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In this paper, we study the performance of subspace-
based multiuser detection techniques for multicarrier 
code-division multiple access (MC-CDMA) systems. We 
propose an improvement in the PASTd algorithm by 
cascading it with the classical Gram-Schmidt procedure to 
orthonormalize the eigenvectors after their sequential 
extraction. The tracking of signal subspace using this 
algorithm, which we call OPASTd, has a faster 
convergence as the eigenvectors are orthonormalized at 
each discrete time sample. This improved PASTd 
algorithm is then used to implement the subspace blind 
adaptive multiuser detection for MC-CDMA. We also 
show that, for multiuser detection, the complexity of the 
proposed scheme is lower than that of many other 
orthogonalization schemes found in the literature. 
Extensive simulation results are presented and discussed 
to demonstrate the performance of the proposed scheme.  
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I. Introduction 

The ever-growing demand for higher data rates and greater 
mobility has attracted a huge interest from both industry and 
academia towards the design of more sophisticated networks. 
Multicarrier code-division multiple access (MC-CDMA) is a 
particularly promising technique for higher data-rate wireless 
communication systems [1] and is a potential candidate for 
future 4G cellular networks [2]. Like direct sequence (DS)-
CDMA, however, MC-CDMA systems are inherently 
vulnerable to multiple access interference (MAI). Multiuser 
detection techniques are well known as effective measures 
against MAI. In this regard, blind adaptive detection methods 
are very attractive because they require minimal information 
processing for the detection of signal in nonstationary 
environments [3]-[5]. Wang and Poor [4] derived linear 
multiuser detectors based on signal subspace parameters and 
showed that, if computed from precisely known eigen 
components of signal subspace, the subspace MMSE detector 
converges to the ideal multiuser detector. However, since 
traditional techniques for computing eigencomponents such as 
singular value decomposition (SVD) and eigenvalue 
decomposition (EVD) incur huge computational costs, the 
subspace detector in [4] is implemented via projection 
approximation subspace tracking deflation (PASTd) [6] by 
exploiting complexity-performance tradeoff. 

Although the PAST and PASTd algorithms are 
acknowledged to be efficient in tracking the principle subspace 
with computational requirements of only O(NK) (where N is 
spreading gain of CDMA, and K is the number of users in the 
cell), the algorithms suffer from a major shortcoming of being 
relatively slow in converging to signal subspace. This is 
because PAST approximates the projection of current input 
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vector on the columns of the weight matrix in the current 
iteration with projection of the current input vector on the 
weight matrix in the previous iteration. Even though this 
approximately modified cost function helps in using the 
recursive least-square (RLS) algorithm for the iterative 
minimization of cost function, the orthonormality of the 
weight matrix columns cannot be guaranteed if the input 
vector changes quickly. Hence, the iterative minimization of 
this approximated cost function using the method of least-
squares estimate cannot always lead to convergence of the 
weight matrix into the signal subspace. In non-stationary 
environments, this approximation may trigger an oscillation 
rather than converging at all [7]. Several efforts have been 
reported in the literature to orthogonalize eigenvectors. As 
proposed in [6], any orthonormalization procedure can be 
recursively applied to the updated correlation matrix of the 
input vector, with a complexity of O(NK2). The author reports 
that this scheme leads to poor numerical properties due to bad 
conditioning of the correlation matrix, especially at low 
SNRs. In [8], the so-called improved-PASTd (I-PASTd) is 
proposed with orthonormalization carried out using a 
technique similar to Gram-Schmidt procedure, but the 
complexity of this algorithm, O(N2K), is relatively high. 
OPAST [7] and exponential window FAPI [9] (we will refer 
to it as FAPI, for the remainder of this paper) are proposed as 
efficient algorithms with very small orthonormality error and 
low linear complexity, O(NK). However, these algorithms 
cannot track the eigenvalues of the correlation matrix and 
therefore cannot be used to implement the subspace multiuser 
detection directly. Estimation of eigenvalues from 
eigenvectors increases the computational complexity up to 
O(N2K). 

In this paper, we propose the recursive application of the 
Gram-Schmidt orthonormalization procedure to the PASTd 
algorithm after each eigenvector is extracted. This results in 
orthonormalized tracking, which yields faster convergence to 
the signal subspace. The complexity of our technique is of the 
order of O(NK2).  

