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Conventional fire detection systems use physical sensors 
to detect fire. Chemical properties of particles in the air 
are acquired by sensors and are used by conventional fire 
detection systems to raise an alarm. However, this can also 
cause false alarms; for example, a person smoking in a 
room may trigger a typical fire alarm system. In order to 
manage false alarms of conventional fire detection systems, 
a computer vision-based fire detection algorithm is 
proposed in this paper. The proposed fire detection 
algorithm consists of two main parts: fire color modeling 
and motion detection. The algorithm can be used in 
parallel with conventional fire detection systems to reduce 
false alarms. It can also be deployed as a stand-alone 
system to detect fire by using video frames acquired 
through a video acquisition device. A novel fire color 
model is developed in CIE L*a*b* color space to identify 
fire pixels. The proposed fire color model is tested with ten 
diverse video sequences including different types of fire. 
The experimental results are quite encouraging in terms 
of correctly classifying fire pixels according to color 
information only. The overall fire detection system’s 
performance is tested over a benchmark fire video 
database, and its performance is compared with the state-
of-the-art fire detection method. 
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I. Introduction 

Fire detection systems are among the most important 
components in surveillance systems used to monitor buildings 
and the environment. As part of an early warning mechanism, 
it is preferable that the system has the capacity to report the 
earliest stage of a fire. Currently, almost all fire detection 
systems use built-in sensors that depend primarily on the 
reliability and the positional distribution of the sensors. It is 
essential that these sensors are distributed densely for a high- 
precision fire detection system. In a sensor-based fire detection 
system for an outdoor environment, coverage of large areas is 
impractical due to the necessity of a regular distribution of 
sensors in close proximity. 

Due to rapid developments in digital camera technology and 
video processing techniques, there is a major trend to replace 
conventional fire detection methods with computer vision-
based systems. In general, computer vision-based fire detection 
systems employ three major stages: fire pixel classification, 
moving object segmentation, and analysis of the candidate 
regions. This analysis is usually based on two figures: the shape 
of the region and the temporal changes of the region. The fire 
detection performance depends critically on the effectiveness 
of the fire pixel classifier which generates seed areas that the 
rest of the system will exercise. The fire pixel classifier is thus 
required to have a very high detection rate and preferably, a 
low false alarm rate. There exist few algorithms which directly 
deal with the fire pixel classification in the literature.  

The fire pixel classification can be considered both in 
grayscale and color video sequences. Most of the work on fire 
pixel classification in color video sequences is rule-based. 
Chen and others [1] used raw R, G, and B color information 
and developed a set of rules to classify the fire pixels. Instead of 
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using the rule-based color model as in Chen and others, 
Toreyin and others [2] used a mixture of Gaussian models in 
RGB space which is obtained from a training set of fire pixels. 
In a recent paper, the authors employed Chen’s fire pixel 
classification method along with motion information and 
Markov field modeling of the fire flicker process [3]. Celik and 
others [4] used background subtraction to segment changed 
foreground objects and three rules of RGB color components 
to detect fire pixels. The overall system can result in very high 
false alarm rates when intensity changes are considered, and it 
is very sensitive to the tuning parameters employed in 
background subtraction. 

Celik and others [5] used normalized RGB (rgb) values for a 
generic color model for fire. The normalized RGB is proposed 
in order to alleviate the effects of changing illumination. The 
generic model is obtained using statistical analysis carried out 
in r-g, r-b, and g-b color planes. Due to the distribution of the 
sample fire pixels in each plane, three lines are used to specify 
a triangular region representing the region of interest for the fire 
pixels. Therefore, triangular regions in respective r-g, r-b, and 
g-b planes are used to classify a pixel. A pixel is declared to be 
a fire pixel if it falls into three of the triangular regions in r-g, r-
b, and g-b planes. Krull and others [6] used low-cost CCD 
cameras to detect fires in the cargo bay of long range passenger 
aircraft. This method uses statistical features based on grayscale 
video frames, which include mean pixel intensity, standard 
deviation, and second-order moments as well as non-image 
features, such as humidity and temperature to detect fire in the 
cargo compartment. The system is commercially used in 
parallel with standard smoke detectors to reduce the number of 
false alarms caused by the smoke detectors, and it also provides 
visual inspection capability which helps the aircraft crew 
confirm the presence or absence of fire. However, the statistical 
image features are not considered to be used as part of a 
standalone fire detection system. 

