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As more transistors are integrated onto bigger die, an on-
chip multiprocessor will become a promising alternative to 
the superscalar microprocessor that dominates today’s mi-
croprocessor marketplace. This paper describes key parts of 
a new on-chip multiprocessor, called Raptor, which is com-
posed of four 2-way superscalar processor cores and one 
graphic co-processor. To obtain performance characteristics 
of Raptor, a program-driven simulator and its program-
ming environment were developed. The simulation results 
showed that Raptor can exploit thread level parallelism ef-
fectively and offer a promising architecture for future on-
chip multiprocessor designs. 
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I. INTRODUCTION 

The performance of microprocessors has been improving at a 
phenomenal rate for the last decade. This performance growth 
has been driven by the innovation in compiler, the improvements 
in architecture, and the tremendous improvement in VLSI tech-
nology. Currently, most of commercial microprocessors such as 
Intel Pentium, Compaq Alpha21264, IBM PowerPC620, Sun 
UltraSparc, HP PA8000 and MIPS R10000 use superscalar  
design technique [1]–[3]. Such superscalar microprocessor exe-
cutes multiple instructions in a single cycle by exploiting Instruc-
tion-Level Parallelism (ILP) [4]. The latest superscalar micro-
processors can execute four or six instructions concurrently with 
many non-trivial techniques including dynamic branch predic-
tion, out-of-order execution, and speculative execution method. 
However, significant speed-up may not be achieved by using 
these techniques because of the limitation of the instruction win-
dow size and the ILP in a typical program [4], [8]. Moreover, 
considerable design efforts are required to develop such high per-
formance microprocessors. Therefore, developing a complex 
wide-issue superscalar microprocessor as a next generation mi-
croprocessor may not be an efficient approach to satisfy the re-
quired performance [5]–[7]. Instead, researchers have studied 
some alternatives to superscalar architecture [5]–[10]. The On-
chip Multiprocessor [7]–[9] is the one of the alternatives consid-
ered as next generation microprocessors. 

This paper reports on the design of a next generation micro-
processor, called Raptor, which has an On-chip Multiprocessor 
architecture. Raptor is composed of four 2-way superscalar 
processor cores and one graphic co-processor. The key idea of 
Raptor is a multiprocessor sharing an off-chip second level ca-
che in a singe chip to exploit Thread-Level Parallelism (TLP) 
[9]–[16], in addition to ILP. 
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To illustrate the possibility of Raptor as a next generation 
microprocessor, we design it with Verilog Hardware Descrip-
tion Language (HDL) and conduct a performance simulation 
with a dedicated architectural simulator, called RapSim (Raptor 
Simulator). RapSim is a program-driven, cycle-level simulator 
consisting of a Pre-Processing Unit as an instruction simulator 
and a Post-Processing Unit as a performance simulator for each 
processor model. Also, a programming environment, called 
Multithreaded Mini-OS (MMOS), is developed to support a 
Simultaneous MultiThreading (SMT) environment for RapSim. 
Benchmarks programs are chosen from widely used scientific 
applications such as FFT and Gaussian Elimination. 

Our simulation focused on the performance characteristics of 
Raptor including Instructions Per Cycle (IPC), execution cycle 
time, speed-up and thread overhead as the number of processor 
cores increased. The results showed that the On-chip Multi-
processor could be a strong candidate having scalable IPC and 
speed-up. However, the overall performance of the On-chip 
Multiprocessor depended on the amount of available parallel-
ism and thread overhead in SMT program.  

The organization of the paper is as follows. A trend in the 
microprocessor architecture is given in Section II. Section III 
describes Raptor architecture. In Section IV, the architectural 
simulator of Raptor and its programming environment are ex-
plained. Simulation results are shown in Section V, and con-
cluding remarks are made in Section VI. 

