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In recent years, motivated by the emergence of 
ubiquitous computing technologies, a new class of 
networked robots, ubiquitous robots, has been introduced. 
The Ubiquitous Robotic Companion (URC) is our 
conceptual vision of ubiquitous service robots that provide 
users with the services they need, anytime and anywhere 
in ubiquitous computing environments. To realize the 
vision of URC, one of the essential requirements for 
robotic systems is to support ubiquity of services: that is, a 
robot service must be always available even though there 
are changes in the service environments. Specifically 
robotic systems need to be automatically interoperable 
with sensors and devices in current service environments, 
rather than statically preprogrammed for them. In this 
paper, the design and implementation of a semantic-based 
ubiquitous robotic space (SemanticURS) is presented. 
SemanticURS enables automated integration of 
networked robots into ubiquitous computing 
environments exploiting Semantic Web Services and AI-
based planning technologies. 
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I. Introduction 

Due to the progress of communication network technologies, 
many people have been researching Internet-based networked 
robotic systems, which are mainly focused on tele-operation 
and monitoring of networked robotic devices and sensors (for 
example, mobile robots, unmanned vehicles, position sensors, 
and so on.) by human supervisors in Internet environments. 
Leveraging the advantages of Internet technology, such 
systems allow users from all over the world to visit museums, 
tend gardens, navigate undersea, or float in blimps 24 hours a 
day. They have great potential for industry, education, 
entertainment, and security by making valuable robotic 
hardware accessible to a broad audience. 

Several attempts have been made to develop such Internet-
based networked robotic and monitoring systems using the World 
Wide Web and distributed object technologies. The typical Web-
based networked robotics approach uses HTTP combined with 
CGI (common gateway interface) or Java to control remote 
sensors and actuators: for instance, University of California’s tele-
excavation system, Mercury [1]; Carnegie Mellon University’s 
indoor mobile robot, Xavier [2]; Ecole Polytechnique Fédérale de 
Lausanne’s maze robot, KhepOnTheWeb [3]; Roger Williams 
University’s PumaPaint [4]; and Pohang University of Science 
and Technology’s XNMS [5]. Another approach for networked 
robotic systems is based on distributed object technology such as 
CORBA (common object request broker architecture) and Java 
RMI (remote method invocation): for instance, in NRSP 
(network robot service platform) [6] and DAIR (distributed 
architecture for Internet robot) [7]. 
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In recent years, motivated by the emergence of ubiquitous 
computing [8] technologies as the next generation computing 
paradigm, a new class of networked robots, ubiquitous robots, has 
been introduced [9], [10]. Actually, they are networked robots 
integrated into ubiquitous computing environments including 
networked sensors and actuators. They can even be realized as a 
form of ubiquitous computing environments themselves such as 
in a robotic room [11]. The Ubiquitous Robotic Companion 
(URC) [12] is our conceptual vision of a ubiquitous service robot 
that provides users with the services they need, anytime, 
anywhere in ubiquitous computing environments. To realize the 
vision of URC, one of the essential requirements for the robotic 
systems is to support a ubiquity of services: that is, a robot service 
must always be available even though there are changes in the 
service environments. The current networked robotics approaches 
are, as mentioned above, mainly focused on a behavior-oriented 
tele-operation of remote robotic devices with Web applications or 
distributed objects programmed for specific environments. Surely, 
they can help people with overcoming the limit of time and 
location for services. To provide ubiquitous services, however, 
robotic systems need to be automatically interoperable with 
ubiquitous sensors and devices in the current service 
environments, rather than statically preprogrammed for them. 

In this paper, a semantic-based ubiquitous robotic space 
(SemanticURS) framework is presented. It enables automated 
integration of networked robots into ubiquitous computing 
environments in a service-oriented way. SemanticURS exploits 
Semantic Web Services [13], a state of the art Web technology, 
and an AI-based planning technique to provide automated 
interoperation between networked robots and ubiquitous 
computing devices in service environments. That is, Web 
Services [14] for robots, networked sensors, and devices are 
implemented as a unified interface method for accessing them. 
Then, knowledge about such Web Services is described in Web 
ontology language for services (OWL-S) [15], the semantic 
description language for Web Services, and registered to 
environmental knowledge bases (KBs), so that a robotic agent 
can automatically discover the required knowledge and 
compose a feasible service plan for the current environments. 
Next, the agent provides service by automatically interacting 
with robots, sensors, and devices through the simple object 
access protocol (SOAP) [16], the Web Services execution 
protocol, according to the service plan, as shown in a 
comparison in Figs. 1(a) and 1(b). 