Marbach and others [7] used the YUV color model for the 
representation of video data, where time derivative of 
luminance component Y was used to declare the candidate fire 
pixels, and the chrominance components U and V were used to 
classify whether or not the candidate pixels were in the fire 
sector. In addition to luminance and chrominance, they also 
incorporated motion into their work. They report that their 
algorithm detects less than one false alarm per week; however, 
there is no mention of the number of tests conducted. Horng 
and others [8] used the HSI color model to roughly segment the 
fire-like regions for brighter and darker environments. The 
initial segmentation is followed by removing the lower 
intensity and the lower saturation pixels to eliminate spurious 
fire-like regions, such as smoke. A metric based on binary 
contour difference images is also introduced to measure the 

degree of burning of fire into classes, such as ‘no fire,’ ‘small,’ 
‘medium,’ and ‘big’ fires. They report a 96.94% detection rate 
including false positives and false negatives for their algorithms. 
However, there is no attempt to reduce the false positives and 
false negatives by changing their threshold values. Phillips and 
others [9] proposed a sophisticated method for recognizing 
fires in color video. They used both motion and color 
information. However, their methods require a look-up table 
generation at the beginning of system start-up. This adds the 
drawback of dependency on an operator to detect fire in video 
sequences. Moreover, the approach is too complicated to 
process in real-time. 

A good color model for fire modeling and robust moving 
pixel segmentation are essential because of their critical role in 
computer vision-based fire detection systems. In this paper, we 
propose an algorithm that models the fire pixels using the CIE 
L*a*b* color space. The motivation for using CIE L*a*b* 
color space is because it is perceptually uniform color space, 
thus making it possible to represent color information of fire 
better than other color spaces. The moving pixels are detected 
by applying a background subtraction algorithm together with 
a frame differencing algorithm on the frame buffer filled with 
consecutive frames of input video to separate the moving 
pixels from non-moving pixels. The moving pixels which are 
also detected as a fire pixel are further analyzed in consecutive 
frames to raise a fire alarm.  

This paper is organized as follows. Section II presents the 
essentials of color modeling for fire detection and introduces 
the different types of concepts to reduce the false alarm rate. 
The moving pixel detection algorithm is also presented in 
section II. Section III provides experimental results and 
comparisons with the state-of-the-art fire detection algorithm. 
The paper concludes in section IV. 

II. Fire Detection  

This section covers the details of the fire detection algorithm. 
Figure 1 shows the flow chart of the proposed algorithm for 
fire detection in a video. It is assumed that the image 
acquisition device produces its output in RGB format. The 
algorithm consists of three main stages: fire pixel detection 
using color information, detecting moving pixels, and 
analyzing dynamics of moving fire pixels in consecutive 
frames. In following, each part is described in detail. 

1. RGB to CIE L*a*b* Color Space Conversion 

The first stage in our algorithm is the conversion from RGB 
to CIE L*a*b* color space. Most of the existing CCTV video 
cameras provide output in RGB color space, but there are also 
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Fig. 1. Flow chart of proposed algorithm for fire detection in
image sequences. 
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other color spaces used for data output representation. The 
conversion from any color space representation to CIE L*a*b* 
color space is straightforward [10]. Given RGB data, the 
conversion to CIE L*a*b* color space is formulated as follows 
[10]: 
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where Xn, Yn, and Zn are the tri-stimulus values of the reference 
color white. The data range of RGB color channels is between 
0 and 255 for 8-bit data representation. Meanwhile, the data 
ranges of L*, a*, and b* components are [0, 100], [–110, 110], 
and [–110, 110], respectively. 

2. Color Modeling for Fire Detection 

A fire in an image can be described by using its visual 
properties. These visual properties can be expressed using 
simple mathematical formulations. In Fig. 2, we show sample 
images which contain fire and their CIE L*a*b* color channels 
(L*, a*, b*). Figure 2 gives some clues about the way CIE 
L*a*b* color channel values characterize fire pixels. Using 
such visual properties, we develop rules to detect fire using  
CIE L*a*b* color space. 