II. TREND IN MICROPROCESSOR 
ARCHITECTURE 

The major trend in commercial microprocessor architecture is 
the use of complex architecture to exploit the ILP. There are two 
approaches that are used to exploit the ILP: superscalar and Very 
Long Instruction Word (VLIW). Both approaches attempt to  
issue multiple instructions to independent functional units at 
every clock cycle. Superscalar [1]–[3] uses hardware to dynami-
cally find data-independent instructions in an instruction window 
and issue them to independent functional units. On the other 
hand, VLIW [4], [17] relies on a compiler to find the ILP and 
schedule the execution of independent instructions statically. 

Superscalar is more appealing in commercial microproces-
sors because it can improve the performance of existing appli-
cation binaries. However, superscalar is complex to design and 
difficult to implement. Looking for parallelism in a large in-
struction window requires a significant amount of hardware 
and usually does not improve the performance as much as one 
might expect. Due to this complexity, it is difficult not only to 
make the architecture correct but also to optimize the pipeline 
and circuits to achieve high clock frequency [4]–[5]. 

On the other hand, VLIW relies on the compiler to find 

bunches of independent instructions. Since VLIW does not  
require the hardware for dynamic scheduling, it can be much 
simpler to design and implement. However, it requires signifi-
cant compiler supports such as a trace scheduling to find out 
ILP in an application program. VLIW is preferred over super-
scalar when the issue width is so large that dynamic scheduling 
hardware in superscalar is too complex and expensive to im-
plement. However, even in VLIW, such a wide-issue machine 
has a centralized register file that must have many ports to sup-
ply operands to independent functional units. The access time 
of the register file and complexity of the buses connecting the 
functional units may limit the clock frequency. Another disad-
vantage of VLIW is that it does not execute binary programs 
for an existing Instruction Set Architecture (ISA). Although this 
compatibility problem may be solved by the use of software for 
emulating existing ISA, this problem is serious in commercial 
market places. In addition, VLIW forces a bunch of instruc-
tions to execute together. If one instruction in the bunch stalls, 
then other instructions in the bunch must stall, too. This limits 
VLIW’s ability to deal with unpredictable events such as data 
accesses causing cache misses [4]–[5]. 

Therefore, ILP architecture have some limitations on their 
performance improvements [6]–[9], even though ILP architec-
tures are dominant in current commercial microprocessor mar-
ketplace. Researchers have proposed two alternative architec-
tures to overcome the limitations of ILP architectures: Multi-
threading processor [6] and On-chip Multiprocessor [7]–[9] to 
exploit another type of parallelism, TLP besides ILP. Figure 1 
shows the examples of two alternative architectures. 

The Multithreading processor, shown in Fig.1(a), augments 
the wide-issue superscalar with the hardware allowing it to 
execute instructions from multiple threads of control concur-
rently and dynamically selecting and executing instructions 
from many active threads simultaneously. This improves utili-
zation of the processor’s execution resources and provides la-
tency tolerance in case of a thread stall due to cache miss or 
data dependency. When multiple threads are not available, 
however, the Multithreading processor simply looks like a 
conventional wide-issue superscalar [6]. Moreover, to keep the 
processor’s execution units busy, the Multithreading processor 
features advanced branch prediction, register renaming, out-of-
order execution, and non-blocking caches as superscalar proc-
essor does. The design complexity of the dispatch unit in-
creases, since it exploits ILP and TLP simultaneously [8]. 

The On-chip Multiprocessor, shown in Fig. 2(b), uses rela-
tively simple single-thread processor cores to exploit only 
moderate amount of ILP within a thread, while executing mul-
tiple threads in parallel across multiple cores. If an application 
can not be effectively decomposed into threads, the On-chip 
Multiprocessor will be underutilized [7]–[9]. 
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Fig. 1. The examples of two alternative architectures.
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From a purely architectural point of view, Multithreading 
processor is superior. However, the inherent complexity of 
Multithreading processor results in hardware design problems 
that On-chip Multiprocessor solves by keeping the hardware 
simple. The important factor is the design complexity. As the 
complexity increases, more design efforts are needed to opti-
mize critical timing path, increase clock frequency, and reduce 
interconnection delays. The effects of interconnection delays, 
which are becoming much slower than the transistor gate de-
lays, will become more important in a billion-transistor CMOS 
implementation technology. The interconnection delay will 
force the architecture to be partitioned into small and localized 
blocks. For these reasons, the On-chip Multiprocessor is more 
promising because it is already partitioned into individual proc-
essor cores. The simple cores are amenable to speed optimiza-
tion and can be designed relatively easily [8]. 