The rest of the paper is organized as follows. Section II 
briefly introduces the Semantic Web Services technologies as 
fundamental background. Section III describes the detailed 
design of SemanticURS, and section IV explains the prototype 
implementation and experiments in our networked home test 
bed. Finally, section V gives conclusions and future works. 
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II. Semantic Web Services 

The Web, once a repository of text and images, is evolving 
into a provider of services: information-providing services, such 
as Internet information providers and portals; and world-altering 
services, such as e-commerce and e-business applications. Web-
accessible programs and databases realize these services through 
CGI, Java, ActiveX, or the Web Services [14] technology. 
Fundamental to having computer programs or agents implement 
reliable and automated interoperation of such services is the need 
to make the services computer interpretable—to create a 
semantic Web [17] of services whose semantics, such as 
properties, capabilities, and interfaces are encoded in an 
unambiguous, machine-understandable form. The Semantic 
Web Services technology is developed to meet this need by 
describing Web Services with an OWL [18] ontology, namely 
OWL-S [15], which provides AI-inspired markups for 
specifying a richer-level of service semantics. As shown in Fig. 2, 
OWL-S markups are grouped into three essential classes. 

Service Profile: This tells “what the service does”; that is, it 
gives the types of information needed by a service requester 
agent to determine whether the service meets its needs. In 
addition to representing the capabilities of a service, the profile 
can be used to express the needs of the service requester agent so 
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Fig. 2. Top level of the OWL-S ontology. 
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that a matchmaker has a convenient dual-purpose representation 
upon which to base its operations. The OWL-S profile ontology 
provides the following markups to describe properties of a service 
profile: Profile, serviceName, textDescription, hasInput, hasOutput, 
hasPrecondition, hasEffect, serviceCategory, and so on. 

Service Model: This tells “how the service works”; that is, it 
describes what happens when an atomic or composite service is 
carried out. This description may often be used by a service 
requester agent in the following ways: to perform a more in-
depth analysis of whether the service meets its needs; to 
compose service descriptions from multiple services to achieve a 
specific goal; during the course of the service enactment, to 
coordinate the activities of the different participants; and to 
monitor the execution of the service. The OWL-S process 
ontology provides the following markups to model services as 
processes: ProcessModel, AtomicProcess, CompositeProcess, 
SimpleProcess, ProcessComponent, ControlConstruct, Sequence, 
Choice, Repeat-Until, and so on. 

Service Grounding: This specifies the details of how an agent 
can access a service. Typically, a grounding will specify a 
communication protocol, message formats, and other service-
specific details such as port numbers used in contacting the 
service. In addition, the grounding must specify, for each 
abstract type specified in the service model, an unambiguous 
way of exchanging data elements of that type with the service. 
The OWL-S grounding ontology provides the following 
markups to ground OWL-S atomic services with concrete Web 
Services whose interfaces are described in the Web Services 
Description Language (WSDL) [19]: WsdlGrounding, 
hasAtomicProcessGrounding, WsdlAtomicProcessGrounding, 
wsdlOperation, wsdlDocument, WsdlOperationRef, portType 
operation, and so on. 

III. Design of SemanticURS 

1. The Architecture of SemanticURS 

As shown in Fig. 3, the architecture of SemanticURS 
consists of three major components, a robotic agent (RA), 
device web services (DWS), and an environmental knowledge  

 

Fig. 3. Detailed architecture of SemanticURS. 
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repository (EKR). 