Throughout this paper, the symbols (∙)T and (∙)H represent 
the matrix transpose and Hermitian transpose respectively; 

{}⋅E  denotes the expectation operator; and sign(∙) represents 
the signum function. The remaining of this paper is organized 
as follows. Section II develops the signal model for MC-
CDMA system and reviews subspace-based blind linear 
multiuser detectors. Section III presents the PASTd algorithm. 
In section VI, we develop our OPASTd algorithm to track 
orthogonalized signal subspace and compare its complexity 
with the other orthonormalization schemes. Simulation 
results are presented and discussed in section V, and section 
VI concludes this paper. 

II. Signal Model  

Consider a K-user synchronous multicarrier CDMA system, 
where the k-th user’s transmitter is shown in Fig. 1. The data is 
first serial-to-parallel converted into P-substreams. The k-th 
user’s data bit in the p-th substream is denoted as ( ).k

pb t  The 
spreading code of the k-th user, 0 1 1[ , , , ] ,k k k T

k Nc c c c −= is 
multiplied with each bit in each substream, which yields the total 
number of M=PN symbols, so that the transmitted spread data  
vector at time t is given as 0 0 1 0( ) [ ( ), , ( ), ,k k k k

k Nt c b t c b t−=u  

0 1 1 1( ), , ( )]k k k k
P N Pc b t c b t− − − . The modulation of this M×1 spread 

data vector on subcarriers is carried out by multiplying it with 
an M×M IFFT matrix, F, whose (u, v)th entry is given as 

( , ) 1 exp( 2 ), 0 , 1.u v N j uv m u v Mπ= ≤ ≤ −F After the 
addition of a cyclic prefix with the duration of NCP spreading 
chips, the modulated signal, ( ) ( ),k kt t= Fs u becomes a 
transmitted signal corresponding to one OFDM symbol. The 
received signal, which is the superposition of K users’ signals, 
each passing through the Lp path channel, is given as  

, ,
1 1

( ) ( ) ( ),
pLK

k k l k k l
k l

r t A g s t tτ η
= =

= − +∑ ∑       (1) 

where Ak is the chip energy of the k-th user; gk,l and ,k lτ  are the 
complex channel gain and the propagation delay of the k-th user 
along the l-th path, respectively; and ( )tη  is the zero-mean 
complex additive white Gaussian noise process with variance 

2.δ  
Next, this signal is sampled at a rate of M+NCP samples per 

symbol time and the cyclic prefix is removed. If the timing of 
the desired user is known, then it is also known for all the 
active users in the cell under the assumption of synchronism. In 
such a case, if the length of the cyclic prefix is greater than the 
channel delay spread, then no ISI exists. However, since the 
cyclic prefix is removed with respect to the first arrived copy, 
the delayed copies of spreading waveforms still contain some 
portion of the cyclic prefix as shown in Fig. 2. Specifically, at 
the i-th sampling interval, the delayed spreading waveform of 
the k-th user from l-th channel path is 

, 1( ) [ , ,
k l

l k
k Nc i c τ− +=  

,1, , , ] ,
k l

k k k T
N Nc c c τ− where the length of channel delay ,k lτ is 

an integer multiple of a spreading chip. 
After removal of the cyclic prefix, FFT is performed on the 

M×1 sampled vector by multiplying it with the M×M FFT  
matrix F1, whose (u, v)th entry is given as 1( , )u v =F  
exp( 2 ), 0 , 1.j uv M u v Mπ− ≤ ≤ − Then, the baseband signal 
corresponding to the p-th stream is given as 

, ,
1

( ) ( ) ( ) ( ),
K

p k k p k p
k

i A i b i i
=

+∑r d n           (2) 
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Fig. 1. The k-th MC-CDMA transmitter. 
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Fig. 2. Three path channel showing signature mismatch due to
multipath delay. 
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where dk,p(i) is the N×1 vector, called the effective signature 
vector of the k-th user, whose n-th entry is given as  

1
, ,0

( )exp( 2 ), 0 1,pL l
k l k nl

n p lg c j n N
N

π−

=

+
− ≤ ≤ −∑ 0 1,p P≤ ≤ −  

such that ,
l
k nc corresponds to n-th chip of the delayed 

waveform from the l-th path, and n(t) is the FFT of AWGN 
noise samples corresponding to the i-th sampling interval. The 
channel state information can be estimated using a variety of 
subspace channel estimation techniques, such as those 
presented in [10] to [12]. In this paper, unless stated otherwise, 
we assume that the channel state information is known at the 
receiver. 