III. RAPTOR ARCHITECTURE 

Raptor is an On-chip Multiprocessor microprocessor consist-
ing of four independent processor cores, called General Proces-
sor Units (GPU), and one graphic co-processor, called Graphic 
Co-processor Unit (GCU). Inter-processor Bus Unit (IBU) is a 
shared bus connecting GPUs and External Cache control Unit 
(ECU). Multiprocessor Control Unit (MCU) distributes inter-
rupts across GPUs and provides synchronization resources 
among GPUs. Port Interface Unit (PIU) is a multiprocessor-
ready bus interface to communicate with the exterior of Raptor. 
Four GPUs execute all instructions except extended graphic in-
structions with their own register files and program counters, 
but share ECU through IBU. GCP is also shared by four GPUs 
and performs graphic instructions with Single In-         

Fig. 2. Block diagram of Raptor microprocessor.
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•  Single chip 4-way multiprocessor sharing off-chip 2nd level cache
•  64-bit data and 64-bit virtual address
•  SPARC V9 ISA
•  Extension of graphic instruction set
•  Multiple cache structure consisting of on-chip 1st level cache and off-chip 2nd level cache
•  Harvard structure of 1st level cache of 16 Kbyte instruction cache and 16 Kbyte of data cache
•  On-chip 2nd level cache controller handling 4 Mbyte of unified off-chip 2nd level cache

GPU

struction stream Multiple Data Stream (SIMD) style pixel 
processing hardware. Figure 2 shows the block diagram of 
Raptor and main features of Raptor. 

1. GPU 

GPU is a simple 2-way superscalar RISC core having three 
functional units; Integer Execution Unit (IEU), Floating Point 
Unit (FPU) and Load Store Unit (LSU). It executes SPARC 
V9 [18] instruction set with branch folding and out of order 
execution capabilities. Fetch and PreDecoder (FPD) fetches in-
structions from Instruction Cache (I-Cache) and stored into In-
struction Buffer (I-Buffer). In order to reduce the overhead 
caused by branch operation, branch folding technique [3] is 
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used during instruction prefetch stage. Two instructions in I-
Buffer are decoded and issued into proper functional units in 
every cycle by Decoder. ReOrder Buffer (ROB) allocates en-
tries for the issued instructions to support the out of order exe-
cution. Reservation Station (RS) of each functional unit re-
solves the dependency problems among instructions. After ex-
ecuting instructions, the functional units return their results to 
ROB through a Result Bus in order to update the ROB entries. 
ROB checks the status of each entry, updates register files, and 
deallocate the entries of the committed instructions. 

The IEU has two Arithmetic Logic Units (ALU), a multi-
cycle integer multiplier, and a multi-cycle integer divider to 
process integer data. The FPU executes floating point instruc-
tions using a floating point adder, a floating point multiplier and 
a floating point divider/SQuare RooT (SQRT). Most floating 
point instructions are fully pipelined, have a latency of three 
except for divide/SQRT instructions. The divide/SQRT instruc-
tions are not pipelined and take 12/22 cycles (single/double) to 
execute. The LSU is responsible for memory access using the 
virtual address of all loads and stores instructions. 

