 2 4 1 2 4 1 2 4 1 2 4

Number of GPUs

O
ve

rh
ea

d

0

0.5

1

1.5

2

2.5

3

3.5

4

S
pe

ed
 U

p

Overhd.
speedup

N=64 N=128 N=256 N=512

Summay: IPC vs. Speed-up vs. Thread Overhead

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

Number of GPUs

IP
C

 o
r S

pe
ed

 U
p

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

O
ve

rh
ea

d IPC
speedup
Overhd.

FFT
N=16384

MP3D
N=500

LU
N=1024

MMULT
N=512

GAUSS
N=1024

of GPUs increased. When four GPUs runs simultaneous multi-
threading workload the IPC ranges from 3.5 to 4.1, while the
IPC of single GPU is about 0.9∼1.1. In FFT, the IPC was not
scalable since it contained 45 % of a sequential part that can not
be parallelized.

The speed-up obtained by increasing the number of GPUs
over a single GPU heavily depended on the amount of avail-
able parallelism of workload and its thread overhead. Because
MMULT, GAUSS and LU had a large amount of available
parallelism and very small thread overhead, the speed-up was
linearly increased. However, FFT had little improvement on
the speed-up due to its small amount of available parallelism.
MP3D was more severe. Even though MP3D had a large

amount of available parallelism, the speed-up decreased as the
number of GPUs increased. It is because MP3D had a large
amount of the thread overhead caused by heavy inter-thread
communications and synchronizations.

Based on our study, we plan to improve RapSim in a number
of ways. First, we will provide multitasking environment
where GPUs can run independents threads from individual
multiple tasks. This improvement will increase the IPC by re-
ducing the idle time of GPUs. Second, there is an increasing in-
terest in applying multiprocessors to commercial applications
such as On-Line Transaction Processing and Decision Support
System [23], [24]. Therefore, it will be interesting to evaluate
Raptor by using the commercial workload. Finally, Raptor can

ETRI Journal, Volume 22, Number 4, December 2000 Kyoung Park et al. 23

be employed as a building block for large-scale multiproces-
sors [24]. We are currently expanding RapSim toward a Cache
Coherent, Non-Uniform Memory Access (CC-NUMA) multi-
processor employing multiple Raptors.

REFERENCES

[1] John L. Hennessy and David A. Patterson, Computer Architecture
A Quantitative Approach, second edition, Morgan Kaufmann,
Pub., 1996.

[2] Mike Johnson, Superscalar Microprocessor Design, Prentice Hall,
1991.

[3] M. Slater, “The Microprocessor Today,” IEEE Micro, Vol. 16, No.
6, 1996, pp. 32–45.

[4] D.Wall, Limits of Instruction Level Parallelism, WRL Research
Report 93/6, Digital Western Research Laboratory, Palo Alto,
Calf., 1993.

[5] J. Wilson, “Challenges and Trends in Processor Design,” IEEE
Computer, Vol. 31, No. 1, 1998, pp. 39–50.

[6] S. Egger et al., “Simultaneous Multithreading: A Platform for
Next-Generation Processor,” IEEE Micro, Vol. 17, No. 5, 1997, pp.
12–19.

[7] B. Nayfe, L. Hammond, and K. Olukotun, “Evaluation of Design
Alternatives for Multiprocessor Microprocessor,” Proc. of Int’l
Symp. on Computer Architecture, 1996, pp. 66–77.

[8] L. Hammond et al., “A Single-Chip Multiprocessor,” IEEE Com-
puter, Vol. 30, No. 9, 1997, pp. 79–85.

[9] S. Amarashinhe et al., “Multiprocessors From a Software Perspec-
tive,” IEEE Micro, Vol. 16, No. 3, 1996, pp. 52–61.

[10] A. Agarwal et al., “Performance Tradeoff in Multithreading Proc-
essors,” IEEE Tr. on Parallel and Distributed Systems, Vol. 3, No.
5, 1992, pp. 525–539.

[11] R. Alverson et al., “The Tera Computer System,” Proc. of Int’l
Conf. on Supercomputing, 1990, pp. 1–16.

[12] R. Saavedra, D. Culler, and T. Eicken, “Analysis of Multithreaded
Architectures for Parallel Computing,” Proc. of Symp. On Parallel
Algorithms and Architectures, 1990, pp. 169–178.

[13] K. Kavi, B. Lee, and A. Hurson, “Multithreaded Systems,” Ad-
vances in Computers, Vol. 46, 1998, pp. 287–328.

[14] A. Sohn, M. Sato, N. Yoo, and J. Gaudiot, “Data and Workload
Distribution in a Multithreaded Architecture,” Journal of Parallel
and Distributed Computing, Vol. 40, 1997, pp. 256–264.

[15] B. Boothe and A. Ranade. “Improved multithreading techniques
for hiding communication latency in multiprocessors,” Proc. of
Int’l Symp. on Computer Architecture, 1992, pp. 214–223.