The autocorrelation matrix for the received input vector is 
given as 

2

1

{ } ,
K

H H
k k K N

k
A δ

=

= = +∑R rr d d IE          (3) 

where we have dropped the subscript p to consider any  
substream in general. Define diagonal matrix A, such that  

1 2( , , , )Kdiag A A A=A and N×K matrix D, whose K 

columns are the effective signatures of K users. The correlation 
matrix can be written as 

2 .H
Nδ= +R DAD I                (4) 

The eigenvalue decomposition of the M×N autocorrelation 
matrix, R, can be written as 

,H H
s s s n n n= +R U U U UΛ Λ           (5) 

where 1 2( , , , )s Kdiag λ λ λ=Λ contains the K largest 
eigenvalues. Their corresponding eigenvectors are the columns 
of Us, and the remaining N–K eigenvalues are all equal 
to 2δ and are diagonal entries of .nΛ  Their corresponding 
eigenvectors are columns of Un. The linear multiuser detector 
for the k-th user is any weight vector, mk, such that 

( ) [Re( ))].H
k kb i sign i= m r(             (6) 

Subspace-based linear multiuser detectors, namely MMSE 
and a decorrelating detector, were proposed in [4]. They are 
given respectively as 

2

2

( )
,

[ ( ) ]

H
k s s N s k
D H H

k s s N s k

I
I

δ
δ

Λ −
=

Λ −
U U d

m
d U U d

       (7) 

1

1 .
[ ]

H
k s s s k
M H H

k s s s k

−

−

Λ
=

Λ
U U d

m
d U U d

              (8) 

Both the decorrelating and MMSE detectors need only the 
effective signature and the timing of the desired user besides 
the signal subspace parameters. Thus, the detectors are 
completely blind. 

III. Subspace Tracking Using PASTD Algorithm 

An unconstrained cost function [6] 
2( ) { - }

tr( ) 2tr( )+tr( ),

H

H H H

J =

= −

W r WW r

R W RW W RW.W W

E
  

(9)
 

will have a stationary point W,  such that W=UsQ, where 
, ,N K K K× ×∈ ∈W QC C and N K

s
×∈U C contain K dominant 

eigenvectors of correlation matrix of received vector r. 
Furthermore, by iterative minimization of J(W) its global 
minimum, Wmin, contains K distinct dominant eigenvectors of 
correlation matrix, R. Replacing the expectation in cost 
function with an exponentially weighted sum modifies the cost 
function as 

2

1

( ( )) ( ) ( ) ( ) ( ) ,
i

i j H

j

J i i i i iβ −

=

= −∑W r W W r     (10) 

where β is the forgetting factor, defined as 0 1.β< ≤  Here, 
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the authors of [6] make an approximation that 
def( ) ( ) ( ) ( 1) ( ),H Hi i i i i= ≅ −y W r W r such that (10) becomes  

2

1

( ( )) ( ) ( ) ( ) .
i

i j

j

J i i i iβ −

=

= ∑W W yr        (11) 

This approximated exponentially weighted modified cost 
function can be solved for W(i) using the RLS algorithm, 
which results in the PAST and PASTd algorithms [6]. 

The approximation of W(i) with W(i–1) works well for 
stationary or slowly varying signals; however, for rapidly 
changing cellular CDMA environments, the weight vector 
W(i) cannot maintain the orthonormality of its columns, and 
convergence to signal subspace cannot always be guaranteed. 
To make convergence faster, some additional 
orthonormalization process is needed. 