The register file is organized as 8 windows, where each win-
dow has 32 entries and each register handles 64 bits of integer 
data. Floating point register handles single, double and quad 
precision floating point data. The floating point register file can 
store either 32 entries of single or double precision data, or 16 
entries of quad precision data. The graphic register file supports 
the extended graphic instruction. 32 entries of graphic register 
file can store 32 bits of graphic data. The block diagram of a 
GPU is shown in Fig. 3. 

 

Fig. 3. Block diagram of GPU.
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2. GCU 

The instruction set supported by GCU is essential instruc-
tions widely used in multimedia and signal processing algo-
rithms. The GCU architecture follows the design philosophy of 

a SIMD. The functional units of GCU can perform 8 bits, 16 
bits, 32 bits of packed arithmetic operations, boolean algebras 
and bit-wise manipulations. Also, it can calculate the sum of 
absolute pixel distances so that MPEG algorithm can be han-
dled more efficiently.  

As we mentioned before, all GPUs share one GCU by issu-
ing GCU instruction via corresponding buffers. The scheduler 
of GCU fetches the instructions and distributes them to proper 
functional units. Then, the results of GCU operations are re-
turned to GPUs.  

As shown in Fig. 4, GCU has the following four major func-
tional units. 

• Graphic ALU(GALU): Performs packed arithmetic and 
boolean operations for graphics and multimedia data, synthe-
sizes the results from GMUL and GSAD, and extracts 
max/min. 

• Graphic Multiplier(GMUL): Performs packed mul-
tiplication with four 1616×  multipliers and packing net-
work. 

• Graphic Bit Manipulation Unit(GBMU): Per-
forms bit-wise logic operations and shift operations within 
packed words, data copy and exchange operations among 
packed words, and packing and unpacking operations for 
type conversion. 

• Graphic Sum of Absolute Difference(GSAD): 
Performs SAD operations used for MPEG encoding with 
eight processing elements. 

Fig. 4. Block diagram of GCU.
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3. MCU 

All GPUs should be the same in servicing external interrupts. 
Otherwise, software should identify which GPU on a chip is to 
run a particular service. MCU processes two classes of external 
interrupts. One is for a direct interrupt that should be serviced by 
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a specific GPU, and the other is for an arbitration interrupt that 
is serviced by any one of four GPUs. For arbitration interrupts, 
MCU gathers the external interrupts and distributes them 
equally among the four GPUs.  

Furthermore, MCU provides GPUs with message passing 
resources for inter-GPU communications. When GPUs work 
together to perform a tightly coupled multithreaded task, an ef-
ficient inter-GPU communication mechanism is required. 
MCU has 32 entries of a message register file shared by all 
GPUs so that GPUs can use it as message buffers or synchro-
nization resources among GPUs. In order to access MCU re-
sources, each GPU uses special instructions. In addition, MCU 
initializes the whole chip on a reset and distributes a central 
clock.  

4. IBU, ECU, and PIU 

IBU is a shared bus connecting GPUs and ECU. Each GPU 
accesses ECU through IBU when it requires a memory access 
due to internal cache miss or a write-through. 

ECU gets the request through IBU and returns a proper re-
sponse according to modified MESI cache coherency protocol. 
It is responsible to keep the cache coherency among ECUs 
through PIU and maintain inclusion properties with the internal 
cache of GPU.  

PIU acts as an interface between Raptor and outside world. It 
provides a multiprocessor-ready shared bus interface with a 
snooping cache coherency protocol. PIU also provides a 
SRAM module interface for accessing off-chip second level 
cache RAMs. 

IV. SIMULATION ENVIRONMENT 

To evaluate several tradeoffs in designing Raptor quantita-
tively, we developed a dedicated simulator, called RapSim. 
RapSim, shown in Fig. 5, is a program-driven microarchitecture 
simulator that models four GPUs and a memory hierarchy 
shared by four GPUs. Each GPU model consists of a Pre-
Processing Unit as an instruction set simulator and a Post-
Processing Unit as a performance simulator. Also, a program-
ming environment, called Multithreaded Mini-OS (MMOS), 
was developed to support a SMT among GPUs. The overall 
configuration of RapSim and MMOS is shown in Fig. 6. 

