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Pattern recognition is one of the most common problems 
encountered in engineering and scientific disciplines, which 
involves developing prediction or classification models 
from historic data or training samples. This paper intro-
duces a new approach, called the Representational Capability 
(RC) algorithm, to handle pattern recognition problems 
using radial basis function (RBF) models. The RC algo-
rithm has been developed based on the mathematical 
properties of the interpolation and design matrices of RBF 
models. The model development process based on this al-
gorithm not only yields the best model in the sense of bal-
ancing its parsimony and generalization ability, but also 
provides insights into the design process by employing a 
design parameter (δ ). We discuss the RC algorithm and 
its use at length via an illustrative example. In addition, 
RBF classification models are developed for heart disease 
diagnosis.  
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I. INTRODUCTION 

The term pattern recognition encompasses a wide range of 
information processing tasks of great practical significance. 
The spectrum of such tasks spans from speech recognition to 
handwritten character classification and from medical diagnosis 
to fault detection in nuclear fuel rods. Humans are particularly 
good at solving many such problems effortlessly and even sub-
consciously, e.g., recognizing telephone callers from their voice. 
On the other hand, other problems, such as reading bar codes, 
require machines to perform more accurately than humans can 
[1], [2]. The scientific discipline of building such machines for 
these tasks is the domain of pattern recognition.  

The traditional formulation of pattern recognition tasks has 
been based on statistical methods. On the other hand, artificial 
neural networks are now extensively used for these tasks because 
of their good ability to handle large-scale practical problems. 
Radial Basis Function (RBF) models, the focus of this paper, is 
a class of neural networks and provides such ability. In addition, 
it has the very attractive feature of having both nonlinearity and 
linearity in the model which can be treated separately. Further, 
RBF models have been shown to possess very significant 
mathematical properties of universal and best approximation 
[3]. All these features make RBF models attractive for many  
applications. In fact, the range of fields in which this model has 
been employed is very impressive including geophysics, signal 
processing, meteorology, orthopedics, computational fluid dy-
namics and pattern recognition [4]. 

The problem of developing an RBF model is simply to  de-
termine the model parameters which will achieve the expected 
performance. Therefore, the most significant issues in con-
structing the RBF model are the criteria and algorithm for  de-
termining its parameters. Two important criteria are those of 
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parsimony and generalization ability of the model, i.e., the 
model should have as few parameters as possible and also pro-
vide good predictions for future inputs. An important aim of 
this paper is to present an efficient, new methodology for the 
design and evaluation of RBF models and illustrate its applica-
tion in heart disease diagnosis. 

This paper is organized as follows. A detailed mathematical 
description of the pattern recognition problem is given in Section 
II. The RBF model and the modeling issues are discussed in 
Section III. A new design methodology is briefly described in 
Section IV, and illustrated via a detailed example in Section V. 
An actual classification study for heart disease diagnosis is pre-
sented in Section VI. Finally, Section VII provides concluding 
remarks. 

II. PATTERN RECOGNITION PROBLEM 

1. Problem Definition 

The task of pattern recognition is to construct a model that 
captures an unknown input-output mapping pattern on the basis 
of limited evidence about its nature. The evidence available is a 
set of labeled historic data and is called the training sample. We 
wish to construct the “best” model that is as close as possible to 
the true but unknown mapping function. This process of model 
development is commonly termed training or modeling.  

Under the theme of the best model construction, the process 
of training is to determine the parameters such that the fitted 
model provides good fit to training data as well as good predic-
tions on future data. Note that our objective is not to learn an 
exact representation of the data because that would lead to 
overfitting. For developing a good predictive model, it is essen-
tial to consider generalization capability of the fitted model for 
future, yet unseen, inputs for which output would not be known.  

Now we state the pattern recognition problem and its objec-
tive analytically. Suppose we are given a training data set ,D  

},,...,1,,:),{( niRyRyD i
d

iii =∈∈= xx  

in which both inputs and their corresponding outputs are made 
available and the outputs are continuous or discrete values. The 
problem we address is to find a mapping function from the d - 
dimensional input space to the 1-dimensional output space 
based on the data set .D  From a modeling perspective, we 
seek a model that provides the best fit to training data and the 
best prediction on future data while minimizing model complexity. 
The resulting model would be employed to predict output 
values y′  for future observed inputs x′  where only the inputs 
x′ would be available, not the outputs .y′  