The RA, as an intelligent planning and service requester 
agent, plays the major role of an automated integration 
procedure in the SemanticURS architecture. The RA consists 
of a user interface, a plan composition module, a knowledge 
discovery module, an OWL inference module, a plan 
execution module, and a communication stack for Web 
Services execution including SOAP [16], XML and HTTP. A 
user can input a service request with the user interface, and 
optionally initial service contexts can be inputs for the service. 
Then, the service request (and optional service contexts) is 
encoded with vocabularies in OWL-S process ontology, so that 
the plan composition module can understand a user’s service 
request and automatically discover the required knowledge for 
planning through the knowledge discovery module. To search 
KBs in the EKR for the required knowledge, the knowledge 
discovery module creates semantic discovery queries encoded 
in the resource description framework (RDF) data query 
language (RDQL) [20], [21] by reasoning about the semantics 
of the service request with the OWL inference module. After 
the composition of a service plan, the plan execution module 
translates the service plan into an executable format and 
executes it through the Web Services communication stack. 

The EKR contains a domain KB and a device KB, which are 
used for environmental knowledge registration and discovery. 
The domain KB stores OWL-S knowledge of general service 
concepts and composite tasks with internal data flows 
describing common service models for a certain service 
domain. The device KB stores OWL-S knowledge of atomic 
tasks representing device or sensor services in specific service 
environments and corresponding service groundings for them. 
And the EKR includes the discovery service object to handle 
knowledge discovery queries with semantic predicates on 
OWL-S knowledge from the RA. The EKR also includes a 
Web Services communication stack because it works as a Web 
Service itself, that is, the RA can access the EKR with SOAP, 
the unified interface protocol in our framework. 
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Fig. 4. Automated integration procedure of the SemanticURS agent. 
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The DWS is an implementation of Web Services for 

ubiquitous devices including robots, sensors, actuators, and so 
on. Each DWS can have control objects for one device or 
multiple devices, which may work cooperatively: for instance, 
an air-conditioning device and a temperature sensor. And the 
DWS also has a Web Services communication stack to 
communicate with the RA. 

Figure 4 shows the overall automated integration procedure 
of the SemanticURS agent, which consists of knowledge 
discovery, service plan composition, and plan execution phases. 
The following subsections will explain each phase in more 
detail. 

2. Knowledge Description and Discovery 

As mentioned above, knowledge about common service 
models and device services needs to be described in OWL-S 
ontology so that the RA can discover the required knowledge to 
compose a service plan for a user request. Knowledge about 
device services is described as OWL-S atomic processes [15] 
and used to generate the space of feasible actions (primitive 
tasks) for plan composition in specific service environments. 
Knowledge about common service models is described as 
OWL-S composite processes [15] and used to constrain how the 
service plans are to be composed independently of specific 
service environments. Some running examples of the knowledge 
descriptions will be presented in the experiments section. 

The knowledge discovery procedure of the RA is performed 
by sending discovery queries to the EKR and receiving 
corresponding responses. This procedure is initiated by a 
service request input from the user. Once a service is requested, 

it is encoded with OWL-S process ontology. That is, the 
service request is translated into an OWL-S simple process 
[15] describing the user-requested service. Then, a service 
model for the user request and required device services are 
found from the domain KB and the device KB using a 
discovery algorithm. In the knowledge discovery module of 
the RA, we implement the semantic service discovery 
algorithm, which finds an extended set of device services to 
compose a feasible plan for the requested service. That is, the 
set of device services acquired during the knowledge discovery 
phase can be extended by reasoning about the semantics of a 
service model for the user request. Consequently, the semantic 
service discovery algorithm finds a compatible service (a 
semantically replaceable service) for every device service that 
is not discovered by exact query matching. 

As formerly explained, knowledge about service models and 
device services are described as OWL-S composite and atomic 
processes, which have OWL individuals [18] as ranges of their 
input, output, precondition, and effect (IOPE) property [15] 
values. Therefore, we will define some semantic relations 
between OWL individuals and OWL-S processes in predicate 
logic syntax to describe the algorithm formally: that is, p(s, o), 
where p is a predicate, s is a subject, and o is an object. Every 
argument is an OWL individual if not specifically defined. And 
the semantics of each predicate or argument is based on the 
formal semantics of RDF [20], [22], RDFS (RDF schema) [22], 
[23], OWL (Full) [18], [24] and OWL-S process ontology [15], 
[25] as it is prefixed. 

Definition. Subsumption relation, x ⊇ y.  