1. RapSim 

Main features of RapSim are as follows: 

•  Execution of SPARC V9 instructions and graphic co-processor 
instructions  

•  Program-driven simulator having timing information 

Fig. 5. Block diagram of RapSim simulator.
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•  Multiprocessor model consisting of four processor cores and 

one graphic co-processor 
•  Support for out-of-order execution of a processor core 
•  Support SMT programming model  
•  Information gathering for performance evaluation 

Pre-Processing Unit, shown in Fig. 7, is an instruction set 
simulator having a processor model for executing instructions, 
data structures for register files, proxy model for processing 
system calls, and first level cache model. Pre-Processing Unit 
fetches instructions and data from a shared memory hierarchy 
including second level cache model, executes the instructions, 
and generates an on-the-fly trace consumed by Post-Processing     
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Fig. 7. Block diagram of pre-processing unit.
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Unit. Binary Loader of Pre-Processing Unit starts the simula-
tion by loading a benchmark binary file, compiled and stati-
cally linked with MMOS library, into memory model. During 
the loading of the benchmark binary, a proper starting Program 
Counter (PC) and a Stack Pointer (SP) are set in the processor 
model, trap table and trap handlers are initialized in the mem-
ory model, and a stack is also constructed in the memory 
model. Then, Instruction Fetcher fetches instructions using PC 
and ISA Decoder issues the instructions to Execution Units af-
ter instruction decoding. Execution Units execute the instruc-
tions using the internal resources like IEU, FPU, LSU, register 
files, and first level cache model. As Pre-Processing Unit runs 
its instruction streams, Trace Generator generates an on-the-fly 
trace that is the sequence of executed instructions. Each entry 
of the on-the-fly trace contains enough information so that 
Post-Processing Unit can conduct the performance simulation 
using the on-the-fly trace as inputs. 

As shown in Fig. 8, Post-Processing Unit is a RISC pipeline 
model conducting performance simulation by using the instruc-
tion traces generated from Pre-Processing Unit. It is modeled 
as a 2-way superscalar including RS and ROB to support the 
out-of-order executions. Two instructions in a Trace Buffer are 
fetched and pre-decoded in a cycle. The pre-decoded instruc-
tions in an Instruction Buffer are decoded and issued into 
proper RS, and ROB is updated simultaneously. Each execu-
tion unit runs safe instructions from a proper RS resolving de-
pendency problems. The execution results of execution units 
reflect on ROB, and the terminated entries of ROB are updated 
into register files. The cycle calculator gathers the timing in-
formation from each pipeline model and calculates the per-
formance information including execution cycle times and the 
number of total instructions. 

The architectural parameters used in the simulation are listed 
in Table 1. In particular, our simulation focused on the effect of       

Fig. 8. Block diagram of post-processing unit.
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Table 1. Architectural configuration.

Feature Default Value

Number of GPUs (P) 4 (1, 2, 4)

GPU issue width 2

1st level cache Size 16 Kbyte I-cache, 16 Kbyte D-cache / 32 bytes line

2nd level cache size 4 Mbyte / 32 bytes line

Write update policy 1st level cache to 2nd level cache: write through
2nd level cache to Main memory: write back

1st level cache access
latency 1 cycle

2nd level cache access
latency 4 cycle

Main memory access
latency 10 cycle

Instruction Execution
Latency [18]

Integer ALU = 1 cycle
Integer Multiply = 4 ~ 34 cycle
Integer Division = 36 (single), 68 (double) cycle
Load / Store = 1 cycle
Control Transfer = 1 cycle
FP Addition/Subtraction = 1 cycle
FP Multiply = 4 cycle
FP Division / SQRT = 12 (single), 22 (double) cycle,

not pipelined

simultaneous multithreading parameter such as the number of 
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GPUs in an On-chip Multiprocessor. Therefore, we fixed other 
architectural parameters as Raptor’s design specification used 
in HDL-design, except for the number of GPUs. The execution 
cycle and latency of each instruction are set to be equal to Ul-
traSPARC-I microprocessor [19] executing SPARC-V9 ISA.  

