
463Xth EMOP, August 2008
Parasite, 2008, 15, 463-468

SPATIAL AND TEMPORAL MODELLING
FOR PARASITE TRANSMISSION STUDIES AND RISK ASSESSMENT

DANSON F.M.*, ARMITAGE R.P.* & MARSTON C.G.*

Summary: 

Spatial and temporal modelling of parasite transmission and risk
assessment require relevant spatial information at appropriate
spatial and temporal scales. There is now a large literature that
demonstrates the utility of satellite remote sensing and spatial
modelling within geographical information systems (GIS) and firmly
establishes these technologies as the key tools for spatial
epidemiology. This review outlines the strength of satellite remotely
sensed data for spatial mapping of landscape characteristics in
relation to disease reservoirs, host distributions and human
disease. It is suggested that current satellite technology can fulfill
the spatial mapping needs of disease transmission and risk
modelling, but that temporal resolution, which is a function of the
satellite data acquisition characteristics, may be a limitating factor
for applications requiring information about landscape or
ecosystem dynamics. The potential of the Modis sensor for spatial
epidemiology is illustrated with reference to mapping spatial and
temporal vegetation dynamics and small mammal parasite hosts
on the Tibetan plateau. Future research directions and priorities for
landscape epidemiology are considered.
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miology’, first coined by Pavlovsky (1966), indicates the
importance that the composition and physical charac-
teristics of the landscape may play in determining trans-
mission and risk. Landscape epidemiology requires data
to develop and test models of transmission risk and these
data are often now derived from satellite remote sen-
sing. Herbreteau et al. (2006) found 86 research articles
using remote sensing data for spatial epidemiological stu-
dies of human infectious disease, published between
1975 and 2004, and found that 73 % of studies related
to parasitic diseases, including those transmitted by
mosquitoes or ticks. When Lyme disease, Rift valley fever
and Hantavirus Pulmonary syndrome were included this
proportion increased to 88 %. Most of these studies used
NOAA Advanced Very High Resolution Radiometer
(AVHRR) or Landsat data and the spatial variable
mapped was either the Normalized Difference Vegeta-
tion Index (NDVI), or land cover or land use. The aim
of this review to provide an overview of recent deve-
lopments in spatial and temporal modeling of parasite
vector distribution and disease incidence, with a focus
on spatial and temporal information that may be extra-
cted from remotely sensed data to provide landscape
information to drive landscape epidemiology models.

REMOTE SENSING AND LANDSCAPE
EPIDEMIOLOGY

Comprehensive reviews of the use of remote sen-
sing and geographical information systems (GIS)
for epidemiological applications are provided in

Thomson & Connor (2000), Hay et al. (2000), Curran
et al. (1998) and Ostfeld et al. (2005). Ostfeld et al.
(2005) usefully sub-divided examples of spatial epide-
miology using remote sensing into those which attemp-
ted to map vector distributions, those that mapped
pathogen reservoirs, and those that mapped human
cases. Furthermore they identified local, regional and
continental scales of study, all making use of data from
satellite imagery.
The two approaches used for mapping disease trans-
mission are correlation of host distributions with cli-

It is widely acknowledged that the processes deter-
mining the transmission risk of parasites between
vectors and host populations operate at a range of

spatial and temporal scales. Many of the pertinent fea-
tures of transmission studies are captured by the term
‘spatial epidemiology’ which aims to determine the spa-
tial nature of the factors that drive disease incidence,
prevalence or risk. Spatial epidemiology builds on the
fundamental principle that transmission risk will, in
general terms, decrease with distance from an infected
host (Ostfeld et al., 2005). For example, the distance
of villages from mosquito breeding grounds have been
shown to affect local scale malaria prevalence (Thom-
son et al., 1999) and the proximity to forest and pas-
ture land cover is a risk factor for visceral leishmaniasis
(Werneck et al., 2002).
The spatial epidemiology of many zoonoses shows
close links between human populations, vector distri-
butions and landscape, and the term ‘landscape epide-
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matic data, or correlations with landscape. At regional
scales correlation with climatic data from the AVHRR
sensor have been successfully used to predict the spa-
tial distribution of tsetse, African trypanosomiasis and
malaria (Rogers, 2000; Hay et al., 1998). Such models
depend on limiting environmental factors determining
the survival of pathogens, although these limits may
not be known a priori. In contrast, local to regional
studies classify habitat areas for disease vectors, such
as the mosquito (Anopheles sp.), which provides a
transmission pathway for malaria (Wood et al., 1992)
and tsetse flies (Glossina sp.), which are linked to try-
panosomiasis (Kitron et al., 1996; Rogers, 2000). Land-
scape-related methods have also been used to map
encephalitis (Randolph, 2000), tick habitats in relation
to Lyme disease (Nicholson & Mather, 1996) and den-
gue transmission risk maps (Carbajo et al., 2001). Loa loa
(Cobbold, 1864) habitats have been mapped to explore
the epidemiology of eye-worm river blindness – oncho-
cerciasis (Thomson et al., 2000). Spatial models for snail
vector-borne diseases of human fasciolosis transmission
in the Andes have used satellite-derived vegetation indi-
ces (Fuentes et al., 2001) in addition to spatial models
of schistosomiasis distribution in sub-Saharan Africa
(Brooker, 2002).