An OWL individual x of Class a subsumes an OWL 



670   Young-Guk Ha et al. ETRI Journal, Volume 27, Number 6, December 2005 

individual y of Class b if and only if rdfs:subClassOf(b, a) ∨ 
owl:equivalentClass(a, b) holds. 

Definition. Subsumption Relation on a Property, x ⊇ y / p. 

An OWL individual x subsumes an OWL individual y on an 
OWL property p if and only if for each a ∈ {v | p(x, v)}, there 
exists a distinct b ∈ {u | p(y, u)} s.t. a ⊇ b. 

Definition. Compatibility Relation, x ∼ y. 

An OWL-S process x is compatible with an OWL-S process 
y if and only if (x ⊇ y / process:hasInput) ∧ (x ⊇ y / 
process:hasPrecondition)∧(y ⊇ x / process:hasOutput) ∧(y ⊇ 

x / process:hasEffect). 

Definition. Equivalence Relation, x ≡ y.  

An OWL-S process x is equivalent to an OWL-S process y if 
and only if x and y have the same set of IOPE property values. 

Algorithm. Semantic_Service_Discovery(R, D). 

Input: A service request R; 
Output: A set of device services D; 
Procedure: 

Discover a service model M from the domain KB 
    s.t. M ≡ R; 

If (the discovery fails) exit with Discovery_Error; 
      
Set D = Ø; 
For each component process P in M { 

If (P is a composite process) 
        call Semantic_Service_Discovery(P, D); 

     
Discover a device service S from the device KB 

        s.t. atomic process of S ≡ P; 
If (the discovery succeeds) Add S to D; 
else { 

Discover a device service S from the device KB 
         s.t. atomic process of S ∼ P; 

If (the discovery succeeds) { 
Add S to D; 

        Replace P in the service model M with 
            atomic process of S; 

} else exit with Discovery_Error; 
} 

} 

3. Service Plan Composition 

In the plan composition phase, the SemanticURS agent 
automatically composes service plans for the user request using 
hierarchical task network (HTN) planning [26]. HTN planning 
is an AI planning methodology that creates plans by a task 

decomposition process in which the planner decomposes tasks 
into smaller subtasks until primitive tasks, which can be 
performed directly, are found. The entire task decomposition 
process is based on planning operators and methods called a 
planning domain. Such task decomposition concept and 
modularity of HTN planning is very similar to the concept of 
composite and atomic processes in OWL-S. In addition, HTN 
planning supports expressive domain and precondition 
representation to solve the complex planning problems 
efficiently. To perform HTN planning, it is required to translate 
OWL-S knowledge found in the discovery phase into the HTN 
planning domain: that is, translate service model knowledge 
into the planning methods and device service knowledge into 
the planning operators. 

We programmed such translation algorithm into the plan 
composition module of the RA. In the SemanticURS 
framework, we use a domain-independent HTN planning 
system, SHOP2 [27]. Therefore, generating a planning domain 
in terms of SHOP2 domain is required. Inheriting a generic 
HTN domain, each SHOP2 operator describes what needs to 
be done to accomplish some primitive task, and each SHOP2 
method tells how to decompose some compound task into 
partially ordered subtasks. A SHOP2 operator is an expression 
of the form (p(v) Pre Del Add), where p(v) is a primitive task 
with a list of input parameters v, Pre represents the operator’s 
preconditions, Del represents the operator’s delete list that 
includes a list of things that will become false after an 
operator’s execution, and Add represents the operator’s add list 
that includes a list of things that will become true after the 
operator’s execution. Knowledge about a device service, 
described as an OWL-S atomic process A, is translated into a 
SHOP2 planning operator by replacing v with a set of inputs of 
A, Pre with conjunction of all the preconditions of A, and Add 
with conjunction of all the effects of A. The SHOP2 method is 
an expression of the form (c(v) Pre1 T1 Pre2 T2 …), where c(v) 
is a compound task with a list of input parameters v, each Prei is 
a precondition expression, and each Ti is a partially ordered set 
of subtasks. Knowledge about a service model described as an 
OWL-S composite process C is translated into a set of SHOP2 
planning methods according to the control constructs of C. For 
example, in the case of a sequence control construct, v is 
replaced with a set of inputs of C, Prei with conjunction of all 
the preconditions of a component process Pi, and Ti with Pi. 
For the specific SHOP2 domain generation algorithm, refer 
to [27]. 