2. MMOS 

In order to maximize the performance of the On-chip multi-
processor, TLP needs to be exploited. MMOS, modified 
Pthreads [16] for RapSim, help programmers to explicitly di-
vide the code into threads to utilize four GPUs. MMOS has a 
SMT-safe Pthread library, SMT-safe C library, and RapSim in-
terface.  

The SMT-safe C library allows multiple thread to access the 
shared C library without synchronization problems, while the 
SMT-safe Pthread library provides a coarse-grain multithread-
ing execution model with software support for creating, syn-
chronizing, and scheduling threads. The RapSim interface as-
signs PCs, SPs, and register files in the processor models in or-
der to allocate threads into the processor models in RapSim, 
which simulates 4-way On-chip Multiprocessor with quad 
threads simultaneously.  

We chose some benchmarks from scientific applications [20], 
[21], and vision tasks from DARPA Image Understanding 
Benchmark [22]. This paper focuses on the results of the scien-
tific applications only. The results of the vision tasks can be 
found in manuscript [22]. 

The codes of FFT, MP3D and LU have been obtained from 
SPLASH [20], [21] suite of benchmarks, whereas Matrix mul-
tiply (MMULT) and Gaussian Elimination (GAUSS) have 
written by the authors. MMULT and GAUSS were manually 
ported to be simultaneous multithreading program using SMT-
safe Pthread library calls of MMOS. To port the SPLASH 
benchmarks to RapSim, the ANL macros were replaced with 
their SMT-safe Pthreads equivalents. Each benchmark is 
briefly described in the following: 

•  MMULT parses the matrix data into blocks and assigns them 
to threads. The data set for the threads is relatively disjoint, 
whereas the row by column operation produces considerable 
overlapping of data among threads. Moreover, there is no in-
ter-thread communication or synchronization. 

•  GAUSS partitions nn×  matrix into threads by using the 
row-wise block cyclic approach. Initially, one thread per-
forms a division step with its pivot value, and then all other 
threads perform elimination step. These two steps are coordi-
nated with barriers. GAUSS threads tend to have distinct data 
sets with a minimal data sharing besides the pivot value. 

•  LU factors a dense matrix into the product of a lower triangu-
lar and an upper triangular matrix. The dense nn×  array A 

is divided into N × N array of B × B blocks (n = N × B). 
Every thread factors a N/P × N/P subarray. The data sets be-
tween threads are very localized. 

•  FFT implements a complex 1-D version of the n six step 
FFT algorithm. The data set consists of n complex data points 
and another n complex data points, called the roots of unity. 
Every thread is reponsible for transposing a contiguous 
submatrix PnPn // ×  with every other thread and one 
submatrix by itself. The data sets between threads are very 
localized. 

•  MP3D is a simple simulator for rarefied gas flow over an ob-
ject in a wind tunnel. The algorithm is primary occupied with 
a loop consisting of three phases. Each thread is given parti-
cles and proceeds to move them within a defined cell space. 
The thread continuously detects any possible collisions of its 
molecules with other molecules and updates the geometry of 
molecules each time step. MP3D contains data that is very 
localized and shares much of that data among threads. Also, 
each phase has to be completed by all the threads before con-
tinuing the next phase, requiring a larger amount of synchro-
nization. 

V. SIMULATION RESULTS AND ANALYSIS 

In this paper, we focus on performance of the On-chip Mul-
tiprocessor, typically IPC, execution cycles, speed-up, and 
thread overhead are measured as our performance metrics.  

