
666 Young-Guk Ha et al. ETRI Journal, Volume 27, Number 6, December 2005

In recent years, motivated by the emergence of
ubiquitous computing technologies, a new class of
networked robots, ubiquitous robots, has been introduced.
The Ubiquitous Robotic Companion (URC) is our
conceptual vision of ubiquitous service robots that provide
users with the services they need, anytime and anywhere
in ubiquitous computing environments. To realize the
vision of URC, one of the essential requirements for
robotic systems is to support ubiquity of services: that is, a
robot service must be always available even though there
are changes in the service environments. Specifically
robotic systems need to be automatically interoperable
with sensors and devices in current service environments,
rather than statically preprogrammed for them. In this
paper, the design and implementation of a semantic-based
ubiquitous robotic space (SemanticURS) is presented.
SemanticURS enables automated integration of
networked robots into ubiquitous computing
environments exploiting Semantic Web Services and AI-
based planning technologies.

Keywords: Ubiquitous robotics, ubiquitous computing,
networked robotics, service robotics, service planning,
Semantic Web Services.

Manuscript received July 20, 2005; revised Sept. 15, 2005.
This work is financially supported by URC Technology R&D Program of Korea Ministry of

Information and Communication.
Young-Guk Ha (phone: +82 42 860 6375, email: ygha@etri.re.kr), Joo-Chan Sohn (email:

jcsohn@etri.re.kr), and Young-Jo Cho (email: youngjo@etri.re.kr) are with Intelligent Robot
Research Division, ETRI, Daejeon, Korea.

Hyunsoo Yoon (email: hyoon@camars.kaist.ac.kr) is with the Department of Computer
Science, KAIST, Korea.

I. Introduction

Due to the progress of communication network technologies,
many people have been researching Internet-based networked
robotic systems, which are mainly focused on tele-operation
and monitoring of networked robotic devices and sensors (for
example, mobile robots, unmanned vehicles, position sensors,
and so on.) by human supervisors in Internet environments.
Leveraging the advantages of Internet technology, such
systems allow users from all over the world to visit museums,
tend gardens, navigate undersea, or float in blimps 24 hours a
day. They have great potential for industry, education,
entertainment, and security by making valuable robotic
hardware accessible to a broad audience.

Several attempts have been made to develop such Internet-
based networked robotic and monitoring systems using the World
Wide Web and distributed object technologies. The typical Web-
based networked robotics approach uses HTTP combined with
CGI (common gateway interface) or Java to control remote
sensors and actuators: for instance, University of California’s tele-
excavation system, Mercury [1]; Carnegie Mellon University’s
indoor mobile robot, Xavier [2]; Ecole Polytechnique Fédérale de
Lausanne’s maze robot, KhepOnTheWeb [3]; Roger Williams
University’s PumaPaint [4]; and Pohang University of Science
and Technology’s XNMS [5]. Another approach for networked
robotic systems is based on distributed object technology such as
CORBA (common object request broker architecture) and Java
RMI (remote method invocation): for instance, in NRSP
(network robot service platform) [6] and DAIR (distributed
architecture for Internet robot) [7].

Towards a Ubiquitous Robotic Companion:
Design and Implementation of

Ubiquitous Robotic Service Framework

 Young-Guk Ha, Joo-Chan Sohn, Young-Jo Cho, and Hyunsoo Yoon

ETRI Journal, Volume 27, Number 6, December 2005 Young-Guk Ha et al. 667

In recent years, motivated by the emergence of ubiquitous
computing [8] technologies as the next generation computing
paradigm, a new class of networked robots, ubiquitous robots, has
been introduced [9], [10]. Actually, they are networked robots
integrated into ubiquitous computing environments including
networked sensors and actuators. They can even be realized as a
form of ubiquitous computing environments themselves such as
in a robotic room [11]. The Ubiquitous Robotic Companion
(URC) [12] is our conceptual vision of a ubiquitous service robot
that provides users with the services they need, anytime,
anywhere in ubiquitous computing environments. To realize the
vision of URC, one of the essential requirements for the robotic
systems is to support a ubiquity of services: that is, a robot service
must always be available even though there are changes in the
service environments. The current networked robotics approaches
are, as mentioned above, mainly focused on a behavior-oriented
tele-operation of remote robotic devices with Web applications or
distributed objects programmed for specific environments. Surely,
they can help people with overcoming the limit of time and
location for services. To provide ubiquitous services, however,
robotic systems need to be automatically interoperable with
ubiquitous sensors and devices in the current service
environments, rather than statically preprogrammed for them.

In this paper, a semantic-based ubiquitous robotic space
(SemanticURS) framework is presented. It enables automated
integration of networked robots into ubiquitous computing
environments in a service-oriented way. SemanticURS exploits
Semantic Web Services [13], a state of the art Web technology,
and an AI-based planning technique to provide automated
interoperation between networked robots and ubiquitous
computing devices in service environments. That is, Web
Services [14] for robots, networked sensors, and devices are
implemented as a unified interface method for accessing them.
Then, knowledge about such Web Services is described in Web
ontology language for services (OWL-S) [15], the semantic
description language for Web Services, and registered to
environmental knowledge bases (KBs), so that a robotic agent
can automatically discover the required knowledge and
compose a feasible service plan for the current environments.
Next, the agent provides service by automatically interacting
with robots, sensors, and devices through the simple object
access protocol (SOAP) [16], the Web Services execution
protocol, according to the service plan, as shown in a
comparison in Figs. 1(a) and 1(b).

