
ETRI Journal, Volume 31, Number 3, June 2009 © 2009 Minseok Song et al. 333

ABSTRACT⎯To match the requirements of heterogeneous
mobile devices, video objects may be transcoded, which
requires considerable CPU resources. Alternatively, multiple
versions of the same video may be stored on servers, but this
requires a lot of disk space. We formulate the trade-off between
the versions that are stored on disk and the need for
transcoding. We propose an optimal solution to this
formulation based on dynamic programming. Experiments
show that our scheme allows up to 68% more clients to be
admitted than conventional schemes when a reasonable
amount of storage is available.

Keywords⎯MPEG transcoding, video streaming, storage
management, streaming in wireless network.

I. Introduction
It has recently become possible to access video services over

the Internet at any time using devices such as personal digital
assistants (PDA), personal multimedia players (PMP), and so on
[1]-[3]. These devices have different processing capabilities,
energy budgets, display sizes, and network connectivities. To
support such heterogeneity, video content needs to be converted
to suitable forms by the conversion process of transcoding.

Conventional transcoding can be dynamic or static [2]-[4]. In
the dynamic scheme, only the highest-quality version is stored,
and lower-quality versions must be extracted online. This
approach can quickly exhaust the CPU resource due to the
computational requirements of transcoding. In the static

Manuscript received Dec. 12, 2008; revised Feb. 16, 2009; accepted Feb. 25, 2009.
This work was supported by Inha University Research Grant.
 Minseok Song (phone: + 82 32 860 7441, email: mssong@inha.ac.kr), Jeong Seop Sim

(email: jssim@inha.ac.kr), Jaedoo Go (email: goldedit@gmail.com), and Bumsun Lee (email:
mrbumm@gmail.com) are with the School of Computer and Information Engineering, Inha
University, Incheon, Rep. of Korea.

Soo Jun Park (phone: + 82 42 860 6899, email: psj@etri.re.kr) is with the IT Convergence
Technology Research Laboratory, ETRI, Daejeon, Rep. of Korea.

scheme, the server creates multiple versions at different quality
levels and stores them offline, which requires a lot of disk
space. In some works, transcoding costs are considered to
determine caching location or cache replacement [5], [6].

We propose a generalized analytical model to select the
versions of a video to be stored on disk, with the aim of
minimizing the CPU demands made by transcoding. We then
propose an optimal algorithm to select versions from those
stored on disk.

II. System Model

A server is able to transcode an original video object into
different variants, each of which is called a transcoded version.
In video transcoding, a higher bit-rate version can be
transcoded to a lower bit-rate version, but increases in bit rate
are not supported [2].

Table 1 summarizes the important symbols in the
generalized model of our system. Let us assume that each
video Vi has NR versions: the original version 1

iV and
transcoded versions 2

iV to NR
iV (1, ,).i NV= The highest

bit-rate version is 1
iV , and the lowest is .NR

iV We will assume
that the access probability of every video is known in advance.
Let k

ip be the access probability of version k
iV

(1, ,),i NV= where 1 1 1.NV NR k
ii k p

= =
=∑ ∑ Upon receiving

a client’s request, the server searches its disk to find an
appropriate version. If the requested version is stored on disk,
then it is sent to the client directly; otherwise, transcoding is
needed. If sufficient CPU resource is available, then the server
starts transcoding and sends the resulting stream to the client;
otherwise, the request is blocked. Therefore, our idea can be
easily applied to current transcoding servers because transcoding
is only needed for versions that are not stored on disk.

Balancing MPEG Transcoding with Storage in
Multiple-Quality Video-on-Demand Services

 Minseok Song, Jeong Seop Sim, Jaedoo Go, Bumsun Lee, and Soo Jun Park

334 Minseok Song et al. ETRI Journal, Volume 31, Number 3, June 2009

Table 1. Notations used to describe the system model.

Symbols Meaning

NR Number of versions of each video Vi, (i=1,…, NV)
k
ip Access probability of version k

iV

FSi Set of all feasible sets of stored versions of video Vi

FSi, j The j-th element of set FSi

,
k
i jC CPU utilization needed to make version k

iV when versions
are stored as those in set FSi, j

CUi, j ,1
()

NR k k
i i jk

p C
=

×∑

TS Total amount of storage available

SVi, j , ,1 ,i j i i jSV CU CU= −

STRi, j Total storage requirement for the versions in set FSi, j

III. Optimal Storage Management

A transcoding server can trade storage space against the
reduced CPU usage. Our analytical model expresses this trade-
off. Let FSi be the set of all feasible sets of stored versions of
video Vi. Note that the original versions of all videos must be
stored on disk. Therefore, if the number of versions is NR, then
there are 2NR-1 possible sets for FSi. Let NE be the number of
elements in set FSi, so that NE=2NR-1. Typically, mobile devices
support several fixed resolutions, so NE is not very high.