The range of fire color can be defined as an interval of color 
values between red and yellow. Since the color of fire is 
generally close to red and has high illumination, we can use 
this property to define measures to detect the existence of fire 
in an image. For a given image in CIE L*a*b* color space, the 
following statistical measures for each color channel are 
defined as 
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where *
mL , *

ma , and *
mb are a collection of average values of 

the L*, a*, and b* color channels, respectively; N is the total 
number of pixels in the image; and (x, y) is spatial pixel 
location in an imaging grid. The numeric color responses L*, 
a*, and b* are normalized to [0, 1]. It is assumed that the fire 
in an image has the brightest image region and is near to the 
color red. Thus, the following rules can be used to define a fire 
pixel: 
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where R1, R2, R3, and R4 are binary images which represent 
the existence of fire in a spatial pixel location (x, y) by 1 and the 
non-existence of fire by 0. R1(x, y), R2(x, y), and R3(x, y) are 
calculated from global properties of the input image. R4(x, y) 
represents the color information of fire; for example, fire has a 
reddish color. Figure 3 shows sample images from Fig. 2(a), 
and binary images created using (3)-(6). Figure 3(f) shows a 
combination of these binary images with the binary AND 
operator. Figure 3(g) displays the segmented fire image. 

In order to find the correlation between L*, a*, and b* values 
of fire pixels, the following strategy was applied. A set of 500 
RGB images was collected from the Internet. Then, each 
image was manually segmented to identify all fire regions. 
Segmented fire regions are converted to L*, a*, and b* color 
space. A histogram of fire pixels is created for each of the 3 
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Fig. 2. Sample RGB images containing fire and their CIE L*a*b* color channels: (a) RGB image, (b) L* color channel, (c) a* color 
channel, and (d) b* color channel. For visualization purposes, responses in different color channels are normalized into interval 
[0, 1]. 

(a) (b) (c) (d) 

 

Fig. 3. Applying (3)-(6) to input images: (a) original RGB image, (b) binary image using (3), (c) binary image using (4), (d) binary
image using (5), (e) binary image using (6), (f) combining results of (b)-(e) by binary AND operator, and (g) segmented fire 
region. 

(a) (b) (c) (d) (e) (f) (g) 

 
different color planes, that is, (L*-a*), (L*-b*), and (a*-b*). 
Figure 4 shows the histograms of three different color planes 

where L*, a*, and b* channels are quantized into 24 levels, and 
6,223,467 pixels are used to create each histogram. The 
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number of quantization levels can be changed, but through 
experimentation, 24 levels were found to give satisfactory 
results. A look-up table is created for each pair of 24 quantized 
levels to keep track of the likelihood that any pair of L*, a*, 
and b* belongs to a fire. It is clear from Figs. 4(a), 4(b), and 
4(c) that a fire can be defined by the combination of three 
histograms. Given the L*, a*, and b* color values at spatial 
location (x, y), the likelihood that L*, a*, and b* belong to a fire 
P(L*, a*, b*) is defined as  

( ) ( ) ( ) ( )* * * * * * * * *, , , , , ,P L a b P L a P L b P a b=     (7) 

where P(L*, a*), P(L*, b*), and P(a*, b*) are the likelihoods 
that (L*, a*), (L*, b*), and (a*, b*) belong to a fire, respectively. 
The likelihood of being fire as defined by (7) can be used to 
detect a fire pixel by using simple thresholding: 

( ) ( ) ( ) ( )( )* * *1,  if , , , , , ,
5 ,
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where α is a threshold value. Figure 5 shows input RGB 
images, corresponding likelihood images P(L*, a*, b*) 
resulted from (7), and corresponding R5 images resulted from 
(8) for α = 0.005. The pixel value P(L*(x, y), a*(x, y), b*(x, y)) 
of likelihood image P(L*, a*, b*) is a measure in the range of 
[0, 1] for which a higher value of P(L*(x, y), a*(x, y), b*(x, y)) 
means that there is a higher likelihood that the corresponding 
pixel belongs to a fire. 