Three sets of simulation runs were performed for each 
benchmark described in previous section. The first set was non-
multithreaded benchmarks running on a single GPU to be 
served as a point of reference. The second set was 2-way SMT 
benchmarks running on two GPUs, and the final set was 4-way 
SMT benchmarks running on four GPUs. Three sets of simula-
tion results were compared and analyzed to find out the archi-
tectural characteristics of Raptor.   

1. Simultaneous Multithreading 

In general, a workload )(W  consists of a sequential part 
)( seqW  and a parallel part )( parW  as expressed in (1): 

.parseq  W  WW +=  (1) 

The parallel part can be partitioned into a number of parallel 
threads simultaneously running with multiple processors, while 
the sequential part cannot. MMOS converts the parallel part of 
a workload into multiple threads and assigns them into GPUs 
so that Raptor exploits TLP to utilize multiple processor cores. 
The SMT workload (Wsmt) converted by MMOS can be ex-
press as (2): 
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Fig. 9. Instructions distribution among GPUs.
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where P is the number of GPUs and Wthread[n] is the nth thread 
among P threads. The thread overhead(Woverhd) denotes the 
amount of additional works for the thread control and synchro-
nizations. 

Figure 9 shows the simultaneous multithreading effect on 
Raptor. Figure 9(a) and (b) show the instruction distributions of 
benchmarks in amount and proportional among GPUs respec-
tively. As the number of GPUs increased, the instructions were 
distributed evenly over all of GPUs except FFT. FFT had about 
45 % of sequential part that computes 1D FFT, while others 
contained extremely low portion of the sequential part. There-
fore, in all cases except for FFT, all GPUs were well utilized 
using simultaneous multithreading in most cases. 

2. Execution Cycle vs. IPC 

In general, the important performance metric of a micro-
processor is IPC. The IPC is computed according to (3): 

,cycleinst  / T NIPC =  (3) 

where Ninst and Tcycle refer to the number of executed instruc-
tions and the number of execution cycles, respectively. 

The conventional processors exploit only ILP to increase the 
IPC. However, the processors face the limit on the IPC. Raptor 
uses another approach that exploits TLP using SMT to achieve 
the IPC scalability.  

Figure 10 shows the scalability of IPC. As the number of 
GPUs increased, the IPC increased linearly except for FFT. In 
all cases except FFT, the IPC of Raptor having four GPUs 
ranges from 3.5 to 4.1, while the IPC of a single GPU ranges 

from 0.9 to 1.1. In FFT, the IPC of a GPU was about 0.9 and 
the IPC of 4-way Raptor was about 1.5. The major portion of 
FFT utilizes only single GPU, while others are idle. The 
amount of sequential part that can not be multithreaded is so 
large in FFT case. 

The number of execution cycles is another interesting metric 
representing the performance. The number of execution cycles 
was reduced as the number of GPUs increased except for 
MP3D. Because MP3D had a significant amount of parallel 
part, it can be scalable in the IPC. However, as shown in Fig. 
9(a), the number of instructions increased as the number of 
GPUs increased due to thread overhead. The issue regarding 
the thread overhead will be discussed in later section.  

3. Speed-up vs. Thread Overhead 

The amount of absolute performance gain of the simultane-
ous multithreading over a sequential programming can be ex-
pressed as (4): 

smtWW gainerformanceAbsolute p −=  

.)1(*)/( overhdparoverhdparpar WPWWPWW −−=−=  (4) 

As shown in (4), the absolute performance gain depends on 
two major factors: available parallelism )( parW  included in a 
workload and the thread overhead ).( overhdW  If workload 
does not exhibit sufficient amount of parallelism for simultane-
ous multithreading, the GPU utilization will not increase. 
Though workload has sufficient amount of parallelism, the 
thread overhead of thread management, inter-thread commu-
nications, and synchronizations may limit the overall perform-
ance. 