The rest of the paper is organized as follows. Section II
briefly introduces the Semantic Web Services technologies as
fundamental background. Section III describes the detailed
design of SemanticURS, and section IV explains the prototype
implementation and experiments in our networked home test
bed. Finally, section V gives conclusions and future works.

Web-based robot
application

programmed for E1

Fig. 1. Comparison with a traditional networked robot system.

Unknown environment E2

Known environment E1

Known
interface

Known
interface

Change of
environments

???
???

???

Known
sensor

Known
device

Web-based robot
application

programmed for E1

Performs
service S1

in E1

What to do
for S1 in

E2 ?

(a) Traditional networked robotic system for environments E1.

Service environment E2

Service environment E1

KB
for E1

[Step 4]
Service execution

through unified
interface (SOAP)

WS
WS WSWS WS

KB
for E2

[Step 2] Knowledge
discovery for E2Robotic agent

[Step 1]
Knowledge
registration
(OWL-S)

WS: Web service

WS

[Step 3] Service planning for E2

(b) Automatic interoperability with changed environments based on
knowledge about sensors and devices in the environments.

II. Semantic Web Services

The Web, once a repository of text and images, is evolving
into a provider of services: information-providing services, such
as Internet information providers and portals; and world-altering
services, such as e-commerce and e-business applications. Web-
accessible programs and databases realize these services through
CGI, Java, ActiveX, or the Web Services [14] technology.
Fundamental to having computer programs or agents implement
reliable and automated interoperation of such services is the need
to make the services computer interpretable—to create a
semantic Web [17] of services whose semantics, such as
properties, capabilities, and interfaces are encoded in an
unambiguous, machine-understandable form. The Semantic
Web Services technology is developed to meet this need by
describing Web Services with an OWL [18] ontology, namely
OWL-S [15], which provides AI-inspired markups for
specifying a richer-level of service semantics. As shown in Fig. 2,
OWL-S markups are grouped into three essential classes.

Service Profile: This tells “what the service does”; that is, it
gives the types of information needed by a service requester
agent to determine whether the service meets its needs. In
addition to representing the capabilities of a service, the profile
can be used to express the needs of the service requester agent so

668 Young-Guk Ha et al. ETRI Journal, Volume 27, Number 6, December 2005

Fig. 2. Top level of the OWL-S ontology.

Resource

Service profile

provides

presents
Described by

supports

Service model

Service grounding

What the
service does

How it works

How to access it

Service

that a matchmaker has a convenient dual-purpose representation
upon which to base its operations. The OWL-S profile ontology
provides the following markups to describe properties of a service
profile: Profile, serviceName, textDescription, hasInput, hasOutput,
hasPrecondition, hasEffect, serviceCategory, and so on.

Service Model: This tells “how the service works”; that is, it
describes what happens when an atomic or composite service is
carried out. This description may often be used by a service
requester agent in the following ways: to perform a more in-
depth analysis of whether the service meets its needs; to
compose service descriptions from multiple services to achieve a
specific goal; during the course of the service enactment, to
coordinate the activities of the different participants; and to
monitor the execution of the service. The OWL-S process
ontology provides the following markups to model services as
processes: ProcessModel, AtomicProcess, CompositeProcess,
SimpleProcess, ProcessComponent, ControlConstruct, Sequence,
Choice, Repeat-Until, and so on.

Service Grounding: This specifies the details of how an agent
can access a service. Typically, a grounding will specify a
communication protocol, message formats, and other service-
specific details such as port numbers used in contacting the
service. In addition, the grounding must specify, for each
abstract type specified in the service model, an unambiguous
way of exchanging data elements of that type with the service.
The OWL-S grounding ontology provides the following
markups to ground OWL-S atomic services with concrete Web
Services whose interfaces are described in the Web Services
Description Language (WSDL) [19]: WsdlGrounding,
hasAtomicProcessGrounding, WsdlAtomicProcessGrounding,
wsdlOperation, wsdlDocument, WsdlOperationRef, portType
operation, and so on.

III. Design of SemanticURS

1. The Architecture of SemanticURS

As shown in Fig. 3, the architecture of SemanticURS
consists of three major components, a robotic agent (RA),
device web services (DWS), and an environmental knowledge

Fig. 3. Detailed architecture of SemanticURS.

Robotic agent (RA)

Plan composition module

Plan
execution
module

User interface

SOAP

XML HTTP HTTP XML

SOAP

Device control
objects

Device Web service (DWS)

Discovery service
object

Environmental knowledge
repository (EKR)

Knowledge
discovery
module

HTTP XML

SOAP
Device

KB

C
om

m
un

ic
at

io
n

ne
tw

or
ks

OWL inference
module

Domain
KB

repository (EKR).

The RA, as an intelligent planning and service requester
agent, plays the major role of an automated integration
procedure in the SemanticURS architecture. The RA consists
of a user interface, a plan composition module, a knowledge
discovery module, an OWL inference module, a plan
execution module, and a communication stack for Web
Services execution including SOAP [16], XML and HTTP. A
user can input a service request with the user interface, and
optionally initial service contexts can be inputs for the service.
Then, the service request (and optional service contexts) is
encoded with vocabularies in OWL-S process ontology, so that
the plan composition module can understand a user’s service
request and automatically discover the required knowledge for
planning through the knowledge discovery module. To search
KBs in the EKR for the required knowledge, the knowledge
discovery module creates semantic discovery queries encoded
in the resource description framework (RDF) data query
language (RDQL) [20], [21] by reasoning about the semantics
of the service request with the OWL inference module. After
the composition of a service plan, the plan execution module
translates the service plan into an executable format and
executes it through the Web Services communication stack.