SATELLITE IMAGERY FOR LANDSCAPE
EPIDEMIOLOGY

The primary source of landscape maps for epi-
demiology to date has been data from the Mul-
tispectral Scanning System and Thematic Mapper

instruments on board the Landsat series of satellites.
Landsat 1 was launched in 1972, and was followed by
a series of similar satellites with the most recent, Land-
sat 7, carrying the Enhanced Thematic Mapper instru-
ment, launched in 1999. A unique and important fea-
ture of data from the Landsat system is the 35 year
global archive of spatially consistent data at resolutions
of either 80 m (Landsat 1-3) or 30 m (Landsat 4, 5, 7).
This data set represents the only globally comprehen-
sive (apart from the poles) record of land surface chan-
ges over the past 35 years and represents an irrepla-
ceable resource for epidemiology where changes in
land cover or land use in the past are important. The
characteristics of the Landsat ETM sensor that make it
particularly suitable for landscape epidemiology are
wide area coverage (185 × 185 km), medium spatial
resolution (15-30 m), wide spectral coverage (visible,
shortwave infrared and thermal infrared wavelengths)
and repeat coverage (16 days). In fact in general it is
the spatial, temporal and spectral characteristics of
satellite sensors that together determine their usefulness
for a particular application. Spatial resolution repre-
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Fig. 1. – Relationship between image spatial resolution and satellite
imaging revisit period for selected sensors relevant to spatial epi-
demiology. Superscripts indicate image swath width and arrows show
range of satellite imaging revisit period using sensor off-nadir poin-
ting capability.

sents, in general terms, the amount of spatial detail that
may be extracted from an image, and it may be argued
that for epidemiological modeling the spatial resolu-
tion of remotely sensed data is no longer a limiting
factor since data may be obtained for any part of the
world at spatial resolution between 60 cm and 1.1 km.
Temporal resolution describes the minimum time inter-
val between regularly imaging the same point on the
Earth’s surface. Some satellite sensors, like the Landsat
ETM have a fixed view angle so that the satellite repeat
cycle is the same as the satellite imaging revisit time.
Other sensors, like SPOT HRVIR and Ikonos have an
off-nadir viewing capability that means that they may
be programmed to point to locations to the side, front,
or behind the sub-satellite position. This means that
the satellite imaging revisit time may be increased for
a given point on the Earth but, by virtue of this fact,
the revisit times for other locations that may be imaged
from the same point are decreased. Latitude also
controls satellite imaging revisit time since the overlap
of image swaths increases with latitude, with minimum
overlap and longest revisit time at the equator. There
is widespread misunderstanding of the nature of satel-
lite imaging revisit time for the new generation of very
fine spatial resolution sensors. The Ikonos sensor, for
example has a nominal satellite repeat cycle of 140 days,
but exploiting the pointing capability of the instrument
the satellite imaging revisit time may be increased to
3-4 days. Crucially, imagery are only recorded when
there is user demand so that there is no regular repea-
ted coverage for any part of the Earth’s surface.
There is a trade-off between spatial and temporal reso-
lution of satellite data (Fig. 1) with finer spatial reso-
lution data available less frequently than coarser spa-
tial resolution data. The importance of these concepts
for disease transmission studies depends on the fre-



quency with which spatial information on landscape
properties is required. Transmission models based on
land cover change may require data every few years;
studies requiring data on the seasonal dynamics of land-
scape may require data on a monthly basis, or more
frequently if the study area is frequently cloud covered.
The relevant spectral characteristics of remotely sensed
data are the number of spectral wavebands measured
and the spectral dispersion and width of individual
wavebands. Larger numbers of wavebands potentially
allow better discrimination of objects on the Earth’s sur-
face, based on their spectral reflectance “signature”.
Most satellite based remote sensing systems collect data
in less than ten wavebands, although a few now pro-
vide data in 30 or more wavebands. The review of Ost-
feld et al. (2005) indicates that most landscape epide-
miology studies using remotely sensed data use simple
image classification or vegetation indices to build empi-
rical transmission models. The full range of spectral
information in remotely sensed imagery is rarely used.
A new generation of medium spatial resolution satel-
lite sensors, notably Terra and Aqua Modis, and ERS
Meris, now provide high temporal resolution in a
larger number of wavebands than the Landsat sensors
(Tatem et al., 2004; Gobron et al., 1999). In addition
to more spectral information the wide swath width of
these sensors means that the satellite imaging revisit
time is significantly greater, with Modis imaging areas on
a daily basis, with a spatial resolution of 250 m, north
and south of 30 degree latitude. The implications for
landscape epidemiology is that, for the first time, local
to regional scale landscape information may be acqui-
red frequently enough to study seasonal changes in
vegetation characteristics which may in turn be related
to vector or host population dynamics
A further advantage of the Modis sensor in particular
is the range of higher level data products that are
derived from the data and made freely available to the
scientific community. It is now possible for users to
download atmospherically, radiometrically and geome-
trically corrected reflectance data and a range of deri-
ved products like vegetation index images, leaf area
index images or land cover maps. In this way resear-
chers may choose to directly use these products in
landscape epidemiology investigations without a detai-
led knowledge of the algorithms used to derive the
products.

