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In this letter, we consider the lossy coding of a non-uniform 
binary source based on GF(q)-quantized low-density generator 
matrix (LDGM) codes with check degree dc=2. By quantizing 
the GF(q) LDGM codeword, a non-uniform binary codeword 
can be obtained, which is suitable for direct quantization of the 
non-uniform binary source. Encoding is performed by 
reinforced belief propagation, a variant of belief propagation. 
Simulation results show that the performance of our method is 
quite close to the theoretic rate-distortion bounds. For example, 
when the GF(16)-LDGM code with a rate of 0.4 and block-
length of 1,500 is used to compress the non-uniform binary 
source with probability of 1 being 0.23, the distortion is 0.091, 
which is very close to the optimal theoretical value of 0.074. 

Keywords: Source coding, lossy compression, LDGM codes, 
belief propagation. 

I. Introduction 
Inspired by the success of the low-density parity check 

(LDPC) codes and belief propagation algorithm in approaching 
the Shannon capacity, similar techniques have been proposed 
for lossy source coding. In particular, low-density generator 
matrix (LDGM) codes in conjunction with variants of 
message-passing algorithms, for example, survey propagation 
[1], have shown the potential to approach the rate-distortion 
bound [2]-[7]. However, almost all the existing results 
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exclusively focused on uniformly distributed sources. Also, the 
extension to sources with general distributions is not 
straightforward.  

To address the problem of lossy compression of non-uniform 
binary sources, the GF(q)-quantized LDGM (GQ-LDGM) 
codes and multi-level coding scheme have recently been 
proposed in [8] and [9], respectively. In both methods, by 
employing quantization, a non-uniform binary codeword can 
be obtained, which is then suitable for direct quantization of the 
non-uniform binary source. The message-propagation/ 
decimation algorithm is utilized to perform compression, 
which has a complexity of ( )nKO  with n and K being the 
source block-length and the times of decimation, respectively.  

In this work, we present a novel method to compress the 
non-uniform binary source based on GQ-LDGM codes with 
check degree dc=2. Unlike the method proposed in [8], we 
employ reinforced belief propagation (RBP), a variant of belief 
propagation, to perform the compression over GQ-LDGM 
codes. According to the reformulation of the Thouless-
Anderson-Palmer method in [7], RBP appeared first in [3] and 
was defined formally in [10]. In RBP, the priors are updated 
using the current message after a few message-propagation 
iterations, and the message-propagation is then started with the 
new priors. The complexity of the RBP algorithm is linear with 
the source block-length n, that is, ( )nO , since no decimation 
step is included in this algorithm. On the other hand, it is well 
known that the cyclic GF(q) LDPC code, dual of the LDGM 
codes employed herein, has better error rate results with larger 
q [11]. Therefore, to achieve good performance with RBP, we 
increase the size of the finite field q from 2, 3, and 5 in [8] to 8 
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and 16 in our method. Simulation results show that the 
performance of our method is an improvement over that in [8] 
and is quite close to the theoretic rate-distortion bound. 

It should be noted that a related work is reported in [12], 
where both the RBP and the GF(q) sparse-graph code are also 
utilized to perform the lossy data compression. However, 
unlike in our work, the sparse-graph code used in [12] is the 
LDPC code, and the source considered in [12] is only the 
binary uniformly distributed source.  

II. Lossy Coding and GQ-LDGM Codes 

Consider a Ber(p) source where the probabilities of 0 and 1 
are 1–p and p, respectively. Any particular independent and 
identically distributed (i.i.d.) realization { }0,1 n∈y is referred to 
as a source sequence. The goal is to compress source sequence 
y by mapping it to shorter vector { }0,1,..., 1 mq∈ −z with code 
rate 2log 1.R q m n= ⋅ <  The source decoder then maps the 
compressed sequence z to a reconstructed source sequence x. 
The quality of the source compression is then measured by the 
average Hamming distortion [ ]: ( , )HD d= Ε x y with 

1
( , ) .n

H i ii
d x y n

=
= −∑x y  For the Ber(p) source, the rate 

distortion function is well known to take the form  
H(D)=H(p)–R with ( )H ⋅ being the binary entropy function. 