The EKR contains a domain KB and a device KB, which are
used for environmental knowledge registration and discovery.
The domain KB stores OWL-S knowledge of general service
concepts and composite tasks with internal data flows
describing common service models for a certain service
domain. The device KB stores OWL-S knowledge of atomic
tasks representing device or sensor services in specific service
environments and corresponding service groundings for them.
And the EKR includes the discovery service object to handle
knowledge discovery queries with semantic predicates on
OWL-S knowledge from the RA. The EKR also includes a
Web Services communication stack because it works as a Web
Service itself, that is, the RA can access the EKR with SOAP,
the unified interface protocol in our framework.

ETRI Journal, Volume 27, Number 6, December 2005 Young-Guk Ha et al. 669

Fig. 4. Automated integration procedure of the SemanticURS agent.

Executable
process

generation

Process

execution
with SOAP

SHOP2
planning
operators

Service
plan

BPEL
Web

service
process

SHOP2
planning
methods

Initial states
&

goal task

OWL-S
device

KB

Knowledge discovery phase Service plan composition phase Plan execution phase

OWL-S
domain

KB

Semantic
service

discovery

Planning
domain

translation

Planning

Initial
contexts &

service
request

Service
models

(composite
processes)

Internal
data flows

Service
grounding

Device
services
(atomic

processes) Robot, sensor
& device

Web services

The DWS is an implementation of Web Services for

ubiquitous devices including robots, sensors, actuators, and so
on. Each DWS can have control objects for one device or
multiple devices, which may work cooperatively: for instance,
an air-conditioning device and a temperature sensor. And the
DWS also has a Web Services communication stack to
communicate with the RA.

Figure 4 shows the overall automated integration procedure
of the SemanticURS agent, which consists of knowledge
discovery, service plan composition, and plan execution phases.
The following subsections will explain each phase in more
detail.

2. Knowledge Description and Discovery

As mentioned above, knowledge about common service
models and device services needs to be described in OWL-S
ontology so that the RA can discover the required knowledge to
compose a service plan for a user request. Knowledge about
device services is described as OWL-S atomic processes [15]
and used to generate the space of feasible actions (primitive
tasks) for plan composition in specific service environments.
Knowledge about common service models is described as
OWL-S composite processes [15] and used to constrain how the
service plans are to be composed independently of specific
service environments. Some running examples of the knowledge
descriptions will be presented in the experiments section.

The knowledge discovery procedure of the RA is performed
by sending discovery queries to the EKR and receiving
corresponding responses. This procedure is initiated by a
service request input from the user. Once a service is requested,

it is encoded with OWL-S process ontology. That is, the
service request is translated into an OWL-S simple process
[15] describing the user-requested service. Then, a service
model for the user request and required device services are
found from the domain KB and the device KB using a
discovery algorithm. In the knowledge discovery module of
the RA, we implement the semantic service discovery
algorithm, which finds an extended set of device services to
compose a feasible plan for the requested service. That is, the
set of device services acquired during the knowledge discovery
phase can be extended by reasoning about the semantics of a
service model for the user request. Consequently, the semantic
service discovery algorithm finds a compatible service (a
semantically replaceable service) for every device service that
is not discovered by exact query matching.

As formerly explained, knowledge about service models and
device services are described as OWL-S composite and atomic
processes, which have OWL individuals [18] as ranges of their
input, output, precondition, and effect (IOPE) property [15]
values. Therefore, we will define some semantic relations
between OWL individuals and OWL-S processes in predicate
logic syntax to describe the algorithm formally: that is, p(s, o),
where p is a predicate, s is a subject, and o is an object. Every
argument is an OWL individual if not specifically defined. And
the semantics of each predicate or argument is based on the
formal semantics of RDF [20], [22], RDFS (RDF schema) [22],
[23], OWL (Full) [18], [24] and OWL-S process ontology [15],
[25] as it is prefixed.

Definition. Subsumption relation, x ⊇ y.

An OWL individual x of Class a subsumes an OWL

670 Young-Guk Ha et al. ETRI Journal, Volume 27, Number 6, December 2005

individual y of Class b if and only if rdfs:subClassOf(b, a) ∨
owl:equivalentClass(a, b) holds.

Definition. Subsumption Relation on a Property, x ⊇ y / p.

An OWL individual x subsumes an OWL individual y on an
OWL property p if and only if for each a ∈ {v | p(x, v)}, there
exists a distinct b ∈ {u | p(y, u)} s.t. a ⊇ b.

Definition. Compatibility Relation, x ∼ y.

An OWL-S process x is compatible with an OWL-S process
y if and only if (x ⊇ y / process:hasInput) ∧ (x ⊇ y /
process:hasPrecondition)∧(y ⊇ x / process:hasOutput) ∧(y ⊇

x / process:hasEffect).

Definition. Equivalence Relation, x ≡ y.

An OWL-S process x is equivalent to an OWL-S process y if
and only if x and y have the same set of IOPE property values.

Algorithm. Semantic_Service_Discovery(R, D).