We will assume that the elements of FSi, that is, FSi, j

(1, ,),j NE= are sorted in ascending order of storage
requirement. For example, if NR=3, then 1

,1{ { },i i iFS FS V= =
1 3

,2 { , },i i iFS V V= 1 2
,3 { , },i i iFS V V= and 1 2 3

,4 { , , }}.i i i iFS V V V=
For transcoding, the server creates a task which consumes CPU
cycles periodically. The CPU utilization associated with each
task is the proportion of the CPU time allocated to the task in
each period. Let ,

k
i jC be the CPU utilization needed to make

a transcoded version ,k
iV when versions are stored as those

in set FSi, j. If version k
iV is stored on disk, then , 0;k

i jC =
otherwise, the server selects the higher bit-rate version in FSi, j
that requires the minimum CPU utilization for transcoding.

Let TS be the total amount of storage space available. Let
STRi, j denote the total storage requirement for the versions in
set FSi, j. Let CUi, j denote the average CPU utilization required
for storing the versions in set FSi, j, which can be expressed
as ,1().NR k k

i i jk p C
=

×∑ Let SVi, j denote the saving in CPU
utilization for storing the versions in set FSi, j, instead of storing
those in the original set FSi, 1, so that , ,1 , .i j i i jSV CU CU= −
Consequently, ,1 0.iSV =

Our goal is to maximize the average saving in CPU
utilization per video request under the storage constraints. Let

SEi be a selection parameter which indicates that the SEi-th
element of FSi, that is, , ,

ii SEFS is selected as the set of
versions of video Vi. We will now define this problem formally.

Definition 1. Version Selection Problem
Find SEi (1, ,)iSE NE= for every set FSi (1, ,),i NV=

which maximizes ,1 i

NV
i SEi SV

=∑ such that ,1 i

NV
i SEi STR TS

=
≤∑ .

We propose an optimal solution to the version selection
problem (VSP) called the version selection algorithm (VSA),
which uses the dynamic programming technique as shown in
Fig. 1. Note that the VSP is a variant of the multiple-choice
knapsack problem which can be solved in pseudo-polynomial
time [7].

Let , (1 ,1)v wOPT v NV w TS≤ ≤ ≤ ≤ be the maximum
CPU saving when the disk storage allowed for 1, , vV V is w.
We first set , 0, (0 ,0)v wOPT v NV w TS= ≤ ≤ ≤ ≤ for
initialization. If v>0, ORTv,w can be calculated using the
following recurrence:

,1
, 1, 1, ,{max{ , }}.max v jj NE

v w v w v w STR v jOPT OPT OPT SV
≤ ≤

− − −= +

The value of OPTNV, TS is the maximum saving in CPU
utilization when the available disk storage is TS. Then, SEi can
be calculated as follows. At each iteration, VSA stores the
index of the element that corresponds to the largest saving in
CPU utilization (line 13). Then, it finds SEi by tracing back
from OPTNV, TS (lines 19-24). It is easy to see that VSA runs in

()O NV TS NE× × time. The step size used in the second
loop (line 9) is 1 MB. If the step size increases, then the
execution time of VSA decreases.

Fig. 1. Version selection algorithm (VSA).

1: Temporary variables: w, v, j;
2: for w=0 to TS do
3: for v=0 to NV do
4: OPTv, w←0;
5: OPT_SETv, w←1;
6: end for
7: end for
8: for v=1 to NV do
9: for w=TS downto STRv,1 do
10: OPTv,w←OPTv-1,w;
11: for j=1 to NE do
12: if OPTv-1, w-STRv, j+SVv, j > OPTv-1,w then
13: OPTv, w←OPTv-1,w-STRv, j+SVv, j;
14: OPT_SETv,w←j;
15: end if
16: end for
17: end for
18: end for
19: w←TS, v←NV;
20: while v>0 do
21: SEv←OPT_SETv,w;
22: w←w-STRv,SEv;
23: v←v-1;
24: end while