In the GQ-LDGM approach to source coding, the encoding 
phase amounts to mapping a given source sequence y to an 
information vector z according to  

{ }
( )( )

0,1,..., 1
arg min ,

m H
q

d Q
′∈ −

= =
z

z x t y        (1) 

with .′=t Gz  Here G is the n×m generator matrix of the 
GF(q) LDGM code, ( )Q ⋅  is the quantizer based on a 
threshold Qt. In practice, Q(t)=0 for all t<Qt, while Q(t)=1 
otherwise. Hence, the employed GQ-LDGM codes have 
elements assuming the value of 1 with probability 

( ) .tr q Q q= −  Decoding is straightforward: we simply 
form ( ).Q= =x t Gz   

It is convenient to represent a given (n, m) LDGM code over 
GF(q)={0, 1,…, q–1}, specified by generator matrix G, as a 
factor graph made by n checks a and n constrained variables  
ta, a∈C={0, 1,…, n–1}, plus m free variables zi,      
i∈V={0, 1,…, m–1}. As illustrated in Fig. 1, each check a is  
connected to ta on one side and to zV(a) on the other side,  
where V(a)={i∈V|gai≠0} and |V(a)|=2 since dc=2. Each  
such connection is labeled with a weight gai∈GF(q)\{0}.  
Each variable zi is then connected to checks in 
C(i)={a∈C|gai≠0}. Variables take values on GF(q), that is, 
zi∈GF(q), i∈V={0, 1,…, m–1}. Checks are satisfied if  

 

Fig. 1. Factor graph of original LDGM code, completed with 
compatibility function of constrained codeword symbol.
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satisfied from the information and codeword symbols, 
respectively, of the GF(q)-LDGM code. 

III. Binary Source Compression Using RBP 

In this section, we describe the RBP for identifying the 
information bits of a GQ-LDGM code. 

First, define the compatibility function, shown in Fig. 1, for 
the constrained variable as 

  ( ) ( )e ,  if ,

e ,        otherwise,
a a

a a

Q t y
t

β

β
ψ

−

⎧ =⎪= ⎨
⎪⎩

           (2) 

where ya is the source bit to be quantized by the constrained 
variable ta.  

Next, let l
z a→μ denote the message vector from free variable 

z to check node a at the l-th iteration. For each symbol 
k∈GF(q), the k-th component of l

z a→μ is the probability that 
variable z takes the value k and is denoted by ( ).l

z a k→μ  
Similarly, l

a z→μ denotes the message vector from check node 
a to free variable node z at the iteration l, and ( )l

a z k→μ is its  
k-th component. Also, let l

zλ denote the marginal function of 
free variable z at the iteration l, and ( )l

z kλ is its k-th component. 
Then, the RBP update rule can be summarized as 

Initialization:  
1 ( ) 1 dither.z a k q→ = ±μ             (3) 

Check node update: 
( )

1 2

( ) \{ } 1 2( ) ( ) .
az za

l l
a z z V a z a a

g k k g k

k k kψ
′

′→ ∈ →
+ =−

= ⋅∑μ μ    (4) 

Marginal function update: 
( )

( )

( ).l l
a z

a C z

k k→
∈

∝ ∏λ μ                (5) 
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Variable node update: 
( )1

( )\{ }

( ) ( ).l l l
z a z a z

a C z a

k k kϕ+
′→ →

′∈

∝ ∏μ μ          (6) 

The major character of the RBP is that the a priori 
probability of free variable node z varies during iterations, as 
shown in (6). In practice, at the l-th iteration, the a priori 
probability of z=k∈GF(q) is updated by 

( ) ( ) ( )1 1 .l l
z k k

q
ϕ α α= ⋅ + − λ            (7) 

Note that the complexity of the RBP update is dominated by 
the complicated convolutional operation at the check node 
update (4). Fortunately, by employing Fourier transform, an 
efficient implementation of the check node update can be 
obtained. Also, the total number of computations per RBP 
iteration is ( )2lognq qO  [10]. Therefore, noting that the 
complexity of the proposed method in [8] is 

( )2lognKq qO with K∈[10,100], our method has a lower 
complexity than the method in [8] since the q in our method is 
medium, that is, q=8 and 16 in our simulations.  