Input: A service request R;
Output: A set of device services D;
Procedure:

Discover a service model M from the domain KB
 s.t. M ≡ R;

If (the discovery fails) exit with Discovery_Error;

Set D = Ø;
For each component process P in M {

If (P is a composite process)
 call Semantic_Service_Discovery(P, D);

Discover a device service S from the device KB

 s.t. atomic process of S ≡ P;
If (the discovery succeeds) Add S to D;
else {

Discover a device service S from the device KB
 s.t. atomic process of S ∼ P;

If (the discovery succeeds) {
Add S to D;

 Replace P in the service model M with
 atomic process of S;

} else exit with Discovery_Error;
}

}

3. Service Plan Composition

In the plan composition phase, the SemanticURS agent
automatically composes service plans for the user request using
hierarchical task network (HTN) planning [26]. HTN planning
is an AI planning methodology that creates plans by a task

decomposition process in which the planner decomposes tasks
into smaller subtasks until primitive tasks, which can be
performed directly, are found. The entire task decomposition
process is based on planning operators and methods called a
planning domain. Such task decomposition concept and
modularity of HTN planning is very similar to the concept of
composite and atomic processes in OWL-S. In addition, HTN
planning supports expressive domain and precondition
representation to solve the complex planning problems
efficiently. To perform HTN planning, it is required to translate
OWL-S knowledge found in the discovery phase into the HTN
planning domain: that is, translate service model knowledge
into the planning methods and device service knowledge into
the planning operators.

We programmed such translation algorithm into the plan
composition module of the RA. In the SemanticURS
framework, we use a domain-independent HTN planning
system, SHOP2 [27]. Therefore, generating a planning domain
in terms of SHOP2 domain is required. Inheriting a generic
HTN domain, each SHOP2 operator describes what needs to
be done to accomplish some primitive task, and each SHOP2
method tells how to decompose some compound task into
partially ordered subtasks. A SHOP2 operator is an expression
of the form (p(v) Pre Del Add), where p(v) is a primitive task
with a list of input parameters v, Pre represents the operator’s
preconditions, Del represents the operator’s delete list that
includes a list of things that will become false after an
operator’s execution, and Add represents the operator’s add list
that includes a list of things that will become true after the
operator’s execution. Knowledge about a device service,
described as an OWL-S atomic process A, is translated into a
SHOP2 planning operator by replacing v with a set of inputs of
A, Pre with conjunction of all the preconditions of A, and Add
with conjunction of all the effects of A. The SHOP2 method is
an expression of the form (c(v) Pre1 T1 Pre2 T2 …), where c(v)
is a compound task with a list of input parameters v, each Prei is
a precondition expression, and each Ti is a partially ordered set
of subtasks. Knowledge about a service model described as an
OWL-S composite process C is translated into a set of SHOP2
planning methods according to the control constructs of C. For
example, in the case of a sequence control construct, v is
replaced with a set of inputs of C, Prei with conjunction of all
the preconditions of a component process Pi, and Ti with Pi.
For the specific SHOP2 domain generation algorithm, refer
to [27].

4. Service Plan Execution

The result of the plan composition phase is a sequence of
primitive tasks, that is, a sequence of OWL-S atomic processes

ETRI Journal, Volume 27, Number 6, December 2005 Young-Guk Ha et al. 671

Fig. 5. Experimental environments: mobile robot in networked home test bed.

Window blind
in living room

Air conditioner
in living room

TV set in living room

Lighting switch in kitchen

PLC controller

Bedroom Kitchen Living room

DWS host

Mobile robot with RA

Wireless LAN

EKR server

Domain KB

Device KB

User interface PC
User with a RFID tag

Infrared

LAN (TCP/IP)

RFID readers for locating user PLC-controlled devices

IR-controlled devices

Wireless
LAN

with corresponding service grounding. To be executed, a
service plan must be translated into an executable format such
as a process of concrete Web Services. In our implementation,
BPEL4WS (business process execution language for Web
services) [28] is used to create executable Web Service
processes at the process execution phase. As shown in Fig. 4,
knowledge about data flows in service models and service
grounding is used to generate an executable service process
from the plan composition result. We use IBM’s BPWS4J
(BPEL4WS for Java) platform to implement BPEL process
generation and execution functionalities of the plan execution
module. At this time, we do not consider a monitoring and
contingency planning feature for the system during the
execution of a service process. However, it is important for
system robustness and will be one of our next research and
development issues.

IV. Experiments

1. Experimental System

We implement a SemanticURS prototype system and make
experiments in our networked home test bed, which has a
bedroom, kitchen, and living room. As shown in Fig. 5, the
experimental environments include an ERSP Scorpion robot
with vSLAM navigation [29]. It is equipped with a USB-
connected infrared (IR) remote controller. The environments
also include IR-controlled devices such as a TV set and lighting
switches, a power line communication (PLC) controller, and
PLC-controlled devices such as an air conditioner and a

Table 1. Web services implementations.