In the regression setting where the output y  has continuous 
values, it is assumed that y  is related to x  as follows: 

,)( ε+= xhy  (1) 

where ),(xh  called the target function, is a single valued 
deterministic function of x  and ε  is a random variable 
distributed according to ).|( xε ε p~  We assume 0]|[ =xεE  
for all ,x  so that )(xh  can be written as  

.yEh ]|[)( xx =  (2) 

On the other hand, in the classification setting, the output y  
assumes values on an ordered discrete set }.,,,{ 21 Lyyyy L∈  
In the special case of binary classification )2L( =  without loss 
of generality we take }.1,0{∈y  Then  

),|0(1)|1(]|[)( xxxx =−==== yPyPyEh  (3) 

If a model f  built from the training data D  is employed as 
a predictor, prediction inaccuracy can be quantified as 

.)]([ 2xfyE −  This represents the sum of squares of validation 
errors at ,x  averaged over repeatedly realized training samples, 
each of size ,n  from the system being modeled. It can be easily 
shown that this error term has the following decomposition 

.EfhEfyE 222 ]|[)]()([)]([ xxxx εε+−=−   (4) 

The second term in the above is independent of the target func-
tion )(xh  and the training data .D  It simply reflects the 
irreducible validation error caused by the random nature of 
output variable y.  The first term is the squared estimation error 
in the target function ),(xh  averaged over the training samples. 
This depends on the target function )(xh  and the fitted model 

.f )(x  It is this term that provides a measure of the effectiveness 
of )(xf  as a predictor of y.  Therefore, our main objective is 
to determine the model parameters such that the squared 
estimation error 2)]()([ xx fhE −  is minimized. 

2. Bias-Variance Components of Estimation Error 

The squared estimation error can be decomposed into two 
components as follows [5], [6]: 

.fEfEhfEfhE 222 )]]([)([)]())(([)]()([ xxxxxx −+−=−
  (5) 

That is, 

variance.)bias()error estimation( 22 +=   

The first term on the right hand side of (5) is called bias 
squared and represents the squared deviation of the average of 
the fitted models over all data sets from the target function 

).(xh  That is, it measures the extent to which a fitted model, 
on the average, deviates from the true function. Thus, if a fitted 



ETRI Journal, Volume 22, Number 2, June 2000  Miyoung Shin et al.   3 

Model complexity

Estimation error = (bias)2 + variance
Error

variance

(bias)2

Fig. 1. Trend of estimation error and bias-variance components
with respect to model complexity.

 
model )(xf  is different from the true function ),(xh  
then )(xf  is said to be biased as an estimator of ).(xh  The 
second term, called variance, reflects the sensitivity of )(xf  
to training data .D  It should be noted that the bias term is a 
measure of how well a fitted model explains the data, i.e., how 
well the model fits the training data. The variance term, on the 
other hand, provides a measure of performance of a fitted 
model on future data sets.  

The error term 2)]()([ xx fhE −  could be large for two 
reasons. First, it could be large when the average of the fitted 
model )(xf  over all data sets, each of size ,n  is far off ).(xh  
Second, the fitted model )(xf  can vary widely from ),(xh  
over the training data D . That is, for some data set, a fitted model 
can be an excellent approximation of )(xh  while for other data 
set, it can be very far off ).(xh  Either of the above circumstances 
would contribute large values to the squared estimation error term, 
which leads to an unreliable predictor ).(xf  Thus, to minimize 
the estimation error, both the bias and the variance terms should be 
minimized.  

In fact, both the terms cannot be minimzed at the same time 
because of their conflicting features. In general, if a model is 
complicated, it tends to produce large variance and small bias. On 
the other hand, if a model is simple, it tends to produce high bias 
and small variance. Figure 1 shows the general trend of the 
estimation error and the bias squared and variance terms with 
respect to model complexity. The objective is to find a model 
which is neither too simple nor too complex and provides an    
acceptable tradeoff between these two error terms. 