The optimum value of α can be estimated using receiver 
operating characteristic (ROC) analysis. The labeled image set 
is used in estimating the value of α along with the following 
evaluation criterion. For each value of α, the likelihood in (8) is 
calculated and binarized for each image in the dataset. Using 
the ground truth regions which were manually labeled as a fire 
in the training images, the number of correct detections and 
false detections are calculated for the whole image set. The 
correct detection is defined as any pixel detected as a fire pixel 
using (8) which is also manually labeled as a fire pixel in the  

 

Fig. 5. Calculating P(L*, a*, b*)  and thresholding it with α = 
0.005: (a) RGB input image which contains fire, (b) 
corresponding likelihood image P(L*, a*, b*) computed 
according to (7), and (c) thresholded P(L*, a*, b*) 
computed according to (8). 

(a) (b) (c) 

 
 
original image. Similarly, false detection is defined as any pixel 
detected as a fire pixel using (8) but is not in the manually 
labeled fire regions. For each value of α, the average rate of 
correct detection and false detection is evaluated on a training 
image set and used in the ROC curve. Figure 6 shows the ROC 
curve. Using the ROC curve, a threshold value for α can be 
easily selected for the fire detection algorithm with a pre-
defined correct detection versus false detection rates. 

Different values of α result in different system performances. 
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Fig. 6. ROC curve for variable α ranging in [0, 0.01]. 
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Fig. 7. Sample fire segmentations using (9): (a) original image,
(b) fire map using (9), and (c) segmented fire image using
original image and (9). 
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In our implementation, we chose α as the value which gives 
more than a 90% correct detection rate. The very first value of 
α which satisfies this condition is α = 0.00016. However, it also 
produces a 36.5% false detection rate as shown in Fig. 6. The 
smaller value of α makes the algorithm produce a higher 
correct detection rate but also produces a higher false detection 
rate, and vice versa. The value of α can be changed at any time 
to adjust for higher correct detection or lower false detection 
rates. 

Using (3)-(6) and (8), a final fire pixel detection equation can 
be defined as 

( ) ( )
5

1

1,    if  , 5,
,
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i
i

R x y
F x y

  
=

⎧
=⎪

= ⎨
⎪
⎩

∑         (9) 

where F(x, y) is the final decision on whether a pixel located at 
spatial location (x, y) results from fire or not. Equation (9) 
means that if inequalities defined in (3)-(6) and (8) give 1 as 
their output for spatial location (x, y), then there is a fire in that 
spatial location. 

Figure 7 shows the performance of fire segmentation using 
(9) on sample RGB images. Figure 7(a) is the original image, 
Fig. 7(b) is the result of applying (9), and Fig. 7(c) is the 
segmented image using binary map in Fig. 7(b). It is clear that 
the proposed fire color model can adequately detect fire pixels 
under different conditions. For instance, the illumination shows 
high diversity in between input images (see Fig. 7(a)), and the 
proposed fire color model can still detect fire regions. 

3. Moving Pixel Detection 

In moving pixel detection, it is assumed that the video 
camera is stable, that is, the camera is still, and there is no 
movement in spatial location of the video camera. There are 
three main parts in moving pixel detection: frame/background 
subtraction, background registration, and moving pixel 
detection. 

The first step is to compute the binary frame difference map 
by thresholding the difference between two consecutive input 
frames. At the same time, the binary background difference 
map is generated by comparing the current input frame with 
the background frame stored in the background buffer. The 
binary background difference map is used as primary 
information for moving pixel detection. In the second step, 
according to the frame difference map of past several frames, 
pixels which are not moving for a long time are considered as 
reliable background in the background registration. This step 
maintains an updated background buffer as well as a 
background registration map indicating whether the 
background information of a pixel is available or not. In the 
third step, the binary background difference map and the binary 
frame difference map are used together to create the binary 
moving pixel map. If the background registration map 
indicates that the background information of a pixel is available, 
the background difference map is used as the initial binary 
moving pixel map. Otherwise, the value in the binary frame 
difference map is copied to binary moving pixel map. The 
intensity channel L* is used in moving pixel detection. 