Name Description Device Location

getUser
Location

Returns which RFID reader
senses given user ID in its radio
boundary

RFID
readers

DWS
host

raiseWindow
Blind

Raises window blind with PLC
controller

PLC
controller

DWS
host

pullDown
WindowBlind

Pulls down window blind with
PLC controller

PLC
controller

DWS
host

turnOnAir
Conditioner

Turns on air conditioner with
PLC controller

PLC
controller

DWS
host

turnOffAir
Conditioner

Turns off air conditioner with
PLC controller

PLC
controller

DWS
host

turnOnLight
Turns on lighting with IR
remote controller

IR remote
controller

PC on
the robot

turnOffLight
Turns off lighting with IR
remote controller

IR remote
controller

PC on
the robot

turnOnTV
Turns on TV set with IR
remote controller

IR remote
controller

PC on
the robot

turnOffTV
Turns off TV set with IR
remote controller

IR remote
controller

PC on
the robot

moveTo
Moves robot to the specific
point of the given place

Mobile
robot

PC on
the robot

motorized window blind. In addition, there are three radio
frequency identification (RFID) readers in each place to sense
the location of the user who carries a RFID tag. The
SemanticURS prototype implementation consists of a DWS
Host, EKR Server, laptop PC for RA mounted on the ERSP

672 Young-Guk Ha et al. ETRI Journal, Volume 27, Number 6, December 2005

Scorpion robot, and an additional laptop PC for Web-based
user interfaces. They are connected to each other via a wired or
wireless LAN.

We use Java2 SDK as the development platform for the
SemanticURS prototype system and HP’s Jena Semantic Web
framework to implement OWL ontology reasoning
functionality for RA and knowledge bases for EKR. We also
use Apache AXIS Web Services toolkit to implement Web
Services communication features for RA, DWS and EKR.
Table 1 lists concrete Web Services that are implemented for
sensors and devices in our networked home test bed including
RFID readers, a Scorpion mobile robot, a PLC controller, and
an IR remote controller.

2. Knowledge Bases

The experimental domain KB contains OWL-S service
models and general concepts to describe the semantics of
robotic services for the networked home environments shown
in Fig. 5. In the domain KB, the service concepts construct a
subsumption hierarchy. They provide semantic values for
inputs, outputs, preconditions, and effects properties of
service models and device services in the experimental

Fig. 6. OWL-S knowledge for a service model and its concepts.

<!—Common service model to control indoor brightness-->
<process: CompositeProcess rdf:ID=”RaiseIndoorBrightness”>

<process: composedOf>
 <process: Sequence>
 <process: components rdf:parseType=”Collection”>
 <process: AtomicProcess rdf:ID=”MoveToLocation”>
 <process: hasInput>
 <concepts: UserLocation rdf:ID=”Location”/>
 </process: hasInput>
 <process: hasEffect>
 <concepts: AtLocationEffect rdf:ID=”AtLocation”/>
 </process: hasEffect>
 </process: AtomicProcess>
 <process: AtomicProcess rdf:ID=”RaiseBrightness”>
 <process: hasEffect>
 <concepts: BecomeBrighterEffect rdf:ID=”BecomeBrighter”/>
 </process: hasEffect>
 </process: AtomicProcess>
 </process:components>
 </process: Sequence>
</process:composedOf>
<process: hasInput>
 <concepts:UserLocation rdf:resource=”#Location”/>
</process: hasInput>
<process: hasEffect>
 <concepts: BecomeBrighterEffect rdf:resource=”#BecomeBrighter”/>
</process:hasEffect>

</process:CompositeProcess>

<!-- Semantic hierarchy for general concepts -->
<owl:Class rdf:ID=”BecomeBrighterEffect”>

<rdfs:subClassOf rdf:resource=”&process;#UnConditionalEffect”/>
</owl:Class>
<owl:Class rdf:ID=”LightOnEffect”>

<rdfs:sub ClassOf rdf:resource=”#BecomeBrighterEffect”/>
</owl:Class>
<owl:Class rdf:ID=”BlindRaisedEffect”>

<rdfs:sub ClassOf rdf:resource=”#BecomeBrighterEffect”/>
</owl:Class>

a

b

c
d

d

e

f

 <!-- TurnOnLight service instance -->
<service: Service rdf:ID=”TurnOnLightService”>
 <service: describedBy rdf:resource=”#TurnOnLightServiceProcessModel”/>
 <service: supports rdf:resource=”#TurnOnLightServiceGrounding”/>
</service: Service>

<!—Process model for TurnOnLight service -->
<process: ProcessModel rdf:ID=”TurnOnLightServiceProcessModel”>
 <service: describes rdf:resource=”#TurnOnLightService”/>
 <process:hasProcess>

<process:AtomicProcess rdf:ID=”TurnOnLightServiceProcess”>
 <process: hasEffect>
 <concepts: LightOnEffect rdf:ID=”LightOn”/>
 </process: hasEffect>
</process:AtomicProcess>

 </process: hasProcess>
</process: ProcessModel>

<!-- Service grounding for TurnOnLight service -->
<grounding: WsdlGrounding rdf:ID=”TurnOnLightServiceGrounding”>

<service:supportedBy rdf:resource=”#TurnOnLightService/”>
<grounding:has AtomicProcessGrounding>
 <grounding:WsdlAtomicProcessGrounding rdf:ID=”TurnOnLightGmd”>
 <grounding:owlsProcess rdf:resource=”#TurnOnLightServiceProcess”/>
 <grounding:wsdlDocument>
 http://robot.etri.re.kr:8080/axis/LightControlService?wsdl
 </grounding:wsdlDocument>
 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>
 <grounding:portType> LightControlService</grounding:portType>
 <grounding:operation>turnOnLight</grounding:operation>
 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>
 </grounding:WsdlAtomicProcessGrounding>
 </grounding:hasAtomicProcessGrounding>

</grounding:WsdlGrounding>

Fig. 7. OWL-S knowledge for a lighting device service.

g
h

i

j

environments.