III. RADIAL BASIS FUNCTION MODEL 

1. Model Structure 

For given data n
1i ii y, =)}{(x , the RBF is a nonlinear model   

Fig. 2. RBF model structure.
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where the output estimate ŷ  for input vector x  is represented 
by the following functional form  

),()()(ˆ
1 1
∑ ∑

= =
−===

m

j

m

j
jjjjj wwfy σµφφ xxx  (6) 

where )(⋅φ  is a basis function and ,iµ  jσ  are the center 
and the width of j-th basis functions, respectively; also, jw  is 
the weight associated with the j -th basis function output; and 
m  is the number of basis functions. Thus, the RBF model is 
fully determined by ).,( wσ,m,P µ=  

The RBF model can also be considered as a three-layer net-
work. The first layer (input layer) distributes the input vectors to each 
hidden unit in the second layer (hidden layer) without any multipli-
cative factors. The hidden layer has m hidden units, each of which 
represents a basis function and plays a role in performing nonlinear 
transformation of the input vector, producing a value as an output. In 
the third layer (output layer), the outputs from the m hidden units in 
the hidden layer are linearly combined with the weights to produce a 
model output. 

A typical RBF model structure is shown in Fig. 2. It shows the 
connectivity between input, hidden and output layers. An input vec-
tor in d -dimensional space is transformed by the basis functions 
into an m-dimensional vector. That is, after passing through the m 
basis functions, the input vector ),,,(x 21 dxxx L=  becomes the 
basis function output vector ),(),(( 21 xx φφφ =  ))(, xmφL  
where )(⋅jφ  is the output from the j -th basis func-tion. The 
network output y corresponding to an input vector x  is obtained by 
the summation of the weighted basis  function  

outputs, i.e., .)(
1
∑

=
=

m

j
jjwy xφ  

A basis function )(⋅φ  in the RBF model can be seen as a 
transfer function similar to that in traditional neural networks. 
Yet, unlike the conventional transfer function, each basis 
function has the property that its responses to input vectors are   
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Table 1. Some radial basis function choices.

Basis Function )/()( σµφφ −= xr

Gaussian )2exp( 2r−

Thin plate spline rr log2

Inverse multiquadratic 2122 )( −+ cr

Multiquadratic 2122 )( cr +

Cubic 3r

radially symmetric with respect to the center jµ  and monotonic 

with increasing distance from the center. Some popular choices for 
basis functions and their expressions are given in Table. 1. Amongst 
these, the Gaussian is the most popular basis function because it has 
attractive mathematical properties and its hill-like shape is easy to 
control with parameter .σ  

A Gaussian RBF model is defined by the number of basis 
functions (m), their centers ),(µ  widths (σ ) and weights 
( w ) to the output layer. Amongst these, the parameters 

,m µ and σ define the hidden layer, i.e., the nonlinearity of 
the RBF model, and w  define the linear part as shown in Fig 
2. The methods for determining these parameters are called 
training algorithms. The issue of finding the model parameters 
has been addressed by several authors over the past ten years. 
They   include the clustering methods [7], orthogonal least 
squares [8], supervised gradient descent and regularization [1], 
[7]. Details of these can also be found in [9]. 

2. Modeling Issues 

Recall from Section II that the objective of training is to  de-
termine model parameters so as to minimize the squared  es-
timation error that can be decomposed into bias squared and   
variance. Since both components contribute to the estimation 
error and cannot be simultaneously minimized, we seek parameter 
values that give the best compromise between small bias and 
small variance.  

In practice, during the modeling process, the bias squared  
and the variance cannot be computed because the computation 
requires knowledge of the true but unknown function. Instead, 
their trend can be analyzed from the shapes of the training and 
validation error curves corresponding to model performances 
on the training and validation data, respectively. The idealized 
relationship of these errors is graphically depicted in Fig 3. 
Here we clearly see the conceptual relationship between the 
expected training and validation errors, which describes the  
so-called bias-variance dilemma. 

We note that the training error decreases with increasing   

Fig. 3. Idealized depiction of training, validation errors and
bias-variance trade-off.
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model complexity because the more complicated model tends 
to provide a better fit to training data. On the other hand, validation 
error decreases with model complexity up to a certain point and 
then begins to increase. An increase in validation error implies 
that the increased model complexity causes overfitting. From 
the bias and variance perspective, underfitting means too much 
bias and small variance while overfitting means too much vari-
ance and small bias. For RBF, the region to the left of “best” 
model in Fig. 3 represents models with too few basis functions 
while the models to the right have too many basis functions. 

In summary, we seek a model that is neither too simple nor 
too complex. A model that is too simple will suffer from under-
fitting because it does not learn enough from the data and hence 
provides a poor fit. On the other hand, a model that is too com-
plicated would learn details including noise and thus suffer 
from overfitting. It cannot provide good generalization on unseen 
data. Hence, for an RBF modeling problem, a very significant 
issue is to determine an appropriate number of basis functions 
to achieve a good bias-variance compromise. 