The frame difference between the current frame L*(x, y, t) at 
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time t and the previous frame L*(x, y, t–1) at time t–1 is 
computed and thresholded to create a binary frame difference 
map, FD, at time t, that is, 

( ) ( ) ( )* *
FD1,  if , , , , 1 ,

, ,
0,  otherwise,

L x y t L x y t T
FD x y t

⎧ − − ≥⎪= ⎨
⎪⎩

 (10) 

where TFD is a threshold value. 
Similar to the FD, the background difference is applied 

between the current frame and the background image to 
generate a binary background difference map, BD, that is, 

( ) ( ) ( )*
BD1,  if , , , , 1 ,

, ,
0,  otherwise,

L x y t BG x y t T
BD x y t

⎧ − − ≥⎪= ⎨
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 (11) 

where BG(x, y, t–1) is background image pixel value at spatial 
location (x, y) at time t–1, and TBD is a threshold value. 

The values of TFD and TBD should be selected carefully to 
generate adequate binary maps. The fixed-threshold setting 
provides a computationally inexpensive solution for the 
threshold selection problem. However, it generally suffers from 
changes in illumination as well as the fact that noise inherently 
exists in image acquisition systems. In order to overcome these 
drawbacks, a dynamic threshold selection method is developed.  

Let DI be the difference image representing either interframe 
difference or background difference image. Using the 
difference image DI, the dynamic threshold value τ(DI) is 
computed as follows: 
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where μ(DI) and σ(DI) are the mean and the standard deviation 
of the difference image pixels, respectively, that is, 
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Equation (12) automatically determines a dynamic threshold 
value according to mean and standard deviation of pixel values 
in the difference image DI. In order to reduce false detections 
resulting from the lower values of dynamic threshold which 
happens in the case of no motion occurring in between 
consecutive video frames, a lower limit value of 10 is used. 
The lower limit value can be tuned according to the system 
dynamics or other external effects under consideration. For 
example, if the level of noise is high, then the lower limit value 
should be selected high enough to reduce the false alarm rate, 
and vice versa. Using (12), the threshold values TFD and TBD  

are computed as TFD = τ(Ft, t–1) and TBD = τ(Bt, t–1), where     
Ft, t–1 = │L*(x, y, t) – L*(x, y, t–1)│is the interframe difference, 
and Bt, t–1 = │L*(x, y, t) – BG(x, y, t–1)│ is the background 
difference. 

In order to construct reliable background information from 
the video sequence, a background registration step is applied 
using the binary frame difference map and the binary 
background difference map. Using the FD, pixels not moving 
for a long time are considered as reliable background pixels. 
For each pixel (x, y), a stationary index (SI) is kept to count 
how long it is detected as non-moving pixel, that is, 

( ) ( ) ( ), , 1 1,  if, , , 0,
, ,

0,  otherwise.
SI x y t FD x y t

SI x y t
⎧ − + =⎪= ⎨
⎪⎩

 (13) 

Using the SI, the background image BG is updated as 
follows: 

( ) ( ) ( )
( )

*
SI, , ,  if  , , ,

, ,
, , 1 ,  otherwise,

⎧ =⎪= ⎨
−⎪⎩

L x y t SI x y t T
BG x y t

BG x y t
 (14) 

where TSI is a threshold which identifies how long it takes for 
each pixel to be considered as a non-moving pixel. The value 
of threshold TSI is equal to the number of frames that can be 
processed by the system per second. The initial values of SI 
and BG are all set to 0. 

The FD and the BD are considered together to compute a 
resultant binary moving pixel map M according to 

( ) ( ) ( ), , , , , ,M x y FD x y t BD x y t= ⊕         (15) 

where⊕ is binary OR operator. 

4. Analyzing Fire Regions in Consecutive Frames 

The pixels which are detected as both fire using (9) and 
moving using (15) are employed to detect a candidate fire pixel 
(CF) as 

( ) ( ) ( ), , , , ,CF x y t F x y M x y= ⊗           (16) 

where⊗ is binary AND operator. The connected components 
of binary image CF are further analyzed in consecutive frames. 
The connected components of a size one pixel are labeled as 
noise and are not considered for further analysis. Let O(t) and 
NO(t) be the set of all pixels which compose one of the 
connected components of CF(t) and the number of pixels of 
the connected component O(t) at time t, respectively. The 
connected component O(t) is tracked in time to make a further 
decision by considering the behavior of fire. A fire grows 
spatially at its early stage and shows flickering behavior. In 
order to quantify this behavior, O(t) is observed in consecutive 
frames. The counter CGO(t) is generated for O(t) with 
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1 1,  if 1 ,
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CGO t NO t NO t
CGO t