4. Service Plan Execution 

The result of the plan composition phase is a sequence of 
primitive tasks, that is, a sequence of OWL-S atomic processes 
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Fig. 5. Experimental environments: mobile robot in networked home test bed. 
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with corresponding service grounding. To be executed, a 
service plan must be translated into an executable format such 
as a process of concrete Web Services. In our implementation, 
BPEL4WS (business process execution language for Web 
services) [28] is used to create executable Web Service 
processes at the process execution phase. As shown in Fig. 4, 
knowledge about data flows in service models and service 
grounding is used to generate an executable service process 
from the plan composition result. We use IBM’s BPWS4J 
(BPEL4WS for Java) platform to implement BPEL process 
generation and execution functionalities of the plan execution 
module. At this time, we do not consider a monitoring and 
contingency planning feature for the system during the 
execution of a service process. However, it is important for 
system robustness and will be one of our next research and 
development issues. 

IV. Experiments 

1. Experimental System 

We implement a SemanticURS prototype system and make 
experiments in our networked home test bed, which has a 
bedroom, kitchen, and living room. As shown in Fig. 5, the 
experimental environments include an ERSP Scorpion robot 
with vSLAM navigation [29]. It is equipped with a USB-
connected infrared (IR) remote controller. The environments 
also include IR-controlled devices such as a TV set and lighting 
switches, a power line communication (PLC) controller, and 
PLC-controlled devices such as an air conditioner and a  

Table 1. Web services implementations. 

Name Description Device Location

getUser 
Location 

Returns which RFID reader 
senses given user ID in its radio 
boundary 

RFID 
readers

DWS 
host 

raiseWindow 
Blind 

Raises window blind with PLC 
controller 

PLC 
controller

DWS 
host 

pullDown 
WindowBlind

Pulls down window blind with  
PLC controller 

PLC 
controller

DWS 
host 

turnOnAir 
Conditioner

Turns on air conditioner with  
PLC controller 

PLC 
controller

DWS 
host 

turnOffAir 
Conditioner

Turns off air conditioner with  
PLC controller 

PLC 
controller

DWS 
host 

turnOnLight
Turns on lighting with IR  
remote controller 

IR remote 
controller

PC on 
the robot

turnOffLight 
Turns off lighting with IR  
remote controller 

IR remote 
controller

PC on 
the robot

turnOnTV 
Turns on TV set with IR 
remote controller 

IR remote 
controller

PC on 
the robot

turnOffTV 
Turns off TV set with IR 
remote controller 

IR remote 
controller

PC on 
the robot

moveTo 
Moves robot to the specific 
point of the given place 

Mobile 
robot 

PC on 
the robot

 

 
motorized window blind. In addition, there are three radio 
frequency identification (RFID) readers in each place to sense 
the location of the user who carries a RFID tag. The 
SemanticURS prototype implementation consists of a DWS 
Host, EKR Server, laptop PC for RA mounted on the ERSP 
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Scorpion robot, and an additional laptop PC for Web-based 
user interfaces. They are connected to each other via a wired or 
wireless LAN. 

We use Java2 SDK as the development platform for the 
SemanticURS prototype system and HP’s Jena Semantic Web 
framework to implement OWL ontology reasoning 
functionality for RA and knowledge bases for EKR. We also 
use Apache AXIS Web Services toolkit to implement Web 
Services communication features for RA, DWS and EKR. 
Table 1 lists concrete Web Services that are implemented for 
sensors and devices in our networked home test bed including 
RFID readers, a Scorpion mobile robot, a PLC controller, and 
an IR remote controller. 

2. Knowledge Bases 

The experimental domain KB contains OWL-S service 
models and general concepts to describe the semantics of 
robotic services for the networked home environments shown 
in Fig. 5. In the domain KB, the service concepts construct a 
subsumption hierarchy. They provide semantic values for 
inputs, outputs, preconditions, and effects properties of 
service models and device services in the experimental  

 

 

Fig. 6. OWL-S knowledge for a service model and its concepts.