MODELLING APPROACHES

The most common approach to build transmis-
sion and risk models is to measure the spatial
distribution of vectors, pathogen reservoirs or

human cases and relate these distributions to a range
of environmental variables that are hypothesized to

cause the observed spatial distributions. Where land-
scape factors are thought to be relevant it is most com-
monly land cover maps, derived from remotely sensed
data, that are used as the explanatory independent varia-
ble. Land cover maps may be used to directly define
the spatial distribution of vectors or reservoirs, or in
the case of human disease, landscape may be used as
a proxy for the location of vectors or pathogen reser-
voirs to determine spatial relationships with infected
individuals or disease foci. Most landscape epidemio-
logy applications use statistical methods to search for
relationships between vectors, reservoirs or human cases
and given the binary nature of the observations (pre-
sence or absence) logistic regression methods are
widely applied. Such methods may be used to explore
the explanatory power of different environmental varia-
bles in order to develop robust statistical models which
may be spatially extrapolated to new areas, based on
measuring the same environmental variables. The key
limitation of this approach to build parasite transmis-
sion models is that risk is likely to more closely related
to parasite abundance than the presence or absence
of a host. Furthermore, statistical models do not neces-
sarily provide ecological insights into the transmission
mechanisms at work and of the 29 papers cited by Ost-
feld et al. (2005) which used spatial data to predict
disease, thirteen were found not to identify the disease
transmission mechanism.
Most studies using land cover maps for transmission
and risk mapping employ pixel-based classification
where each pixel is uniquely assigned to one land
cover class. A development of this approach is to
derive landscape metrics from the pixel-based classi-
fication data in order to better describe the spatial com-
position and arrangement of landscape elements (Gra-
ham et al., 2004a). This approach provides a potentially
richer description of the vector or host habitats, but
the results of statistical models based on correlations
with landscape metrics are complex, and ecological
interpretation often very difficult. A further alternative
is to employ a range of “soft-classification” techniques
where each pixel has a probability of membership to
each of the classes defined. Such approaches may find
application in landscape epidemiology models in the
future, but they are most likely to be successful when
underpinned by good ecological understanding of the
transmission mechanisms.
Statistically-based transmission and risk models must
also account for spatial autocorrelation and stationa-
rity in the dependent variable (host or disease data).
Autocorrelation occurs because observations that are
close in space are more likely to be similar than those
that are further apart (Legendre, 1993; Graham et al.,
2004b; Osborne et al., 2007). When spatial autocorre-
lation is present and unaccounted for in the data, esti-
mates of model fits may be optimistic, although it is

PARASITE TRANSMISSION AND RISK ASSESSMENT

465Xth EMOP, August 2008
Parasite, 2008, 15, 463-468



currently very difficult to account for spatial autocor-
relation when building such models. Stationarity refers
to variation in the modelled relationships over space
and may be problematic if locally derived models are
extrapolated beyond the area where they were deve-
loped. Ideally spatial autocorrelation will be accounted
for through optimal sampling of host or infected
humans. However the widely observed overdispersion
of parasites in a few hosts, and spatial clusters of human
disease, may be expected to lead to spatial autocorrela-
tion in such data. It appears to be a paradox of spa-
tial epidemiology that transmission risk decreases with
distance from an infected host, but in spatial sampling
of infected hosts, samples that are closer together will
be spatially autocorrelated.
A range of alternative modelling techniques are now
being developed to determine relationships between
wildlife distribution and environmental data including
geographically weighted regression, variable coeffi-
cient modelling, multiple criteria evaluation (MCE) and
Dempster-Shafer (D-S) analysis, a variant of Bayesian
analysis (Brunsdon et al., 1998; Hastie & Tibshirani,
2005; Osborne et al., 2007). Some of these methods may
be used to develop spatial model of disease transmis-
sion but have yet to be tested in this context.
True spatial-temporal modelling of vectors, hosts or
human disease is rare for most zoonoses. The main
obstacle to the development of spatio-temporal trans-
mission models to date has been a lack of data on the
temporal dynamics of hosts, reservoirs and disease,
coupled with a lack of local scale environmental data
at appropriate temporal resolution. The development
of medium resolution sensors like Modis may lead to
the development of more local scale spatial-temporal
transmission models but to date there has been little
progress. The importance of understanding the rela-
tionships between climate change and disease trans-
mission at both local and regional scales points to the
need to develop such methods. The following section
presents some early results of our work relating spa-
tial-temporal landscape dynamics at local scale to the
distribution of rodent hosts for a zoonotic parasite.