IV. Orthonormalized Subspace Tracking Using the 
OPASTd Algorithm 

Consider the eigenvector update step of the PASTd 
algorithm (step III in Fig. 3), where each eigenvector is 
extracted under the iterations of k. After the first eigenvector is 
extracted, the extraction of the second eigenvector may be 
followed by some orthonormalization step, which confirms 
that it is orthonormal to first eigenvector and so on. Here we 
propose the use of the Gram-Schmidt orthonormalization 
procedure given as 

1
*

1

( ) ( ) ( ( ) ( )) ( ),
k

H
k k j k j

j

i i i i i
−

=

= − ∑u u u u u        (12) 

and then 
*

*

( )
( ) ,

( )
jo

k
j

i
i

i
=

u
u

u
               (13) 

where ( )o
k iu  is orthonormalized uk(i) for k=1,2,∙∙∙,K. Thus, 

after the addition of these steps, the OPASTd algorithm can be 
written as given in Fig. 3. 

A. Computational Complexity 

The complexity of the OPASTd algorithm is of the order of 
O(NK2). Table 1 gives a detailed account of the complexity of 
OPASTd for all the K iterations. We compare this complexity 
with other techniques for orthogonalized subspace tracking 
published in the literature. The OPAST algorithm [7], which is 
also a modification of PAST, guarantees the orthonormality of 
eigenvectors with complexity of the order of O(NK), but it 
cannot track the eigenvalues because the diagonal matrix that 
contains eigenvalues in PASTd is replaced by a matrix 

x1(i)=r(i) 
for  k=1:K 

( ) ( 1) ( )H
k k ky i i i= −u x                        

2( ) ( 1) ( )H
k k ki i y iλ βλ= − +                    

( )( ) ( 1) ( ( ) (1 ) ( ))
( )

H
k

k k k k k
k

y ii i i i y i
iλ

⎛ ⎞
= − + − − ⎜ ⎟⎜ ⎟

⎝ ⎠
u u x u  

sum = 0 
if k≥2 

for j=1:k-1 
sum sum ( ( ) ( )) ( )H

j k ji i i= + u u u           
end for 

end if 
* ( ) ( ) sumk ki i= −u u  

*

*

( )( )
( )

o k
k

k

ii
i

=
uu
u
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 Fig 3. OPASTd algorithm. 

 

Table 1. Stepwise complexity of OPASTd. 

Step (in Fig. 3) Multiplications Additions 

I NK (N–1) K 

II 2K K 

III K(N+1) 2KN 

IV (for all k) NK2–NK 2 ( 1)
2

K KNK NK −
− −  

V 0 NK 

VI (N+1)K (N–1)K 

VII K K 

Total NK2+2NK–6K 2 ( 1)4
2

K KNK NK −
+ −

Table 2. Comparison of complexity for subspace multiuser detection.

Detector Multiplications Additions 

OPASTd NK2+2NK–6K 2 ( 1)4
2

K KNK NK −
+ −

Kalman 4N2–3N 4N2–3N 

OPAST N2K+6NK+4N+4K2+5K+11 N2K+6NK+2K–11 

FAPI N2K+5NK+2N+6K2+11K+14 N2K+5NK+N+4K2+4K

 

 
1( ( 1) ( ) ( 1)) .i i i −− −U R U  Subspace multiuser detection also 

needs K largest distinct eigenvalues. Therefore, to compute the 
eigenvalues from eigenvectors, if we use the Rayleigh quotient 
given in [13], 
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( ) ( ) ( )
( ) ,

( ) ( )

H
k k

k H
k k

i i i
i

i i
λ =

u R u
u u

            (14) 

we also need to keep an updated correlation matrix of the 
received vector by 

( ) ( 1) ( ) ( ).Hi i i iβ= − +R R r r            (15) 

The exact same situation occurs for the FAPI algorithm [9] 
when it is used for subspace multiuser detection. This 
additional labor to compute eigenvalues from the eigenvectors 
has a cost of N2K+2NK multiplications and N2K+2NK 
additions. Thus, the total complexity of the OPAST and FAPI 
algorithms for subspace multiuser detection becomes of the 
order of O(N2K). Moreover, the well known Kalman-filter-
based blind adaptive multiuser detection [5] has a complexity 
of 4N2–3N additions and 4N2–3N multiplications. Table 2 
summarizes the computational complexity comparison of the 
algorithms. For all practical values of N and K, the OPASTd 
algorithm is the least complex. The complexity of OPASTd is 
lower than that of OPAST and FAPI in general, and in some 
cases, such as low cell loading (K<10), it is lower than that of a 
full rank Kalman filter. 