The RBP algorithm stops when the algorithm achieves a 
predetermined maximum iteration number L or the algorithm 
convergences, that is, for all variables z and all checks a, 

1 .l l
a z a z

−
→ →=μ μ   

IV. Simulation Results 

In these simulations, we derive the GQ-LDGM code from 
PEG-construction [13] GF(q)-LDGM code with regular degree 
distribution. We fix the check degree dc=2 and derive, for each 
size q of employed finite field, a suitable variable degree dv for 
obtaining a rate of R bits/sample, as shown in Table 1. 

In each simulation, we generate a random i.i.d. source in 
GF(2) with a probability of 1 equal to the values of p shown in 
Table 1. In order to make GQ-LDGM codeword statistics 
match the optimal distribution, the threshold parameters Qt are 
also chosen according to Table 1. 

In all simulations, the parameter β in the compatibility 
function (2) is set to be 

1 1 ( , )ln
2 ( , )

D R p
D R p

β −
=               (8) 

as suggested in [8], and its value is shown in Table 1. Further, 
we fix the parameter at α=0.9 in the update of the a priori 
probability (7), and the maximum iteration number L=300. 

The results of our method are reported in Fig. 2 with R=0.4, 
q=16, and n=300, 1,500, and 12,000. For comparison, we also 
plot the curves of the rate-distortion bound H(D)=H(p)–R and 
the time-sharing bound. As seen in Fig. 2, our method’s  

Table 1. Experiment set in simulations. 

Experiment set 1 2 3 4 

p 0.23 0.365 0.42 0.50 
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Fig. 2. Distortion curve of our method with R=0.4, q=16, and 
n=300, 1,500, and 12,000. For comparison, curves of
theoretical rate-distortion and time-sharing bounds for 
same rate are also plotted. 
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performance is quite close to that of the rate-distortion bound, 
and it is always better than the time-sharing bound. In fact, for 
p=0.23, 0.365, 0.42, and 0.5, the distortions are 0.091, 0.147, 
0,157, and 0.162, respectively, which are very close to the 
optimal theoretical values (the corresponding theoretical values 
are 0.074, 0.126, 0.139, and 0.147). Further, note that the 
performance of our method is nearly independent from the 
source block-length. Similar conclusions can be drawn from 
Fig. 3 regarding R=0.6 and q=8. 

The comparison of our method and the method proposed in 
[8] is given in Fig. 4 with R=0.5 and n=1,000. Our method has  



ETRI Journal, Volume 32, Number 6, December 2010 Jianping Zheng et al.   975 

Fig. 3. Distortion curve of our method with R=0.6, q=8, and 
n=300, 1,500, and 12,000. For comparison, curves of
theoretical rate-distortion and time-sharing bounds for
same rate are also plotted. 
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Fig. 4. Performance comparison of our method and method proposed
in [8] with R=0.5 and n=1,000. Curves of theoretical rate-
distortion and time-sharing bounds for same rate are also 
plotted. 
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a better rate-distortion performance than that in [8], which 
means the cyclic GF(q) LDPC code with larger q has better 
error rate results. The dual GF(q) LDGM code with check 
degree dc=2 is likely to have better rate-distortion performance 
with larger q. 

V. Conclusion 

In this letter, we presented a method to compress a non-
uniform binary source. The method, based on GQ-LDGM 
codes, permits generation of codewords with general 
distribution, and hence is suitable to directly compress sources 
with non-uniform distribution. Furthermore, the low-
complexity RBP is employed to perform the compression. The 

performance of our method is shown to be quite close to the 
theoretic rate-distortion bound by simulation validations. 
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