<!—Common service model to control indoor brightness--> 
<process: CompositeProcess rdf:ID=”RaiseIndoorBrightness”> 

<process: composedOf> 
  <process: Sequence> 
    <process: components rdf:parseType=”Collection”> 
      <process: AtomicProcess rdf:ID=”MoveToLocation”> 
        <process: hasInput> 
          <concepts: UserLocation rdf:ID=”Location”/> 
        </process: hasInput> 
        <process: hasEffect> 
          <concepts: AtLocationEffect rdf:ID=”AtLocation”/> 
        </process: hasEffect> 
      </process: AtomicProcess> 
      <process: AtomicProcess rdf:ID=”RaiseBrightness”> 
        <process: hasEffect> 
         <concepts: BecomeBrighterEffect rdf:ID=”BecomeBrighter”/>
        </process: hasEffect> 
      </process: AtomicProcess> 
    </process:components> 
  </process: Sequence> 
</process:composedOf> 
<process: hasInput> 
  <concepts:UserLocation rdf:resource=”#Location”/> 
</process: hasInput> 
<process: hasEffect> 
  <concepts: BecomeBrighterEffect rdf:resource=”#BecomeBrighter”/> 
</process:hasEffect> 

</process:CompositeProcess> 
 
<!--  Semantic hierarchy for general concepts  --> 
<owl:Class rdf:ID=”BecomeBrighterEffect”> 

<rdfs:subClassOf rdf:resource=”&process;#UnConditionalEffect”/> 
</owl:Class> 
<owl:Class rdf:ID=”LightOnEffect”> 

<rdfs:sub ClassOf rdf:resource=”#BecomeBrighterEffect”/> 
</owl:Class> 
<owl:Class rdf:ID=”BlindRaisedEffect”> 

<rdfs:sub ClassOf rdf:resource=”#BecomeBrighterEffect”/> 
</owl:Class> 
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 <!-- TurnOnLight service instance --> 
<service: Service rdf:ID=”TurnOnLightService”> 
    <service: describedBy rdf:resource=”#TurnOnLightServiceProcessModel”/>
    <service: supports rdf:resource=”#TurnOnLightServiceGrounding”/> 
</service: Service> 
 
<!—Process model for TurnOnLight service  --> 
<process: ProcessModel rdf:ID=”TurnOnLightServiceProcessModel”> 
    <service: describes rdf:resource=”#TurnOnLightService”/> 
    <process:hasProcess> 

<process:AtomicProcess rdf:ID=”TurnOnLightServiceProcess”> 
    <process: hasEffect> 
       <concepts: LightOnEffect rdf:ID=”LightOn”/> 
    </process: hasEffect> 
</process:AtomicProcess> 

    </process: hasProcess> 
</process: ProcessModel> 
 
<!--  Service grounding for TurnOnLight service --> 
<grounding: WsdlGrounding rdf:ID=”TurnOnLightServiceGrounding”> 

<service:supportedBy rdf:resource=”#TurnOnLightService/”> 
<grounding:has AtomicProcessGrounding> 
  <grounding:WsdlAtomicProcessGrounding rdf:ID=”TurnOnLightGmd”> 
     <grounding:owlsProcess rdf:resource=”#TurnOnLightServiceProcess”/>
     <grounding:wsdlDocument> 
        http://robot.etri.re.kr:8080/axis/LightControlService?wsdl 
     </grounding:wsdlDocument> 
     <grounding:wsdlOperation> 
        <grounding:WsdlOperationRef> 
          <grounding:portType> LightControlService</grounding:portType>
          <grounding:operation>turnOnLight</grounding:operation> 
        </grounding:WsdlOperationRef> 
     </grounding:wsdlOperation> 
   </grounding:WsdlAtomicProcessGrounding> 
 </grounding:hasAtomicProcessGrounding> 

</grounding:WsdlGrounding> 

Fig. 7. OWL-S knowledge for a lighting device service. 

g
h

i

j

 
 
environments. 