CGO t

⎧ − + ≥ −⎪= ⎨
−⎪⎩

(17) 

to count the number of times that the connected component  
O(t) at time t has higher number of pixels than that of the 
same connected component O(t–1) at time t–1. The number 
of detected fire pixels at the initial stage of fire is less than the 
number of detected fire pixels at later stages when fire grows 
spatially. The counter CGO(t) is designed by considering this 
behavior of fire. The counter increases its value at time t 
when the number of detected fire pixels is higher than that of 
detected pixels at time t–1. However, because of the 
flickering behavior, it is possible to detect less fire pixels at 
time t with respect to time t–1. In this case, (16) does not 
update its value. The initial value of the counter in (16) is set 
to 0 and updated in time.  

The value of counter CGO(t) is used to measure the temporal 
behavior of fire at early stages. That is, at the early stages of a 
fire, the fire should be spatially growing, hence the number of 
detected fire pixels should be increasing. Let FPS be the frames 
per second that our system can process. Using (17), we define a 
metric D(t) to decide if the connected O(t) is a fire region or not 
by 

( ) ( ) ( )1
.

CGO t CGO t FPS
D t

FPS
− − +

=        (18) 

The value of D(t) is near to 1 when the fire is spatially 
growing, which happens at the early stages of fire. On the other 
hand, the value of D(t) approaches 0 when the fire region is not 
having considerable spatial motion. Each connected 
component is tracked in consecutive frames, and the value of 
D(t) is computed. It is empirically found that D(t)≥0.4 provides 
a good tradeoff between correct fire region identification and 
false alarm reduction, and a fire alarm is raised when D(t)≥0.4. 
Note that D(t) starts to produce its values after FPS frames pass 
from the first time the corresponding connected component 
starts being processed. The metric D(t) automatically 
eliminates the false alarms caused by fire-like colored moving 
but not spatially growing objects. For such objects, the value of 
D(t) is much smaller than 0.4. The above procedure is applied 
to each connected component of CFs. 

III. Tests and System Performance 

1. Tests on Proposed Fire Color Model 

First, the performance of the proposed fire color model is 
tested. The color model is tested on different video sequences 
for a variety of environmental conditions, for example, daytime,  

Table 1. Experimental results of fire detection using color 
information. 

Video Ft Ff Fc FP FN Rd (%) Sample 
picture 

1 432 432 432 0 0 100.00 

2 408 408 408 0 0 100.00 

3 345 345 345 0 0 100.00 

4 332 332 332 0 0 100.00 

5 407 407 407 0 0 100.00 

6 362 362 362 0 0 100.00 

7 2,237 1,358 2,219 11 7 99.20 

8 2,736 2,064 2,734 0 2 99.93 

9 2,294 1,403 2,287 3 4 99.69 

10 3,461 2,351 3,460 1 0 99.97 

Total 13,014 9,462 12,986 15 13 99.88  

 

nighttime, indoor, and outdoor. Equation (9) is applied to each 
frame of each video. The fire alarm is raised if the number of 
connected fire pixels detected is greater than five. The 
experimental results of the proposed fire detection method are 
shown in Table 1. Ft is the number of frames of a video 
sequence, and Ff is the number of frames containing fire in a 
video sequence. Fc is the number of frames (including fire and 
non-fire frames) that correctly classify fire pixels by the 
proposed algorithm. FP and FN refer to the number of frames 
that are classified as false positive and false negative, 
respectively. False positive means that the system recognizes 
fire in an image frame when there is no fire. Similarly, false 
negative means that the system does not detect fire in an image 
frame when there is indeed fire. The detection rate, Rd, of a 
video is defined as  

.c
d

t

F
R

F
=                 (19) 

The average detection rate that can be achieved is more than 
99.88% with the test sequences of samples shown in Table 1. 
The false negative detection rates are due to very small fire 
regions on the initial combustion in some of the video 
sequences. False positives are mainly caused from the 
reflection of fire onto the sides of the metal container. Figure 8  
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Fig. 8. Sample fire detection results produced by using only proposed fire-color model on different types of videos as shown in different 
rows: columns 1, 3, and 5 are RGB frames from input video sequences and columns 2, 4, and 6 are segmented fire regions 
according to the proposed fire color model. 

 
shows sample fire detection results using only color 
information on different video sequences. It is clear from  
Table 1 and Fig. 8 that under different conditions, the proposed 
fire color model can detect fire adequately, which is very 
important for a robust fire detection system. 