VI. RC BASED RBF MODEL DEVELOPMENT 

In this section we describe our representational capability 
(RC) algorithm based on a new mathematical framework devel-
oped in [9]. The use of this algorithm in RBF model develop-
ment guarantees the following: 

The nonlinear parameters ,m µ and σ  are determined first 
without reference to output values. Once these parameters are 
fixed, the linear parameter )(w  are determined by referenc-
ing target outputs. 

The basis function centers )(µ  selected by this algorithm 
are a subset of input vectors )(x . 

1. Design Objectives and Conceptual Considerations 

To achieve our goal of developing the best model, we formulate  
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Fig. 4. A three-stage RBF modeling process of RC based algorithm.
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the modeling problem as a three stage process shown in Fig. 4. 
In Stage 1 the RC algorithm selects m  for a given σ  and a 
specified value of .δ  For the selected ),( σm  pair, the 
centers are determined in Stage 2. This completes the design of 
the hidden layer, i.e., the nonlinear part of the RBF model. 
Finally, in Stage 3, for the selected nonlinear parameters, the 
linear parameters are determined by the least squares method. 

As mentioned above, the mathematical basis for the RC  
algorithm is discussed in [9]. Here we provide a brief conceptual 
description of the underlying theory. First, in Stage 1 of Fig. 4, 
we ask the following question. For given granularity ,σ  how 
many basis functions can cover the input space adequately 
when we know that 100 % coverage can be provided only by 
all the n  inputs? To answer this, we introduce the term 
representational capability )(δ  which is defined relative to 
the entire input space spanned by the data .x  We find that, 
with m  much smaller than ,n  we can provide a very high 
level of representation. For example, in Section VI, we will see 
that 13=m  provides 99 % %)1( =δ  representation of the 
input space based on .152=n  

The next question, posed in Stage 2 of Fig. 4 is, “Which m  
of the n  input vectors should be used to provide the best 
design?” The answer is to choose those m  vectors that are the 
farthest from other, leading to a model having the maximal 
representational capability with m  basis functions. In addition, 
the centers selected in this way provide structural stabilization, 
another important property of a good model. 

2. RC Algorithm 

The specific steps leading to the three stage model 
development process of Fig. 4 are summarized in the following. 
The mathematical details can be found in [9].  

RC Algorithm 

Step 1: Select a range of values for width σ  and a value for 
the RC measure .δ  Heuristically we take 

20 d≤≤ σ  where d is the number of input 
variables. Also, δ is usually taken to be 0.1 % to 
1.0 %. 

Step 2: Determine a value of m that satisfies the δ  criterion. 
This step involves singular value decomposition of 
the interpolation matrix computed from the )( dn×  
input data matrix. 

Step 3: Determine the centers of the m basis functions such 
that these centers could maximize structural stability 
provided by the selected model complexity, m. This 
step involves the use of QR factorization. 

Step 4: Compute weights using the pseudo inverse and esti-
mate output values. 
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Fig. 5. Training data and the true function.

 

V. AN ILLUSTRATIVE EXAMPLE 

In this section we illustrate the RC algorithm by constructing 
an RBF model from simulated data for a sine function with an 
error term (ε ) added to it [10]: 

ε+= )sin(xy  

We generate 100 data points from the above function by 
taking x  in ]2,0[ π  and ε  to be a Gaussian distribution 
with mean zero and standard deviation 0.5. The x  values are 
selected as the start points of 100 equal intervals in ]2,0[ π  so 
that .100,,2,1),(2 100

1 K== − ix i
i π  The 100 simulated data 

points 100
1)},{( == iii yxD  along with the superimposed true 

curve are shown in Fig 5. Due to the high variance chosen here 
for the error term, the simulated iy ’s exhibit considerable 
deviation from the true function )sin(x .  

For preprocessing, ix  and iy  are transformed to lie in the 
interval [0, 1]. We do so by subtracting the smallest ix  value from 

ix ’s and the smallest iy  value from iy ’s and then dividing the 
resulting values by the ranges of x  and ,y  respectively. 
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1. Parameter Determination by RC Algorithm 

Step 1: selection of σ and δ  
Since ,2d =  we take 210 ≤≤ σ  and .0.11.0 ≤≤ δ  

Step 2: determination of m  
To determine ,m  we first compute an interpolation matrix 

for each σ  and perform its singular value decomposition 
(SVD). This yields a diagonal matrix of decreasing singular 
values .021 ≥≥≥≥ nsss L  From these, we determine m  
from the following: 

},
100

;{max 11
1

δ×≤= +
<≤

ssim i
ni

 

where (100-δ )% is the chosen RC criterion. Thus, we get one 
m value for each chosen ,σ  i.e., we get ),( mσ  pairs. 