SPATIAL AND TEMPORAL CHARACTERIZATION
OF LANDSCAPE FOR EPIDEMIOLOGY

The fox tapeworm Echinococcus multilocularis
(Em) has a wildlife cycle involving a definitive
canid host (fox, dog, wolf) and a small mammal

intermediate host. Several regions in central and wes-
tern China have been identified as important foci for
the human disease alveolar echinococcus, caused by
infection with the larval stage of the Em tapeworm (Craig
et al., 2000; Graham et al., 2005). Research efforts in

the landscape epidemiology of Em transmission have
successfully related human AE prevalence to landscape
around villages in south Gansu Province (Danson et
al., 2004) and are now focusing on relating small
mammal distributions to landscape characteristics in ende-
mic areas in Serxu County, western Sichuan, China.
Here, rodent transects 35 km in length and covering
a range of landscape types were surveyed in summer
2001, with presence or absence of three species or
groups of rodents recorded at 10 m intervals (3,485 tran-
sect points). Visual sightings of rodents, presence of
rodent faeces or rodent holes were used to determine
rodent presence. These rodent groups were Ochotona
curzoniae or black-lipped pika (OC), Ochotona cansus
or gansu pika (OA), and a group of smaller rodents
including Arvicola terrestris and Microtus arvalis (SM).
Shuttle Radar Topography Mission Digital Elevation
Model data was acquired to derive topographical varia-
bles such as altitude, slope and aspect for all transect
points. 138 Modis 16-day composite vegetation index
data at 250 m spatial resolution were acquired for the
period 6th April 2000 to 24th May 2006. The rodent
index data were related to a range of environmental
variables using the time-series Modis data using a gene-
ralised additive model
These images were stacked in acquisition date order
enabling for any location within the extent of the
Modis image a temporal signature of vegetation sea-
sonal growth and senescence cycle to be acquired. As
the Modis 16-day composite periods are the same for
each year of image collection, a median value of the
composite images for each composite period was taken
and used to collapse the six years of data into a single
annual vegetation cycle profile. This profile was then
quantified in terms of maximum, minimum and mean
NDVI throughout the year, NDVI range, time of gree-
ning period and length of growing season. These
variables were then related to rodent distribution using
a Generalised Additive Model.
As the seasonal dynamics of a vegetation cycle can be
indicative of specific habitat types, modelling of these
spatio-temporal vegetation dynamics can also be useful
in the determination of the spatial distribution of the
Em transmission vector hosts that are dependent on
those specific habitats. The results of this analysis dis-
play this, with 41.4 % deviance explained when rela-
ting OC to the quantified vegetation profile, 37.6 % for
OA, and also 34.7 % deviance explained for SM which
has a different set of habitat preferences. The need for
caution is illustrated by calculating spatial dependence
in the rodent index data. The results (Fig. 2) show that
the GAM models are likely to be over optimistic esti-
mates of the explained deviance since the rodent pre-
sence/absence data show spatial dependence up to a
lag of approximately 1,000 m. This sort of information
should inform optimal sampling schemes to capture
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spatial variation in host distributions whilst avoiding the
dilemma of spatial autocorrelation. The early potential
of using time-series Modis vegetation index data shown
here would no doubt be improved with further deve-
lopment and wider application.

FUTURE PROSPECTS

This review has outlined the prospects for the
development of spatial and temporal transmis-
sion models where landscape characteristics are

hypothesized to affect the distribution of hosts, para-
sites or human cases. Some significant advances have
been made to relate regional scale climate and land
cover data to disease transmission dynamics and the
potential effects of climate change drive the need for fur-

ther developments. At local to regional scale this review
suggests that progress is being made for some zoo-
noses where the transmission mechanism are well
understood, but that these are the exception rather than
the rule. Further progress towards the development of
true spatio-temporal transmission models requires col-
laborative research involving multi-disciplinary teams
to build process based transmission models that are
accurate, robust and useful for disease mapping and
control.
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Fig. 2. – Semi-variograms showing spatial dependence in rodent dis-
tributions based on transect data over approximately 15 km in wes-
tern Sichuan: (a) Ochotona curzoniae; (b) Ochotona cansus; (c) small
mammals.
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