The speed-up is a general metric that presents the performance 
enhancement quantitatively. Let T  and smtT  denote the execu-
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tions times of W and ,smtW  respectively. Then, the speed-up, t h e   

Fig. 10. Cycle time vs. IPC.
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MP3D:Cycle Time vs. IPC
( N = Number of Molcecules )

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 2 4 1 2 4 1 2 4 1 2 4

Number of GPUs

C
yc

le
 T

im
e

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

IP
C Cycles

IPC

N=200 N=300 N=400 N=500

LU:Cycle Time vs. IPC
( N = Matrix size )
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MMULT:Cycle Time vs. IPC
( N = Matrix size )
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GAUSS:Cycle Time vs. IPC
( N = Matrix size )
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ratio of performance enhancement of the simultaneous multi-
threading over a sequential programming, can be given as (5): 

./- smtTTupSpeed =  (5) 

Figure 11 shows the speed-up as increasing the number of 
GPUs. As the number of GPUs increased, the speed-up in-
creased except MP3D. MP3D had a sufficient amount of paral-
lelism to be multithreaded, but heavy data sharing generated very 
frequent inter-thread communications and synchronizations. 
Such a heavy amount of thread overhead can limit the speed-up. 

In FFT, the speed-up was small. As described before, FFT 
had a large amount of the sequential part and a little amount of 
available parallelism. Therefore, the speed-up was limited and 

the utilization of GPUs was not good.  
VI. CONCLUDING REMARKS 

The On-chip Multiprocessor is a promising candidate for a 
billion-transistor architecture, which can overcome the limit of 
ILP processors. By integrating simple processor cores, it can 
exploit TLP in addition to ILP. 

In this paper, we have discussed the architecture of a new on-
chip multiprocessor Raptor composed of four 2-way superscalar 
processor cores and one graphic co-processor. To evaluate per-
formance of Raptor, we developed a program-driven, dedicated 
architecture simulator and its programming environment first. 
By conducting simulations, we analyzed the IPC, execution cy-
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cle time, speed-up, and thread overhead as the performance met-
rics. 

On the basis of our simulations, the IPC increased as the number 

Fig. 11. Speed-up vs. thread overhead.
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MP3D:Thread overhead vs. Speed-Up
( N = Number of Molecules )
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LU:Thread Overhead vs. Speed-Up
( N = Matrix size )
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MMULT:Thread Overhead vs. Speed-Up
( N = Matrix size )
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GAUSS:Thread Overhead vs. Speed-Up
( N = Matrix size )
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of GPUs increased. When four GPUs runs simultaneous multi-
threading workload the IPC ranges from 3.5 to 4.1, while the 
IPC of single GPU is about 0.9∼1.1. In FFT, the IPC was not 
scalable since it contained 45 % of a sequential part that can not 
be parallelized. 

The speed-up obtained by increasing the number of GPUs 
over a single GPU heavily depended on the amount of avail-
able parallelism of workload and its thread overhead. Because 
MMULT, GAUSS and LU had a large amount of available 
parallelism and very small thread overhead, the speed-up was 
linearly increased. However, FFT had little improvement on 
the speed-up due to its small amount of available parallelism. 
MP3D was more severe. Even though MP3D had a large 

amount of available parallelism, the speed-up decreased as the 
number of GPUs increased. It is because MP3D had a large 
amount of the thread overhead caused by heavy inter-thread 
communications and synchronizations. 

Based on our study, we plan to improve RapSim in a number 
of ways. First, we will provide multitasking environment 
where GPUs can run independents threads from individual 
multiple tasks. This improvement will increase the IPC by re-
ducing the idle time of GPUs. Second, there is an increasing in-
terest in applying multiprocessors to commercial applications 
such as On-Line Transaction Processing and Decision Support 
System [23], [24]. Therefore, it will be interesting to evaluate 
Raptor by using the commercial workload. Finally, Raptor can 
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be employed as a building block for large-scale multiproces-
sors [24]. We are currently expanding RapSim toward a Cache 
Coherent, Non-Uniform Memory Access (CC-NUMA) multi-
processor employing multiple Raptors.  
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