V. Simulation Results 

In all simulation examples, unless stated otherwise, the 
following system parameters are used. We consider a 
synchronous MC-CDMA cell with K=10 active users, each of 
which uses a random spreading code with a spreading gain of 
N=31. There are P=6 parallel substreams, the cyclic prefix of 
NCP=8 is used by each user, and the data of each user is BPSK 
modulated. A near-far situation with five 10 dB interferers, 
three 20 dB interferers, and one 30 dB interferer is considered. 
That is, 2 2 2 2 2 2 2

1 2 3 6 7 8 91, 10, 100,A A A A A A A= = = = = = = =  
and 2

10 1000.A =  The first user, k=1, is the desired user. The 
signal-to-noise ratio (SNR) of 20 dB is used. A single-path flat-
fading Rayleigh channel is considered. The Doppler frequency 
shift of the desired user is 120 Hz, and that for interfering users 
is generated from the uniform distribution in the interval    
[50 150] Hz. For the initialization of eigen-components, SVD 
is applied on the first 50 data vectors, as in [4]. For the OPAST 
and FAPI algorithms, the eigenvalues are computed by a 
Rayleigh quotient. A total of 1,000 data vectors are applied to 
all algorithms. The forgetting factor of 0.998β =  is used. 
Finally, the simulation results plotted in this paper do not 
include the results of the PASTd algorithm since it cannot 
converge at all for the MC-CMDA system considered here. 

Example 1: Orthogonality error. Orthogonality error [7] is  

defined as 1020 log ( ( ) ( ) ),H
s si i −U U I where ⋅ denotes the 

 

Fig. 4. Comparison of orthogonality error of the eigenvectors 
tracked by OPASTd, FAPI, and OPAST, averaged over 
100 simulation runs. 
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Frobenius norm. Figure 4 plots the orthogonality error 
comparison of OPASTd, PAST, and FAPI subspace tracking 
schemes in decibel units. As seen in Fig. 4, OPASTd achieves 
its steady state orthonormality error in around 20 iterations. 
This is because of sequential application of Gram-Schmidt 
procedure ensures the orthonormality of eigenvectors at each 
discrete time instant. 

Example 2: Similarity. The practical best result of a 
subspace blind adaptive detector would be obtained when the 
eigen-components are precisely known, such as those obtained 
by EVD of the correlation matrix of the received vector 
updated at each time sample. We refer to this detector as the 
ideal subspace detector. Since the subspace multiuser detector 
is indeed a unique weight vector for a certain received vector, 
we can compare the similarity of the subspace detector 
computed by tracking the subspace components (by OPASTd, 
OPAST, and FAPI) with the ideal detector. The similarity of 
any vector (subspace detector, ms(i)), with some other vector 
(ideal detector, m(i)), can be defined as given in [14] as 

( ) ( )
( ) .

( ) ( ) ( ) ( )

H
S

H H
S S

i i
Similarity i

i i i i
=

m m

m m m m
    (16) 

Figure 5 shows the similarity comparison of three detectors 
for 1,000 iterations plotted as the average of 100 Monte Carlo 
simulation runs. As seen in Fig. 5, the OPASTd-based 
subspace detector tends toward the ideal detector faster than 
detectors with the OPAST and FAPI algorithms. 

Example 3: SNIR comparison. In this example, we analyze 
the interference suppression capability by comparing the output 
SINR of the OPASTd-based subspace multiuser detector with 
the Kalman filter blind adaptive multiuser detector [5] and the 
subspace Kalman filter [15] as shown in Fig. 6. The results 
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Fig. 5. Comparison of rate of convergence of OPASTd, OPAST,
and FAPI towards the ideal detector. 
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Fig. 6. Comparison of SINR for OPAST, subspace Kalman filter, 
and full rank Kalman filter.
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plotted in the Fig. 6 are averages of over 500 simulation runs. 
In the mature state, the SINR of OPASTd is slightly better than 
tht of both Kalman algorithms, while the subspace Kalman 
algorithm converges more quickly at the beginning of iterations. 