The example knowledge of Fig. 6 shows a portion of a 
common service model and a concept hierarchy for an 
experimental networked home service that controls indoor 
brightness. As shown in the figure, the RaiseIndoorBrightness 
service (part a) is composed of a sequence of two atomic 
processes, MoveToLocation (part b) and RaiseBrightness (part 
c). The first one is to navigate the robot to the given user’s 
location, and the second one is to raise the brightness of the 
place. In more detail, the RaiseBrightness process has a 
BecomeBrighterEffect (part d) concept as its effect, which is a 
super-concept of LightOnEffect (part e) and BlindRaisedEffect 
(part f) as described in the highlighted codes of the Figure. 

The device KB contains OWL-S knowledge about the 
implemented device Web Services listed in Table 1. The 
example of Fig. 7 shows knowledge for a turnOnLight service 
that consists of TurnOnLightServiceProcessModel (part g) and 
TurnOnLightServiceGrounding (part i). As described in the 
highlighted codes, the device service has a LightOnEffect (part 
h) concept as its effect, which is a sub-concept of the 
BecomeBrighterEffect (part d) concept. The service grounding 
connects the device service with the concrete turnOnLight 
service implementation in http://robot.etri.re.kr:8080/axis/ 
LightControlService (part j), the Web Service object for a 
lighting control device existing in the experimental 
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environments. 

3. Experimental Results 

In the beginning of the experiment, the user is sitting on a 
sofa in a living room carrying his RFID tag, and the robot is in 
the kitchen. The user commands the robot to “Make it 
brighter” through the Web-based user interface for the RA. As 
mentioned in the previous sections, the user command is 
described as an OWL-S simple process that has the 
BecomeBrighterEffect concept, part d in Fig. 6, as its effect, as 
shown in the following code in line (1). 

<!— 
XML CODE 1 : OWL-S encoded user command 

--> 
<process:SimpleProcess rdf:ID=“Cmd000”> 

<process:hasEffect> 
<concepts:BecomeBrighterEffect rdf:ID=“E000”/>   (1) 

</process:hasEffect> 
</process:SimpleProcess> 
 

 

Fig. 8. Flowchart of the experimental procedures. 

Experiment 1 start 

Encode user command in OWL-S: 
hasEffect = BecomeBrighterEffect 

(refer to XML CODE 1) 

Discover a service which has UserLocation 
as output to get required contexts 

Execute discovered service getUserLocation 

Initial user location 
is living room 

Current_user_location = return value of 
getUSerLocation service 

Experiment 2 start 

User moves to the 
kitchen 

Discover a service model which has 
BecomeBrighterEffect as effect 

Compose service plan with discovered 
service model RaiseIndoorBrightness and 

service context Current_user_location 

Generate service plan 1 
(refer to XML CODE 2) 

Generate service plan 2 
(refer to XML CODE 3) 

LivingRoom Kitchen

Execute generated service plan 

Experiment end 

User inputs command to “make it brighter” 

Current_user_location ? 

 

As illustrated in the procedure of the first experiment in Fig. 
8, to perform the requested service, the RA must know the 
current location of the user as one of the essential contexts for 
services. Then, the RA sends the EKR server a discovery query 
for a service that has UserLocation as its output. As the result of 
querying, the RA receives OWL-S knowledge of the 
getUserLocation service and executes it based on its service 
grounding. In the experiment, the getUserLocation service 
responds to the agent with LivingRoom as the current location 
of the user by scanning the RFID readers. 

After knowing the current location of the user, the RA sends 
the EKR server a query for a service model that has 
BecomeBrighterEffect as its effect. As the result of querying, 
the agent receives OWL-S knowledge of the indoor brightness 
control service model, RaiseIndoor Brightness, described in 
Fig. 6, and then performs a device service discovery and 
service plan composition with it. During the device service 
discovery phase, the RA discovers feasible device services by 
sending the EKR server extended queries as described in the 
semantic service discovery algorithm of section III.2. In the 
case of the “Make it brighter” command, the RA tries to find a 
device service that has BecomeBrighterEffect as its effect by 
sending a direct match query according to the service model. 
When it fails, the RA tries to find a device service that has a 
sub-concept of BecomeBrighterEffect as its effect, such as 
LightOnEffect or BlindRaisedEffect, by sending an extended 
query. In addition, the RA sends the EKR server the service 
context Current_user_location = LivingRoom with every 
query for context-aware service discovery. As a result, 
MoveToService in line (2), the OWL-S knowledge about 
moveTo service that has AtLocationEffect as its effect, and 
RaiseWindowBlindService in line (3), the OWL-S knowledge 
about raiseWindowBlind service that has BlindRaisedEffect as 
its effect, are discovered and the following plan is generated 
with XML. 