2. Tests on Proposed Fired Detection System 

The performance of the proposed fire detection system was 
tested on video sequences which consist of diverse conditions. 
We implemented the proposed fire detection system on Intel 
Core 2 Duo 2.0 GHz CPU. The operating system was 
Windows Vista. The system performed minimum 30 FPS for 
input video sequence of frame size 320×240 pixels. The frame 
rate was changeable depending on the size of the fire. To 
validate the effectiveness of the proposed fire detection system, 
the detection performance of the proposed system was 
compared with that of the Toreyin algorithm [3]. 

The test was performed using 9 online video sequences [3] 
downloaded from http://signal.ee.bilkent.edu.tr/VisiFire. The 
properties of video sequences are given in Table 2. The frame 
rate of the video data varied from 15 Hz to 30 Hz, and the size 
of the input image was 320×240 pixels. The movie sequences 
Movie 1, Movie 2, Movie 3, and Movie 4 are outdoor fire 
videos, and Movie 8 includes a car accident in a tunnel without 
fire. We also considered fire-colored moving persons and a 
truck (Movie 5, Movie 6, Movie 7, and Movie 9) to check the 
performance of the proposed system in cases of false alarms 
caused by non-fire objects. 

The fire detection test results on nine video sequences are 

Table 2. Properties of video sequences. 

Name Ft Description 

Movie 1 510 Man in fire-colored shirt behind fire 

Movie 2 368 Burning tree 

Movie 3 213 Fire in garden 

Movie 4 190 Fire in forest 

Movie 5 120 Fire-colored moving truck 

Movie 6 165 Three men walking on ground 

Movie 7 412 Three men walking in hallway 

Movie 8 393 Accident in tunnel 

Movie 9 394 Dancing man in fire-colored shirt 

 

 
shown in Table 3. Overall, the proposed method performs 
better than the method of Toreyin and others [3]. In particular, 
the Toreyin method gave several false alarms for Movie 3 and 
Movie 4 due to light reflection from a fire onto white smoke 
being confused with a burning fire. However, the proposed 
algorithm was able to remove these false positives using a 
better color model which separates luminance from the 
chrominance to make a better decision on fire color and a better 
moving region analysis in consecutive frames. In the case of 
Movie 1, which contains relatively small-sized fires, our 
system shows a relatively lower missing rate compared to the 
Toreyin method. The detection rate on four videos including 
the truck and fire-colored moving objects shows 100% on both 
methods. 
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Table 3. Performance comparisons of different fire detection methods
on video sequences detailed in Table 2. 

Method of [3] Proposed method 
Name 

FP (%) FN (%) Rd (%) FP (%) FN (%) Rd (%)

Movie 1 0.0 66.0 34.0 6.0 40.8 53.2 

Movie 2 4.9 7.6 87.5 1.0 19.8 79.2 

Movie 3 44.1 4.7 51.2 0.5 41.2 58.3 

Movie 4 10.0 16.3 73.7 1.1 1.4 97.5 

Movie 5 0.0 0.0 100 0.0 0.0 100 

Movie 6 0.0 0.0 100 0.0 0.0 100 

Movie 7 0.0 0.0 100 0.0 0.0 100 

Movie 8 0.0 0.0 100 0.0 0.0 100 

Movie 9 0.0 0.0 100 1.5 0.2 98.3 

Average 6.6 10.5 82.9 1.1 11.5 87.4 

 

 
IV. Conclusion 

In this paper, a new image-based real-time fire detection 
method was proposed which is based on computer vision 
techniques. The proposed method consists of three main 
stages: fire pixel detection using color, moving pixel detection, 
and analyzing fire-colored moving pixels in consecutive 
frames to raise an alarm. The proposed fire color model 
achieves a detection rate of 99.88% on the ten tested video 
sequences with diverse imaging conditions. Furthermore, the 
experiments on benchmark fire video databases show that the 
proposed method achieves comparable performance with 
respect to the state-of-the-art fire detection method. 