For the example data, since the number of input data points 
is 100 and there is only one input variable ix  for each input, 
the 100100×  interpolation matrix G is constructed by 
substituting the input points ix ’s )100,,1( L=i  in the 
following: 

.
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  (7) 
If we use ,4.0=σ  the interpolation matrix becomes 

.

0000.19997.00468.00439.0
9997.00000.10498.00468.0
9987.09997.00529.00498.0

0563.00598.09971.09949.0
0529.00563.09987.09971.0
0498.00529.09997.09987.0
0468.00498.00000.19997.0
0439.00468.09997.00000.1
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 Table 2. Values of ( ,σ m) pairs for %01.0=δ  .

RBF σ m

I 0.2 9

II 0.3 7

III 0.4 5

IV 0.5 5

V 0.6 4

VI 0.7 4

 
For our design, suppose we use %.01.0=δ  Then, for each 
,σ  we compute G as above and the SVD of G yields the 

matrix of singular values from which the value of m is obtained. 
For illustration, we choose six values of width, 

).7.0:1.0:2.0(=σ  The resulting m values for each σ  are 
given in Table 2. 
Step 3: determination of µ  

As pointed out earlier, the QR decomposition with column 
pivoting is used to determine the m centers for each of the 

),( mσ  combinations obtained above [11]. The set of basis 
function centers determined by this method for the six ),( mσ  
pairs is shown in Table 3. From a visual inspection of these 
values, we note that in each case the selected basis function 
centers seem to provide a good coverage of the normalized 
input domain of x. In other words, the centers selected cover 
the input range [0, 1] illustrating one of the strong 
mathematical properties of our methodology.  

The design matrix is next obtained by extracting from the 
interpolation matrix G the columns with centers in Table 3. 
Thus, for the case of 4.0=σ  and ,5=m  the five columns 
that correspond to the five centers 0, 0.2020, 0.5051, 0.8081, 
and 1.0 in Table 3 would constitute the 5100×  design matrix. 
These columns are in the interpolation matrix of (8) but are not 
explicitly shown here. 

Table 3. Listing of basis function centers.

( ,σ  m) centers
RBF σ M 1µ 2µ 3µ 4µ 5µ 6µ 7µ 8µ 9µ

I 0.2 9 0.0 1.0 0.9192 0.0808 0.2121 0.7879 0.6465 0.3535 0.5051

II 0.3 7 0.0 1.0 0.8990 0.1111 0.2929 0.7071 0.5051

III 0.4 5 0.0 1.0 0.8081 0.2020 0.5051

IV 0.5 5 0.0 1.0 0.8182 0.1919 0.5051

V 0.6 4 0.0 1.0 0.7172 0.3030

VI 0.7 4 0.0 1.0 0.7273 0.2929
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Table 4. Listing of weights for the six models.

( ,σ  m) Weights
RBF σ m 1w 2w 3w 4w 5w 6w 7w 8w 9w

I 0.2 9 2.75 11.68 −20.69 −5.48 6.92 18.34 −14.55 −7.44 10.61

II 0.3 7 22.73 28.74 −53.41 −47.96 52.30 52.99 −52.59

III 0.4 5 −3.81 0.32 1.13 6.44 −3.61

IV 0.5 5 −14.19 −1.97 8.55 24.52 −16.95

V 0.6 4 −11.21 12.70 −23.49 22.67

VI 0.7 4 −26.59 29.39 −55.29 53.08

Step 4: computation of w  and estimation of y  
Once the design matrix has been determined, we can compute 

the m  weights of the connections to the output unit by the 
pseudo inverse method. Specifically, for the design matrix ,Φ  
the weights are given as  

.yw +=Φ  (9) 