Example 4: BER performance. Figure 7 shows the bit error 
rate against the SNR of the subspace Kalman filter and full 
rank Kalman filter as well as the OPASTd-, OPAST-, and 
FAPI-based detectors. 

The SNR is varied from 0 dB to 20 dB, and the plotted 
results are averages of over 100 simulation runs. A total of 
100,000 bits are applied to all algorithms at each SNR value. In 
general, the performance of the subspace and full rank Kalman 
detectors is better than any other subspace detector at low 
SNRs. However, as the SNR values increase, the other 
subspace methods outperform the Kalman filter methods. 

Example 5: BER versus number of iterations. This 
simulation example is designed to give an insight into the BER 
performance of the detectors at all individual iterations towards 

 

Fig. 7. Bit error rate comparison for various SNR values. 
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Fig. 8. Instantaneous BER performance of various multiuser 

detectors. 
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its convergence which is not revealed by example 5. The signal 
to noise ratio of 20 dB was used. The curves plotted in Fig. 9 
are averages of over 500 simulation runs. Figure 8 can be 
interpreted to indicate that the steeper the decay rate of the 
curve of a detector, the lower the chance is of errors occurring 
towards the convergence. A relatively straight horizontal curve 
would mean that occurrence of error is equally probable at all 
iterations. 

Example 6: Sensitivity to channel estimation errors. In this 
simulation example, perfect channel state information is not 
available at the receiver; rather, it is estimated with certain  

channel estimation error (CEE), given by 2 2ˆ / ,CEE g g g= −   

where g is the actual channel gain, and ĝ is its estimated value. 
At each value of CEE, a total of 100,000 bits are transmitted. 
The performance criterion is BER versus CEE. Figure 9 shows 
the robustness of different multi-user detection (MUD) 
techniques against channel estimation errors. Both Kalman 
methods are more robust against channel estimation errors than  
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 Fig. 9. BER performance of various MUD techniques with
respect to applied channel estimation errors. 
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other methods. 

Example 7: Sensitivity to nonstationarity of channel. In this 
simulation example, the MUD algorithms are tested in non-
stationary channels. The amount of channel variation is 
measured in maximum normalized Doppler frequency, defined 
as the product of (OFDM) symbol time and Doppler frequency 
shift [16]. Using P=6 parallel MC-CDMA substreams, a 
spreading gain of N=31, and the number of cyclic prefix chips 
of NCP=8, each OFDM symbol contains 6×(31+8)=234 chips. 
Considering a data rate of 1 Mbps, we get a chip rate of 31 
Mcps. Then the duration of one OFDM symbol becomes  
234 chips/31 Mcps=7.55 µs. The carrier frequency of 1,800 
MHz is used, and the Doppler frequency of the desired user is 
varied from 50 Hz to 150 Hz (approximate ground speed of 8 
to 25 m/s). At each value of the maximum normalized Doppler 
frequency, a total of 100,000 bits are transmitted. Figure 10 
shows the results of this simulation. 

VI. Conclusion 

In this paper, we studied the performance of subspace 
multiuser detection using subspace tracking. We proposed a new 
subspace tracking scheme based on cascading the PASTd 
algorithm with the classical Gram-Schmidt procedure. We 
demonstrated that for multiuser detection applications, the Gram-
Schmidt procedure OPASTd has less computational complexity, 
contrary to common belief. We demonstrated through the 
simulation results that Gram-Schmidt orthonormalization 
practically leaves no space for orthonormality error and leads to 
faster convergence towards the ideal subspace detector. Through 
various simulation results for MC-CDMA, we have shown that 
the performance of the OPASTd detector is superior to other 
subspace tracking schemes and the well known Kalman filter 
algorithm. We also found that the OPASTd subspace detector 

 

Fig. 10. BER performance of various MUD techniques with respect 
to applied maximum normalized Doppler frequency. 
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has lower performance than the Kalman filter at low SNRs; 
however, for more common SNR values around 15 dB, the 
OPASTd detector outperforms the Kalman filter, too. 
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