[16] D. Botenhof, Programming with POSIX Threads, Addison Wesley,
1997.

[17] J. Fisher, “Very Long Instruction Word Architecture and the ELI-
512,” Proc. of Int’l Symp. on Computer Architecture, 1983, pp.
140–150.

[18] SPARC International, Inc., The SPARC Architecture Manual ver-
sion 9, 1994.

[19] SPARC Technology Business, UltraSPARC-I User’s Manual Re-
vision 1.0, 1995.

[20] J. Singh, W. Weber, and A. Gupta, “SPLASH: Stanford Parallel
Applications for Shared Memory,” Computer Architecture News,
Vol. 20, No. 1, 1992, pp. 5–44.

[21] C. Wang, and K. Hwang, “STAP Benchmark Evaluation of Three
Massively Parallel Processors,” Proc. of Int’l Conf. on Parallel
and Distributed Computing Systems, 1997.

[22] Y. Chung et al., “Performance of On-Chip Multiprocessors for Vision
Tasks,” IPDPS 2000 Workshop, LNCS 1800, 2000, pp. 242–249.

[23] Woo-Jong Hahn, Suk-Han Yoon, Kwangwoo Lee, and Michel
Dubois, “Evaluation of Cluster-Based System for OLTP Applica-
tion,” ETRI Journal, Vol. 20, No. 4, Dec. 1998, pp. 301–326.

[24] Yonghwa Chung, Jin-Won Park, and Suk-Han Yoon, “An Asyn-
chronous Algorithm for Balancing Unpredictable Workload on
Distributed-Memory Machine,” ETRI Journal, Vol. 20, No. 4,
Dec. 1998, pp. 346–360.

Kyoung Park received the B.E. and M.E. de-
grees in computer engineering from ChonBuk
National University, Korea in 1991 and 1993,
respectively. Since 1993 he is working on Elec-
tronics and Telecommunications Research Insti-
tute (ETRI) in Taejon, Korea and developed
main memory board of a SMP system called
TICOM-III, router switch of a high performance

parallel system called SPAX, and On-chip multiprocessor called Raptor.
He is working on developing a high performance multimedia server
system as a Senior Member of Engineering Staff at ETRI. His main in-
terests are computer architecture with a focus on multiprocessor, mem-
ory hierarchy and interconnection network in a large scale system, and
next generation microprocessor architecture.

Sung-Hoon Choi received the M.S. degree in
electronic engineering from Kyungpook Na-
tional University, Taegu, Korea in 1988. He
joined Electronics and Telecommunications Re-
search Institute in 1988, where he is a Senior
Member of Engineering Staff at ETRI. His
main interests are computer architecture and
microprocessor architecture. He is currently

working to support ASIC design of small and medium companies in
ASIC Design Center of ETRI.

Yonghwa Chung received his B.S. and M.S.
degree from Hanyang University, Korea in 1984
and 1986, respectively. He received his Ph.D.
degree from the University of Southern Califor-
nica, USA in 1997. He joined ETRI in 1986 and
he is a Principal Member of Engineering Staff in
Information Security Application Department.
His research interests include computer architec-

ture, parallel algorithm, distributed processing, and information security.

Woo-Jong Hahn received the B.S., M.S., and
Ph.D. degrees from Korea University in 1981,

24 Kyoung Park et al. ETRI Journal, Volume 22, Number 4, December 2000

1984, and 1995 respectively. From 1984 to 2000, he was working on
Electronics and Telecommunications Research Institute (ETRI) in Tae-
jon, Korea as a Principal Member of Engineering Staff. From 1986 to
1988, he was working on 64-bit processor and workstation server de-
velopment project, at AIT in Cupertino, CA., USA. From 1988 to 1991,
he was working on developing SMP server, so called TICOM, and di-
rected development and test of processor board. From 1991 to 1994, he
coordinated hardware development and directed development of
memory board of the next version of TICOM. From 1994, he was
working on developing parallel processing architecture, so called
SPAX, and also directing development of interconnection network.
Currently, he is a Chief Architect in API Network, Inc. since October
2000. His research interests are computer architecture, memory hierarchy
and interconnection network in a large scale system, microprocessor
architecture.

Suk-Han Yoon received the B.E. degree in
electronic engineering from Korea University,
Seoul, Korea in 1977, the M.S. degree in com-
puter science from KAIST, Taejon, Korea in
1986, and the Ph.D. degree in electronic engi-
neering from Korea University, Seoul, Korea in
1995. He joined Electronics and Telecommuni-
cations Research Institute in 1977, where he

was in charge of Mid-range SMP system Development Project, On-
chip Multiprocessor Development Project, and High Performance
Multimedia Server Development Project. He is currently the president
of SecureNetCom Inc. since November 2000. His current research in-
terests include high-performance computer architecture, parallel com-
puting system and microprocessor architecture.