Here +Φ  denotes the pseudo inverse of Φ  and y is the 
observed output vector. For our example, w  is 1×m , Φ  
is m×100  and y is 1100× . The m  weights for each of 
the six models are given in Table 4.  
At this point, each of the RBF model is completely defined 

in the sense that all the parameters )w,,,( σµmP =  have 
been determined. Next, we use these models to compute the 
corresponding output ŷ ’s by using (6). The required values of 

m,σ  and µ are given in Table 3. Thus, the fitted RBF 
model for 5=m  and 4.0=σ  (model III) can be written as 
below. Here Nx  and Ny  are normalized values of x  and 

,y  respectively. 
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 (10) 

The output ŷ  is obtained by first computing Nŷ  from 
above and then unnormalizing each value. For model III, a plot 
of the outputs ,ŷ  obtained by unnormalizing Nŷ  computed 
above, is shown as the solid line in Fig. 6. The simulated data 
and the true sine function are also shown in this figure. 
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Fig. 6. Fitted RBF model III (m = 5, σ = 0.4).
 

2. Model Selection 

A. Evaluate approximation ability 

We use mean squared error based on the training data as a 
measure to evaluate the approximation ability of the fitted 
model. A large value of this error would indicate poor ap-
proximation ability and a small value would indicate that the 
fitted model provides a good approximation of the observed or 
training data.  

In Table 5, we show training error values for the six RBF 
models. By looking at m and training error alone, we note that 
the error values decrease with increasing m. This is to be ex-
pected since a large number of basis functions would provide a 
better approximation than a smaller value. However, the pur-
pose of training is not just to minimize training error but also to 
ensure good generalization ability, which we also consider next. 
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Table 5. Training and validation errors for candidate models.

( ,σ m) combinations MSE
RBF σ m Training Validation

I 0.2 9 .2189 .2973

II 0.3 7 .2228 .2947

III 0.4 5 .2347 .2776

IV 0.5 5 .2357 .2773

V 0.6 4 .2395 .2763

VI 0.7 4 .2399 .2772

 
B. Evaluate generalization ability 

Recall that our goal is to build an RBF model of the process 
that generates the data and also provides good predictions for 
new inputs. Therefore, it is essential to evaluate the generaliza-
tion ability of the trained models. For this purpose, we generated 
a validation data set of 1000

1)},{( == k
v
k

v
kv yxD  based on the same 

sine function from which the training data set was generated. 
The generalization ability of the six RBF models developed 
above is assessed by the mean validation squared error: 

.)ˆ(
1000

1 1000

1

2∑
=

−=
k

v
k

v
kvalid yyE  

Here v
ky ’s are the simulated data in the validation set and 

v
kŷ ’s are the RBF model estimates for 1000,,2,1, K=kxv

k , 
respectively. The computed validE  values for the six models 
are shown in Table 5. This error decreases slightly from model 
VI to model V and then increases monotonically through    
models IV, III, II and I. Based on this pattern alone, it seems 
that the minimum validation error occurs for model V. 

C. Select a final model 

A common criterion for choosing a model is to consider   
training and validation errors associated with the models being 
considered. We show the plots of training and validation errors 
in the ),( mσ  plane in Fig. 7. Note that models III, IV, V and 
VI are almost identical in their performance and any of them 
would be a good choice. If we consider model complexity as 
well as MSE values, however, model V would be selected over 
the others. Thus, based on our analyses and the chosen criteria, 
we select model V with 4=m  and ,6.0=σ  as the trained 
RBF model for this data set.  

Note that the model selected here represents a balance 
between the bias and variance properties, discussed in Section 
II-2. More specifically, the above model selection process tries 
to find a design that is close to the “best model” in the idealized  
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Fig.7. Training and validation errors for sine models.

depiction of Fig. 3. 

VI. HEART DISEASE CLASSIFICATION 

The problem of heart disease diagnosis is to predict the seri-
ousness of the disease based on data such as age, blood pres-
sure and chest pain. For this purpose, we develop RBF classifiers 
using public domain data about heart patients and their diagnosis 
results from the Cleveland Clinic Foundation [12], which we 
call data set CL. The objective here is to decide whether at least 
one of four major vessels is reduced in diameter by more than 
50 %. This binary classification (output is yes or no) is made 
from personal data which consists of 35 input values for each 
patient. These include age, sex, chest pain type, blood pressure, 
etc. Preprocessing is done to handle real, integer, ordinal and 
nominal attributes. Properly each variable is then normalized to 
lie in the range 0 to 1. The details of the attribute values and 
preprocessing conventions are given in [12]. The data set CL 
consists of 303 patients. We divide it into three subsets consisting 
of 152 patients for training, 76 for validation and 75 for test. 
Note that the test set is used to evaluate the performance of a 
classifier on future data while the validation error is used for 
model selection. 