The example knowledge of Fig. 6 shows a portion of a
common service model and a concept hierarchy for an
experimental networked home service that controls indoor
brightness. As shown in the figure, the RaiseIndoorBrightness
service (part a) is composed of a sequence of two atomic
processes, MoveToLocation (part b) and RaiseBrightness (part
c). The first one is to navigate the robot to the given user’s
location, and the second one is to raise the brightness of the
place. In more detail, the RaiseBrightness process has a
BecomeBrighterEffect (part d) concept as its effect, which is a
super-concept of LightOnEffect (part e) and BlindRaisedEffect
(part f) as described in the highlighted codes of the Figure.

The device KB contains OWL-S knowledge about the
implemented device Web Services listed in Table 1. The
example of Fig. 7 shows knowledge for a turnOnLight service
that consists of TurnOnLightServiceProcessModel (part g) and
TurnOnLightServiceGrounding (part i). As described in the
highlighted codes, the device service has a LightOnEffect (part
h) concept as its effect, which is a sub-concept of the
BecomeBrighterEffect (part d) concept. The service grounding
connects the device service with the concrete turnOnLight
service implementation in http://robot.etri.re.kr:8080/axis/
LightControlService (part j), the Web Service object for a
lighting control device existing in the experimental

ETRI Journal, Volume 27, Number 6, December 2005 Young-Guk Ha et al. 673

environments.

3. Experimental Results

In the beginning of the experiment, the user is sitting on a
sofa in a living room carrying his RFID tag, and the robot is in
the kitchen. The user commands the robot to “Make it
brighter” through the Web-based user interface for the RA. As
mentioned in the previous sections, the user command is
described as an OWL-S simple process that has the
BecomeBrighterEffect concept, part d in Fig. 6, as its effect, as
shown in the following code in line (1).

<!—
XML CODE 1 : OWL-S encoded user command

-->
<process:SimpleProcess rdf:ID=“Cmd000”>

<process:hasEffect>
<concepts:BecomeBrighterEffect rdf:ID=“E000”/> (1)

</process:hasEffect>
</process:SimpleProcess>

Fig. 8. Flowchart of the experimental procedures.

Experiment 1 start

Encode user command in OWL-S:
hasEffect = BecomeBrighterEffect

(refer to XML CODE 1)

Discover a service which has UserLocation
as output to get required contexts

Execute discovered service getUserLocation

Initial user location
is living room

Current_user_location = return value of
getUSerLocation service

Experiment 2 start

User moves to the
kitchen

Discover a service model which has
BecomeBrighterEffect as effect

Compose service plan with discovered
service model RaiseIndoorBrightness and

service context Current_user_location

Generate service plan 1
(refer to XML CODE 2)

Generate service plan 2
(refer to XML CODE 3)

LivingRoom Kitchen

Execute generated service plan

Experiment end

User inputs command to “make it brighter”

Current_user_location ?

As illustrated in the procedure of the first experiment in Fig.
8, to perform the requested service, the RA must know the
current location of the user as one of the essential contexts for
services. Then, the RA sends the EKR server a discovery query
for a service that has UserLocation as its output. As the result of
querying, the RA receives OWL-S knowledge of the
getUserLocation service and executes it based on its service
grounding. In the experiment, the getUserLocation service
responds to the agent with LivingRoom as the current location
of the user by scanning the RFID readers.

After knowing the current location of the user, the RA sends
the EKR server a query for a service model that has
BecomeBrighterEffect as its effect. As the result of querying,
the agent receives OWL-S knowledge of the indoor brightness
control service model, RaiseIndoor Brightness, described in
Fig. 6, and then performs a device service discovery and
service plan composition with it. During the device service
discovery phase, the RA discovers feasible device services by
sending the EKR server extended queries as described in the
semantic service discovery algorithm of section III.2. In the
case of the “Make it brighter” command, the RA tries to find a
device service that has BecomeBrighterEffect as its effect by
sending a direct match query according to the service model.
When it fails, the RA tries to find a device service that has a
sub-concept of BecomeBrighterEffect as its effect, such as
LightOnEffect or BlindRaisedEffect, by sending an extended
query. In addition, the RA sends the EKR server the service
context Current_user_location = LivingRoom with every
query for context-aware service discovery. As a result,
MoveToService in line (2), the OWL-S knowledge about
moveTo service that has AtLocationEffect as its effect, and
RaiseWindowBlindService in line (3), the OWL-S knowledge
about raiseWindowBlind service that has BlindRaisedEffect as
its effect, are discovered and the following plan is generated
with XML.

<!—

XML CODE 2 : Service plan for experiment 1
-->
<plan type=“Sequence”>
<service name=“MoveToService”> (2)
 <input name=“Location” value=“LivingRoom”/>
 </service>
 <service name=“RaiseWindowBlindService”/> (3)
</plan>

Finally, the plan was successfully translated into the

BPEL4WS process and executed in the plan execution phase
as shown in the upper left and right photos of Fig. 9.

The second experiment is the same as the first one, but the

674 Young-Guk Ha et al. ETRI Journal, Volume 27, Number 6, December 2005

service context Current_user_location changed to Kitchen
(refer to the procedure of the second experiment in Fig. 8). That
is, from the robot’s point of view, the service environments
changed. Reactively to this change, the RA decides to move to
the Kitchen in line (4) and discovers the appropriate device
service TurnOnLightService in line (5) that has LightOnEffect
(part e in Fig. 6), the sub-concept of BecomeBrighterEffect, as
its effect and composes the following service plan
automatically.