 
<!— 

XML CODE 2 : Service plan for experiment 1 
--> 
<plan type=“Sequence”> 
<service name=“MoveToService”>                  (2) 
    <input name=“Location” value=“LivingRoom”/> 
  </service> 
  <service name=“RaiseWindowBlindService”/>      (3) 
</plan> 

 
Finally, the plan was successfully translated into the 

BPEL4WS process and executed in the plan execution phase 
as shown in the upper left and right photos of Fig. 9. 

The second experiment is the same as the first one, but the 
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service context Current_user_location changed to Kitchen 
(refer to the procedure of the second experiment in Fig. 8). That 
is, from the robot’s point of view, the service environments 
changed. Reactively to this change, the RA decides to move to 
the Kitchen in line (4) and discovers the appropriate device 
service TurnOnLightService in line (5) that has LightOnEffect 
(part e in Fig. 6), the sub-concept of BecomeBrighterEffect, as 
its effect and composes the following service plan 
automatically. 

 
<!— 

XML CODE 3 : Service plan for experiment 2 
--> 
<plan type=“Sequence”> 
  <service name=“MoveToService”> 

   <input name=“Location” value=“Kitchen”/>       (4) 
  </service> 

<service name=“TurnOnLightService”/>         (5) 
</plan> 
 

As a result of the second plan execution, the Scorpion robot 
successfully moved to the kitchen and turned on the lighting 
with the IR remote controller, instead of raising the window 
blind in the living room, as shown in the lower left and right 
photos of Fig. 9. 
 

Fig. 9. Snapshots of the experiments. 

RFID Tag 

Locating user 

Living room 

Kitchen 

Moving to kitchen 

Blind raised

Light turned on

 

V. Conclusions 

In this paper, the SemanticURS framework is proposed and 
its prototype system for a networked home test bed 
implemented. SemanticURS enables automated integration of 
networked service robots into ubiquitous computing 
environments including wireless sensors and actuators to 
provide ubiquity of robotic services. SemanticURS exploits 

Semantic Web Services technology and an AI-based planning 
technique to support automated interoperation between service 
robots, wireless sensors, and service devices connected to each 
other in the ubiquitous networking environments. That is, Web 
Services for robots, sensors, and devices are implemented as 
the unified interface method for accessing them. Then, 
knowledge about the Web Services is described in OWL-S, the 
Semantic Web Services description language, and registered to 
the environmental knowledge bases so that a robotic agent can 
automatically discover the required knowledge and compose a 
feasible service plan for the current service environments. In 
addition, the proposed framework can also be applied to the 
development of intelligent software agents for a variety of 
service domains in ubiquitous computing environments. 

Our future research direction will be focused on adapting 
SemanticURS to mobile ad hoc service environments. 
Currently, SemanticURS agents can discover required 
knowledge from centralized environmental knowledge bases, 
which are assumed to be well-known and always available to 
them. However, real ubiquitous computing environments will 
be mostly based on ad hoc networks that are spontaneous, 
completely distributed, and dynamic in nature. And they will 
surely consist of a huge number of mobile devices and sensors. 
This means that the centralized discovery approach is likely to 
suffer from a serious scalability problem in real ubiquitous 
computing environments. And it will be another challenge for 
the agents to maintain seamless connectivity to the centralized 
knowledge bases over mobile ad hoc networks. So, our future 
work will include how to discover and plan with the 
knowledge that is completely distributed to various ad hoc 
sensors and devices in the service environments. It will also 
include how to cooperate and share the knowledge between 
multiple robotic agents under the same or related service 
environments. 

Another important future research focus is security and 
privacy issues in SemanticURS. We are planning to approach 
these issues basically from a role-based access control 
mechanism and XML digital signature technologies using 
cryptography and the public key infrastructure. In addition, we 
are also planning to use an ad hoc cluster-based security 
approach [30] for dynamic ad hoc service environments. 
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