The performance of the proposed fire detection system can 
be further improved by considering smoke at early stages of 
fire. However, detecting smoke is a challenging task and prone 
to high false detections caused from fog, different lighting 
conditions caused by nature, and other external optical effects. 
Such high false detections can be resolved by analyzing every 
smoke-like region. However, this yields a high computational 
load. 

The motion information of fire is also considered to 
characterize fire regions. The proposed system assumes that 
the fire will grow gradually in a spatial domain. This might 
not be the case in some situations. For instance, the system 
might not be able to detect a fire caused by a sudden 
explosion. In order to alleviate such cases, the proposed 
system will be further improved to include different scenarios. 
Furthermore, texture and shape information of fire regions 
will also be investigated to improve the system’s fire 
detection performance. 

References 

[1] T. Chen, P. Wu, and Y. Chiou, “An Early Fire-Detection Method 
Based on Image Processing,” Proc. IEEE Int. Image Process., 
2004, pp. 1707-1710. 

[2] B.U. Toreyin, Y. Dedeoglu, and A.E. Cetin, “Flame Detection in 
Video Using Hidden Markov Models,” Proc. IEEE Int. Conf. 
Image Process., 2005, pp. 1230-1233, 2005. 

[3] B.U. Toreyin, Y. Dedeoglu, and A.E. Cetin, “Computer Vision 
Based Method for Real-Time Fire and Flame Detection,” Pattern 
Recognition Lett., vol. 27, no. 1, 2006, pp. 49-58. 

[4] T. Celik et al., “Fire Detection Using Statistical Color Model in 
Video Sequences,” J. Visual Commun. Image Representation, vol. 
18, no. 2, Apr 2007, pp. 176-185. 

[5] T. Celik, H. Demirel, and H. Ozkaramanli, “Automatic Fire 
Detection in Video Sequences,” Proc. European Signal Process. 
Conf., Florence, Italy, Sept. 2006. 

[6] W. Krüll et al., “Design and Test Methods for a Video-Based 
Cargo Fire Verification System for Commercial Aircraft,” Fire 
Safety J., vol. 41, no. 4, 2006, pp. 290-300. 

[7] G. Marbach, M. Loepfe, and T. Brupbacher, “An Image 
Processing Technique for Fire Detection in Video Images,” Fire 
Safety J., vol. 41, no. 4, 2006, pp. 285-289.  

[8] W.-B. Horng, J.-W. Peng, and C.-Y. Chen, “A New Image-Based 
Real-Time Flame Detection Method Using Color Analysis,” Proc. 
IEEE Networking, Sensing Control, 2005, pp. 100-105. 

[9] W. Phillips III, M. Shah, and N. da Vitoria Lobo, “Flame 
Recognition in Video,” Proc. 5th Workshop Appl. Computer 
Vision, 2000, pp. 224-229. 

[10] D. Malacara, Color Vision and Colorimetry, SPIE Press, 2002. 
 

Turgay Celik received the PhD in 
electrical and electronic engineering from 
Eastern Mediterranean University, 
Gazimagusa, TRNC, TURKEY. He is 
currently a research fellow with the 
Department of Chemistry, National 
University of Singapore, Singapore, and 

Bioinformatics Institute, Agency for Science, Technology and 
Research (A*STAR), Singapore. He has produced extensive 
publications in various international journals and conferences. 
He has been acting as a reviewer for various international 
journals and conferences. His research interests are in the areas 
of biophysics, digital signal, image and video processing, 
pattern recognition, and artificial intelligence. These include 
fluorescent microscopy, digital image/video coding, wavelets 
and filter banks, image/video processing, content-based image 
indexing and retrieval, and scene analysis and recognition. 

 


	I. Introduction
	II. Fire Detection
	III. Tests and System Performance
	IV. Conclusion
	References