<!—

XML CODE 3 : Service plan for experiment 2
-->
<plan type=“Sequence”>
 <service name=“MoveToService”>

 <input name=“Location” value=“Kitchen”/> (4)
 </service>

<service name=“TurnOnLightService”/> (5)
</plan>

As a result of the second plan execution, the Scorpion robot
successfully moved to the kitchen and turned on the lighting
with the IR remote controller, instead of raising the window
blind in the living room, as shown in the lower left and right
photos of Fig. 9.

Fig. 9. Snapshots of the experiments.

RFID Tag

Locating user

Living room

Kitchen

Moving to kitchen

Blind raised

Light turned on

V. Conclusions

In this paper, the SemanticURS framework is proposed and
its prototype system for a networked home test bed
implemented. SemanticURS enables automated integration of
networked service robots into ubiquitous computing
environments including wireless sensors and actuators to
provide ubiquity of robotic services. SemanticURS exploits

Semantic Web Services technology and an AI-based planning
technique to support automated interoperation between service
robots, wireless sensors, and service devices connected to each
other in the ubiquitous networking environments. That is, Web
Services for robots, sensors, and devices are implemented as
the unified interface method for accessing them. Then,
knowledge about the Web Services is described in OWL-S, the
Semantic Web Services description language, and registered to
the environmental knowledge bases so that a robotic agent can
automatically discover the required knowledge and compose a
feasible service plan for the current service environments. In
addition, the proposed framework can also be applied to the
development of intelligent software agents for a variety of
service domains in ubiquitous computing environments.

Our future research direction will be focused on adapting
SemanticURS to mobile ad hoc service environments.
Currently, SemanticURS agents can discover required
knowledge from centralized environmental knowledge bases,
which are assumed to be well-known and always available to
them. However, real ubiquitous computing environments will
be mostly based on ad hoc networks that are spontaneous,
completely distributed, and dynamic in nature. And they will
surely consist of a huge number of mobile devices and sensors.
This means that the centralized discovery approach is likely to
suffer from a serious scalability problem in real ubiquitous
computing environments. And it will be another challenge for
the agents to maintain seamless connectivity to the centralized
knowledge bases over mobile ad hoc networks. So, our future
work will include how to discover and plan with the
knowledge that is completely distributed to various ad hoc
sensors and devices in the service environments. It will also
include how to cooperate and share the knowledge between
multiple robotic agents under the same or related service
environments.

Another important future research focus is security and
privacy issues in SemanticURS. We are planning to approach
these issues basically from a role-based access control
mechanism and XML digital signature technologies using
cryptography and the public key infrastructure. In addition, we
are also planning to use an ad hoc cluster-based security
approach [30] for dynamic ad hoc service environments.

References

[1] K. Goldberg, S. Gentner, and C. Sutter et al., “The Mercury
Project: A Feasibility Study for Internet Robotics,” IEEE Robotics
and Automation Magazine, vol. 7, no. 1, 2000, pp. 35-40.

[2] R. Simmons, “Xavier: An Autonomous Mobile Robot on the Web,”
Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems; Workshop
on Web Robots, Victoria, B.C. Canada, Oct. 1998, URL:

ETRI Journal, Volume 27, Number 6, December 2005 Young-Guk Ha et al. 675

http://www.ri.cmu.edu/pub_files/pub1/simmons_reid_1999_1
/simmons_reid_1999_1.pdf.

[3] P. Saucy and F. Mondada, “Open Access to a Mobile Robot on the
Internet,” IEEE Robotics and Automation Magazine, vol. 7, no. 1,
2000, pp. 41-47.

[4] M.R. Stein, “Interactive Internet Artistry,” IEEE Robotics and
Automation Magazine, vol. 7, no. 1, 2000, pp. 28-32.

[5] M. Choi, J. Hong, and H. Ju, “XML-Based Network Management
for IP Networks,” ETRI J., vol. 25, no. 6, Dec. 2003, pp. 445-463.

[6] D. Wang, X. Ma, and X. Dai, “Web-Based Robotic Control System
with Flexible Framework,” Proc. IEEE Int’l Conf. on Robotics and
Automation (ICRA 2004), New Orleans, LA, Apr. 2004, pp. 3351-
3356.

[7] X. Hou and J. Su, “A Distributed Architecture for Internet
Robotics,” Proc. IEEE Int’l Conf. on Robotics and Automation
(ICRA 2004), New Orleans, LA, Apr. 2004, pp. 3357-3362.

[8] M. Weiser, “Ubiquitous Computing,” 1996, URL: http://www.ubiq.
com/hyper text/weiser/UbiHome.html.

[9] J.H. Kim, Y.D. Kim, and K.H. Lee, “The Third Generation of
Robotics: Ubiquitous Robot,” Proc. ICARA2004, New Zealand,
Dec. 2004, URL: http://www-
ist.massey.ac.nz/conferences/icara2004/files/Papers/Paper01_IC
ARA2004_001_007.pdf. .

[10] K. Kiyoshi, “Ubiquitous Intelligent Robotics,” ATR UptoDate, no.
5, 2003, URL: http://results.atr.jp/uptodate/ATR_2003 sum/
kogure.html.

[11] T. Sato, T. Harada, and T. Mori, “Environment-Type Robot
System ‘Robotic Room’ Featured by Behavior Media, Behavior
Contents, and Behavior Adaptation,” IEEE/ASME Trans. on
Mechatronics, vol. 9, no. 3, Sept. 2004, pp. 529-534.