ETRI Journal, Volume 31, Number 3, June 2009 Minseok Song et al. 335

IV. Experimental Results and Conclusion

To evaluate the effectiveness of our scheme, we performed
several simulations. We measured the CPU utilization needed
to transcode five MPEG sample videos to versions with
resolutions typically adopted by mobile devices, such as
QVGA, CIF, and so on. We then simulated a system offering
1,000 videos by storing the original version of each sample
video 200 times. The minimum storage for these 1,000 videos
is 428 GB, and NR is taken to be 5. The arrival of client
requests follows a Poisson distribution with a mean inter-
arrival time of 3 seconds. The access probability follows a Zipf
distribution in which 0.271.α =

To evaluate the VSA scheme, we compare it with four other
methods: OBS, PBS, VBS, and RBS. The OBS method only
stores the original versions of the videos; the PBS method stores
every transcoded version of the most popular video, the next
most popular, and so on; the VBS method stores the highest bit-
rate transcoded version of the most popular video and then that
of the next most popular, and so on; while the RBS method
chooses a version of a video at random and stores it on disk.

Figure 2 shows how the admission ratio depends on the total
amount of storage space, TS, when the access probability is the
same for all versions of a video. The VSA scheme admits
between 26% and 50% more clients than OBS, between 5%
and 6% more than PBS, between 14% and 20% more than
VBS, and between 12% and 14% more than RBS.

Figure 3 shows how the distribution of requests for different
versions affects the admission ratio when TS=800 GB. For this
purpose, we define the following three situations:

• HRM: the highest-resolution versions are most popular
(i∀ , 1 2 3 4 50.6, 0.1i i i i i i ip p p p p p p= × = = = = ×).

• MRM: the medium-resolution versions are most popular
(i∀ , 3 1 2 4 50.6, 0.1i i i i i i ip p p p p p p= × = = = = ×).

• LRM: the lowest-resolution versions are most popular
(i∀ , 5 1 2 3 40.6, 0.1i i i i i i ip p p p p p p= × = = = = ×).

The VSA scheme admits between 22% and 68% more clients
than OBS, between 3% and 26% more than PBS, between
10% and 51% more than VBS, and between 6% and 34%
more than RBS. Note that all the schemes except VSA perform
worst in the MRM situation. This is because it takes more CPU
time for extraction of the medium-resolution versions, which is
considered only by the VSA scheme.

We have developed a generalized analytical model to select
the versions of video objects to be stored on disk and
proposed an optimal solution to this formulation.
Experimental results show that our scheme balancing MPEG
transcoding with storage based on dynamic programming
substantially reduces CPU demands and enables a server to
admit many more clients.

Fig. 2. Admission ratio against TS.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

600 GB 700 GB 800 GB 900 GB
Storage requirements (TS)

A
dm

is
si

on
 ra

tio

OBS PBS VBS RBS VSA

Fig. 3. Admission ratio against version distribution methods.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

HRM MRM LRM
Version request distribution methods

A
dm

is
si

on
 ra

tio

OBS PBS VBS RBS VSA

References

[1] R. Mohan, J. Smith, and C. Li, “Adapting Multimedia Internet
Content for Universal Access,” IEEE Trans. Multimedia, vol. 1,
no. 1, Mar. 1999, pp. 104-114.

[2] B. Shen, S. Lee, and B. Basu, “Caching Strategies in Transcoding-
Enabled Proxy Systems for Streaming Media Distribution
Networks,” IEEE Trans. Multimedia, vol. 6, no. 2, Apr. 2004, pp.
375-386.

[3] I. Shin and K. Koh, “Hybrid Transcoding for QoS Adaptive
Video-on-Demand Services,” IEEE Trans. Consumer Electronics,
vol. 50, no. 2, May 2004, pp. 732-736.

[4] X. Tang, F. Zhang, and S. Chanson, “Streaming Media Caching
Algorithms for Transcoding Proxies,” Proc. the ICPP, Aug. 2002,
pp. 287-295.

[5] H. Hung and M. Chen, “On Designing a Shortest-Path-Based
Cache Replacement in a Transcoding Proxy,” ACM Multimedia
Systems Journal, vol. 15, no. 2, Apr. 2009, pp. 49-62.

[6] W. Qu et al., “An Optimal Solution for Caching Multimedia
Objects in Transcoding Proxies,” Computer Communications, vol.
30, no. 8, June 2007, pp. 1802-1810.

[7] S. Martello and P. Toth, Knapsack Problem: Algorithms and
Computer Implementations, John Wiley & Sons, 1990.

	I. Introduction
	II. System Model
	III. Optimal Storage Management
	IV. Experimental Results and Conclusion
	References