1. RBF Classifiers 

Recall that our methodology uses the following sequence of 
modeling activities. For the chosen δ and ,σ  we use training 
data to determine the smallest m that satisfies δ criterion and the 
corresponding parameters µ and w. Based on these selected pa-
rameters, the training error is calculated for the RBF model. Then 
we compute the validation error for the validation data  
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Table 6. Heart disease classification results for data set CL (δ  = 1 %).

Model σ m Training Validation

A 1.5 44 13.2 18.4

B 2.0 19 14.5 15.8

C 2.5 13 15.1 14.5

D 3.0 11 16.5 14.5

E 3.5 9 14.5 18.4

F 4.0 7 17.1 17.1

and study the error behavior in order to select the best RBF clas-
sifier. The objective is to find a classifier with a good compro-
mise between the bias and variance errors discussed in Section II. 
From a practical point of view, we expect this selection process 
depicted in Fig. 8 to yield a classifier as close as possible to the 
best model. This classifier is then employed to compute the test 
error for the test data. All errors are the percentage of 
misclassified patterns. 

The analysis and modeling results for data set CL are sum-
marized in Table 6 for %1=δ  and six values of =σ (1.5: 
0.5:4.0). The resulting six models (A to F) have a range of m  
from 7 to 44, training error varies from 13.1 to 17.1 and valida-
tion error has a range of 14.5 to 18.4. Note that the error rates 
here are not monotonic because both σ  and m  are chang-
ing simultaneously. The various training and validation errors 
as a joint function of σ  and m are shown in Fig. 8 for models 
A to F. Using minimum validation error criterion for model 
selection, we find that model C )5.2,13( == σm  is the most   
desirable model in this case. 

Table 7. Heart disease classification results for data set CL (δ = 0.5 %).

Model σ m Training Validation

A 1.5 65 9.2 18.4

B 2.0 32 12.5 17.1

C 2.5 18 13.8 11.8

D 3.0 13 15.8 15.8

E 3.5 13 14.5 15.8

F 4.0 12 14.5 15.8

Table 8. Heart disease classification results for data set CL (δ  = 0.1 %).

Model σ m Training Validation

A 1.5 105 1.3 21.1

B 2.0 70 5.9 19.7

C 2.5 47 10.5 19.7

D 3.0 32 10.5 18.4

E 3.5 23 13.8 17.1

F 4.0 19 13.8 15.8

Table 9. Heart disease classification results for data set CL.

δ (%) σ m Training Validation Test

1 2.5 13 15.1 14.5 18.7

0.5 3.5 13 14.5 15.8 18.7

0.1 4.0 19 13.8 15.8 19.7

 
Similar analyses were done for %5.0=δ  and 0.1%. The 

corresponding tabular results are shown in Tables 7 and 8,   
respectively. For the three δ  values, the selected models and 

m,σ  and errors are given in Table 9. Based on the results, the 
most appropriate RBF classifier would be ,13,5.2 == mσ  
for %,1=δ  with validation classification error of 14.5 %.  

The test errors for the models for each δ  are also shown in 
Table 9 which happens to be the same for each model. To gain 
further insight into the behavior of the three error terms 
(training, validation, test), we have also shown the test errors in 
Tables 7, 8 and 9 for %,1=δ  0.5 % and 0.1 %, respectively. 
These patterns of errors as a function of ),( mσ  provide a 
deeper understanding of the RBF classifier development and 
selection, especially when compared with the theoretical and 
ideal depictions of Section II-2 and III-2 (Figs. 1 and 3).  
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VII. CONCLUSIONS 

In this paper we presented a new approach for pattern recog-
nition problems using the radial basis function model. Our   
objective was to derive a pattern classifier with desirable bias-
variance properties systematically and efficiently. Towards this 
goal, we formulated the problem as a three-stage process. In 
the first stage the number of basis functions, for a given width, 
was determined using the representational capability criterion. 
The centers were selected from the input vectors in the second 
stage such that they provide structural stabilization, another 
property of a good classifier. The weights were obtained in the 
third stage by a pseudo inverse.  

The use of the new methodology and the RC algorithm were 
illustrated via a detailed example from simulated data. Also, 
RBF classifiers were developed for heart disease prediction 
from well known data sets from the Cleveland Clinic Foundation. 
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