[12] S.R. Oh, “IT Based Intelligent Service Robot,” Proc. First NSF PI
Workshop on Robotics and Computer Vision (RCV’03) Invited talk,
Las Vegas, Oct. 2003, URL: http://www.vcl.uh.edu/~rcv03
/materials/slides/SangRok.ppt.

[13] S.A. McIlraith, T.C. Son, and H. Zeng, “The Semantic Web
Services,” IEEE Intelligent Systems, vol. 16, Issue 2, IEEE, 2001,
pp. 46-53.

[14] W3C Recommendation, Web Services Architecture, W3C, 2004,
URL: http://www.w3c.org/TR/ws-arch/.

[15] The OWL Services Coalition, “OWL-S: Semantic Markup for
Web Services,” 2003, URL: http://www.daml.org/services/owl-s
/1.0/owl-s.html.

[16] W3C Recommendation, SOAP Version 1.2 Primer, W3C, 2003,
URL: http://www.w3c.org/TR/ soap12-part0/.

[17] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American, May 2001, URL: http://www.
scientificamerican.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21&catID=2.

[18] W3C Recommendation, OWL Web Ontology Language Guide,
W3C, 2004, URL: http://www.w3c.org/TR/owl-guide/.

[19] W3C Recommendation, Web Services Description Language
(WSDL) Version 2.0 Part 0: Primer, W3C, 2003, URL:
http://www.w3.org/TR/wsdl20-primer/.

[20] W3C Recommendation, RDF Primer, W3C, 2004, URL:
http://www.w3c.org/TR/rdf-primer/.

[21] L. Miller, A. Seaborne, and A. Reggiori, “Three Implementations of
SquishQL, a Simple RDF Query Language,” Proc. 1st Int’l
Semantic Web Conf. (ISWC 2002), LNCS 2342, Springer-Verlag,
2002, pp. 423-435.

[22] W3C Recommendation, RDF Semantics, W3C, 2004, URL:
http://www.w3c.org/TR/rdf-mt/.

[23] W3C Recommendation, RDF Vocabulary Description Language,
W3C, 2004, URL: http://www.w3c.org/TR/rdf-schema/.

[24] W3C Recommendation, OWL Web Ontology Language
Semantics and Abstract Syntax, W3C, 2004, URL:
http://www.w3c.org/TR/owl-absyn/.

[25] S. Narayanan and S. McIlraith, “Simulation, Verification and
Automated Composition of Web Services,” Proc. Int’l World Wide
Web Conference (WWW-11), Honolulu, Hawaii, May 2002, pp.
77-88.

[26] K. Erol, D. Nau, and J. Hendler, “UMCP: A Sound and Complete
Planning Procedure for HTN Planning,” Proc. AIPS-94, Chicago,
1994, pp. 249-254.

[27] E. Sirin, B. Parsia, and D. Wu et al., “HTN Planning for Web
Service Composition Using SHOP2,” Web Semantics, Elsevier, vol.
1, Issue 4, Oct. 2004, URL: http://www.mindswap.org/papers/
SHOP-JWS.pdf.

[28] T. Andrews, F. Curbera, and H. Dholakia et al., “BPEL for Web
Services,” 2003, URL: http://www.ibm.com/developerworks/
library/ws-bpel/.

[29] Evolution Robotics, ERSP 3.0: Robotic Development Platform,
URL: http://www.evolution.com/products/ersp/.

[30] S. Jin, C. Park, and D. Choi et al., “Cluster-Based Trust Evaluation
Scheme in an Ad Hoc Network,” ETRI J., vol. 27, no. 4, Aug. 2005,
pp. 465-468.

Young-Guk Ha received the BS and MS
degrees in computer science from Konkuk
University in 1993 and 1995. He is currently
working toward the PhD degree in computer
science at Korea Advanced Institute of Science
and Technology (KAIST). He joined
Electronics and Telecommunications Research

Institute (ETRI) in 1995 and has been a Senior Member of Engineering
Staff in the Intelligent Robot Research Division since 2004. His
research interests are in ubiquitous networking, sensor networks, and
the semantic web technology.

676 Young-Guk Ha et al. ETRI Journal, Volume 27, Number 6, December 2005

Joo-Chan Sohn received the MS degree in
management information systems from
Hankook University of Foreign Studies in 1990.
After joining ETRI, he has been involved with
electronic commerce systems and intelligent e-
business systems. Currently, he is a Senior
Member of Engineering Staff in the Intelligent

Robot Research Division and his research interests are in intelligent
service infrastructure for robots and artificial emotion systems.

Young-Jo Cho received the BS degree in
control engineering from Seoul National
University in 1983, and the MS and PhD
degrees in electrical engineering from KAIST in
1985 and 1989. He joined ETRI in 2004 as a
Vice President heading the Intelligent Robot
Research Division. Before joining ETRI, he

was a Principal Researcher in Korea Institute of Science and
Technology (KIST) and the Director of the R&D Center in iControls,
Inc. His primary research interest is in network-based control
architecture of intelligent mobile robots.

Hyunsoo Yoon received the BE degree in
electronics engineering from Seoul National
University in 1979, the MS degree in computer
science from KAIST in 1981, and the PhD
degree in computer and information science
from Ohio State University in 1988. He was
with AT&T Bell Labs from 1988 to 1989 as a

Member of Technical Staff. Since 1989 he has been a Faculty Member
of the Division of Computer Science at KAIST. His main research
interests include wireless sensor networks, 4G networks, and network
security.

